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Abstract
Observer motion and continuous deformations of
objects and surfaces imbue natural videos with
distinct temporal structures, enabling partial pre-
diction of future frames from past ones. Conven-
tional methods first estimate local motion, or optic
flow, and then use it to predict future frames by
warping or copying content. Here, we explore a
more direct methodology, in which each frame is
mapped into a learned representation space where
the structure of temporal evolution is more read-
ily accessible. Motivated by the geometry of the
Fourier shift theorem and its group-theoretic gen-
eralization, we formulate a simple architecture
that represents video frames in learned local po-
lar coordinates. Specifically, we construct net-
works in which pairs of convolutional channel
coefficients are treated as complex-valued, and
are optimized to evolve with slowly varying am-
plitudes and linearly advancing phases. We train
these models on next-frame prediction in natu-
ral videos, and compare their performance with
that of conventional methods using optic flow as
well as predictive neural networks. We find that
the polar predictor achieves better performance
while remaining interpretable and fast, thereby
demonstrating the potential of a flow-free video
processing methodology that is trained end-to-end
to predict natural video content.

1. Introduction
One way to frame the fundamental problem of vision is
that of representing the signal in a form that is more useful
for performing visual tasks, be they estimation, recogni-
tion, or motor action. Perhaps the most general “task” is
that of temporal prediction, which has been proposed as a
fundamental goal for unsupervised learning of visual rep-
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resentations (Földiák, 1991). But previous research along
these lines has generally focused on estimating temporal
transformations rather than using them to predict: for exam-
ple, extracting slow features (Wiskott & Sejnowski, 2002),
or finding sparse codes that have slow amplitudes and phases
(Cadieu & Olshausen, 2012).

In video processing and computer vision, a common strategy
for temporal prediction is to first estimate local translational
motion, and to then (assuming no acceleration) use this
to warp and/or copy previous content to predict the next
frame. Such motion compensation is a fundamental compo-
nent in video compression schemes like MPEG (Wiegand
et al., 2003). These video coding standards are the result
of decades of engineering efforts, and have enabled reli-
able and efficient digital video communication that is now
commonplace. But motion estimation is a difficult nonlin-
ear problem, and existing methods fail in regions where
temporal evolution is not translational and smooth: for ex-
ample, expanding or rotating motions, discontinuous motion
at occlusion boundaries, or mixtures of motion arising from
semi-transparent surfaces (e.g., viewing the world through a
dirty pane of glass). In compression schemes, these failures
of motion estimation lead to prediction errors, which must
then be repaired by sending additional corrective bits.

Human perception does not seem to suffer from such fail-
ures - subjectively, we can anticipate the time-evolution
of visual input even in the vicinity of these commonly oc-
curring non-translational changes. In fact, those changes
are often highly informative, as they reveal object bound-
aries, and provide ordinal depth and other information about
the visual scene. This suggests that the human visual sys-
tem uses a different strategy, perhaps bypassing altogether
the estimation of local motion, to represent and predict
evolving visual input. Toward this end, and inspired by re-
cent hypotheses that primate visual representations support
prediction by “straightening” the temporal trajectories of
naturally-occurring input (Hénaff et al., 2019), we formu-
late an objective for learning an image representation that
facilitates prediction by linearizing the temporal trajectories
of frames of natural video.

To motivate the separation of instantaneous spatial repre-
sentation from temporal prediction, we first consider the
special case of rigidly translating video content. When ex-
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pressed in the frequency domain, translation corresponds to
linear phase advancement (section 2.1), and prediction of
rigidly translating content reduces to angular extrapolation
(section 2.2). We generalize this factorization using group
representation theory (section 2.3), and describe a neural
network architecture that maps individual video frames to
a latent complex-valued representation. Within this latent
space, coefficients can be temporally predicted by phase ad-
vancement and then mapped back to generate an estimated
frame. The entire systems may then be trained end-to-end
to minimize next frame prediction errors (section 3). We
report training results of several such systems, and show
that they produce systematic improvements in predictive
performance over both conventional motion compensation
methods, and direct predictive neural networks (section 4).
Finally, we relate this approach to previous work (section 5)
and discuss its significance and implications (section 6).

2. Background
2.1. Base case: the Fourier shift theorem

Our approach is motivated by the well-known behavior of
Fourier representations with respect to signal translation
(note that this elementary example will later lead to our pro-
posed generalization). Specifically, the complex exponen-
tials that make up the Fourier basis are the eigenfunctions of
the translation operator, and translation of inputs produces
systematic phase advances of frequency coefficients. Let
x ∈ RN be a discrete signal indexed by spatial location
n ∈ [0, N − 1], and let x̃ ∈ CN be its Fourier transform
indexed by k ∈ [0, N −1]. We write xv(n) = x(n−v), the
translation of x by v moduloN (ie. circular shift with period
N). Defining φ = ei2π/N , the primitive N-th root of unity,
and Fnk = φnk, the N ×N Fourier matrix, we can express
the Fourier shift theorem1 as: xv(n) = 1

NFD(v)F∗x(n),
where F∗ is the conjugate transpose of the Fourier matrix
and D(v) = diag(φ0, ..., φ−(n−1)v) is a diagonal matrix.

This relationship may be depicted in a compact diagram:

x̃(k) φ−kvx̃(k)

x(n) x(n− v).

advance phase

FF∗

shift

(1)

1Proof by substituting m = n− v:

x̃v(k) =

N−1∑
n=0

φ−knx(n− v) =

N−1−v∑
m=−v

φ−kvφ−kmx(m)

= φ−kv
N−1∑
n=0

φ−knx(n) = φ−kvx̃(k).
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Figure 1. Translation of a 1D signal consisting of a sum of two sinu-
soidal components: x(n, t) = sin(2π(n−t))+sin(2π3(n−t))/2.
Lower left: three snapshots of the signal as it translates. Lower
right: In the high-dimensional space representing the signal (each
axis corresponding to the signal value at one location), the tem-
poral trajectory is highly curved. Shown is the projection of the
signal vector into the 3D space of the top three principal compo-
nents. Three colored points indicate the three snapshots in lower
left panel. Upper left: Fourier transform of the signal, showing
complex-valued coefficients as a function of frequency. In this
representation the temporal trajectory corresponds to linearly in-
creasing phase of the two sinusoidal components, each at a rate
proportional to its frequency. Upper right: a polar coordinate trans-
form to amplitude and phase of each frequency component leads
to a representation that evolves along a straight line, and is thus
readily predictable (phases are unwrapped for display purposes).

In the context of our goals, the diagram illustrates the point
that transforming to the frequency domain renders transla-
tion a “simpler” operation: a phase advance is a rotation in
the two dimensional (complex) plane.

2.2. Prediction via angular extrapolation

Now consider observations of a signal that translates at a
constant velocity over time, x(n, t) = y(n− vt). Although
the temporal evolution is easy to describe, it traces a highly
non-linear trajectory in the signal state space, rendering pre-
diction difficult (specifically, linear extrapolation fails). As
an example, Figure 1 shows a signal consisting of a sum of
two sinusoidal components. Transforming the signal to the
frequency domain simplifies the description. In particular,
the translational motion now corresponds to circular motion
of the two (complex-valued) Fourier coefficients associated
with the constituent sinusoids.

The motion is further simplified by a polar coordinate trans-
form to extract phase and amplitude of each Fourier co-
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efficient. Specifically, the motion is now along a straight
trajectory, with both phases advancing linearly (but at dif-
ferent rates), and both amplitudes constant. Note that this is
a geometric property that holds for any rigidly translating
signal, and offers a simple means of predicting content over
time. Indeed, we can use the shift property (see section 2.1)
on x(n, t+1) = xv(n, t) and observe that prediction is now
reduced to linear extrapolation of each coefficient’s phase.
We have the three step process:

x̃(k, t) =

N−1∑
n=0

φ−knx(n, t), (analyze)

x̃(k, t+ 1) = φ−kvx̃(k, t), (advance phase)

x(n, t+ 1) =
1

N

N−1∑
k=0

φnkx̃(k, t+ 1). (synthesize)

Since we assumed that the motion from time t to t + 1 is
identical to that from time t − 1 to t (ie. no acceleration),
the phase advance kv can be computed from the past two
representations as kv = ∠x̃(k, t)−∠x̃(k, t− 1), where ∠z
indicates the phase of the complex number z. Thus, a polar
coordinate transformation in the frequency domain converts
translational motion into trajectories that are predictable via
linear phase extrapolation.

2.3. Generalization: representing commutative Lie
groups

Natural videos are replete with rich temporal transforma-
tions, such as continuous deformations of objects and sur-
faces. Assuming that these transformations can be described
as groups, we will aim to learn their group representation
from data. To this end, we seek a parameterization that
generalizes beyond translation and the frequency domain.
Remarkably, Fourier analysis can be seen as a special case
of the representation theory of compact commutative Lie
(ie. smooth) groups (Mackey, 1980).

In harmonic analysis, the celebrated Peter-Weyl Theorem
(1927) establishes the completeness of the irreducible repre-
sentations of any compact continuous group (an irreducible
representation is a subspace that is invariant to group ac-
tion and that can not be further decomposed). Furthermore,
it follows that every compact Lie group admits a faithful
(ie. injective) representation given by an explicit complete
orthogonal basis, constructed from finite-dimensional ir-
reducible representations (Hall, 2013). Accordingly, the
action of a compact Lie group can be expressed as a rotation
within each irreducible representation - thereby generalizing
the Fourier shift property (an example is the construction of
steerable filters (Freeman et al., 1991) in the computational
vision literature).

In the case of compact commutative Lie groups, the irre-
ducible representations are one-dimensional and complex

valued: they are pairs of real valued basis functions. There-
fore, the angular extrapolation mechanism described in the
previous section (2.2) can be employed for prediction in a
much wider setting than that of translational motion. We
will rely on the parameterization suggested by the represen-
tation theory of compact commutative Lie groups to learn
the harmonic basis functions of the transformations at play
in natural videos.

3. Learning to predict with angular
extrapolation

To generalize beyond translation and the Fourier transform,
we aim to learn a representation of video frames that enables
prediction via angular extrapolation. Specifically, we focus
on next frame prediction, and optimize two parameterized
mappings: one for the analysis and one for the synthesis
transform. This framework is illustrated in Figure 2, which
provides a generalization of the Fourier shift diagram (1).
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Figure 2. Unsupervised predictive representation learning frame-
work. Each video frame is transformed using a parametric mapping
fw, to an internal representation consisting of pairs of coefficients
arranged in spatial channels. Predictions of individual complex
coefficients at time t+ 1 are computed by advancing the phase of
the current coefficients by an amount equal to the phase advance
over the interval from t− 1 to t. At each time step, one such coef-
ficient is depicted as a vector in two dimensions and the top arrows
indicates how they are combined (each vector corresponds to the
complex coefficient at a particular location within one channel
pair). Predicted frames are then generated by applying the parame-
terized inverse mapping gw on the advanced coefficients. Forward
and inverse mappings are jointly trained to minimize mean squared
prediction error between the predicted and actual frame at time
t+ 1.
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3.1. Architecture and objective function

When focusing on a small region in an image sequence,
the transformation observed as time passes can be approx-
imated as a local translation. That is to say, in a spatial
neighborhood around position n, m ∈ N(n), we have:
x(m, t+ 1) ≈ x(m− v, t). We can use the decomposition
described for global rigid translation, replacing the Fourier
transform with a local convolutional operator (Fleet & Jep-
son, 1990), processing each spatial neighborhood of the
image independently and in parallel, and applying angular
extrapolation to the coefficients computed at each position.

We use the same weights for the encoding and decoding
stages, that is to say the analysis operator is the transpose
of the synthesis operator (also true of the Fourier transform
and its inverse). Sharing these weights reduces the number
of parameters and simplifies interpretation of the learned
solution. This “polar predictor” (hereafter, PP) is consistent
with the general scheme described in figure 2 where fw is
taken to be linear and convolutional, and gw is its transpose.
In practice, we assumed 64 convolutional channels with
filters of size 17× 17 pixels, with no additive constants.

At every position in the image (spatial indices are omitted
for clarity of notation), each coefficient yj(t) is computed
as an inner product between the input x(t) and the filter
weights wj of each channel j ∈ [0, 63] : yj(t) = wTj x(t).
In order to obtain phases, we combine coefficients in pairs,
indexed by k ∈ [0, 31], which can be written as single com-
plex coefficient as: zk(t) = y2k(t) + iy2k+1(t) ∈ C, and
expressed in polar coordinates as: zk(t) = ak(t)eiθk(t).
This polar coordinate transformation is the only non-linear
step used in the PP architecture, and serves as a bivariate
non-linear activation function, differing markedly from the
typical (pointwise) rectification operations found in convo-
lutional neural networks.

With this notation, linear phase extrapolation reduces to
ẑk(t+1) = ak(t)ei(θk(t)+∆θk(t)), where the phase advance
∆θk(t) is equal to the phase difference over the interval
from t− 1 to t: ∆θk(t) = θk(t)− θk(t− 1). The advanced
coefficients can be written in a more compact form, using
complex arithmetic, as:

ẑk(t+ 1) =
zk(t)2zk(t− 1)

|zk(t)||zk(t− 1)| , (2)

where z and |z| respectively denote complex conjugation
and complex modulus of z. This formulation in terms of
complex coefficients has the benefit of handling phases im-
plicitly, bypassing the discontinuities of phase unwrapping
and the instability of angular variables (phase is unstable
when amplitude is low). We find that such an indirect for-
mulation of phase processing is necessary for the stability
of training, as previously noted in the texture modeling liter-
ature (Portilla & Simoncelli, 2000). Finally, the estimated

next frame is generated by applying the transposed convo-
lution gw (with the same weights as fw) to the advanced
coefficients.

As a more substantial generalization of polar prediction, we
use deep convolutional neural networks to instantiate non-
linear mappings for both the encoder fw and the decoder gw
(each with independent filters). Specifically, the “deep polar
predictor” (deepPP) operates by transforming two frames of
input into the encoding space, z(t− 1) = fw(x(t− 1)) and
z(t) = fw(x(t)), applying the polar prediction of equation
2 to this encoded representation, and then decoding the next
frame from this prediction, x̂(t+ 1) = gw(ẑ(t+ 1)). While
the PP model learns a linear representation, the deepPP
model is nonlinear, with potential to enhance prediction by
adapting to signal properties.

In order to isolate the effects of non-linearities from those of
spatial scale, we chose the number of layers and the kernel
sizes of deepPP so that the effective receptive field size was
matched to that of the PP model. Specifically, both the
encoder and the decoder are composed of 4 convolutional
layers, each with 64 channels, and using filter kernels of
size 5× 5 followed by half-wave rectification (ReLU).

For both PP and deepPP models, convolutional kernels w
are learned by minimizing the average squared prediction
error:

min
w

Et‖x(t+ 1)− x̂(t+ 1)‖22.

The computation of this prediction error is restricted to the
center of the image because moving content that enters from
outside the video frame is inherently unpredictable. Specif-
ically, we trim a 17-pixel strip from each side. Note that
we only perform valid convolutions to avoid artificial inter-
ference with prediction (zero-padding creates undesirable
boundary artifacts).

3.2. Comparison models

We compare our method to the traditional motion-
compensated coding approach that forms the core of inter-
picture coding in well established compression standards
such as MPEG. Block matching is an essential component
of these standards, allowing the compression of video con-
tent by up to three orders of magnitude with moderate loss
of information. For each block in a frame, typical coders
search for the most similar spatially displaced block in the
previous frame (typically measured with MSE), and commu-
nicate the displacement coordinates to allow prediction of
frame content by translating blocks of the (already transmit-
ted) previous frame. We implemented a “diamond search”
algorithm (Zhu & Ma, 2000) operating on blocks of 8× 8
pixels, with a maximal search distance of 8 pixels which
balances accuracy of motion estimates and speed of esti-
mation (the search step is computationally intensive). We
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use the estimated displacements to perform causal motion
compensation (cMC), using displacement vectors estimated
from the previous two observed frames (xt−1 and xt) to
predict the next frame (xt+1) rather than the current one (as
in MPEG).

To isolate the effects of the polar prediction, we also im-
plemented a predictor using linear extrapolation of the re-
sponses of a deep neural network (deepL), with architecture
identical to that of the deep polar predictor. That is to say,
we replace equation 2 by: ŷj(t+ 1) = 2yj(t)− yj(t− 1),
which amounts to enforcing linear dynamics in the latent
space of the non-linear representation.

Finally, we implemented a more direct convolutional neural
network predictor (CNN), that maps two successive ob-
served frames to an estimate of the next frame (Mathieu
et al., 2016). This predictor jointly transforms and predicts
visual signals without explicitly partitioning spatial content
representation and temporal feature extrapolation. For this,
we used a CNN composed of 20 stages, each consisting of
64 channels, and computed with 3 × 3 filters without ad-
ditive constants, followed by half-wave rectification. Note
that, unlike all other predictors, this model jointly processes
pairs of frames to generate predictions.

3.3. Datasets and training

To train, test and compare these models, we use the DAVIS
dataset (Pont-Tuset et al., 2017), which was originally de-
signed as a benchmark for video object segmentation. Image
sequences in this dataset contain diverse motion of scenes
and objects (eg., with fixed or moving camera, and objects
moving at different speeds and directions), which make next
frame prediction challenging. Each clip is sampled at 25
frames per second, and is approximately 3 seconds long.
The set is subdivided into 60 training videos (4741 frames)
and 30 test videos (2591 frames).

We pre-processed the data, converting all frames to
monochrome luminance values, and scaling their range to
the interval [−1, 1]. Frames are cropped to a 256 × 256
central region, where most of the motion tends to occur, and
then spatially down-sampled to 128×128 pixels. We assume
the temporal evolution of natural signals to be sufficiently
and appropriately diverse for training, and do not apply any
additional data augmentation procedures. We train on brief
temporal segments containing 11 frames, which allows for
prediction of 9 frames, processing these in batches of size
4. We train each model for one hundred epochs using the
Adam optimizer (Kingma & Ba, 2015) with default param-
eters and a learning rate of 3 · 10−4. The learning rate is
halved at epochs 50, 60, 70, 80, 90, 100. We use batch nor-
malization before every half-wave rectification, rescaling by
the standard deviation of channel coefficients (but with no
additive terms).

Similarly, we also trained on the larger UCF-101 dataset
(Soomro et al., 2012). This dataset, initially designed for
action recognition, contains about 2.5 million frames, which
amounts to over 27 hours of video data. Note that, unlike the
DAVIS dataset, the clips are only available in compressed
video formats and may contain motion artifacts (due to
inter-frame coding). We used the same pre-processing pro-
cedure, except that we reduced frames by directly cropping
a 128 × 128 central region (without any down-sampling).
We employ the same training procedure, except that we only
run training for 25 epochs.

4. Unsupervised representation learning
4.1. Recovery analysis

To experimentally validate our approach, we first verified
that a the PP model can robustly recover known symmetries
in small synthetic datasets consisting of translating or ro-
tating image patches. For these experiments, we applied
encoding and decoding transforms to the entire patch (i.e.,
non-convolutionally). Wen trained on translating image
patches, the PP model learned approximately sinusoidal fil-
ters, shifted in phase by π/2 - i.e., a local Fourier transform.
Similarly, when trained on rotating patches, the learned fil-
ters represented circular harmonics. We also found that PP
extracts meaningful representations when multiple kinds of
transformations are at play (eg. mixing both translations and
rotations), and when the transformation are not perfectly
translational (eg. translation with open boundary condition).
Learned filters for each of these cases are provided in Figure
5 in the appendix.

4.2. Performance on Natural Videos

Table 1. Prediction error computed on the DAVIS and UCF-101
datasets. Values indicate average Mean Squared Error.

Algo. DAVIS UCF-101 # param.

train test train test

Copy 0.064 0.065 0.0302 0.0286
cMC 0.048 0.049 −− 0.0299
deepL 0.034 0.037 0.0220 0.0217 665, 856
CNN 0.031 0.035 0.0210 0.0215 666, 496
PP 0.036 0.035 0.0245 0.0229 18, 496
deepPP 0.028 0.032 0.0216 0.0210 665, 856

We summarize the main prediction results in Table 1. First,
observe that the predictive algorithms considered in this
study perform significantly better than the baseline obtained
by simply copying the last frame. Second, the polar pre-
dictor (PP) performs nearly as well as the convolutional
neural network (CNN) in terms of test mean squared error
on DAVIS. This demonstrates the remarkable power of the
polar predictor: the PP model has roughly 30 times fewer
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Figure 3. Detailed performance comparison (in Root Mean Squared Error) of predictive algorithms. Each point corresponds to a frame in
the test set. Vertical axes represent difference in performance: For points lying below the horizontal axis, the method whose performance
is plotted on the horizontal axis achieves a lower RMSE than the comparison method. Black crosses indicate average RMSE. Red point
corresponds to example in Figure 4, green to Figure 8 and blue to Figure 9.

parameters and uses a single non-linearity, while the CNN
is composed of 20 non-linear layers. Finally, observe that
deepPP achieves the lowest mean squared error, notably out-
performing the deepL model which uses linear extrapolation
in an otherwise identical architecture. It also outperforms
the CNN on the UCF-101 test dataset while remaining sig-
nificantly simpler. Thus, the prediction task benefits sub-
stantially from use of a fixed nonlinear transformation to
polar coordinates.

While average performance values provide a compact sum-
mary, it is also informative to examine the distribution of
prediction errors on individual frames from the test set. Fig-
ure 3 shows pairwise comparison of the predictive algo-
rithms for each frame in the DAVIS dataset. To make the
contrast more apparent, we display performance difference
on the vertical axis. Note that while the models have been
optimized to reduce mean squared error, we show root mean
squared error (RMSE) in order to facilitate visual inspec-
tion of the results (the concavity of the square root spreads
out small differences). We see that (a) The polar predictor
representation systematically outperforms causal motion
compensation, especially on difficult examples. (b) The
polar predictor outperforms the CNN on the bulk of easy
to medium cases but this advantage is reversed for harder
examples. (c) The deep polar predictor outperforms the
single layer polar predictor overall, indicating that the non-
linearity in representation can help. (d) The deep polar
predictor clearly outperforms the deep linear predictor, re-
vealing the strong benefit of using a polar extrapolation
mechanism over a linear one.

4.3. Learned filters

In order to better understand these results, we visualized the
learned PP filters trained on the DAVIS dataset and observed
that the learned filter are selective for orientation and spatial
frequency, and that that they tile the frequency domain.

Filters in each pair have a similar frequency preference, and
are related by a 90 degrees phase shift (see in Figure 6a and
6b in the Appendix). This relationship is analogous to that
of sines and cosines and is consistent with the structure of
the angular extrapolation described in equation 2.

4.4. Examples

Consider a set of example videos, chosen to illustrate behav-
iors of the methods being compared. In Figure 4, we see a
wall, its shadow and their sharp boundaries against a grass
background as the camera moves. Both PP and deepPP
generate good results, cMC produces a sharp prediction at
the expense of significant blocking artifacts, and both the
CNN and deepL tend toward excessive blurring. Here, the
cMC is is significantly sharper than the others, but intro-
duces substantial artifacts. Again, the PP methods produce
sharper results than either the CNN or deepL methods. A
few additional informative examples are displayed in the
appendix (see Figure 8, 9, 10).

5. Related work
Our method is conceptually related to sparse coding with
complex-valued coefficients (Cadieu & Olshausen, 2012) in
that it factorizes natural videos into form and motion. But
it differs in a number of important ways: (1) sparse coding
focuses on representing, not predicting, the signal; (2) we
do not promote sparsity of either amplitude or phase com-
ponents; (3) finally, the discontinuity arising from selection
of sparse subsets of coefficients seems at odds with the rep-
resentation of continuous group actions, while our explicit
mapping into polar coefficients aims for a smooth and con-
tinuous parameterization of the transformations that occur
in natural videos. Several other studies have aimed to learn
representations that decompose signal identity and attribute
(ie. a what-where, or invariance-equivariance factorization).
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x(t-1) x(t) x(t+1) cMC deepL CNN PP deepPP

MSE 0.0678 0.0387 0.0226 0.0197 0.0231 0.0187
SSIM 0.35 0.48 0.51 0.55 0.56 0.59

target
-

prediction

Figure 4. A typical example image sequence from the DAVIS test set. The first three frames on the top row display the unprocessed
images, and last five frames show the respective prediction for each method (with their shorthand above). The bottom row displays error
maps computed as the difference between the target image x(t+ 1) and each predicted next frame on the corresponding position in the
first row. Images, predictions and error maps are all shown on the same scale.

In particular learning linearized features from video was ex-
plored using a heuristic extrapolation mechanism (Goroshin
et al., 2015). The authors developed specialized “soft max-
pooling” and “soft argmax-pooling” modules and tested
them on the small NORB dataset. A related approach aimed
at finding video representations which decompose content
and pose in order to enable prediction (Hsieh et al., 2018).
This work explicitly identifies spatial components that are
easier to predict in the moving MNIST and bouncing balls
datasets. More sophisticated architectures have been devel-
oped to tackle the challenge of natural video prediction. In
particular, a recurrent instantiation of the predictive coding
theory (Rao & Ballard, 1999) introduced a stacked convolu-
tional LSTM architecture (Lotter et al., 2017). In contrast,
our framework scales to prediction of natural videos while
remaining simple: we rely on principles of signal processing
and representation theory to employ a polar non-linearity
(and we describe an effective and stable implementation),
but we do not explicitly model the stochastic nature of the
video prediction problem.

Our method is also related to work that adopts a Lie
group formalism in representation learning. Since the
seminal work that proposed learning Lie group generators
from dynamic signals (Rao & Ruderman, 1998), the polar
parametrization was explored in (Cohen & Welling, 2014)
to identify irreducible representations in a synthetic dataset.
The continuous group formalism has also been combined
with sparse coding (Chen et al., 2018; Chau et al., 2020) to
model natural images as points on a latent manifold. More
recently, bispectral neural networks (Sanborn et al., 2022)
have been shown to learn image representations invariant to
a given global transformation (in particular cyclic transla-
tion and rotation of MNIST digits). In contrast to the coding
approach, our formulation relies on a prediction objective

to jointly discover and exploit the symmetries implicit in
data. In order to scale to natural video data, where multiple
unknown and noisy transformations are play, we developed
a convolutional approach that adapts to the local structure of
transformations. This formulation can represent a very large
family of local symmetries (including diffeomorphisms and
non-smooth fields of local translations). This generality
comes at the cost of precisely identifying what groups of
transformations are captured by the learned representation.

Finally, in the fluid mechanics literature, the Koopman oper-
ator approach (Mezić, 2005) has been used to lift a system
from its original state-space to a higher dimensional rep-
resentation space where its dynamics can be linearized -
a dynamical analog of the well known kernel trick. This
formalism has spurred a line of work in machine learning
that relies on autoencoders to learn coordinate systems that
approximately linearize dynamics (Lusch et al., 2018; Azen-
cot et al., 2020). In this perspective, our work can also be
interpreted as learning the spectral properties of an abstract
Koopman operator operating on video data, specifically es-
timating its complex eigenvectors. Our approach makes
an inertial assumption and does not require an auxiliary
network to compute velocities. Moreover it relies on a con-
volutional approach and is able to predict raw videos (which
tend to contain richer structure than typical fluid flows).

6. Discussion
We have presented a simple self-supervised representation-
learning framework based on next-frame prediction. It un-
veils the temporal structure of natural videos using local
polar coordinates. Our approach jointly discovers and ex-
ploits the local symmetries present in the temporal evolution
of image sequences, in particular the spatio-temporal redun-
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dancies due to local deformation of image content. We
assumed that spatial processing and temporal extrapolation
can be partitioned into i) the learned parameterized map-
pings, one that extract pairs of local features from individual
frames and one that generates a frame from the coefficients;
and ii) a fixed angular extrapolation mechanism that ad-
vances coefficients and embodies an inertial hypothesis (ie.
evolving content will continue to evolve in the same way).
Our empirical results demonstrate that these assumptions,
far from being too limiting, correspond well to the struc-
ture of natural videos and provide a natural representation
thereof.

Specifically, we used the the polar coordinate transforma-
tion as a bivariate non-linear activation function acting on
pairs of coefficients in the representation. Predictions in
this representation were computed by phase advancement,
which was implemented implicitly (Eq. 2). Compared to
linear extrapolation, angular extrapolation achieved higher
prediction accuracy on natural video. Using terminology
from group theory, our polar models factorize signals into
an invariant part, which is stable in time, and an equivari-
ant part, which evolves linearly. This choice of prediction
mechanism, motivated by principles of signal processing
and harmonic analysis, acts as a structural prior. Although
the conventional deep convolutional network (CNN) consid-
ered here could in principle have discovered this solution, it
failed to do so (within the constraints of our architecture).
The polar predictor, on the other hand, is well-matched to the
task, and achieves a good solution using only a fraction of
the number of parameters. It is optimized on a mean squared
error objective, without any other additional regularization -
which facilitates interpretability. This exemplifies a funda-
mental theme in computational vision and machine learning:
when possible, let the representation do the analysis.

Our approach to prediction has the advantage of being
motion-informed while not relying on explicit motion esti-
mation. Because it is not constrained to assigning a single
motion vector at every location and instead represents a dis-
tribution of phases, this method bypasses known difficulties
of motion estimation in handling non-translational motions
and outperforms a conventional causal motion compensated
algorithm. In the era of GPU computing, it admits a very
fast implementation that has potential for applications in
video compression. Moreover, the polar predictor takes the
form of a predictive auto-encoder that associates a latent rep-
resentation vector to each frame. This representation may
prove useful for other tasks like object categorization, seg-
mentation, or estimation of heading direction for a moving
observer. Several natural extensions of the work presented
here can be further explored: (i) treating the angular extrap-
olation prediction mechanism as a more general building
block that is cascaded in a multi-layer architecture; (ii) opti-
mizing representation layers deeper in the hierarchy to make

predictions at longer timescales; (iii) measuring prediction
error directly in the representation domain, while avoiding
representation collapse - such a local objective function
would allow a potential connection with biological neural
architecture and to human visual perception. (iv) examining
and interpreting what is learned in the deepPP model, espe-
cially around occlusion boundaries (which is not invertible,
and therefore not a group action).

References
Azencot, O., Erichson, N. B., Lin, V., and Mahoney, M.

Forecasting sequential data using consistent koopman
autoencoders. In International Conference on Machine
Learning, 2020.

Cadieu, C. F. and Olshausen, B. A. Learning intermediate-
level representations of form and motion from natural
movies. Neural computation, 2012.

Chau, H. Y., Qiu, F., Chen, Y., and Olshausen, B. Disentan-
gling images with lie group transformations and sparse
coding. arXiv preprint arXiv:2012.12071, 2020.

Chen, Y., Paiton, D., and Olshausen, B. The sparse manifold
transform. Advances in neural information processing
systems, 31, 2018.

Cohen, T. and Welling, M. Learning the irreducible repre-
sentations of commutative lie groups. In International
Conference on Machine Learning. PMLR, 2014.

Fleet, D. J. and Jepson, A. D. Computation of component
image velocity from local phase information. Interna-
tional journal of computer vision, 1990.
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A. Appendix

(a) Translation (cyclic boundary) (b) Rotation

(c) Translation and rotation (d) Translation (open boundary)

Figure 5. Filters of polar predictor networks trained to predict small synthetic sequences. We randomly select 100 image patches of size
16 × 16 from the DAVIS dataset and generate training data by manually transforming them - applying translations or rotations. We
verify that PP recovers the known harmonic functions: Fourier modes for translation (panel a), and disk harmonics for rotation (panel
b). To show that the recovery of harmonics is robust, we design two additional synthetic datasets. i) the combination of translational
and rotational sequences. In this case, PP learns filters that correspond to either group, suggesting that our approach can generalize
to situations with more than than one group at play (panel c); ii) generalized translation sequences: spatially sliding a square window
on a large image (ie. new content creeps in and falls off at boundaries), instead of using cyclic boundary condition (ie. content wraps
around the edges). In this case, PP learns localized Fourier-like modes (panel d), indicating that approximate group actions still provide
meaningful training signal - although it is much more noisy. In each panel, the 32 pairs of filters are sorted by their norm. Notice that
some of the filters are not structured and generally miss high frequency harmonics. This is due to the spectral properties of the datasets,
which have more power at lower frequencies, and to the discretization of the transformations.
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(a) spatial domain filters (b) corresponding Fourier amplitude spectra

Figure 6. Filters of a polar predictor trained to predict natural videos from the DAVIS dataset. The 32 pairs of convolutional filters are
sorted by their norm and their amplitude spectrum is displayed at corresponding locations on the right panel. Observe that the filters are
selective for orientation and spatial frequency, tile the frequency spectrum, and form quadrature pairs. Notice that some of the learned
filters do not exactly conform to the idealized description just given.

Table 2. Prediction error computed on the DAVIS dataset. Values indicate average PSNR and SSIM. All methods obtain relatively low
structural similarity scores (Wang et al., 2004), a perceptual measure of similarity that equals one when both images are identical. This
indicates that prediction on this dataset is quite challenging.

Algorithm

metric set Copy cMC deepL CNN PP deepPP

PSNR ↑ train 21.32 23.82 23.18 23.84 24.49 24.52
test 20.06 22.37 22.30 22.82 23.46 23.35

SSIM ↑ train 0.52 0.64 0.58 0.62 0.65 0.64
test 0.50 0.62 0.55 0.59 0.63 0.61
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Figure 7. Another comparison - see caption of Fig. 3. The deep polar predictor generally outperforms the CNN over the whole range of
difficulties.
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x(t-1) x(t) x(t+1) cMC deepL CNN PP deepPP

MSE 0.0917 0.0798 0.043 0.0409 0.0394 0.0402
SSIM 0.13 0.15 0.24 0.23 0.27 0.24

Figure 8. Another example image sequence with nonrigid motions/deformations - see caption of Fig. 4. As the biker advances to the right,
the camera tracks and leads its displacement.

x(t-1) x(t) x(t+1) cMC deepL CNN PP deepPP

MSE 0.0884 0.0198 0.0391 0.0385 0.0193 0.0248
SSIM 0.32 0.77 0.46 0.51 0.72 0.61

Figure 9. Another example image sequence - see caption of Fig. 4. A video with one portion not moving. In these regions the cMC is
most effective, and PP and deepPP outperform CNN and deepL.

x(t-1) x(t) x(t+1) cMC deepL CNN PP deepPP

MSE 0.0365 0.0454 0.0300 0.0315 0.0290 0.0313
SSIM 0.23 0.20 0.25 0.27 0.27 0.27

Figure 10. Another image sequence - see caption of Fig. 4. As expected, in presence of large non-rigid motion, with texture and object
deformations, prediction is very difficult and none of the tested methods performs well.


