
CONTEXTUALLY ADAPTIVE SIGNAL REPRESENTATION
USING CONDITIONAL PRINCIPAL COMPONENT ANALYSIS

Rosa M. Figueras i Ventura1, Umesh Rajashekar1, Zhou Wang2, Eero P. Simoncelli1

1 HHMI and New York University, USA 2 University of Waterloo, Canada

To appear in: Proc. ICASSP-08, Las Vegas, NV, Feb 2008.

ABSTRACT
The conventional method of generating a basis that is optimally adap-
ted (in MSE) for representation of an ensemble of signals is Princi-
pal Component Analysis (PCA). A more ambitious modern goal is
the construction of bases that are adapted to individual signal in-
stances. Here we develop a new framework for instance-adaptive
signal representation by exploiting the fact that many real-world sig-
nals exhibit local self-similarity. Specifically, we decompose the
signal into multiscale subbands, and then represent local blocks of
each subband using basis functions that are linearly derived from the
surrounding context. The linear mappings that generate these basis
functions are learned sequentially, with each one optimized to ac-
count for as much variance as possible in the local blocks. We apply
this methodology to learning a coarse-to-fine representation of im-
ages within a multi-scale basis, demonstrating that the adaptive basis
can account for significantly more variance than a PCA basis of the
same dimensionality.

Index Terms— Adaptive basis, conditional PCA, self-similarities,
image modeling, image representation.

1. INTRODUCTION

A fundamental concept in signal processing is that of selecting a
representation that is optimally adapted to a class of signals. In the
most well-known formulation of this problem, known as Principal
Components Analysis (PCA), a linear basis is selected such that each
successive axis captures as much variance (estimated over the signal
ensemble) as possible [1]. Although it is optimal over the entire
signal class, this basis may perform poorly on individual examples.

Recent literature explores the problem of adapting a basis to in-
dividual signal instances. Specifically, one attempts to select a sub-
set of basis elements from a large redundant dictionary of functions
such that the signal is best represented. Although the general prob-
lem is NP-hard, it can be solved in some special cases, and a variety
of algorithms have been developed to find approximate solutions,
[e.g., 2, 3, 4] that have been used for both compression, [e.g., 5, 6]
and denoising, [e.g., 7, 8]. Nevertheless, these methods tend to be
computationally expensive, and compression examples to date have
not demonstrated consistent or significant advances over traditional
methods, primarily due to the cost of encoding the indices of selected
basis elements.

An interesting property found in many naturally-occurring sig-
nals is self-similarity: local structures occur repeatedly at differ-
ent locations, orientations and scales within a given signal instance.
Neither PCA nor sparse adaptive bases exploit this property, but a
number of authors have developed alternative methods of doing so.
Fractal image coding schemes encode each imaged block as a trans-
formed copy of a larger block, where transformations include trans-
lation, rotation, shearing, and contraction [9]. State-of-the-art tex-
ture synthesis methods use a related strategy, generating novel tex-
ture images by carefully stitching together blocks randomly selected

from within an example texture image, [e.g., 10, 11]. Image self-
similarities have also been exploited for image repairing/inpainting,
[e.g., 12], and for image denoising, [e.g., 13, 14, 15].

In this paper, we present a method of learning an adaptive ba-
sis that is generated from the signal itself. Specifically, each patch
of signal is represented using basis functions that are linearly com-
puted from contextual information. Patches from one band of a sub-
band image decomposition use as conditional neighborhood patches
on the same position in a coarser subband. A related representation
has been previously developed for image distortion analysis [16].
Note that this approach differs from the fractal coding approach, be-
cause the contextual information is drawn from a fixed neighbor-
hood around each patch. In addition, we do not attempt to directly
represent the patch contents, but instead to generate a basis for the
patch. We develop a method of optimizing the matrix that generates
the basis functions, so as to maximize the variance accounted for in
patches of an ensemble of signals. As such, we refer to this method
as conditional PCA (cPCA). We apply cPCA to the problem of im-
age representation, exploiting the self-similarity that occurs between
co-located patches in adjacent scales of a multi-scale decomposi-
tion. We show that this representation is capable of capturing signif-
icantly more variance than PCA over the same patches, and examine
the degradation that occurs when this conditional representation is
cascaded from coarse scales to fine scales.

2. CONDITIONED PCA

2.1. Sequential PCA learning problem

The Principal Component Analysis (PCA) problem corresponds to
learning a sequence of basis functions that best capture the variance
of an ensemble of signals [1]. Given N signals, represented as vec-
tors {yn|n = 1, 2, · · · , N} of dimension K, the first PCA basis
vector represents an axis that captures the one-dimensional signal
subspace with highest variance, the second captures the second high-
est variance axis, and so on and so forth. Although the PCA basis
may be directly computed as the eigenvectors of the signal covari-
ance matrix, ordered according to the eigenvalues, it may also be
computed sequentially by optimizing one component at a time:
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Due to the orthogonality of PCA basis functions, each optimal co-
efficient sk,n needs to be computed once oh the kth iteration. This
greedy formulation produces exactly the same result (up to numeri-
cal considerations) as the eigenvector solution.

2.2. Sequential cPCA learning problem
We base our formulation of the cPCA problem on the PCA formu-
lation described above, but instead of solving for a fixed set of ba-
sis vectors, we seek the best transformation of a set of input data
vectors to a form a basis for a set of output data vectors. Con-
sider N input-output vector data pairs {xn|n = 1, 2, · · · , N} and
{yn|n = 1, 2, · · · , N}, where the dimensions of xn’s and yn’s
are M1 and M2, respectively. The objective is to find a set of op-
erators {Bk : RM1 → RM2 |k = 1, 2, · · · , K} such that the K-
dimensional subspaces spanned by vectors {Bk(xn)} captures as
much of the variance of the vectors {yn} as possible. In order to
reduce the complexity of the problem, we assume the operators are
linear (i.e., the Bk’s are M2×M1 matrices). Even with this restric-
tion, fixed nonlinear transformations may be incorporated by apply-
ing them to the contextual data and appending these results onto the
original input vectors xn.

Following the greedy PCA formulation of the previous section,
we seek to minimize:
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Unlike the PCA formulation, the basis vectors {Bjxn|j = 1 . . . k}
are not guaranteed to be orthogonal, and thus, we must compute each
y

(k)
n by eliminating (projecting out) the subspace spanned by all pre-

viously generated basis vectors {Bjxn|j = 1 . . . k − 1} from the
original yn:
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The Bk’s are computed sequentially (greedily), starting with k = 1.
For each k, the {s(k)

j,n} are computed from Eq. (3) by pseudo-inverting
the current adapted basis set {Bjxn|j = 1 . . . k−1} for each n (this
set is empty when k = 1). Then the Bk’s are obtained from Eq. (2),
by alternating between solving for the optimal Bk and solving for
the optimal sk,n. Although we cannot prove convexity of the overall
objective function, this alternation is a form of coordinate descent
and thus guaranteed to converge to a (possibly local) minimum.

3. APPLYING CPCA TO IMAGES

In this section, we show preliminary tests illustrating the potential
advantages of the cPCA representation for image coding. Image
structures exhibit several forms of self-similarity, with respect to
translation and dilation. Thus, we will apply cPCA within a mul-
tiscale, oriented transform in which these self-similarities are easily
recognized and represented. Specifically, we use a steerable pyramid
decomposition [17], which partitions the image into oriented sub-
bands of spatial frequency varying by factors of two. This represen-
tation is an overcomplete tight frame, and we use it because the con-
tents of each scale are translation-invariant and rotation-invariant.
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Fig. 1. Self-similarity between co-located non subsampled coarse-
scale (x) and fine-scale (y) patches, for (a) an oscillating texture and
(b) a step edge.

For our examples, we use a steerable pyramid with three orienta-
tion bands, which is roughly five-fold overcomplete. Both the cPCA
and the PCA basis used in this section are computed for fixed size
patches of a given subband.

Selecting our vectors yn to be spatial blocks of coefficients within
a subband, we wish to choose context vectors xn based on the con-
tent of co-located blocks at the next coarsest (“parent”) subband at
the same orientation. In studying the relationship between these
child-parent blocks, we find that different image structures exhibit
different behaviors. Specifically, edges produce oscillations at roughly
the center frequency of each subband, but textures produce oscilla-
tions that are locked to the signal frequency in both subbands. This
behavior is illustrated in Fig. 1. This means that textures and pe-
riodic signal structures will appear with the same frequency in the
(non-downsampled) parent as in the child, but edges will appear at
a frequency in the child that is twice that of the (non-downsampled)
parent. Thus, we define the conditioning vectors, xn, to include the
contents of a (non-downsampled) block from the parent band, con-
catenated with those of a frequency-doubled version of that block.

Figure 2 illustrates four typical examples of reconstructing 11x11
patches from a horizontal “child” band by two methods: first, using
four PCA basis functions of the child band, and second, using four
cPCA basis functions that are computed from the parent band. Note
that the PCA basis functions for all patches are fixed (by design), but
the basis functions of cPCA, which are computed by applying fixed
transformations {Bk|k = 1, . . . 4} to the parent vector xn, are dif-
ferent for each child patch. Loosely speaking, we find that the cPCA
basis functions appear to be similar to one of the two parent patches,
or slightly translated copies of those patches.

Figure 2(a) shows an example where the child patch has a strong
horizontal structure. Since the first four PCA basis functions capture
predominantly horizontal structures, the patch reconstructed using
the PCA basis functions is a satisfactory representation of the child
patch. Similar results are obtained using the cPCA basis. Figure 2(b)
shows a case where the PCA reconstruction captures the horizontal
structure in the child, but fails to represent the non-horizontal ones.
cPCA, on the other hand, is capable of capturing this signal change.
Figure 2(c) illustrates a striking example in which the child patch
is oriented obliquely (the subband filters in the steerable pyramid
are broadly tuned for orientation). This is poorly represented by the
PCA basis, but the cPCA basis exploits the structure in the parent to
provide a high-quality reconstruction of the child patch. Finally, in
Fig. 2(d), we show that even when the child patch does not have any
predominant orientation, cPCA is able to reconstruct the child patch
more faithfully than PCA.

As we have seen, wavelet bands do tend to retain structure from
coarse to fine, but in some cases, structures that cannot be seen in the
coarser band appear in finer bands. In such a case, it is impossible
to recover anything from linear combinations of the parent. We can
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Fig. 2. Representation of four example patches using PCA and
cPCA bases. The first column shows the subband patches. The
“child” is the patch yn to be approximated, and the “parents” are
a patch from the same location of the (non-downsampled) coarser
frequency band and its frequency-doubled version, the concatena-
tion of which forms xn in the cPCA equations. The second column
(single patch) shows approximations of different patches obtained
with 4-component PCA and cPCA bases (y(4)

n ). Finally, the third
column (groups of four patches) shows the four different basis func-
tions used for the PCA reconstruction on the top ({bk, k = 1 . . . 4},
basis functions globally derived from the child band, identical for
all three examples) and the four basis functions used for the cPCA
reconstruction ({Bkxn, k = 1 . . . 4} basis functions adaptively de-
rived from the concatenated parents, obtained with the same four
linear prediction matrices for all rows).

alleviate this problem with a simple modification of Eq. (2), adding a
fixed basis function, bk, to the conditionally-adapted basis function:
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bk allows the basis to capture possible “new arrivals” in the child
band that cannot be predicted from the parent. Eq. 4 is equivalent to
PCA when B = 0, and to Eq. (2) when b = 0. Notice that the PCA
and cPCA basis components share a common coefficient, and thus
this formulation does not incur any additional representational cost.

The cPCA matrices Bk can be optimized over the image being
represented (as in the example of Fig. 2), or over a separate training
set. Of course, even when they are derived from a generic training
set, they still produce different basis functions for every patch. The
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Fig. 3. SNR versus number of components for standard PCA and
cPCA with a standard PCA component (block size 5 × 5, pyramid
with three orientations and three scales). (a) Performance in en-
coding one subband of the “peppers” image, with different bases,
including: cPCA with Bks optimized on “peppers” (downward tri-
angles); cPCA optimized on a separate training set of three images
(upward triangles); PCA optimized on “peppers” (dashed); and PCA
optimized on the separate training set (circles), almost overlapping
the previous one. (b) Performance in encoding a subband of differ-
ent images with bases optimized over a separate training set. Notice
that all images have approximately the same behavior, except for the
white noise, which, as expected, is more difficult to approximate.

latter is preferable for coding applications, so that the Bk’s need not
be encoded in the data stream. Figure 3(a) shows the SNR behavior
of cPCA when the linear transform has been trained on a set of three
images (Lena, Barbara and Boat) on 5×5 patches, and applied to an
image not in the training set (peppers). This figure also shows the
performance of cPCA when the linear transform B is trained on the
image being represented (peppers), and when the linear transform
has been learned from white noise (which captures the redundancy
of the steerable pyramid basis only). Also shown are the results of
PCA, both trained on the peppers image, and trained on the separate
training set. The cPCA representation outperforms PCA for small
numbers of basis elements by roughly 4dB. Once roughly half of the
components of the basis have been used for the reconstruction, cPCA
loses its advantage with respect to PCA. Nevertheless, the remaining
error at this stage is quite small. The error drops to zero when all 25
basis functions are included (not shown in plot).

Figure 3(b) shows only the cPCA behavior for a set of several
images, including white noise. The matrices Bk are optimized over
the same three-image training set mentioned previously. The behav-
ior of cPCA is quite consistent over all the images, and does not
vary much for images in or out of the training set. The only curve
that falls significantly short of the general behavior is that of the
noise image, which does not exhibit the same self-similarity proper-
ties as the photographic images. We have also examined these same
curves for images represented with orthogonal wavelet transforms,
to determine whether the learned B was capturing redundancies due
to overcompleteness in the steerable pyramid, or redundancies due
to image self-similarity. We find that the behavior of cPCA relative
to PCA on orthogonal wavelets is similar (although absolute per-
formance is worse), demonstrating that the primary advantages we
report here are due to image self-similarity.

Finally, Fig. 4 shows an example of an image reconstructed from
only a single PCA or cPCA basis function in every 5x5 patch of the
two highest-frequency pyramid levels, along with the high-frequency
(non-oriented) residual band. Both the PCA basis and the cPCA ma-
trices have been trained on a set that did not contain the image under
consideration, thus there is no associated cost for encoding either
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Fig. 4. Reconstruction of an image by substituting the last two steer-
able pyramid levels and the residual high frequency band with (a)
a one-term PCA approximation, and (b) a one-term cPCA cascaded
representation. See text.

basis. In order to do the PCA and cPCA approximations, the pyra-
mid bands are divided in non-overlapping 5x5 patches, and every
patch is represented with a single basis function. For cPCA, this
is done recursively from coarse to fine scale, computing each band
(except for those at the coarsest scale) from the previously approxi-
mated parent (and thus, accumulating the errors). PCA is performed
independently for each subband. Despite the cascading of errors, the
one-component cPCA approximation behaves better than the one-
component PCA approximation, both visually and in PSNR.

4. CONCLUSIONS

We have introduced conditional PCA, a new methodology for adap-
tive signal representation that directly exploits contextual self-simila-
rities. This representation offers potential advantages for signals in
which the variance of a local patch (or coefficient block) conditioned
on its context is significantly less than the unconditioned variance.

Specifically, we believe cPCA offers several advantages over re-
cently developed methods for adaptive basis selection from finite re-
dundant dictionaries: 1) the cPCA basis is not limited to a finite set,
and thus has the potential to adapt to a much larger variety of local
image structures (assuming they are self-similar); 2) The main com-
putational cost is the learning of the Bk’s, which can be done offline
from a training set. Computation of the locally adaptive bases is then
linear, and thus far more efficient than current approximate methods
for selecting an optimal basis from a redundant dictionary; and 3) the
basis functions are not specified directly, but are computed from the
signal itself. For example, in compression, the signal specific basis
functions could be computed from previously received data, and in
denoising, they can be computed from previously cleaned data.

We have shown preliminary examples of image representation,
which demonstrate the potential usefulness of cPCA. In this con-
text, we are currently working to improve the algorithm by which
the Bk’s are optimized, and we are exploring alternative choices of
conditioning neighborhoods, including for example surrounding co-
efficients in the same band, or coefficients from other orientation
bands. More generally, we believe the cPCA representation can of-
fer advantages in many other applications where PCA or any other
signal-adapted image representation is used. This includes a broad
range of computer vision, pattern recognition and image processing
applications, such as compression, restoration, super-resolution, and
object recognition.
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