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Abstract

Transformation-invariance is a major source of nonlinear structure in

many real signal ensembles. To capture this structure, we develop a

methodology for decomposing a signal into a sparse linear combination

of continuously transformed features. The central idea is to approximate

the manifold(s) of transformed features(s) by linearly combining inter-

polation functions using constrained coefficients that can be recovered

via convex programming. The advantage of this approach over tradi-

tional sparse coding methods is threefold: (1) it is built upon a more

accurate probabilistic source model for transformation-invariant ensem-

bles, (2) it uses a more efficient dictionary, and (3) both structural and

transformational information can be extracted separately from the rep-

resentation via well-defined mappings. The method can be used with

any linear interpolator, and includes basis pursuit denoising as a spe-

cial case corresponding to nearest-neighbor interpolation. We propose

a novel polar interpolation method with which our method significantly

outperforms basis pursuit on a sparse deconvolution task. In addition,

our method outperforms the state-of-the-art in identifying neural ac-

tion potentials from voltage recordings on multiple simulated and real

data sets. The advantage of our method is primarily due to its supe-
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rior handling of near-synchronous action potentials, which overlap in the

trace and are not recoverable by standard spike sorting methods. Fi-

nally, we develop a hierarchical formulation in which successive layers

encode more complex features and their associated transformation pa-

rameters. A two-layer time- and frequency-shiftable representation is

learned from speech data. The second layer encoding compactly rep-

resents sounds in terms of acoustic features such as harmonic stacks,

sweeps, and ramps in time-frequency space. Despite its compactness,

synthesis reveals that it is a faithful representation of the original sound

and yields significant improvement over wavelet thresholding techniques

on an acoustic denoising task. These two applications demonstrate the

advantage of representations which separate content and transformation,

and our proposed methodology provides an effective tool for computing

such a representation.
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Chapter 1

Introduction

Many signal ensembles encountered in the real world are high-dimensional,

but exhibit low-dimensional structure. For example, natural images (rep-

resented by pixel values) and sounds (represented by sound pressure

samples) are extremely high-dimensional objects, but exhibit striking

regularities that set them apart from “randomly” generated signals of

the same dimensionality. Similarly, signals recorded by medical imaging,

radar, sonar, and seismological devices have very few underlying degrees

of freedom compared to the dimensionality with which they are typi-

cally represented upon acquisition. Representing signals with respect to

their “intrinsic dimensions” in a compact and interpretable form is es-

sential for many applications in signal processing such as compression,

denoising, detection, classification, and source separation.

Transformations are a major source of low-dimensional, nonlinear

structure. For example, simply translating a sampled univariate signal

can trace out a highly complicated and nonlinear manifold in the sam-

ple space [130], as illustrated in Figure 1.1. Many real signal ensembles
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inherit this nonlinear structure since they are invariant to several trans-

formations. Image ensembles are often invariant to spatial translation,

dilation, and rotation. Sound ensembles are often invariant to trans-

lation in the temporal and frequency domains. Many tasks require in-

variance to these transformations (e.g., object recognition, speaker iden-

tification), while others require precise measurement of transformation

amounts (e.g., pose estimation, visuomotor planning). Complex tasks,

such as facial recognition, can require invariance (e.g., pose invariance)

and precision (e.g., spatial relationship of eyes, nose, mouth) with respect

to different signal properties. To accommodate this dual requirement,

it is advantageous for a representation to factor signals into “what” and

“where” information specifying the structural and transformational con-

tent of a signal, respectively [133, 141, 56, 7, 14]. This factorization is

computationally challenging because of the nonlinearity introduced by

transformations.

There is a wide body of literature focusing on the extraction of

“what” information. The vast majority of models assume (either ex-

plicitly or implicitly) that the coefficients of signals with respect to a

particular linear basis, or “dictionary,” are independently and identi-

cally distributed. For example, wavelet coefficients of images have of-

ten been modeled by a factorial, “sparse” (or heavy-tailed) distribu-

tion, for which one can posit an analytic form [131, 86, 68]. Such

a distribution has also been imposed on coefficients with respect to

a learned dictionary that is optimized for a particular signal ensem-

ble [23, 25, 101, 5, 65, 69, 135, 2, 40, 136, 75, 84]. Several of these

employ “over-complete” representations, whose dimensionality is larger

2
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Figure 1.1: Simple translation traces out highly nonlinear manifolds

in the signal space. Left: 3 translated versions of the waveform

f(x) = xe−
x2

2 , each represented by a 100-dimensional vector of samples.

Right: Manifold traced out by continuously translating the waveform

between the red and blue curves on the left, plotted with respect to the

3 leading principal components computed over 1000 intermediate trans-

lates (accounting for 99.97% of the variance). Colored dots represent the

corresponding time-shifts on the left.

than that of the signal space. Over-complete representations can capture

complex dependencies [82], and their use has been made computation-

ally tractable by recent theoretical [35, 143, 17, 36, 43] and algorithmic

[27, 24, 62, 39, 47, 8, 42, 19, 30, 28, 34] advances. Over-complete repre-

sentations have been employed successfully for compression, denoising,

and source separation [41, 29, 45, 108].

Despite their success, these methods fail to separate “where” infor-

mation from “what” information. Instead, they construct (or learn)

dictionaries that implicitly reflect the transformation(s) present in the
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signal ensemble. For example, dictionaries used for image processing,

whether hand-constructed [12, 1, 132, 85, 86, 133, 46, 137, 109] or

learned [101, 5, 120, 57, 67], are often composed of prototypical ker-

nels replicated at discretely sampled spatial scales, positions, and ori-

entations. Acoustic representations often use a dictionary of bandpass

filters replicated at discretely sampled center times and center frequen-

cies [103, 69, 55, 135, 136, 57, 77]. There are three major disadvantages

of employing such “transformation-invariant” dictionaries in conjunction

with a sparse factorial model on their coefficients. First, the sparse fac-

torial assumption is systematically violated as a result of discretizing the

transformations: when the amount of transformation in the signal lies

in between the grid-points corresponding to the dictionary elements, the

coefficients exhibit non-sparse and dependent activity. Second, precise

“where” information cannot be cleanly extracted from the coefficients

due to blocking artifacts and discontinuities [133, 22]. In other words,

the coefficients vary non-intuitively and discontinuously as transforma-

tions are applied. Third, these dictionaries can be highly inefficient, since

one needs to finely sample the transformation, and are often ill-suited

for sparse recovery methods that are used in practice.

A separate line of work has focused on modeling the effect of trans-

formations. Several of these efforts attempt to identify signal properties

that are invariant to natural transformations, thus discarding “where” in-

formation altogether [48, 151, 150]. Others have tried to explicitly

model transformations from before-and-after pairs of transformed signals

[114, 130, 94, 92, 93], but lack a probabilistic model of “what” informa-

tion.
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Our work is close in spirit to the work of [141, 56, 7, 14], which employ

models that represent “what” and “where” information using separate

sets of variables. However, these efforts focus on adapting the dictionary

to a particular ensemble, and lack efficient and reliable computational

methods for inferring “what” /“where” representations. Developing such

a method is the primary focus of Chapter 2.

Thesis organization In Chapter 2 we motivate sparse representa-

tions, review their usage in the literature, and describe in detail the

currently available computational methods for inferring them. We then

introduce continuous basis pursuit (CBP) as an inference method that

combines the modeling advantages of sparse representations with the

ability to explicitly model known transformations, and present empirical

evidence of its advantage. In Chapter 3, we apply our methodology to

the problem of neural action potential identification (“spike sorting”).

We review existing solutions, present our approach using CBP, and then

compare its performance with existing standards on both simulated and

real extracellular voltage recordings. In Chapter 4, we develop an ap-

proach for hierarchically processing “what” /“where” representations.

We review previous efforts to hierarchically model structure in sounds.

We then fit a two-layer model to speech data, and analyze its properties.

In Chapter 5 we summarize our contributions and conclude.
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Chapter 2

Continuous basis pursuit

2.1 Sparse representations

2.1.1 Motivation and formulation

Sparse representations assume that the observed signal ~x is a noisy linear

combination of a few elements from a dictionary of “atomic” features:

~x = D~α + ~ǫ (2.1)

The dictionary D is a matrix whose columns are the individual features,

and ~α is a “sparse” vector of coefficients, of which only a few are non-

zero. The second term ~ǫ represents additive noise. The coefficient vector

~α is often referred to as a “sparse code” of the signal ~x.

This sparse coding model has arisen in many contexts. In classical

regression, for instance, sparsity serves as a criteria for “model selection”

when it is known that only a small subset of the predictor variables

actually influence the observed variable [60]. In image processing, it is

well known that wavelet coefficients of images have sparse distributions
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[86, 131, 41]. This property provides an obvious advantage when applied

to image compression [12], since only the indices and values of nonzero

wavelet coefficients need to be transmitted. The sparsity property of

wavelet coefficients has also been used for image denoising, since noise

is often non-sparse in the wavelet domain and can thus be more easily

distinguished from the clean image. By combining a Gaussian noise

probability model Pnoise(~ǫ) (with variance σ2) with a sparse probability

model for the coefficients Pprior(~α), one can use Bayes rule to estimate

the most probable wavelet coefficients given the noisy image (also known

as a maximum-a-posteriori, or MAP estimator):

~αMAP(~x) = arg max
~α

P (~α|~x;D)

= arg max
~α

Pnoise(~x − D~α)Pprior(~α)

= arg min
~α

− log Pnoise(~x − D~α) − log Pprior(~α)

= arg min
~α

1

2σ2
‖~x − D~α‖2

2 − log Pprior(~α) (2.2)

Once the wavelet coefficients are estimated in this way, the denoised

image is obtained simply by applying the wavelet transform:

~xdenoised = D~αMAP(~x) (2.3)

Orthogonal dictionaries If the wavelet dictionary is orthogonal, then

we have ‖~x − D~α‖2
2 = ‖~z − ~α‖2

2 where ~z = DT~x. If in addition the

prior probability model is factorial (i.e. Pprior(~α) =
∏

i Pprior(αi)), then

the optimization of Eq. 2.2 decouples and can be solved by separately

7
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Figure 2.1: “Coring” operators which yield MAP estimators for coef-

ficients, assuming a prior probability model P (~α) ∝ e−
1
2

P

i |αi|p for six

values of p.

optimizing each coefficient:

αi = arg min
α

1

2σ2
(zi − α)2 − log Pprior(α) ∀i (2.4)

For sparsity-promoting prior probability models, the solution of Eq. 2.4 is

the result of a so-called “shrinkage” or “coring” operation on the wavelet

coefficient zi = (DT~x)i of the noisy image. Figure 2.1 plots this operation

in the case that the prior probability model is a generalized Gaussian

with different exponents. This shrinkage approach serves as the basis for

many successful image and acoustic denoising algorithms [86, 109, 41].

8



Redundant (over-complete) dictionaries Redundant or “over-complete”

dictionaries have also been used for image and sound compression and

denoising. In this case, the dictionary transform is non-invertible, so

there are infinitely many coefficient vectors that will reconstruct the sig-

nal up to a given accuracy. The MAP optimization of Eq. 2.2 uses the

sparse prior as a criteria for selecting among these. Over-complete dictio-

naries have several advantages over traditional orthogonal dictionaries.

First, they yield sparser representations, since they can model a wider

range of structure in the signal ensemble. For example, sounds have

been decomposed using the union of a Fourier-basis (modeling harmonic

sounds) and a Dirac-basis (modeling onsets and attacks) [45]. Second,

they are more stable to noise and deformations: orthogonal representa-

tions change erratically as translation or noise is applied due to blocking

artifacts caused by the diadic spacing of the wavelets [46, 22, 133, 82].

Third, over-complete dictionaries can linearize complex dependencies in

the signal ensemble, potentially capturing nonlinear structure that com-

plete dictionaries cannot [82]. Sparse, over-complete representations us-

ing both hand-chosen (e.g., tight wavelet frames) and learned dictionaries

have proven successful in a variety of signal processing applications such

as compression, denoising/enhancement, inpainting, and source separa-

tion (see [41] and [108] for a review of image and acoustic applications,

respectively).

Learned dictionaries Dictionaries adapted to natural signal ensem-

bles (with a sparsity prior on the coefficients), whether complete or over

complete, have exhibited many desirable properties. Independent com-

9



ponent analysis (ICA) learns a complete dictionary, assuming a non-

Gaussian factorial prior on the coefficients. This technique has been

often used for blind source separation of mixed audio signals [25]. When

adapted to natural image patches, both the ICA and an over-complete

dictionary learn localized, oriented, gabor-like filters akin to the receptive

fields of simple cells in primary visual cortex [101, 5]. Analogously, dic-

tionaries adapted to natural sounds yield time- and frequency-localized

gammatone-like filters resembling the receptive fields of cochlear cells

[136]. In addition to their relationship to neural response properties,

these representations have also proven useful in various coding and de-

noising applications [80, 81, 152, 136].

Inference with non-orthogonal dictionaries The non-orthogonality

of over-complete dictionaries prevents the optimization of Eq. 2.2 from

decoupling, and so more sophisticated methods must be employed to

jointly solve for the coefficients. The common prior distribution that is

(implicitly or explicitly) used is Pprior(~α) ∝ e−λ‖~α‖0 where ‖ · ‖0 is the

L0 “pseudonorm” which counts the number of non-zero elements. The

resulting MAP optimization becomes:

~αMAP(~x) = arg min
~α

1

2σ2
‖~x − D~α‖2

2 + λ‖~α‖0 (2.5)

If one has a bound on the noise energy M = ‖ǫ‖2
2, then the dual formu-

lation is often used:

~αMAP(~x) = arg min
~α:‖~x−D~α‖2

2≤M

‖~α‖0 (2.6)

Unfortunately, solving either Eq. 2.5 or Eq. 2.6 exactly is NP-Hard [96,

31] since one must search all possible subsets of nonzero coefficients of ~α.

10



Techniques to approximate the solution can be split into greedy methods

and convex relaxation methods, discussed in Sections 2.1.2 and 2.1.3,

respectively.

2.1.2 Greedy methods

Greedy methods attempt to solve Eq. 2.5 by successively adding nonzero

coefficients to ~α until the objective Eq. 2.5 can no longer decrease. The

first such methods date back to variable selection methods used in clas-

sical statistics [50]. More recent greedy methods are exemplified by the

well-known matching pursuit algorithm [88], summarized in Algorithm 1.

The basic procedure is to select, at each iteration, the dictionary element

that is most correlated with the residual portion of the signal that is cur-

rently unexplained. If it is possible to decrease the objective in Eq. 2.5

by changing this element’s coefficient, then the coefficient is updated and

the procedure is repeated until no further decrease is possible (or, in the

dual formulation, until the residual squared norm goes below M). The

algorithm can be viewed as a generalization of the well-known matched-

filtering procedure for identifying a template within a signal [99].

There are several variations of matching pursuit that have been shown

to enjoy better convergence properties, usually at the cost of computa-

tional complexity. For example in orthogonal matching pursuit (OMP)

[102], all non-zero coefficients are re-optimized (without sparsity penal-

ization) every time the support of ~α is augmented. The optimal coeffi-

cients on a restricted support I can be computed in closed form using

11



Algorithm 1 Matching pursuit algorithm MP (D, ~x, λ))

~α ← ~0 {initialize coefficient vector}
df ← ∞ {initialize change in residual error}
while df > λ do

i∗ ← arg maxi(D
T (~x − D~α))i {find best coefficient}

df ← (DT (~x−D~α))2
i∗

2σ2(DT D)i∗i∗
{compute decrease in residual error}

if df > λ then

αi∗ ← (DT (~x−D~α))i∗

(DT D)i∗i∗
{update coefficient}

end if

end while

the Moore-Penrose pseudoinverse:

αI ← (DT
IDI)

−1DT
I~x (2.7)

where I = {i : αi 6= 0}

Adding this step ensures that at each iteration, the best coefficient αi∗ is

chosen to explain a portion of the residual that is orthogonal to the

subspace spanned by the dictionary elements that are already being

used. This provides an advantage particularly with correlated dictio-

naries, since it discourages choosing new dictionary elements that can be

explained in terms of ones that are already used. Stagewise orthogonal

matching pursuit (STOMP) generalizes OMP by allowing multiple coef-

ficients to be added to the support at each iteration. The coefficients are

selected by applying a carefully chosen threshold to the back-projected

threshold (DT (~x−D~α)) based on a signal detection analysis with respect

to the noise [34]. The authors show that this method performs well when

the dictionary D is approximately Gaussian-distributed. The work of

12



[30, 97] propose different procedures for selecting which coefficients to

update within this framework, and conjugate gradient updates are used

in [30] instead of directly solving Eq. 2.7 to speed up computations.

Greedy algorithms have the advantage of being fast, intuitive, and

easy to implement. However, if several dictionary elements are very sim-

ilar in shape (relative to the noise), it necessarily becomes difficult to

select which subset best explains the observed signal. In these cases,

greedy methods often yield solutions that are quite different from the

true solution of Eq. 2.5. Indeed, theoretical results which guarantee the

accuracy of greedy approximations depend crucially on the so-called “co-

herence” of D, which bounds the cross-correlations between dictionary

elements [143]:

µ(D) = max
i6=j

|(DTD)ij|
√

(DTD)ii(DTD)jj

(2.8)

Behavior with transformation-invariant dictionaries

This issue of coherent dictionaries is especially problematic for dictionar-

ies containing the same kernel(s) replicated at multiple transformation

parameters. A fine sampling of the transformation parameter is needed

for good signal reconstruction, but this results in a very coherent dictio-

nary that is ill-suited for greedy methods. As an example, consider an

observation consisting of multiple instances of a single kernel, shifted to

different times. A greedy algorithm usually recovers isolated instances

correctly, but often fails to recover multiple instances occurring at nearby

times. As Fig. 2.2 illustrates, the reason is because a greedy procedure

would select a time-shift in the middle of these, since this will be more

13



correlated with the signal than any of the correct time-shifts in isolation.

As a result, the procedure gets stuck in a local minimum. This problem

is inherent to the greediness of the algorithm, and exists regardless of

the dictionary spacing or the value of λ.

2.1.3 Convex relaxation methods

The other class of approximate solutions for Eq. 2.5 arises by replacing

the non-convex L0 pseudonorm with the convex L1 norm. The resulting

objective is:

~α(~x) = arg min
~α

1

2σ2
‖~x − D~α‖2

2 + λ‖~α‖1 (2.9)

This approach has frequently been used in statistics to regularize model

parameters (i.e. effectively do model selection) in the presence of noise

(the LASSO [142]) and in signal processing to recover sparse solutions

with respect to over-complete wavelet dictionaries (basis pursuit denois-

ing [20]). The objective in Eq. 2.9 is convex and thus has a unique global

minimum that can be obtained via several standard optimization tech-

niques, such as interior point methods [10]. The parameter λ in Eq. 2.9

need not be the same as in Eq. 2.5, since it penalizes a different functional

of the coefficients. It is unclear how to determine the value of λ that will

yield the most accurate approximation to the solution of Eq. 2.5. As

a result, λ is typically chosen by cross-validation, or the L1 relaxation

is applied to the dual formulation of Eq. 2.6, thus avoiding the task of

choosing a value for λ:

~α(~x) = arg min
~α:‖~x−D~α‖2

2≤M

‖~α‖1 (2.10)

14
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Figure 2.2: Example of how matching pursuit fails to resolve nearby

events when using a dictionary of translated copies of a Gaussian kernel

f(x) ∝ e
−x2

2 with λ = 100 and σ = 1. The estimated and true events are

indicated by the red and black circles, respectively, with size indicating

amplitude. The gray circles behind the estimated events indicate the

time-shifts associated with each dictionary element. The numbers above

the estimated events indicate the order in which non-zero coefficients

were chosen in Algorithm 1.
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Iterative thresholding methods

Recently, several fast “iterative thresholding” procedures [27, 24, 62, 39,

47, 8] have been proposed for solving Eq. 2.9 that resemble the greedy

iterative procedures described in Section 2.1.2 (see [42] for a review).

These can be viewed as an adaptation of the approach described in Sec-

tion 2.1.1 to handle non-orthogonal dictionaries [42]. Recall that in the

orthogonal case, the optimization decouples and the solution is obtained

by applying a “soft threshold” to ~z = DT~x (shown by the blue line

corresponding to p = 1 in Fig. 2.1):

αi =



























0 if |zi| < λ

zi − λ if zi > λ

zi + λ if zi < −λ

(2.11)

In the non-orthogonal case, we can turn the objective of Eq. 2.9 into one

that decouples by adding two terms:

Q(~α; ~α0) =
1

2
‖~x − D~α‖2

2 + λ‖~α‖1 +
c

2
‖~α − ~α0‖2

2 −
1

2
‖D~α − D~α0‖2

2

(2.12)

= −~αT
[

DT (~x − D~α0)
]

+ λ‖~α‖1 +
c

2
‖~α‖2

2 + const

Notice that the sum of the two added terms in Eq. 2.12 is always positive

for sufficiently large c. Furthermore, the value and gradient of each added

term vanishes when ~α = ~α0. As a result, Q(~α; ~α0) is (1) an upper bound

of the objective of Eq. 2.9, (2) equal to Eq. 2.9 at ~α = ~α0, (3) tangent to

Eq. 2.9 at ~α = ~α0. Furthermore, Q(~α; ~α0) is convex for sufficiently large
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c. Therefore we can iteratively update the coefficient estimate:

~α(t+1) ← arg min
~α

Q(~α; ~α(t)) (2.13)

This is an example of the Expectation-Maximization algorithm in ma-

chine learning [32], or majorization-minimization/bound optimization in

the optimization literature [46]. It is well known that this procedure

necessarily converges to the global minimum of Eq. 2.9. The “surro-

gate function” Q(~α; ~α0) decouples and so the minimizer can be found by

separately optimizing each coefficient. Setting the derivative to 0 gives:

∂Q

∂αi

= αi −
1

c
(DT (~x − D~α0))i +

λ

c
sign(αi) = 0 ∀i (2.14)

yielding the solution:

αi =



























(zi − λ
c
) if zi > 0

0 if zi = 0

(zi + λ
c
) if zi < 0

∀i (2.15)

where ~z = ~α0 +
1

c
DT (~x − D~α0)

Another related class of methods for solving Eq. 2.9 employs iterative

reweighted least square (IRLS) techniques where the L1 term is approx-

imated by a weighted L2 term, with the weights being derived from

the previous coefficients in the previous iteration [53, 19, 28]. These

algorithms also amount to iteratively applying a point-wise nonlinear

“shrinkage” function as in Eq. 2.15 [42].

Theoretical guarantees

Several recent theoretical results [18, 16, 17, 36, 39] provide sufficient

conditions for the accuracy of the solution of Eq. 2.9, as an approxima-
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tion of Eq. 2.5. These conditions rely on a “restricted isometry property”

(RIP) of the dictionary D, requiring all small subsets of dictionary ele-

ments to be “nearly” orthogonal systems. Mathematically, we define the

RIP constant, δK , to be the minimal value satisfying:

(1 − δK)‖~x‖2
2 ≤ ‖D~x‖2

2 ≤ (1 + δK)‖~x‖2
2 ∀~x s.t. ‖~x‖0 = K (2.16)

Sufficient conditions in the literature typically impose bounds on sums

of different RIP constants. For example, the condition of [16] requires:

δK + δ2K + δ3K < 1 (2.17)

in the noiseless case, where K is the number of nonzero elements in the

true sparse coefficient vector. The condition of [18] requires:

δ3K + 3δ4K < 2 (2.18)

for stable recovery in the noisy case.

Behavior with transformation-invariant dictionaries

Although the RIP is in general a weaker condition than the coherence

bounds required by greedy methods (Eq. 2.8), it still does not apply to

most transformation-invariant dictionaries. A fine sampling of the trans-

formation parameter causes neighboring dictionary elements to be very

correlated, thus violating the RIP (even δ2 will have a large value). Fig-

ure 2.3 demonstrates the failure of the L1 approximation with a simple

translation-invariant dictionary containing three shifted versions of a sin-

gle waveform (Fig. 2.3(a)). The observed signal is simply this waveform

at an intermediate time-shift, with added noise (superimposed in gray).
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Figure 2.3(c) illustrates the optimization problem of Eq. 2.9. Notice

that family of solutions, parametrized by λ (red path), are not sparse

in the L0 sense (i.e., they do not intersect either of the two axes) until

λ is so large that the signal reconstruction is quite poor. This is the

case regardless of how small ∆ is, and is due both to the failure of the

L1 norm to approximate the L0 pseudonorm and to the inability of the

discrete model to account for continuous event times.

2.2 Bilinear models which account for trans-

formation

In [141], a bilinear generative model was proposed for images, in which

“content” and “style” information (corresponding to what we refer to as

“what” and “where” information) is captured by two sets of variables

{αc}c and {βs}s, respectively. Mathematically this is expressed as:

~x =
∑

s,c

αc
~dcsβs + ~ǫ (2.19)

The intuitive appeal of the bilinear approach is that continuously

transforming an image’s “style” can be modeled by multiplicatively mod-

ulating the coefficients, rather than varying additive coefficients. In [141],

it was shown that learning such a model for digits (with different fonts),

or face images (with different poses) produces a representation suitable

for classification into discrete content and style groups. This model was

extended in [56] to include a sparse factorial prior distribution on both

content and style coefficients. The kernels, when adapted to natural im-

ages patches, resembled the Gabor-like filters learned in [101] but with a
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(a) (b)

(c)

Figure 2.3: Illustration of sparse recovery via an L1 relaxation using a

convolutional dictionary. (a) Dictionary containing the waveform f(t) ∝
te−

t2

2 at 3 shifts (−∆, 0, ∆). The noisy observation, x(t) = f(t+0.65∆),

is superimposed in gray. (b) Dictionary in the underlying vector space.

The three points lie on the translation-invariant manifold Mf,T corre-

sponding to the waveform. (c) Solution of Eq. 2.9 in the space of the

first two coefficients (α1, α2). A solution occurs when a level curve of the

quadratic term (shaded ovals) is tangent to a level curve of the L1 term

(horizontal lines in the rotated axes). The red line plots the solution, as

a function of λ, from λ = 0 (yellow dot) to very large values (origin).

Red dots demarcate equal increments of λ. The blue star marks the true

L0-minimizing solution.
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natural grouping (
[

~dcs

]

s
for each c) corresponding to transformed copies

of a filter with the same spatial orientation and scale.

The bilinear model suffers from several disadvantages. First, it is

unclear that the model will automatically learn to separate content and

style information into the two variable sets. Indeed, this separation is

enforced in the learning algorithms proposed by [141] and [56] by in-

corporating prior knowledge of the content and style category for each

data sample. This is somewhat remedied in [7], which learns a bilinear

model in a totally unsupervised manner by uses temporal stability in

natural videos as an indicator of content versus style information (build-

ing on the temporal stability criteria used in [48, 151, 150]). However,

this study focused on connections to neuroscience rather than on the ad-

vantages of the computational representation itself. Our method, on the

other hand, is an inference method that assumes known transformation

types across the ensemble but unknown amounts in any given signal.

Second, the mapping from the inferred style coefficients to transforma-

tion parameters is not well-defined. While it is clear that they co-vary

continuously with transformations such as translation [56, 7], one cannot

explicitly recover the transformation amount. Third, inference in these

bilinear models is inherently non-convex (due to the “chicken-and-egg”

problem of content and style variables) and inefficient when combined

with sparsity constraints. Learning also requires very complicated pro-

cedures [56, 7].
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2.3 Motivation for CBP

Recall that conventional methods for approximating the sparse linear

inverse solution of Eq. 2.5 yield suboptimal solutions when used with

“transformation-sample” dictionaries (i.e. dictionaries constructed by

replicating a set of prototypical kernels with evenly sampled transfor-

mation amounts). The reason is the fundamental tradeoff between fine

sampling of the transformation amounts (which is required for good sig-

nal reconstruction), and the conditions required for these approximations

to be accurate. Greedy algorithms are susceptible to suboptimal local

minima (Fig. 2.2) when dictionary elements are highly correlated, as is

the case when the transformations are finely sampled. Convex relax-

ation methods, on the other hand, employ the L1 norm which fails to

approximate the L0 measure with correlated dictionaries (Fig. 2.3).

We now introduce a novel method, called continuous basis pursuit

(CBP), for the sparse recovery problem that addresses the limitations of

conventional methods in the transformation-invariant context. The key

is to change the dictionary into a form that is more amenable for sparse

coefficient recovery (rather than changing the sparse recovery algorithm

itself), while keeping the space spanned by the dictionary elements essen-

tially the same. We motivate the new form of dictionary by formulating a

simple source model for the 1D translation-invariant case in Section 2.4.

By adding new variables to parametrize the transformations via a prede-

fined interpolation mapping, we are able to recover these quantities by

solving a constrained convex optimization problem, and then applying

the inverse map to the solution. We develop two versions of this ap-
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proach in Sections 2.5 and 2.6, and present a general form in Section 2.7.

In Section 2.8, we present empirical evidence of our method’s advantage

over conventional methods on a sparse deconvolution task.

2.4 Source model formulation

We consider the simple case in which we observe a noisy linear com-

bination of a small number of time-shifted versions of a single known

waveform f(t). The function f(t − τ) is abbreviated by fτ (t) or simply

fτ . We formulate the problem in terms of the original variables which

we would like to infer, namely the real-valued amplitudes {aj} and time-

shifts {τj} that comprise the observed signal:

x(t) =
N

∑

j=1

ajfτj
(t) + ǫ(t), (2.20)

where ǫ(t) represents a noise process. In the rest of the section, we assume

(without loss of generality) that ‖f(t)‖2 = 1, and that the amplitudes,

{aj}, are nonnegative. The goal is to find event amplitudes {aj} and

time-shifts {τj} that minimize a tradeoff between signal reconstruction

and the number of events:

min
N,{aj},{τj}

1

2σ2
‖y(t) −

N
∑

j=1

ajfτj
(t)‖2

2 + λN (2.21)

Solving Eq. 2.21 can also be interpreted as performing MAP estimation

of {aj}, {τj}, assuming Gaussian white noise (with variance σ2) and a

Poisson process prior on the {τj}. One can also incorporate a term

corresponding to the prior probability of the amplitudes {aj}, if known.

Solving Eq. (2.21) directly is intractable, due to the discrete nature of
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N and the nonlinear embedding of the τj’s within the argument of the

waveform f(·). It is thus desirable to find alternative formulations that

(i) still approximate the signal distribution well, (ii) have parameters

that can be tractably estimated, and (iii) have an intuitive mapping

back to the original variables of interest (N, {aj}, {τj}).
Recall that the standard approach is to construct a dictionary D∆ of

time-shifted copies of f(t) with a spacing ∆ and then solve the familiar

sparse inverse problem (Eq. 2.5 of Section 2.1):

min
~α

1

2σ2
‖x(t) − (D∆~α)(t)‖2

2 + λ‖~α‖0 (2.22)

where (D∆~α)(t) :=
N

∑

i=1

αifi∆(t). (2.23)

The coefficient αi represents events occurring between i∆−∆
2

and i∆+ ∆
2

for i = 1, ..., N (where N = ⌈T/∆⌉). The dictionary D∆ can be viewed

as a uniform sampling of the nonlinear translation manifold given by:

Mf,T := {afτ : a ≥ 0, τ ∈ [0, T ]} (2.24)

The span of the dictionary elements provides a linear subspace approx-

imation of this manifold, as illustrated in Fig. 2.3(b). However, the

representation of a single element of the manifold will typically be ap-

proximated by a superposition of two or more elements from the dictio-

nary D∆. This was in fact the case in the simple example illustrated in

Fig. 2.3. We can remedy this by augmenting the dictionary to include

interpolation functions, that allow better approximation of the contin-

uously shifted waveforms. We describe two specific examples of this

method, and then provide a general form.
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2.5 CBP with Taylor interpolation

If f(t) is sufficiently smooth, one can approximate local shifts of f(t)

by linearly combining f(t) and its derivative via a first-order Taylor

expansion:

fτ = f0 − τf ′
0 + O(τ 2) (2.25)

This motivates a dictionary consisting of the original shifted waveforms,

{fi∆}, and their derivatives, {f ′
i∆}. Since the Taylor expansion is only

valid locally, we must choose the spacing, ∆ to be the largest spacing

that provides a desired approximation accuracy δ:

∆ := max{∆′ : max
|τ |<∆′

2

‖fτ − (f0 − τf ′
0)‖2 ≤ δ} (2.26)

The value of δ can be set according to the observed noise level: when

there is higher noise, we can allow for more approximation error since

this error can be attributed to noise. We can then approximate the

manifold of scaled and time-shifted waveforms using constrained linear

combinations of dictionary elements:

Mf,T ≈
{

αfi∆ + df ′
i∆ : |d| ≤ ∆

2
α

}

(2.27)

There is a one-to-one correspondence between sums of waveforms on the

manifold Mf,T and their respective approximations with this dictionary:

∑

i

αifi∆ + dif
′
i∆ =

∑

i

αi(fi∆ +
di

αi

f ′
i∆) ≈

∑

i

αif(i∆−di/αi). (2.28)

This correspondence holds as long as |di/αi| 6= ∆
2

(equality corresponds

to the situation where the the waveform is shifted exactly halfway in be-

tween two lattice points, and can thus be equally well represented by the
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basis function and associated derivative on either side). The inequality

constraint on d in Eq. 2.27 is essential, and serves two purposes. First, it

ensures that the Taylor approximation is only used when it is accurate,

so that only time-shifted and scaled waveforms are used in reconstruct-

ing the signal. Second, it discourages neighboring pairs (fi∆, f ′
i∆) and

(f(i+1)∆, f ′
(i+1)∆) from explaining the same event. The inference problem

can now be cast as a constrained convex optimization:

min
~α,~d

1

2σ2
‖y(t) − (D∆~α)(t) − (D′

∆
~d)(t)‖2

2 + λ‖~α‖1

s.t. |di| ≤
∆

2
αi for i = 1, ..., N (2.29)

where the dictionary D∆ is defined as in Eq. (2.23), and D′
∆ is a dic-

tionary of time-shifted waveform derivatives {f ′
i∆}. The dictionary and

associated coefficient constraints are illustrated in Fig. 2.4(a), showing

that the manifold is now approximated by constrained triangular regions,

providing a better tiling than in Fig. 2.3(b). This local linearization of

the transformation manifold is used in the tangent prop method of [130]

in the context of distance learning and classification. Eq. (2.28) provides

an explicit mapping from appropriately constrained coefficients to event

amplitudes and time-shifts. Figure 2.4(b) illustrates this objective func-

tion for the same single-waveform example described previously. The

shaded regions are the level sets of the L2 term of Eq. (2.29) visual-

ized in the (α1, α2)-plane by minimizing over the derivative coefficients

(d1, d2) subject to the constraints. Note that unlike the corresponding

BP level sets shown in Fig. 2.3(c), these are no longer elliptical, and that

they allow sparse solutions (i.e., points on the α1-axis) with low recon-

struction error. As a result, the solution of Eq. (2.29) is not only sparse
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in the L0 sense, but also provides a good reconstruction of the signal for

appropriately chosen λ.

(a) (b)

Figure 2.4: (a) Continuous basis pursuit with first-order Taylor inter-

polator (CBP-T), as specified by Eq. (2.29). Each pair of functions,

(fi∆, f ′
i∆), with properly constrained coefficients, represents a triangular

region of the space (shaded regions). (b) CBP with Taylor interpolation

applied to the same illustrative example described in Fig. 2.3(c). Shaded

regions denote the level curves of the quadratic term in Eq. 2.29 in the

space of two amplitude variables (α1, α2), minimized over derivative vari-

ables (d1, d2) that satisfy the inequality constraints.

2.6 CBP with polar interpolation

2.6.1 The polar interpolator

Although the Taylor series provides the most intuitive and well-known

method of approximating time-shifts, we have developed an alternative

interpolator that is much more accurate for a wide class of waveforms.
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The solution is motivated by the observation that the manifold Mf,T of

time-shifted waveforms must lie on the surface of a hypersphere (transla-

tion preserves the L2-norm, barring border effects) in the function space

underlying f(t). Furthermore, this manifold must have a constant cur-

vature (by symmetry). This leads to the notion that it might be well-

approximated by a circular arc. As such, we approximate a segment of

the manifold, {fτ : |τ | ≤ ∆
2
}, by the unique circular arc that circum-

scribes the three functions {f−∆/2, f0, f∆/2}, as illustrated in Fig. 2.5(a).

The resulting interpolator is an example of a trigonometric spline [122],

in which three basis functions {c(t), u(t), v(t)} are linearly combined us-

ing trigonometric coefficients to approximate intermediate translates of

f(t):

fτ (t) ≈











1

r cos( τ
∆

θ)

r sin( τ
∆

θ)











T 









c(t)

u(t)

v(t)











for |τ | <
∆

2
(2.30)

The constants r and θ are the radius and subtended angle of the cir-

cumscribing arc, respectively (see Fig. 2.5(b)). These constants, along

with the three basis functions, can be computed in closed form for a

given waveform, and the main properties of the polar interpolator can

be summarized as follows (see Appendix A for details):

1. The polar approximation of Eq. 2.30 is exact when f(t) is sinu-

soidal, regardless of ∆.

2. The approximation accuracy degrades as the bandwidth of f(t)

increases.

3. The basis {c(t), u(t), v(t)} is an orthogonal system.
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Figure 2.5: Illustration of the polar interpolator. (a) The manifold of

time shifts of f(t) (black line) lies on the surface of a hypersphere. We

approximate a segment of this manifold, for time shifts τ ∈ [−∆
2
, ∆

2
],

with a portion of a circle (red), with center defined by c(t).

2.6.2 Optimization formulation

We now approximate the translational manifold Mf,T using a dictionary

of time-shifted copies of the functions used to represent the polar inter-

polation, {ci∆, ui∆, vi∆}, together with constraints on their coefficients:

Mf,T ≈



























αci∆

+ βui∆

+ γvi∆

:

β2 + γ2 = α2r2,

0 ≤ αr cos( θ
2
) ≤ β

i = 1, ...N



























(2.31)

The constraints on the coefficients (α, β, γ) ensure that the linear combi-

nation approximates a scaled translate of f(t). Notice that β2+γ2 = α2r2

is a non-convex constraint. In order to maintain tractability we relax to
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the convex hull computed from the constraints in Eq. 2.31:

Mf,T ≈



























αci∆

+ βui∆

+ γvi∆

:

√

β2 + γ2 ≤ αr,

αr cos
(

θ
2

)

≤ β

i = 1, ...N



























(2.32)

As with the Taylor approximation, we have a one-to-one correspondence

between event amplitudes/time-shifts and the constrained coefficients:

∑

i

αici∆ + βiui∆ + γivi∆ ≈
∑

i

αif(i∆−∆
θ

tan−1 (γi/βi))
(2.33)

as long as γi

βi
6= tan

(

θ
2

)

for all i (note that the inequality constraints

ensure that | tan−1
(

γi

βi

)

| ≤ θ
2
). The inference problem again boils down

to minimizing a constrained convex objective function:

min
~α,~β,~γ

1

2σ2

∥

∥

∥
y(t) − (C∆~α)(t) − (U∆

~β)(t) − (V∆~γ)(t)
∥

∥

∥

2

2
+ λ‖~α‖1

s.t.











√

β2
i + γ2

i ≤ αir,

αir cos
(

θ
2

)

≤ βi











for i = 1, ...N (2.34)

where C∆,U∆,V∆ are dictionaries containing ∆-shifted copies of c(t),u(t),

and v(t), respectively. Equation (2.34) is an example of a “second-order

cone program” for which efficient solvers exist [10]. After the optimum

values for {~α, ~β,~γ} are obtained, time-shifts and amplitudes can be in-

ferred by first projecting the solution back to the original (non-convex)

constraint set of Eq. 2.31:

(αi, βi, γi) ← (αi,
βiαir

√

β2
i + γ2

i

,
γiαir

√

β2
i + γ2

i

) (2.35)

(corresponding to a radial projection in Fig. 2.5(b)) and then using

Eq. (2.33) to solve for the event times.
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Figure 2.6(a) illustrates that the polar interpolator yields a piece-wise

circular approximation of the manifold. Figure 2.6(b) illustrates the op-

timization of Eq. (2.34) for the simple example described in the previous

section. Notice that the solution corresponding to λ = 0 (yellow dot)

is substantially sparser relative to both the CBP-T and BP solutions,

and that the solution becomes L0 sparse if λ is increased by just a small

amount, giving up very little reconstruction accuracy.

(a) (b)

Figure 2.6: (a) Continuous basis pursuit with polar interpolation (CBP-

P), as specified by Eq. (2.34). Each triplet of functions, (ci∆, ui∆, vi∆),

represents a section of a cone (see Fig. 2.5(b) for parametrization) (b)

CBP with polar interpolation applied to the same illustrative example

described in Figs. 2.3(c) and 2.4(b). Shaded regions denote the level

curves of the quadratic term in Eq. 2.34 in the space of two amplitude

variables (α1, α2), minimized over all auxiliary variables (β1, β2, γ1, γ2)

that satisfy the inequality constraints.
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2.7 General interpolation

We can generalize the CBP approach to use any linear interpolation

scheme. Suppose we have a set of basis functions {φn(t)}m
1 and a cor-

responding interpolation map Ψ :
[

−∆
2
, ∆

2

]

→ R
m such that local shifts

can be approximated as:

fτ ≈
m

∑

n=1

Ψn(τ)φn, |τ | ≤ ∆

2
. (2.36)

(e.g., Eq. (2.25) and Eq. (2.30)). Let S be the set of all nonnegative

scalings of the image of [−∆
2
, ∆

2
] under the interpolator:

S = {a~x : a ≥ 0 , ~x ∈ Range(Ψ)}.

In general, S may not be convex (as in the polar case), and we denote

its convex hull by H. If we have a set of coefficients ~α ∈ R
N×m where

each block ~αi := [αi1, ..., αim] is in H, then the signal given by:

N
∑

i=1

m
∑

n=1

αinφn(t − i∆) (2.37)

approximates a sum of scaled and translated waveforms. If Ψ is invert-

ible, the amplitudes and shifts are obtained as follows:

ai ← a s.t.
PS(~αi)

a
∈ Range(Ψ) (2.38)

τi ← i∆ + Ψ−1(PS(~αi)/a) (2.39)

where PS(.) projects points in H onto S. Note that in this general form,

the L2 norm of (the projection of) each group ~αi governs the amplitude

of the corresponding time-shifted waveform.1 Finally, we can obtain the

1Our specific examples used the amplitude of a single coefficient as opposed to the

group L2 norm. However, the constraints in these examples make the two formula-
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coefficients by solving:

min
~α

1

2σ2
‖y(t) − D∆~α)(t)‖2

2 + λ

N
∑

i=1

‖~αi‖2 (2.40)

s.t. ~αi ∈ H for i = 1, ..., N

where the linear operator D∆ is defined as:

(D∆~x)(t) :=
N

∑

i=1

m
∑

n=1

αinφn(t − i∆)

Equation (2.40) can be solved efficiently using standard convex opti-

mization methods (e.g., interior point methods [10]). It is similar to

the objective functions used to recover so-called “block-sparse” signals

(e.g., [65, 43]), but includes auxiliary constraints on the coefficients to

ensure that only signals close to span(Mf,T ) are represented. Table 2.1

summarizes the Taylor and polar interpolation examples within this gen-

eral framework, along with the case of nearest-neighbor interpolation

(which corresponds to standard BP described in Section 2.1.3).

Property BP CBP-T CBP-P

{φn(t)} [f(t)] [f(t) , f ′(t)] [c(t) , u(t) , v(t)]

~Ψ(τ) 1 [1 , τ ]T [1 , r cos(θ 2τ
∆ ) , r sin(θ 2τ

∆ )]T

S {α1 ≥ 0} {|α2| ≤ α1
∆
2 } {α2

2 + α2
3 = r2α2

1 , 0 ≤ rα1 cos(θ) ≤ α2}

H {α1 ≥ 0} {|α2| ≤ α1
∆
2 } {

√

α2
2 + α2

3 ≤ rα1 , rα1 cos(θ) ≤ α2}

PS(~α) ~α ~α [α1 , rα1
α2√

α2
2+α2

3

, rα1
α3√

α2
2+α2

3

]T

Table 2.1: Components of the BP, CBP-T and CBP-P methods.

tions equivalent. For the Taylor interpolator, α2

i
+d2

i
≈ α2

i
. For the polar interpolator,

c2

i
+ u2

i
+ v2

i
≈ (1 + r2)c2

i
.
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The quality of the solution relies on (1) accuracy of the interpolator,

(2) the convex approximation H ≈ S, and (3) the ability of the block-

L1 based penalty term in Eq. (2.40) to achieve L0-sparse solutions that

reconstruct the signal accurately. The first two of these are relatively

straightforward, since they depend solely on the properties of the inter-

polator (see Fig. A.3). The last is difficult to predict, even for the simple

examples illustrated in Figs. 2.3(c),2.4(b),2.6(b). The level sets of the

L2 term can have a complicated form when taking the constraints into

account, and it is not clear a priori whether this will facilitate or hinder

the L1 term in achieving sparse solutions.

The theoretical results described in Section 2.1.3 suggest that if dic-

tionary correlations in the CBP dictionaries are less than those in the

BP dictionary, then a sparse solution should be able to be recovered via

an L1-based optimization such as Eq. 2.9. Intuitively, the correlations

in the CBP dictionaries are decreased for three reasons: (1) there are

no correlations within the interpolation groups (they are orthogonal sys-

tems in both the Taylor and polar cases), (2) the groups are able to be

spaced further apart along the manifold (i.e. larger ∆), and (3) con-

straints further reduce the set of possible coefficient combinations). The

next section provides empirical results which clearly indicate that solv-

ing Eq. (2.40) with Taylor and polar interpolators yields substantially

sparser solutions than those achieved with standard BP.

2.8 Empirical results
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2.8.1 Single feature

We evaluate our method on data simulated according to the generative

model of Eq. (2.20). Event amplitudes were drawn uniformly from the

interval [0.5, 1.5]. We used a single template waveform f(t) ∝ te−αt2

(normalized, so that ‖f‖2 = 1), for which the interpolator performances

are plotted in Fig. A.3. We compared solutions of Eqs. (2.9), (2.29), and

(2.34). Amplitudes were constrained to be nonnegative (this is already

assumed for the CBP methods, and amounts to an additional linear in-

equality constraint for BP). Each method has two free parameters: ∆

controls the spacing of the basis, and λ controls the tradeoff between

reconstruction error and sparsity. We varied these parameters systemat-

ically and measured performance in terms of two quantities (correspond-

ing to the two terms in Eq. 2.21): (1) signal reconstruction error (which

decreases as λ or ∆ decreases), and (2) sparsity of the estimated event

amplitudes, which increases as λ increases. The former is simply the first

term in the objective function (for all three methods). For the latter, to

ensure numerical stability, we used the Lp norm with p = 0.1 (results

were stable with respect to the choice of p, as long as p << 1 and p was

not below the numerical precision of the optimizations). Computations

were performed numerically, by sampling the functions f(t) and y(t) at

a constant spacing that was finer than any ∆ used. We used the convex

solver package CVX [54] to obtain numerical solutions.

A small temporal window of the events recovered by the three meth-

ods is provided in Fig. 2.7. The three plots show the estimated event

times and amplitudes for BP, CBP-T, and CBP-P (upward stems) com-
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pared to the true event times/amplitudes (downward stems). The figure

demonstrates that CBP, equipped with either Taylor or polar interpola-

tors, is able to recover the event train more accurately, and with a larger

spacing between basis functions (indicated by the tick marks on the x-

axis). As predicted by the reasoning laid out in Fig. 2.3(c), basis pursuit

tends to split events across two or more adjacent low-amplitude coeffi-

cients, thus producing less sparse solutions and making it hard to infer

the number of events and their respective amplitudes and times. Spar-

sity can be improved by increasing λ, but at the expense of a substantial

increase in approximation error.

Figure 2.8 illustrates the tradeoff between sparsity and approxima-

tion error for each of the methods. Each panel corresponds to a different

noise level. The (x, y) coordinates of single point represent the recon-

struction error and sparsity of the solution (with color indicating the

method) for a single (∆, λ) combination, averaged over 500 trials. The

solid curves are the (numerically computed) convex hulls of all points

obtained for each method, and clearly indicate the tradeoff between the

two types of error. We can see that the performance of BP is strictly

dominated by that of CBP-T: For every BP solution, there is a CBP-T

solution that has lower values for both error types. Similarly, CBP-T is

strictly dominated by CBP-P, which can be seen to come close to the

error values of the ground truth answer (which is indicated by a black

dot). Note that the reconstruction error of the true solution and of all

methods is bounded below by the variance of the noise that lies outside

of the subspace spanned by the set of shifted copies of the waveform.

We performed a signal detection analysis of the performance of these
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BP CBP-T

CBP-P

Figure 2.7: Sparse signal recovery example. The source was a sparse set

of 3 event times/amplitudes, represented by the downward stems in all

three plots (horizontal displacement indicates time, height indicates am-

plitude). These were then convolved with a waveform f(t) ∝ teγt2 and

Gaussian noise was added with standard deviation ‖f‖∞/12. Upward

stems on the three plots show the source recovered by BP (Eq. (2.9)),

CBP-T (Eq. (2.29)), and CBP-P (Eq. (2.34)), respectively. For each

method, the values of ∆ and λ were chosen to minimize the sum of spar-

sity and reconstruction error (large dots in Fig. 2.8). Horizontal displace-

ments indicate event times determined by the interpolation coefficients

via Eq. (2.38), while stem height indicates amplitude. Amplitudes less

than 0.01 were eliminated for clarity. Ticks denote the location of the

basis functions corresponding to each upward-pointing stem.

methods, classifying identification errors as misses and false positives.

We match an estimated event with a true event if the estimated location

is within 3 samples of the true event time, the estimated amplitude is

within a threshold 1√
12

of the true amplitude (one standard deviation of

the amplitude distribution Unif ([0.5, 1.5])), and no other estimated event

has been matched to the true event. We found that results were rela-
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Figure 2.8: Error plots for 4 noise levels (SNR is defined as ‖f‖∞/σ).

Each graph shows the tradeoff between the average reconstruction error

and sparsity (measured as average L0.1 norm of estimated amplitudes).

Each point represents the error values for one of the methods, applied

with a particular setting of (∆, λ), averaged over 500 trials. Colors in-

dicate the method used (blue:BP,green:CBP-T, red:CBP-P). Bold lines

denote the convex hulls of all points for each method. The large dots

indicate the “best” solution, as measured by Euclidean distance from the

correct solution (indicated by black dots).
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Figure 2.9: Signal detection analysis of solutions at three SNR levels. (see

text). Misses, false positives, and total errors (sum of misses and false

positives), as a fraction of the mean number of events, were computed

over 500 trials for each method, and for each SNR (defined as ‖f‖∞/σ).

tively stable with respect to the threshold choices. For each method and

noise level we chose the (λ, ∆) combination yielding a solution closest to

ground truth (corresponding to the large dots in Fig. 2.8). Fig. 2.9 shows

the errors as a function of the noise level. We see that performance of all

methods is surprisingly stable across SNR levels. We also see that BP

performance is dominated at all noise levels by CBP-T, which has fewer

misses as well as fewer false positives, and CBP-T is similarly dominated

by CBP-P.

Finally, Fig. 2.10 shows the distribution of the nonzero amplitudes es-
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Figure 2.10: Histograms of the estimated amplitudes for BP, CBP-T,

and CBP-P, respectively. All methods were constrained to estimate only

nonnegative amplitudes, but no upper bound was imposed. The true

distribution from which amplitudes were generated is indicated in red.

timated by each algorithm, compared with the true uniform distribution

from which the amplitudes were generated. We see that CBP-P pro-

duces amplitude distributions that are far better-matched to the correct

distribution of amplitudes.

2.8.2 Multiple features

For M sources, the source model becomes:

x(t) =
M

∑

i=1

Ni
∑

j=1

aij (fi)τij
(t) + ǫ(t), (2.41)

All the methods we described can be extended to this case by taking

as a dictionary the union of dictionaries associated with each individual

waveform.
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Figure 2.11: Sparse signal decomposition with two waveforms. Upper-

left: Gammatone waveforms, fi(t) = atn−1e−2πbt cos(2πωit) for i = 1, 2.

Upper-right and lower-left: Sparsity and reconstruction errors for BP

(blue) and CBP-P (red), as in Fig. 2.8, with SNR’s of 48 and 12, respec-

tively (again, SNR is defined as ‖f‖∞/σ). Lower right: total number

of misses and false positives (with same thresholds as in bottom plot of

Fig. 2.9) for each method.
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We performed a final set of experiments using two “gammatone”

features (shown in upper left of Fig. 2.11), which are commonly used in

audio processing [103]. To generate a large amount of overlap in the data,

event times were sampled from two correlated Poisson processes with the

same marginal rate λ0 and a correlation of ρ = 0.5. These were generated

by independently sampling 2 Poisson process with rate λ0(1−ρ) and then

superimposing a randomly jittered “common” Poisson process with rate

λ0ρ. As before, event amplitudes were drawn uniformly from the interval

[0.5, 1.5]. We compared the performance of BP and CBP-P, in both cases

using dictionaries formed from the union of dictionaries for each template

with a common spacing, ∆, for both templates. In general, the spacing

could be chosen differently for each waveform, providing more flexibility

at the expense of additional parameters that must be calibrated. The

upper right and lower left plots in Fig. 2.11 show the error tradeoff for

different settings of (∆, λ) at SNR levels of 48 and 12, respectively (the

results were qualitatively unchanged for SNR values of 24 and 6). The

lower right plot in Fig. 2.11 plots the total number of event identification

errors (misses plus false positives) for each method as a function of SNR,

at each method’s optimal (∆, λ) setting.

2.9 Summary and discussion

We have introduced a novel methodology that combines the advantages

of sparse representations with those of modeling transformations. Our

approach relies on a probabilistic source model in which features undergo

transformations (of a known type, but unknown amount) before linearly
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combining to form the observed signal, and can be interpreted as an ap-

proximate inference method for recovering the feature amplitudes and

transformation amounts. Traditional methods construct a dictionary by

discretely sampling the transformation manifold(s) and employ greedy or

L1-based recovery methods to solve its coefficients. These methods are

limited by the tradeoff between the discretization error and the accuracy

of the recovery methods. Our method addresses this limitation by em-

ploying a linear interpolation dictionary, with appropriately constrained

coefficients, to represent the transformation manifold(s). The method

can be seen as a continuous form of the well-known basis pursuit method,

and we thus have dubbed it continuous basis pursuit. We showed, us-

ing both simple illustrative examples and large-scale simulations, that

our method approximates the sparse linear inverse solution much more

accurately (and across a wide range of noise levels) than basis pursuit

when using simple first-order (Taylor) and second-order (polar) interpo-

lation schemes. The resulting representations affords substantially better

identification of events (fewer misses and false positives), and yields am-

plitudes whose distribution is well-matched to the source model. We

conclude that this methodology provides a powerful and tractable tool

for modeling and decomposing sparse translation-invariant signals.

There have been other attempts to solve the arrival-time recovery

problem of Eq. 2.21 in addition to the conventional greedy and L1-based

sparse recovery methods described in Section 2.1. The field of array

signal processing deals with direction-of-arrival (DOA) and time-delay

estimation (see [70] for a review). However, these methods typically rely

on the known geometry of the sensor array, whereas we address the prob-
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lem in which we observe a sum of convolutions with arbitrarily-shaped

kernels. In addition, several of these methods rely on spectral meth-

ods, taking advantage of the Fourier representation of translation, and

thus do not generalize to other transformations. In [147], a general sam-

pling theory was developed for a wide class of non-band-limited signals

which includes streams of Dirac pulses. However, they focus on proving

theoretical results when the convolution kernel is of a known analytic

form (e.g., Gaussian or sinc function) and where the number of pulses is

known.

Our method can be extended in various ways. We believe our method

can be employed with transformations other than translation, such as

dilation/frequency-modulation for acoustic signals (see Chapter 4), or

rotation/dilation for images (e.g., [105]). Both the Taylor and polar

basis constructions can be extended to account for multiple transforma-

tions. In the Taylor case, one only needs to add waveform derivatives

with respect to each transformation and corresponding linear inequality

constraints for their coefficients. In the polar case, one can model the

(renormalized) transformation manifold locally as a 2D patch on the sur-

face of a sphere, ellipsoid, or torus (instead of a 1D arc) which can be

parametrized with two angles. In general, the primary hurdles for such

extensions are to specify (1) the form of the linear interpolation (for joint

variables, this might be done separably, or using a multi-dimensional in-

terpolator), (2) the constraints on coefficients (and a convex relaxation of

these constraints), and (3) a means of inverting the interpolator so as to

obtain transformation parameters from recovered coefficients. Another

natural extension is to use CBP in the context of learning optimal fea-
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tures for decomposing an ensemble of signals, as has been previously done

with BP (e.g., [120, 101, 135, 5, 7]), which we attempt to do in Chap-

ter 3. Finally, one could learn a representation of the transformations

present in the data instead of assuming a set of known transformations

(e.g., [65, 56, 14]).

Several questions remain regarding the theoretical reasons underlying

our approach’s advantage. We know that the first-order Taylor interpo-

lation accuracy depends on the curvature of the waveform. However,

an analogous condition for measuring polar interpolation accuracy is

lacking, although we expect there to be a Nyquist-like criteria relating

bandwidth to accuracy (see Appendix A). In addition, it is unknown

whether one can bound the difference between the solutions of Eq. 2.40

and Eq. 2.21. Most bounds on the approximation error of sparse linear

inverse solutions rely on the coherence of the dictionary, which is gen-

erally lower for the cases we explored. However, the presence of the co-

efficient constraints prevents a straightforward application of previously

used proof techniques to obtain bounds.

Another issue is the proper resolution of two or more events occurring

within a time interval of size ∆, the spacing of the dictionary. Since we

optimize with respect to a linear model with convex constraints, any

nonnegative combination of events occurring within ∆ of each other can

be encoded in the coefficients corresponding to that bin. However, it

is unclear how to resolve the individual events from these coefficients.

Therefore, ∆ must be chosen carefully, taking into account the event

time statistics.

Nevertheless, we see our method as a significant step toward separat-
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ing content from transformation in signals: one set of coefficients varies

continuously in a known way as transformations are applied (in small

amounts) to the signal, while the other set remains relatively invariant

to transformation. Although we have described the use of an interpolator

basis in the context of L1-based recovery methods, we believe the same

representations can be used to improve other recovery methods (e.g.,

greedy or iterative thresholding methods as described in Section 2.1.2-

2.1.3). Furthermore, our polar approximation of a translational manifold

can provide a substrate for new forms of sampling (e.g., [144, 147, 145]).

By introducing a basis and constraints that explicitly model the local

geometry of the manifold on which the signals lie, we expect our method

to offer substantial improvements in many of the applications for which

sparse signal decomposition has been found useful.
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Chapter 3

Application to neural spike

identification

In this chapter, we apply the continuous basis pursuit (CBP) method

of Chapter 2 to the problem of identifying neural action potentials in

extracellular recorded voltage data. This identification process, called

“spike sorting,” is a critical step in analyzing much of neural data, and is

a computationally challenging problem for which several algorithms have

been proposed. In Section 3.1, we describe the spike sorting problem in

detail, review various existing solutions and discuss their advantages and

disadvantages.

In Section 3.1.1, we propose a generative probabilistic model for

the observed voltage trace and recast the spike sorting problem as

a maximum-a-posteriori estimation of the spike times and amplitudes

given the observed trace. Under the proposed model, the inference prob-

lem is very similar to the amplitude and time-shift recovery problem

of Eq. 2.21 in Chapter 2, assuming we know the spike waveforms. We
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therefore propose to solve the spike sorting problem using CBP (to infer

spike times) within a dictionary learning scheme.

In Section 3.2, we apply our CBP-based method to four simulated

data sets (single-channel) that have previously been used for evaluating

spike sorting methods ([112, 149]), as well as two independent tetrode

data sets described in [59] and [148] for which ground truth is available

via simultaneous intracellular recordings. For all data sets, we compare

our methods error rate (misses, false positives) with that of a standard

procedure. On the simulated data of [112], we also compare our re-

sults with those reported by them. In all cases, our method outper-

forms the clustering-based methods. Using a technique introduced by

[59], we also show that in almost all cases, our method outperforms the

best possible clustering-based method that uses elliptical boundaries to

classify spikes. The primary reason is the proper resolution of overlap-

ping spikes, which clustering-based methods systematically fail to han-

dle. Our CBP-based spike sorting solution offers several advantages over

current spike sorters: (1) it is theoretically grounded in a probabilistic

source model, and relies on fewer parameters, (2) it is able to accommo-

date non-Gaussian noise distributions, which frequently arise in experi-

mental settings [118, 129, 44], (3) it handles real-valued spike times and

is not susceptible to alignment and windowing artifacts, (4) it properly

handles near-synchronous spikes, (5) it is highly automated (except for

choosing the number of cells), and (6) its computational cost scales well

for multiple electrodes (described in Section 3.2.4).
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3.1 Background and previous work

The problem of detection, time-estimation, and cell classification of neu-

ral action potentials from extracellular electrode measurements is fun-

damental to experimental neuroscience. Electrode(s) are embedded in

neural tissue, and a voltage trace is recorded as a function of time.

When a neuron in the vicinity of the electrode fires an action poten-

tial, a stereotypical waveform is superimposed onto the recorded voltage

[79, 119, 148]. The shape of this waveform depends on the cell’s mor-

phology and position, as well as the filtering properties of the medium

and the electrode(s). The “spike sorting” problem consists of detecting

the occurrence of these individual waveforms and estimate their corre-

sponding arrival times.

Despite the ubiquity and succinct formulation of the problem, there

is no de facto standard for spike sorting. Many experimentalists manu-

ally position a single electrode and define threshold triggers to identify

the spikes of individual cells [116]. However, this becomes substantially

more difficult when recording from several cells simultaneously, and is

infeasible for multi-electrode arrays. Computer-assisted solutions have

converged on a general methodology that we will refer to as “clustering,”

consisting of three steps [79], illustrated in Fig. 3.1: (1) detection of tem-

poral segments of the voltage trace that are likely to contain spikes, (2)

estimation of a set of features for each segment, and (3) classification

of the segments according to these features. A variety of methods exist

for solving each step (e.g., (1) thresholding based on absolute value [100]

, squared values [117], Teager energy [21], or other nonlinear operators
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a b c

Figure 3.1: Schematic of 3-step procedure common to most current spike

sorting methods. (a) Thresholding/windowing. Times of voltage peaks

are estimated by crossings of a chosen threshold. The temporal segments

of the voltage trace that lie within a fixed-duration window around each

peak (colored rectangles) are gathered. (b) Feature estimation. Feature

values are determined for each segment. As a typical example, we plot

the projection of each segment onto the first two principal components

of the full set of segments. Colored points in this plot correspond to

the windowed segments of corresponding color in (a). (c) Classification.

Segments are grouped within the feature space, typically using an auto-

matic clustering method such as K-means or estimation of a Gaussian

mixture model.

[115], (2) features such as peak-to-peak width/amplitude, projections

onto principal components [79], or wavelet coefficients [112, 71], and (3)

classification methods such as K-means [79], mixture models [118, 129],

or superparamagnetic methods [112]). Although methods exist for solv-

ing each of the three steps in isolation, it is unclear how to tie the se-

quential application of these steps directly to the optimization of a single

objective, making it difficult to state the assumptions and operating con-

ditions needed for success. Since each successive step does not take into
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account errors introduced by previous steps, errors tend to accumulate.

In addition, many of these methods require human supervision (espe-

cially for the classification step), which is not only costly, but generally

inaccurate [59] and highly variable [154]. The lack of a standard au-

tomated methodology makes it difficult to compare results of scientific

studies.

Most importantly, the conventional three-step procedure mishandles

overlapping spikes. If two or more cells fire near-synchronously, their

respective waveforms are superimposed in the voltage trace, creating a

shape that differs from either spike in isolation [78, 119, 148, 106]. If the

waveform shapes partially cancel, the initial detection stage may miss

the spikes altogether. Even if the segment is detected, its appearance

will depend on the time delay between the two spikes [106]. If this

is significantly different from that of either spike in isolation, it will

be misidentified as a fictitious third cell or discarded as an outlier, as

illustrated by the spikes outlined in blue, yellow, and pink in Fig. 3.1.

Failure to resolve overlapping spikes can have serious consequences:

Even basic measurements, such as mean firing rates and cross-correlations,

can be heavily biased due to spike sorting artifacts [4, 104, 106]. Prop-

erly handling this bias is crucial when studying a region where there is

a high level of synchronous activity or when the study itself focuses on

the correlation of firing patterns [89, 33, 121, 128, 107]. Such studies

are more frequent with the advent of multi-electrode array recordings,

which allow the simultaneous recording of large populations of neurons

[91, 52, 11, 107, 127].

There have been several proposed methods to augment the cluster-
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Figure 3.2: Illustration of the measurement model. Each cell generates

a voltage trace containing time-shifted copies of its spike waveform, and

the observed voltage trace is assumed to be a sum of these and a noise

variable.

ing approach to account for overlapping spikes [3, 78, 125, 156, 146, 111,

106]). However, these methods generally rely on brute-force examination

of all combinations of spike waveforms at all time separations (imprac-

tical for simultaneous recordings of many cells), or use of “greedy algo-

rithms that iteratively subtract the waveform of the best-fitting cell until

the residual amplitude is within the range expected for noise. A notable

exception is the family of ICA-based spike sorting methods [138, 139, 49],

which bear some resemblance to our approach, but have not been devel-

oped or implemented in the context of a unified probabilistic model for

the voltage measurements, and have not been extensively tested and

compared to traditional clustering methods.

3.1.1 CBP approach

Our method is derived from a simple generative model for the observed

voltage trace ([118, 106]), as illustrated in Fig. 3.2. A spike from the
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nth neuron, occurring at time {τni}, is assumed to produce a temporally

localized waveform aniWn(t − τni), where Wn(t) has unit norm, and ani

represents the spike amplitude. These time-shifted and scaled waveforms

are then added together with noise to form the electrode voltage trace:

V (t) =
N

∑

n=1

Cn
∑

i=1

aniWn(t − τni) + ǫ(t) (3.1)

In the case of multi-electrode recordings, V (t) and Wn(t) are vector-

valued with as many dimensions as electrodes, but for notational con-

venience, the derivation below is written for the scalar case. The dis-

tribution of the noise, ǫ(t), is assumed to be log-concave, which leads

to a tractable optimization algorithm, while allowing for Gaussian or

more heavy-tailed distributions (e.g., Laplacian or power-law) that arise

in many experimental settings [118, 129, 44]. For the data sets analyzed

in this thesis, we found that a Gaussian distribution performed well, so

we restrict ourselves to that case from here on. Our approach can also

handle correlated noise, but to simplify the derivation, we assume any

such correlations have been removed through a pre-processing step (see

Section B.0.8). Given these assumptions, the spike sorting problem is to

recover {Wn(t)}N
n=1, {τni}Cn

i=1, {ani}Cn

i=1 given only V (t).

3.1.2 Maximum-a-posteriori estimation.

Note that Eq. 3.1 is identical to Eq. 2.21, with the only difference being

that waveform {Wn(t)} shapes are unknown and must be optimized along

with the spike times/amplitudes. Therefore, under the Gaussian noise
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assumption, the maximum-a-posteriori (MAP) objective is:

arg min
{ani},{τni},{Wn(t)}

1

2
‖V (t) −

∑

n,i

aniWn(t − τni)‖2
2 (3.2)

− log P ({ani}, {τni}) (3.3)

Note that the waveforms are treated as model parameters since we do

not model them with a prior probability distribution, although such a

priori information could easily be incorporated if it was available. This

optimization problem partitions naturally into two subproblems: solving

for the waveform shapes, {Wn(t)}, and solving for the spike amplitudes

and times, {ani, τni}. Thus, we use a “coordinate descent algorithm,

alternating between solving for each of these two subsets of parameters

while holding the other subset fixed. Such methods have often been used

when adapting over-complete dictionaries to signal ensembles [101, 82,

40, 84].

Initialization of waveform shapes. We initialized the waveforms

{Wn(t)} using K-means clustering (see Section B.0.7). Note that unlike

clustering algorithms for spike sorting, we do not use the cluster assign-

ments to identify spikes. Rather, we use the cluster centroids to initialize

the waveform shapes. These estimates are typically quite accurate, as

long as each cell produces a substantial number of isolated spikes. As

such, we find in practice that the coordinate descent iterations (alternat-

ing between solving for waveforms and spike times/amplitudes) offers

only minor improvement (see Fig. 3.5(c)).
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Solving spikes given waveforms: CBP Given the waveforms, solv-

ing directly for the spike times/amplitudes is exactly the sparse recovery

problem for which the CBP method (Chapter 2) was designed. Adopting

this approach yields the following objective:

min
~α∈H,{Wn(t)}

1

2σ2
‖V (t) − (DW,∆~α)(t)‖2

2 −
∑

i

log PA(αi1) (3.4)

where DW,∆ is a dictionary constructed from the waveform shapes

{Wn(t)} using a polar interpolator and replicating them with spacing ∆,

and H is the second-order cone constraint set described in Section 2.6.1

of Chapter 2. For spike sorting, the desired prior is strictly binary, since

we want to force amplitudes to be either 0 (no spike) or 1 (spike). Un-

fortunately, this binary distribution, like the L0 prior of Eq. 2.5, is dis-

continuous and makes the problem intractable. In Chapter 2, the L0

penalty was relaxed to an L1 penalty. However, we found that for this

application it was better to adopt a prior of the form

PA(a) ∝ (η + a)−p ⇒ − log PA(a) = p log(η + a) + const (3.5)

The values of p and η were set to 10 and 10−16, respectively. This prior

encourages much sparser solutions than the L1 penalty, at the cost of

losing log-concavity. However, we can adopt an iterative reweighting L1

minimization scheme [13] to approximate the solution of Eq. 3.4. The

idea is to solve a series of convex optimization problems, where in each

iteration the log prior term in Eq. 3.4 is approximated with its first-order
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Taylor expansion about the previously estimated amplitudes:

p log(η + α) ≈ p log(η + α
(k)
ni1) (3.6)

+ p

[

d

dx
log(η + α)

]

α=α
(k)
ni

(

α − α
(k)
ni )

)

(3.7)

=

(

p

η + α
(k)
ni

)

α + const (3.8)

Thus, we can solve for ~α by initializing weights λ
(0)
ni = λ0 and then

iteratively optimizing:

~α(t+1) ← arg min
~α∈H

1

2
‖V (t) − DW,∆~α‖2

2 +
∑

n,i

λ
(k)
ni αni1 (3.9)

λ
(k+1)
ni ← 1

η + α
(k+1)
ni1

∀n, i (3.10)

until convergence. Each iteration amounts amounts to solving a weighted

version of the original CBP problem of Eq. 2.40 which is still convex

and can be solved efficiently. Note that under this reweighting scheme,

small weights induce high weights in the next iteration, and are therefore

pushed to zero after a very small number of iterations.

To improve computational efficiency, the voltage trace was partitioned

into non-overlapping excerpts separated by intervals of silence, and each

excerpt was processed independently. Silences were defined as intervals

with duration longer than half the minimal waveform duration (approx-

imately 2ms) in which the voltage trace did not exceed the threshold in

Eq. (B.0.7). Each excerpt was tested for whether it could be explained

with a single isolated waveform placed at any time. If the energy of the

residual obtained by subtracting the optimally placed waveform was less

than a fixed percentile p of a chi-squared distribution (the distribution of
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the noise energy), then this single-waveform explanation for the interval

was accepted (p = 99.999, chosen based on the spike waveform ampli-

tudes relative to the noise level). Otherwise, the interval was processed

according to the procedure described above.

Thresholding of spike amplitudes. Since the spike amplitudes in-

ferred from the solution of Eq. 3.4 can take on any nonnegative value,

a threshold must be used for final spike identification. This threshold

value determines the tradeoff between missed spikes and false positives,

which is a choice best left up to the investigator, who can assess the

relative costs of the two types of error with regards to the scientific goals

of the experiment. For the purposes of providing a simple automated

choice, however, we compute a smoothed estimate (Gaussian kernel den-

sity estimator [9]) of the spike amplitude density and identify the largest

value at which the density has a local minimum. The red vertical lines

in Fig. 3.7 indicate this automatically computed threshold. Note that

if there are multiple cells with similar-shaped waveforms but different

amplitudes, the spike amplitude distribution will be multimodal, and

multiple thresholds should be chosen.

Solving waveform shapes given spikes Once we solve the spike

times and amplitudes, we can optionally go back and solve for the optimal

waveform shapes (or take a gradient step with respect to the quadratic

data reconstruction term). For most of our data except in one case, this

was typically unnecessary since the initial waveforms were sufficiently

accurate. Waveform shapes were updated according to a simple gradient
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step, followed by a renormalization in order to prevent the redundant

tradeoff between waveform and spike amplitudes. The dictionary DW,∆

can be expressed as a linear function of the waveforms:

DW,∆ =
(

DW1,∆ ... DWN ,∆

)

(3.11)

=
(

conv∆(P1 ~w1) ... conv∆(PN ~wN)
)

where ~wn is the n’th waveform (represented as a vector of samples), and

the matrices Pn convert them into the ~c, ~u,~v representation (see Eq. A.4).

The operator conv∆ produces a convolutional matrix by replicating each

column of its input at a spacing ∆. We can then express the signal

reconstruction, DW ~α, as a linear function of the vectorized waveforms:

DW ~α =
(

conv∆(P1 ~w1) ... conv∆(PN ~wN)
)











~α1

...

~αN











(3.12)

=











conv∆(~α1)P1 0 0

0 ... 0

0 0 conv∆(~αN)PN





















~w1

...

~wN











= S~w

Here, conv∆ denotes reverse convolution. Ignoring terms that are con-

stant with respect to the waveform shapes, we can express the objective

as:

f(~w) =
1

2σ2
‖~v − S~w‖2

2 (3.13)

where ~v is the voltage trace sampled at the same resolution as the wave-

forms. Since this is simply a quadratic function of the waveform shapes,
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we can easily apply a gradient update (with appropriate renormalization)

of the following form:

Kn ← ‖~wn‖2 (3.14)

~w ← ~w + η
ST (~v − S~w)

σ2
(3.15)

~wn ← ~wn

‖~wn‖2

Kn (3.16)

Note that the Pn are computed involving the radius and angular con-

stants (r, θ) associated with each waveform shape ~wn (Appendix A).

Therefore, S~w may deviate from a sum of polar-interpolated waveforms.

However, since we make only small changes in the waveform shape, re-

computing the radius and angular constants on each iteration, we assume

that this deviation is negligible.

3.2 Results

3.2.1 Simulated data

We first apply our method to four simulated data sets [112], each con-

taining spiking activity from three neurons with background noise at four

different levels. Waveforms (shown in Fig. 3.3(a-d)) were taken from real

recordings, and noise was constructed to reflect realistic background ac-

tivity. Excerpts of voltage traces for two different noise levels are shown

in Fig. 3.3(e-f).

The top row of Fig. 3.4 compares the spikes sorted by our method

to those arising from standard clustering for one of the data sets (cor-

responding waveforms shown in Fig. 3.3(a)), plotted in the space of the
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Figure 3.3: Examples of simulated electrode data [112]. (a-d) Each

panel shows spike waveforms of three distinct cells, used to generate

the simulated data sets. (e-f) Example simulated voltage trace using

waveforms in (a) for noise levels σ = 0.1 and σ = 0.2, respectively.

first two principal components. Although clustering correctly identifies

the majority of spikes, it misses a substantial subset that are distant

from the cluster centers. Our method correctly recovers nearly all of

these missed spikes. The inset graphs of Fig. 3.4(b) demonstrate that

the corresponding voltage snippets do indeed contain superpositions of

multiple spikes.

Figure 3.5(a) compares the total number of errors of our method

with three other methods: (1) standard clustering using PCA and K-

means (Section B.0.7); (2) superparamagnetic clustering [112]; (3) the

best ellipsoid error rate (BEER) measure [59]. Note that the BEER

is not an actual spike sorting method – its parameters are adjusted to

optimize performance on data for which the true spikes are known –
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Figure 3.4: Spike sorting results for simulated data [112] (top row) us-

ing waveforms in Fig. 3.3(a), and tetrode data [59, 148] (bottom and

middle rows). (a,c,e): Spike identification by standard clustering (Sec-

tion B.0.7). Each marker represents the projection of a voltage segment

onto the leading 2 principal components. Points, circles, and crosses

represent hits, missed spikes, and false positives, respectively. Color in-

dicates cell identity. Gray points (bottom two rows) correspond to seg-

ments of real data for which no ground truth is available. (b,d,f): Spike

identification by our method, represented in the same space as (a,c,e).

Insets show example voltage segments containing overlapping spikes (cor-

responding to numbered points in (a,c)) in the time domain. Colored

vertical lines in the insets represent the occurrence times of ground truth

spikes (top row) and spikes estimated by our method (bottom row).
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but serves instead as a bound on the class of clustering-based methods

that use elliptical boundaries (see Section B.0.9 for details). Our method

substantially outperforms the three other methods under all conditions,

except for the highest noise level of the fourth data set (for which BEER

has the best performance).

3.2.2 Tetrode data from rat hippocampus (Harris,

2000)

We also applied our method to a portion of publicly-available data,

recorded from CA1 in anesthetized rat hippocampus [59]. The data

include simultaneous recordings from an extracellular tetrode, and an

intracellular electrode that was used to obtain the actual spike times

(so-called ground truth) for a single cell. Figure 3.6 shows an excerpt of

the tetrode recording, with the scaled intracellular trace superimposed

in gray. There are two prominent waveforms appearing in the recording,

the smaller of which corresponds to the intracellularly recorded cell.

Figure 3.4(c) illustrates the performance for standard clustering (Sec-

tion B.0.7). Notice that, unlike the simulated data of Fig. 3.4(a), there

are many segments that presumably contain spikes but for which no

ground truth is available (gray dots). For the intracellularly recorded

cell, the majority of isolated spikes are correctly identified (blue dots),

but a substantial number of other spikes are missed (blue circles) because

they are far from the cluster center in the feature space. The majority

of these missed spikes are recovered by our method, as illustrated in

Fig. 3.4(d). The insets of Fig. 3.4(d) demonstrate that, as with the sim-
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Figure 3.5: Spike sorting performance comparison. (a) Each panel shows

the total sorting errors (as a function of noise level) for each of the 4

simulated data sets [112] incurred by standard clustering (black, Sec-

tion B.0.7), superparamagnetic clustering [112] (brown), BEER (red,

Section B.0.9), and our method (cyan, Section 3.1.1). For all four exam-

ples, a fixed threshold of 0.5 was used to identify spikes in our method.

(b,c) Tradeoff between “false positive and “miss errors on each of the

tetrode data sets [59, 148], respectively, as the assignment probability

threshold is varied for the BEER (blue/green/red curves) and as the

spike coefficient threshold is varied for our method (cyan curve, magenta

curve with waveform learning). In (b), waveform learning did not signif-

icantly improve performance with CBP, and so the corresponding curve

is not shown. Large points indicate automatically chosen thresholds (see

Section 3.1.1). The black X indicates the performance of standard clus-

tering (Section B.0.7). Diagonal gray lines indicate contours of constant

total error.
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Figure 3.6: Example portion of tetrode data [59]. The four filtered ex-

tracellular electrode responses (colored traces) indicate two prominent

spikes of different shape. Also shown is the intracellular response of a

single cell (gray trace, vertically re-scaled for visualization) for a single

cell, corresponding to the second of the extracellular events. The intra-

cellular spikes are easily and unambiguously identifiable, and typically

precede the extracellular spike waveform by approximately 2 ms.

ulated data, these missed spikes typically overlap with the waveform of

another spike.

Figure 3.7 shows the distribution of spike amplitudes for three wave-

forms obtained by our method. The second waveform corresponds to

the ground truth cell, and the red line indicates an automatically chosen

threshold, based on the procedure described in Section 3.1.1. Notice that

all waveforms also have a significant amount of low-amplitude activity,

unlike the simulated case. The isolation of a group of spike amplitudes

relative to noise and the amplitudes of other cells with similar wave-
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form shapes provides an informal indication that the activity originates

from a single cell. For example the higher-amplitude modes in the first

two distributions are clearly isolated and most likely correspond to the

activity of two distinct cells. The lower-amplitude modes in these two

distributions are likely due to background spikes. On the other hand,

the two modes of the third distribution are not well separated, and any

choice of threshold is likely to result in a substantial number of errors.

As in any signal detection problem, a criterion (threshold) can be used

to finally decide whether a given portion of the voltage trace contains a

spike or not. Changes in the choice of threshold will trade off the num-

ber of false positives and misses. A simple automatic procedure can be

used to select a threshold, but the correct choice ultimately depends on

the costs of the two types of error, which can only be specified by the

investigator.

Figure 3.5(b) shows the tradeoff between misses and false positives

incurred by clustering, the BEER measure, and our method. The error

curves for the BEER measure were computed by varying the threshold on

the class assignment probabilities computed with a quadratic classifier

(see Section B.0.9), while the error curve for our method is formed by

varying the spike amplitude threshold.

3.2.3 Tetrode data in locust (Wehr, 1999)

We also applied our method to data, recorded from locust in vivo [148].

We applied the same analysis as in Section 3.2.2. Figs 3.4(e-f) visualize

the spike sorting results for standard clustering and our method, while
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Figure 3.7: Histograms of spike amplitudes for the three neurons corre-

sponding to the waveforms estimated by our method. The middle plot

corresponds to the cell for which ground truth is available via intracel-

lular recordings. The red vertical line indicates an automatic threshold

for identifying spikes, based on the procedure described in Section 3.1.1,

and was used to obtain the error rates corresponding to the large cyan

dot in Fig. 3.5(b).

Fig. 3.5(c) compares our methods performance with that of standard

clustering and the BEER. The ground truth cell is not as well isolated as

in the rat data set, resulting in a higher error rate for all methods. De-

spite this, our method again outperforms both clustering and the BEER

measure, assuming equal weighting of misses and false positives. How-

ever, Fig. 3.4(f) indicates that our method misses some spikes that are

correctly identified by clustering. We attribute this to the properties

of the particular waveforms in this data set. Specifically, the voltage

traces appear to contain spike waveforms of two neurons with very simi-

lar shapes, but different amplitudes. Our model allows spikes of any pos-

itive amplitude, but the objective function (Eq. 3.4) imposes a penalty
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that increases with amplitude. Therefore, our method prefers to explain

a small-amplitude event in the voltage trace as a small-amplitude spike

of a large waveform, rather than a large-amplitude spike of a similarly-

shaped small waveform. In the example of Fig. 3.4(f), the two neurons

have slightly different waveform shapes, and the number of misses can be

reduced slightly by iterating between refining the waveform shapes and

estimating the spikes (see Section 3.1.1), as indicated by the magenta

line in Fig. 3.5(c).

3.2.4 Algorithm complexity

The optimization of Eq. 3.4 was implemented using the CVX package

[54], a reasonably efficient and highly accurate package for convex op-

timization. We examined the computational costs of our algorithm as

a function of three parameters: (1) the number of time samples in the

voltage trace, (2) the number of distinct waveforms (neurons), and (3)

the number of channels (electrodes). In practice, we can split the voltage

trace V (t) whenever there is a period without any spiking activity, and

process the portions between these silences independently. As such, the

first parameter is specified not in terms of the experiment length, but

rather in terms of the typical duration between silences, which depends

only on the firing rates. Figure 3.8 shows the execution time for the algo-

rithm as a function of each of these parameters, while keeping the other

two fixed at typical values. The computation time grows approximately

quadratically with the number of cells, and linearly with the temporal

duration and number of electrodes. The last of these implies that the
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Figure 3.8: The effect on computation time of three variables: the num-

ber of cells C, the number of electrodes E and the number of voltage

samples T . Computation time is plotted as a function of a C with

T = 100, E = 4, b E with T = 100, C = 3, and c T with C = 3, E = 4.

Blue points represent mean computation time taken over 25 trials, and

the error bars indicate standard error. The red line indicates a quadratic

fit (a) or a linear fit (b,c).

algorithm scales efficiently for multi-electrode arrays.

3.3 Summary and discussion

Starting from a simple probabilistic model for extracellular voltage mea-

surements, we have developed a unified sparse estimation methodology

for spike sorting. We have shown that, on simulated and real data sets

taken from recent literature, this method is much more accurate than

clustering-based methods for resolving overlapping spikes (and equally

accurate when resolving isolated spikes). By comparing performance

with the BEER bound, we have also shown that our method outperforms

the entire class of clustering methods which use elliptical boundaries,
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which encompasses the vast majority of spike sorting methods currently

in use. Finally, our method is well-suited for sorting multiple cells and/or

multiple electrodes, as it is reasonably efficient and requires no human

intervention except for selecting the number of waveforms. Previous

methods have probabilistically modeled the number of cells ([78, 153]),

and such techniques could be incorporated into our method. However,

choosing the number of cells, as with the spike amplitude thresholds, is a

decision that must weight the different types of error, and so is perhaps

best left to the investigator.

Despite the strong performance of the method, we see several oppor-

tunities for improvement. First, the current algorithm assumes that all

spike waveforms can be differentiated by their shape, and cannot handle

multiple spike waveforms that have the same shape (see Fig. 3.4(f), and

section 3.2.3). A more general solution should separate waveforms ac-

cording to both their shape and amplitude similarity, by including a step

that is able to identify and partition multimodal amplitude distributions.

Second, the method also assumes that waveform shapes remain constant

throughout a recording session. However, it is well-known that tissue

relaxation, electrode drift, and bursting activity, amongst other factors,

can cause the waveform amplitude or shape associated with a single cell

to change over time. This can be partially overcome by re-estimating

the waveform shapes in consecutive chunks of the data [49]. A more

unified solution requires incorporation of the drift in shape or amplitude

into the probabilistic model. For example, the waveform shapes could

be estimated as a function of time by modeling the dynamics as a sta-

tionary process (e.g., using Markov chain methods [110, 15]). Finally,
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our method was implemented as a “batch algorithm, operating simulta-

neously on a full data set. It should be possible to develop an on-line

version, that can operate on the voltage measurements as they arrive.

Although the probabilistic framework underlying this work has been

described in a number of previous publications [118, 107, 106], very few

spike sorting methods make direct use of it, primarily because of the

difficulty of solving for spike times with respect to the linear time-shift

model. Instead, most spike sorting methods are implemented as a se-

quence of procedural steps, each relying on additional free parameters

and/or substantial human supervision, and each introducing additional

sources of error. By overcoming the technical challenges associated with

spike inference, our results demonstrate the potential advantages of a

unified probabilistic framework, providing a base on which future spike

sorting methods may be built, and facilitating the objective comparison

of their performance.
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Chapter 4

Hierarchical spike coding of

sounds

4.1 Review of hierarchical signal modeling

1 Recall that the underlying motivation for the continuous basis pursuit

method was to “factor out” the nonlinear structure in the data distri-

bution that is due to transformation-invariance. The method proposed

in Chapter 2 decomposes a signal in terms of a set of atomic feature

instances and associated transformation parameters (e.g., time-shifts).

In many complex signal ensembles, however, these linear decompositions

will still possess a high degree of nonlinear structure.

It is well-known, for instance, that the components of image and

sound representations (e.g., sparse coding models like those described

in Chapter 2) exhibit complex and nonlinear dependencies, despite the

frequent a priori assumptions that these components are statistically in-

1The work described in this chapter was done in collaboration with Yan Karklin.
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dependent. These dependencies can originate from the statistical struc-

ture inherent to the signal distribution and/or the dependencies between

the dictionary elements (e.g., filter outputs can be correlated even when

applied to unstructured data). These dependencies often involve higher

moments, thus being present even if the components appear statistically

uncorrelated. For example, the variance of an oriented Gabor filter out-

put across natural image patches can change as a function of the output

of an adjacent filter output (although the mean is constantly 0) [123].

An analogous observation has been made for the output of Gammatone

filterbanks applied to natural sounds [124, 123]. Statistical dependencies

within local neighborhoods of wavelet coefficients of natural images (us-

ing an over-complete multiscale oriented wavelet dictionary) have been

modeled using bivariate Gaussians [126] and Gaussian scale mixtures

[109]. Variance modulation across these neighborhoods was itself mod-

eled as a sparse combination of “density components” in a two-layer

model of natural images [66]. In [83], it was shown that a nonlinear

radial operator applied to filter outputs can bring the representations

closer to the factorial representations with which they are modeled.

There have been numerous attempts to successively decompose sta-

tistical dependencies in the data through hierarchical processing. When

employing (sparse or non-sparse) linear models, it is important to note

that a naive “stacking” of such models will not yield any additional ex-

pressive power over a single-layer model (at least in a generative sense).

Therefore, some nonlinearity must be introduced to extend sparse linear

models hierarchically in a non-trivial manner. Multilayer neural net-

works, which successively apply a linear transform followed by a point-
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wise sigmoidal nonlinearity [74, 38], have long been utilized toward this

end. However, such networks contain many free parameters and are diffi-

cult to train because of local minima. A recent surge of effort has focused

on deep belief networks (DBN’s) which recast the operations used by

traditional neural networks within a probabilistically sound framework

which supports efficient learning and inference [63, 6]. Such models pro-

vide representations that have achieved state-of-the-art performance on

digit recognition [64] and motion recognition [140]. Convolutional deep

belief networks [73, 77, 67, 113, 76] replicate weights across many spatial

locations and have the advantage of being able to represent larger-scale

images with the same number of learned parameters. Several models in-

corporate max-pooling or divisive normalization operations at each layer,

which significantly improves classification performance [76] and has been

shown to further reduce higher-order statistical dependencies ([123, 83]).

None of these models, however, explicitly factor “what” and “where” in-

formation in a probabilistically sound manner. As discussed in Chap-

ter 1, making the features convolutional does not rectify this problem,

since the corresponding source model is inaccurate. Systematic depen-

dencies will be introduced due to the convolutional structure of each

layer. These dependencies will be difficult to distinguish from the depen-

dencies inherent in the data. Secondly, “where” information is succes-

sively discarded as the data travels up the hierarchy, due to the pooling

and normalization operations that are performed at each layer (which

are usually hard-coded into the architecture). As a result, these models

typically perform well on, and are almost always tested on, tasks such

as object classification which require a high degree of invariance. Since
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the relationship between the model parameters at the highest layers and

encapsulated structure in the signal domain is poorly understood, it is

unclear whether these same models will generalize to other tasks which

require more precise “where” information.

In this chapter, we introduce a hierarchical model in which each layer

encodes the signal using a sparse, spike-based representation. Each spike

has an associated kernel (or feature) which induces a pattern of spiking

activity in the layer below (or a continuous pattern if the layer below

is the signal itself), an amplitude, and a set of transformation parame-

ters associated with it (e.g., spatio-temporal offset, dilation/frequency,

etc.). The model bears many resemblances to convolutional deep belief

networks [73, 76], but with different nonlinearities and noise models at

each stage. Another key difference is that the structure of spiking ac-

tivity within each layer is modeled as coming from two sources: (1) a

hierarchical component coming from the spike representation in the layer

above, which captures coarser-scale, non-stationary structure inherent to

the data, and (2) a recurrent component which captures fine-scale sta-

tionary structure that presumably arises from the inherent structure in

the layer’s dictionary. Both the hierarchical and recurrent components

multiplicatively modulate the probability of spiking within the layer.

We develop our approach in the context of modeling sound signals,

which serve as an ideal testbed for this type of modeling since they ex-

hibit hierarchical structure at multiple scales. A segment of recorded

speech, for example, can be decomposed as a sequence of words occur-

ring at specific times. Each word can be decomposed into phonemes,

which can be further decomposed into simpler acoustic events and so
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on. Other sounds used for communication, such as music and animal

vocalizations, can also be characterized as a sequence of acoustic events

that have precise timing relationships. These timing relationships can

carry important information regarding source identity. On the other

hand, tasks such as speech recognition or speaker verification require

invariance to transformations such as time expansion and pitch shift-

ing. These transformations can be global (e.g., changing the speaker

entirely) or local (e.g., pitch-shifting one word or syllable). An auditory

representation that precisely captures time/frequency relationships, but

can easily be made invariant to such transformations on both local and

global scales would thus provide a useful substrate for many applications.

In Section 4.2, we review previous work on auditory representations,

focusing on hierarchical and sparse modeling efforts. In Section 4.3 we

formulate our hierarchical model mathematically and develop learning

and inference algorithms. In Section 4.4, we apply this approach to

speech data and analyze the learned representation. The second-layer

representations learned by the model encode complex acoustic events

that are shiftable in both time and frequency. It is much more compact

than the first-layer representation, which is itself a compact description

of the sound pressure waveform. We show that using a very sparse hi-

erarchical code, the model can generate sounds that retain much of the

acoustic information and approximate well the original sound. Finally,

we demonstrate that the model performs well on a denoising task, par-

ticularly when the noise is structured, suggesting that the higher-order

representation provides a useful statistical description of speech data.
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4.2 Review of auditory representations

There is a vast literature on computational representations of acoustic

signals dating back several decades. The majority of these rely on signal

decompositions which measure how much energy the signal carries as

a function of time and frequency. This can be implemented in various

ways, such as by applying a short-time Fourier transform (STFT), or a

bank of bandpass filters that tile the frequency axis [26]. These decompo-

sitions also approximate, to a large degree, the initial processing of sound

pressure in the cochlea [155]. Several properties of the time-frequency

representation of a sound are known to carry meaningful information.

Many natural sounds are well-described as combinations of onsets and

tonal sounds [103], which appear as temporally localized but broadband

energy and temporally sustained but narrowband energy, respectively.

For speech signals, the position of “formants”, or energy peaks along the

frequency axis, carry significant information about vowel identity [72].

Mel-frequency cepstral coefficients, which are often used in automatic

speech recognition [55], build upon a time-frequency representation by

taking the log of energies along the frequency axis according to a special

“Mel” scale which emphasizes lower frequencies over higher frequencies,

and applying a discrete cosine transform (DCT). Linear predictive coef-

ficients (LPC’s) decompose a time-frequency representation of a sound

according to its formants and are used for sending speech signals across

a telephone network [55]. Not until recently, however, have there been

efforts to automatically learn features, in sounds in an unsupervised man-

ner, that carry meaningful information
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Recent efforts to learn auditory representations in an unsupervised

setting, analogous to image representations, have focused on sparsely

encoding sounds with a superposition of waveforms chosen to capture

the structure inherent in sound ensembles. Dictionaries that have been

chosen by hand often contain time- and frequency-localized kernels

[55, 29, 45, 108]. There have also been attempts to adapt a dictionary

to a sound ensemble. For example, Klein et al [69] learned a set of time-

frequency kernels to represent spectrograms of speech signals and showed

that the resulting kernels were localized and bore resemblance to auditory

receptive fields. Lee et al [77] trained a two-layer deep belief network to

learn a representation of spectrogram patches and used it for several au-

ditory classification tasks (phone/gender/speaker classification). In [58]

and [61], a sparse representation was learned on top of DFT coefficients

and a contrast-normalized time-frequency representation, respectively,

to perform music genre classification. In [95], a hidden Markov model

(HMM) was used in which deep belief networks modeled the generative

relationship between hidden states and a spectrogram representation of

speech.

These examples have several limitations. First, they operate on spec-

trograms (rather than the original sound waveforms), which suffer from

a tradeoff between temporal and spectral resolution. Since spectrograms

rely on a short-time Fourier transform, smaller time bins impose lower

limits on the highest measurable frequency. Spectrogram representations

typically have 25ms bins with 10ms overlap between consecutive bins,

thus discarding any timing information at finer scales [135, 98], which

can carry meaningful acoustic information [134, 103, 98]. Spectrograms

77



and other block-based representations (similar to those applied to im-

ages) are also susceptible to blocking artifacts –precisely-timed acoustic

events can appear across multiple blocks, and events can appear at dif-

ferent temporal offsets relative to the block, making their identification

and representation difficult [135]. Second, the features in these methods

are frequency-specific, and thus need to be replicated at many differ-

ent frequency offsets to accommodate pitch shifts that occur in natural

sounds.

4.3 Hierarchical spike code (HSC) model

We build our hierarchical model on top of the “spikegram” representation

of [135], in which a sound is encoded using a sparse linear combination

of time-shifted kernels φf (t):

yt =
∑

τ,f

ατ,fφf (t − τ) + ǫt (4.1)

where ǫt denotes Gaussian white noise and the coefficients ατ,f are mostly

zero. The kernels φf (t) are usually localized in both time and frequency.

As in [135], we choose to use gammatone functions with varying center

frequencies indexed by f :

φf (t) = atn−1e−2πbf t cos(2πft) (4.2)

The constants bf controlling the temporal extent (or equivalently, inverse

bandwidth) of the kernels were chosen to be proportional to the center

frequency, i.e. bf = βf . The constant a was chosen to make ‖φf (t)‖2 = 1.

In [136], it was shown that when a dictionary is adapted to combination
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of natural sounds, animal vocalizations, and speech, the learned filters

are well-fit by gammatone functions of this form, at various center fre-

quencies. Gammatone filterbanks have also frequently been used for the

initial processing of sound pressure [155, 103]. In order to encode the

signal, a sparse set of coefficients ατ,f is estimated using a sparse de-

composition method such as continuous basis pursuit or a traditional

method (Chapter 2). In this work, we chose to use the greedy matching

pursuit method [88], for the sake of computational efficiency and ease of

use, and also because it was used in [135, 136] to generate spikegrams.

The resulting spikegram, shown in Fig. 4.1, offers an efficient representa-

tion of sounds [136] that avoids the blocking artifacts and time-frequency

tradeoffs associated with more traditional spectrogram representations.

Spikes placed at precise locations in time and frequency reveal acoustic

features, harmonic structures, as well as slow modulations in the sound

envelope.

We aim to model the statistical regularities present in these spikegram

representations. Fig. 4.1 illustrates that the spikegram exhibits clear

statistical structure, both at coarse (Fig. 4.1(b-c)) and at fine temporal

scales (Fig. 4.1(e-f)). Non-stationarity at the coarse scale is likely caused

by higher-order acoustic events, such as phoneme utterances, that span

a much larger time-frequency range than the individual gammatone ker-

nels. On the other hand, the fine-scale correlations are due to some

combination of the (stationary) correlations inherent in the gammatone

filterbank, as well as precise (nonstationary) temporal structure present

in speech. Indeed, spikegrams computed using the same set of kernels

for white noise show similar (but not identical) autocorrelation structure
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Figure 4.1: Coarse (top row) and fine (bottom row) scale structure in

spikegram encodings of speech. (a) The sound pressure waveform of

a spoken sentence, and (b) the corresponding spikegram. Each spike

(dot) has an associated time (abscissa) and center frequency (ordinate)

as well as an amplitude (dot size). (c) Cross-correlation function for

a spikegram ensemble reveals correlations across large time/frequency

scales. (d) For illustration, two gammatones (matching spikes in e) are

shown at the location and scale specified by the spikes. (e) Spike timing

exhibits strong regularities at a fine scale. (f) Histograms of inter-spike-

intervals for two frequency channels corresponding to the colored spikes

in e reveal strong temporal dependencies.

on a fine scale as in Fig. 4.1(e-f) (not shown).

We introduce a hierarchical spike code (HSC) model, illustrated in

Fig. 4.2, to capture the structure in the spikegrams on both coarse and

fine scales. We introduce a second layer of unobserved spikes, assumed

to have a Poisson process prior, which are convolved with a set of time-

frequency kernels (“rate kernels”) to modulate the log firing rate of the

first-layer spikes on a coarse scale. This log firing rate is also recurrently
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modulated on a fine scale by the convolution of local spike history in

the first layer at neighboring frequencies with a different set of time-

frequency kernels (“coupling kernels”). The coupling kernels for each

center frequency need not be identical (although only one such kernel

is shown in Fig. 4.2 for simplicity). Similar to the log rate, the mean

log amplitudes of the first-layer spikes are also modulated by the same

second-layer spikes through convolution with a separate set of time-

frequency kernels (“amplitude kernels”, not shown), but without any

recurrent contribution. The model parameters are therefore comprised

of the rate, coupling, and amplitude kernels, as well as bias values for the

rates and amplitudes corresponding to each first-layer frequency chan-

nel. The model can be summarized mathematically using the notation in

Table 4.1 with the following equations (note that ∗ denotes convolution):

P (S
(1)
t,f 6= 0) = ∆t∆fe

Rt,f (4.3)

log(S
(1)
t,f ) | S

(1)
t,f 6= 0 ∼ N

(

At,f , σ
2
)

(4.4)

where Rt,f = br
f + (Kc ∗ 1S(1))t,f +

∑

i

[

(Kr
i ∗ S

(2)
i )t,f

]

(4.5)

At,f = ba
f +

∑

i

[

(Ka
i ∗ S

(2)
i )t,f

]

(4.6)

4.3.1 Learning

The log joint probability of the observed spikegram data and unobserved

second-layer spikes can be expressed as a function of the model param-
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Figure 4.2: Illustration of the hierarchical spike code model. Second-layer

spikes S(2) associated with 3 features (indicated by color) are sampled in

time and frequency according to a Poisson process, with exponentially-

distributed amplitudes (indicated by dot size). These are convolved with

corresponding rate kernels Kr (outlined in colored rectangles), summed

together, and passed through an exponential nonlinearity to drive the

instantaneous firing rate of the first-layer spikes on a coarse scale. The

first-layer spike rate is also modulated on a fine scale by a recurrent

component that convolves spike history (at all frequencies) with cou-

pling kernels Kc. At a given time step (indicated by the dashed line),

the instantaneous firing rate of S(1) depends on both hierarchical and

recurrent terms.
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~br Rate bias vector

~ba Amplitude bias vector

Kr Rate kernels

Ka Amplitude kernels

Kc Coupling kernels

Θ All model parameters (~br,~ba, Kr, Kc, Ka)

S(1) Observed first layer spikes

S(2) Unobserved second layer spikes

λ firing rate of second layer spikes

σ2 variance of the log amplitudes of spikes

1x indicator function: 1 if x 6= 0, 0 otherwise

Table 4.1: Notation

eters Θ and the unobserved second-layer spikes S(2):

L(Θ, S(2)) = log P (S(1), S(2); Θ, λ) (4.7)

= log P (S(1)|S(2); Θ) + log P (S(2); λ)

=
∑

(t,f)∈S(1)

Rt,f −
∑

t,f

eRt,f ∆t∆f

− 1

2σ2

∑

(t,f)∈S(1)

(

log S
(1)
t,f − At,f

)2

+ log (λ∆t∆f ) ‖S(2)‖0 + const

Maximizing the data likelihood with respect to Θ requires integrating

L over all possible second-layer representations S(2), which is computa-

tionally intractable. Instead, we choose to approximate the optimal Θ

by maximizing L jointly over Θ and S(2). This can be interpreted as
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performing expectation-maximization (EM) [32], where at each iteration

we approximate the posterior distribution over S(2) by a point mass at its

maximum. If S(2) is known, then the model falls within the well-known

class of generalized linear models (GLMs) [90]: the log firing rate of S(1)

is a linear function of the parameters Θ. As a result, Eq. 4.7 is convex

in Θ. By symmetry, if Θ is known then Eq. 4.7 is convex in S(2) ex-

cept for the L0 penalization term. Motivated by these facts, we adopt a

coordinate-descent approach by alternating between the following steps:

S(2) ← arg max
S(2)

L(Θ, S(2)) (4.8)

Θ ← Θ + η∇ΘL(Θ, S(2)) (4.9)

We chose to adapt the model parameters according to a slow learning rate

η, rather than optimizing them completely at each iteration, in order to

avoid local minima occurring near the initialization point. Section 4.3.2

describes a method for approximate inference of the second-layer spikes

(solving Eq. 4.8). To apply Eq. 4.9, we simply compute the gradients

with respect to the model parameters:

∂L
∂br

f

= (# 1′ spikes in channel f) −
∑

t

eRt,f ∆t∆f (4.10)

∂L
∂ba

f

=
∑

t

(

log S
(1)
t,f − At,f

)

(4.11)

∂L
∂Kr

τ,ζ,i

=
∑

(t,f)∈S(1)

S
(2)
i (t − τ, f − ζ) −

∑

t,f

eRt,f S
(2)
t−τ,f−ζ,i∆t∆f (4.12)

∂L
∂Kc

τ,f,f ′

=
∑

t∈S
(1)
f

1
S

(1)

t−τ,f ′

−
∑

t

eRt,f 1
S

(1)

t−τ,f ′

∆t∆f (4.13)
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4.3.2 Inference

Inference of the second-layer spikes S(2) (Eq. 4.8) involves maximizing

the tradeoff between the GLM likelihood term, which we denote by L̃:

L̃(Θ, S(2)) =
∑

(t,f)∈S(1)

Rt,f −
∑

t,f

eRt,f ∆t∆f (4.14)

− 1

2σ2

∑

(t,f)∈S(1)

(

log S
(1)
t,f − At,f

)2

and the term containing the L0 norm which penalizes the number of

spikes. This is similar to the sparse linear inverse problem (Eq. 2.5 in

Chapter 2) which CBP is meant to solve, except that the loss function

is no longer a quadratic least-squares term. As a result, solving Eq. 4.8

exactly is NP-hard, and we are again confronted with the choice of greedy

or convex relaxation approximations. In principle, since the rate and

amplitude kernels are shiftable in time and frequency, an approximation

scheme which takes these into account, such as CBP, can be adapted for

the non-quadratic loss function. However, for computational speed and

convenience, we adopt a variant of the matching pursuit algorithm [88]

(Algorithm 2) that is adapted to the non-quadratic loss function. While

this algorithm is known to produce suboptimal solutions when there is

significant overlap of kernels (see Section 2.1.2), it is possible these errors

average out and do not bias the estimation of the kernels themselves,

which is our primary goal in this chapter. As with traditional matching

pursuit (Algorithm 1), a single coefficient is chosen and updated on each

iteration. However, the optimal coefficient is chosen based on a second-

order expansion of the loss function L̃ about the current estimates of
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Algorithm 2 Greedy algorithm for solving Eq. 4.8

S(2) ← ~0

∆L̃ ← ∞
while ∆L̃ > − log(∆t∆f ) do

i∗ ← arg max
i

−
(

∂L̃
∂S

(2)
τ,ζ,i

)2

/
∂2L̃

∂S
(2)
τ,ζ,i

2 {use quadratic approx. of L̃}

δ∗ ← arg max
δ

L̃(Θ, S(2) + δ~ei∗) − L̃(Θ, S(2)) {do a line search}
∆L̃ ← L̃(Θ, S(2) + δ∗~ei∗) − L̃(Θ, S(2)) {compute maximal loss de-

crease}
if ∆L̃ > − log(∆t∆f ) then

S
(2)
i∗ ← S

(2)
i∗ + δ {update coefficient}

end if

end while

(Θ, S(2)):

L̃(·) ≈ 〈~∇L̃
∣

∣

(Θ,S(2))
, ·〉 +

1

2
〈·,∇2L̃

∣

∣

(Θ,S(2))
·〉 + const (4.15)

Under this quadratic approximation, the maximal decrease resulting

from changing a coefficient S(2)τ, ζ, i can be computed in closed form:

−
(

∂L̃
∂S

(2)
τ,ζ,i

)2

/
∂2L̃

∂S
(2)
τ,ζ,i

2 where

∂L̃
∂S

(2)
τ,ζ,i

=
∑

(t,f)∈S(1)

∑

t,f

Kr
t−τ,f−ζ,ie

Rt,f ∆t∆f

+
1

σ2

∑

(t,f)∈S(1)

Ka
t−τ,f−ζ,i

(

log S
(1)
t,f − At,f

)
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∂2L̃
∂S

(2)
τ,ζ,i

2 = −
∑

t,f

(

Kr
t−τ,f−ζ,i

)2
eRt,f ∆t∆f

+
1

σ2

∑

(t,f)∈S(1)

(

Ka
t−τ,f−ζ,i

)2
(4.16)

Once a coefficient is chosen in this way, a numerical line search is per-

formed to compute the step size that will maximize the original GLM

likelihood L̃. If the maximal improvement in L̃ is larger than the L0

penalty incurred by adding another nonzero coefficient, then this coeffi-

cient is updated and the procedure is repeated until no further improve-

ment is possible.

4.4 Results when applied to speech

4.4.1 Learned model

We applied the model to the TIMIT speech corpus [51]. First, we ob-

tained spikegrams by encoding sounds to 20dB precision. This was done

by using the matching pursuit algorithm (Algorithm 1) using a set of

200 gammatone filters with center frequencies spaced evenly on a log-

arithmic scale (see [135] for details). For each audio sample, this gave

us a spikegram with fine time and frequency resolution (6.25×10−5s and

3.8×10−2 octaves, respectively). We trained a model with 20 rate and

20 amplitude kernels, with frequency resolution equivalent to that of the

spikegram and time resolution of 20ms. Rate and amplitude kernels ex-

tended over 400ms×3.8 octaves (spanning 20 time and 100 frequency

bins ). Coupling kernels were defined independently for each frequency

channel; they extended over 20ms and 2.7 octaves around the chan-
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nels center frequency (within 35 channels on either side) with the same

time/frequency resolution of the spikegram. All parameters Θ were ini-

tialized randomly, and were learned according to Eq. 4.8-4.9. The first
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Figure 4.3: Example model kernels learned on the TIMIT dataset. (a)

Twenty rate kernels (1st and 3rd rows), with their corresponding ampli-

tude kernels (2nd and 4th rows). Colormaps are individually rescaled.

(b) Six coupling kernels (colormap scaling indicated by colorbar).

two rows of Fig. 4.3 display two sets of learned rate kernels (top) and

corresponding amplitude kernels (bottom). Among the patterns learned

by the rate kernels are harmonic stacks of different durations and pitch

88



shifts (e.g., kernels 4, 9, 11, 18), ramps in frequency (kernels 1, 7, 15,

16), sharp temporal onsets and offsets (kernels 7, 13, 19), and acoustic

features localized in time and frequency (kernels 5, 10, 12, 20). Sounds

synthesized by turning on single features is available in supplementary

materials. The corresponding amplitude kernels contain patterns highly

correlated with the rate kernels, suggesting a strong dependence in the

spikegram between spike rate and magnitude.

The coupling kernels are displayed in the bottom of Fig. 4.3. Note

that the temporal span of each coupling kernel is equivalent to one bin in

the rate/amplitude kernels. For most frequency channels, the coupling

kernels are strongly negative at times immediately following the spike

and at adjacent frequencies, representing “refractory” periods observed

in the spikegrams. Positive peaks in the coupling kernels encode precise

alignment of spikes across time and frequency. The coupling patterns

that were learned reflect to a large extent the cross-correlational struc-

ture between the gammatone kernels, which explains their oscillatory

behavior.

4.4.2 Analysis of second layer code

The learned kernels combine in various ways to represent complex acous-

tic events. For example, Fig. 4.4 illustrates how features can combine

to represent two different phone pairs. Vowel phones are approximated

by a harmonic stack (outlined in yellow), which can be used for multiple

vowels, together with a ramp in frequency (outlined in orange and blue).

Because the rate kernels drive the log of the firing rate, their superpo-
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Figure 4.4: Model representation of phone pairs aa+r (top) and ao+l

(bottom), as uttered by four speakers (four rows: two male, two female).

Each panel shows inferred second-layer spikes (the spikes whose kernels

are most correlated with the occurrence of each phone pair are drawn

in color), the corresponding rate kernels, and the encoded log firing rate

centered on the phone utterance.
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sition results in a multiplicative modulation of the intensities at each

level of the harmonic stack. This multiplicative modulation effects the

locations of the spectral peaks, or “formants,” which are known to be

crucial in determining vowel identity.

The ‘r‘ consonant following ‘aa‘ in the first example is characterized

by a high concentration of energy at the high frequencies, and is largely

accounted for by the kernel outlined in red. The ‘l‘ consonant follow-

ing ‘ao‘ contains a pitch modulation which is largely accounted for by

the v-shaped feature (outlined in cyan). Translating the kernels in log-

frequency allows the same set of fundamental features to participate in

a range of acoustic events: the same vocalizations at different pitches

are often represented by the same set of features. In Fig. 4.4, the same

set of kernels are used in a similar configuration across different speakers

and genders. It should be noted that the “where” information is not dis-

carded by the second-layer code: this information is encoded in the times

and frequencies of the second-layer spikes, which encodes data-specific

absolute time and frequency, together with the rate/amplitude kernels,

which encode relative time-frequency structure that has been abstracted

from the entire data ensemble. By a simple binning of spikes at the sec-

ond layer, this representation can easily be made invariant to temporal

and pitch/frequency modulations.

4.4.3 Synthesis

One can further understand the acoustic information that is captured

by a set of second-layer spikes by sampling a spikegram according to the
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Figure 4.5: Synthesis from inferred second-layer spikes. The second-layer

spike representation (middle top) is inferred from a first-layer encoding

of the sentence displayed in Fig. 4.1 (middle bottom). Left: first-layer

spikes generated using only the hierarchical model component; Right:

first-layer spikes generating using hierarchical and coupling kernels. Syn-

thesized waveforms are included in the supplementary materials.

generative model. We took the second-layer encoding of a single sentence

from the TIMIT speech corpus [51] (Fig. 4.5 middle) and sampled two

spikegrams: one with only the hierarchical component (left), and one

that also included both hierarchical and coupling components (right).

At a coarse scale the two samples closely resemble the spikegram of the

original sound (shown in Fig. 4.1b). However, at the fine time scale, only

the spikegram sampled with coupling contains the regularities observed
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noise level (SNR) Wiener wavelet thresh MP HSC

-10dB -7.00 2.41 2.26 2.50

-5dB 0.00 4.93 4.79 5.01

0dB 5.49 7.94 7.71 7.99

5dB 7.84 11.15 11.01 11.33

10dB 10.31 14.64 14.49 14.83

Table 4.2: Denoising accuracy (dB SNR) for speech corrupted with white

noise.

in speech data. Sounds were also generated from these spikegram samples

by superimposing gammatone kernels as in [135]. Despite the fact that

the second order representation contains over 15 times less spikes as the

first-layer spikegrams, the synthesized sounds are of reasonable quality

and the addition of the coupling filters provides a noticeable improvement

(audio examples in supplementary materials).

4.4.4 Denoising

Although the model parameters have been adapted to the data ensem-

ble, obtaining an estimate of the likelihood of the data ensemble under

the model is difficult, as it requires integrating over unobserved variables

(S(2)). Instead, we can use performance on unsupervised signal process-

ing tasks, such as denoising, to validate the model and compare it to

other methods that explicitly or implicitly represent data density.

In the noiseless case, a spikegram is obtained by running matching

pursuit (Algorithm 1) until the residual norm falls below a threshold
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noise level (SNR) Wiener wavelet thresh MP HSC

-10dB -8.68 -8.73 -5.12 -4.37

-5dB -3.09 -3.63 -0.96 -0.38

0dB 1.90 1.23 2.97 3.30

5dB 6.37 6.06 7.11 7.40

10dB 9.68 11.28 11.58 11.88

Table 4.3: Denoising accuracy (dB SNR) for speech corrupted with

sparse temporally modulated noise.

(20dB); in the presence of noise, this encoding process can be formu-

lated as a denoising operation (see Section 2.1), terminated when the

improvement in the log-likelihood (variance of the residual divided by

the variance of the noise) is less than the cost of adding a spike (the neg-

ative log-probability of spiking). We incorporate the HSC model directly

into this denoising algorithm by replacing the fixed probability of spiking

with the rate inferred by the model. Since neither the first- nor second-

layer spike code for the noisy signal is known, we obtain the inferred rate

by maximizing the posterior given the noisy waveform, P (S(1), S(2)|x).

The denoised waveform is obtained by reconstructing from the resulting

first-layer spikes.

To the extent that the parameters learned by HSC reflect statistical

properties of the signal, incorporating the more sophisticated spikegram

prior into a denoising algorithm should allow us to better distinguish

signal from noise. We tested this by denoising speech waveforms (held

out during model training) that have been corrupted by additive white
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Gaussian noise. We compared the models performance to that of the

matching pursuit encoding (sparse signal representation without a hier-

archical model), as well as to two standard denoising methods, Wiener

filtering and wavelet-threshold denoising (implemented with MATLABs

wden function, using symlets, SURE estimator for soft threshold selec-

tion; other parameters optimized for performance on the training data

set) [87].

Model-based denoising is able to outperform standard methods, as

well as matching pursuit denoising (Table 4.2). Although the perfor-

mance gains are modest, the fact that a generative model, which is not

optimized for the task or trained on noisy data, can match the perfor-

mance of adaptive algorithms like wavelet filtering denoising, suggests

that the model is indeed capturing meaningful structure in the signal

distribution.

To test more rigorously the benefit of a structured prior, we eval-

uated denoising performance on signals corrupted with nonstationary

noise whose power is correlated over time. This is a more challenging

task, but it is also more relevant to real-world applications, where sources

of noise are often non-stationary. Algorithms that incorporate specific

(but often incorrect) noise models (e.g., Wiener filtering) tend to perform

poorly in this setting.

We generated sparse temporally modulated noise by scaling Gaussian

white noise with a temporally smooth envelope (given as a convolution

of a Gaussian function with st. dev. of 0.02s with a Poisson process with

rate 16s−1). All methods fare worse on this task. Again, the hierarchical
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model outperforms other methods (Table 4.3), but here the improvement

in performance is larger, especially at high noise regimes when the model

prior plays a greater role. Note also that the reconstruction SNR does

not fully convey the manner in which different algorithms handle noise.

Perceptually, the sounds denoised by the model appear to be more similar

to the original (audio examples in supplementary materials).

4.5 Summary and discussion

We developed a general methodology for learning hierarchical represen-

tations with multiple “spike code” layers. We showed that a two-layer

model adapted to speech data captures complex acoustic structure. Our

work builds on top of the spikegram representation of [135], and makes

a number of novel contributions. Unlike previous work [61, 58, 69, 77],

the learned kernels are shiftable in both time and log-frequency, which

enables the model to learn time and frequency-relative patterns and use

a small number of kernels efficiently to represent a wide variety of sound

features. In addition, the model describes acoustic structure on multiple

scales (via a hierarchical component and a recurrent component), which

capture fundamentally different kinds of statistical regularities.

Technical contributions in developing this model include methods for

learning and performing approximate inference in a generalized linear

model in which some of the inputs are unobserved and sparse (in this

case, the second-layer spikes). The computational framework developed

here is general, and may have wide applications in modeling sparse data

with partially observed variables. Because the model is nonlinear, multi-
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stage cascades could lead to substantially more powerful models.

A related approach is the work of [14], in which natural movies are

factored into temporally persistent variables representing form, and tem-

porally dynamic variables representing motion. These groups of variables

are then separately processed into second-layer representations to model

intermediate form and motion structure. The model is similar in spirit

to the approach we have taken, but with many differences. First, the

motion variables only model the temporal derivatives, and therefore any

information about absolute position is lost. As a result, the representa-

tion does not reflect a full generative model of the signal. Second, the

model was trained on video “patches” and so was not convolutional in

space or time, although the phase variables presumably modeled some

of the transformation structure. On the other hand, the learned phase

variables were able to capture more complex transformations than simple

spatio-temporal shifting, such as spatial rotation [14].

Applying the model to complex natural sounds (speech), we demon-

strated that it can learn non-trivial features, and we have showed how

these features can be composed to form basic acoustic units. We also

showed a simple application to denoising, demonstrating improved per-

formance to wavelet thresholding. The framework provides a general

methodology for learning higher-order features of sounds, and we expect

that it will prove useful in representing other structured sounds such as

music, animal vocalizations, or ambient natural sounds.
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Chapter 5

Conclusion

We believe this thesis contributes to multiple bodies of literature, both

conceptually and methodologically. A large body of work has employed

the notion of sparse representations when modeling real signal ensembles

such as sounds and images, motivated in part by empirical observations

(e.g., heavy-tailed distributions of wavelet coefficients of images) and also

by the fact that sparse over-complete representations can capture rich

structure . However, this notion has also been incorrectly used to han-

dle transformation-invariance. When transformations are present in the

ensemble, the dictionary is no longer a countable union of individual fea-

tures, but rather a countable union of smooth manifolds corresponding

to each feature. Rather than imposing a sparse factorial prior distribu-

tion on a discrete lattice lying on the transformational manifold(s), we

operate under a source model which (approximately) imposes a sparse

prior on the manifolds themselves, resulting in a much more accurate

model for transformation-invariant signals.

From a methodological point of view, we provide an efficient algo-
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rithm to recover sparse representations as well as transformational infor-

mation. When the signal ensemble is invariant to continuous transforma-

tions, this method offers significant advantage over conventional sparse

recovery methods in terms of accuracy, sparsity, and possibly efficiency.

Nevertheless, there are still many challenges that lie ahead. For exam-

ple, our approach only deals with the case when there is a single known

transformations. As discussed at the end of Chapter 2, the extension

to multiple transformations is straightforward with Taylor interpolation,

although there are still some outstanding issues when using polar inter-

polation. The types of transformations are typically known when dealing

with physical signals. However, there are other forms of input (i.e. the

signals after several stages of processing), for which these transformations

may be unclear. A more complete characterization of signal distributions

could parametrize content, the transformation operator itself, and trans-

formation amount(s) present in the signal. One potentially interesting

avenue to explore to this end is to combine CBP with manifold learning

techniques.

Another open question deals with learning transformation-invariant

dictionaries. Does accounting for transformation-invariance simply re-

sult in a more efficient learned dictionary (avoiding learning transformed

copies of the same kernel), or does it change the fundamental structure

of the learned dictionary? Does the choice of inference method used

within a dictionary learning scheme (greedy methods, BP, CBP) have a

significant effect on the resulting learned dictionary?

Finally, although we have formulated a hierarchical model for pro-

cessing transformation and content information, it still relied on a con-
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volutional spike representation of the signal at each layer. This choice

was made more for the sake of computational tractability. However, a

more direct approach to modeling “where” information could operate on

the continuous-valued transformation parameters that are computed by

methods like CBP.

We hope that future work will benefit from the CBP approach, both

in the context of building more accurate and powerful statistical mod-

els of transformation-invariant ensembles, and also as a tool for analyz-

ing electrophysiological, seismological, radar, sonar, and imaging signals,

along with sounds and images.
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Appendix A

Polar interpolator details

The polar interpolator approximates intermediate timeshifts by an arc

circumscribing three time-shifted version of a waveform f(t): {f−∆/2, f0, f∆/2}
via the equation:

fτ (t) ≈











1

r cos
(

τθ
∆

)

r sin
(

τθ
∆

)











T 









c(t)

u(t)

v(t)











for |τ | <
∆

2
(A.1)

In this section we discuss in detail the derivation of the quantities in

Eq. A and derive the interpolator for some illustrative example of f(t).

We use the following notation:

〈f1, f2〉 =

∫ T

−T

f1(t)f2(t)dt

‖f‖2
2 =

∫ T

−T

(f(t))2 dt
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f
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f
-∆/2

Figure A.1: Geometric relationship between angles in the 2D plane con-

taining the 3 time shifts, explaining the derivation of Eq. A.2-A.3.

A.0.1 Derivation of r and θ

As illustrated in Fig. A.1, the constants r and θ can be derived using

simple rules from 2D geometry. The closed form expressions are:

θ = 2(π − 2φ) = 2(π − 2(
π − 2ψ

2
))

= 4ψ = 4∠
(

f0 − f∆
2
, f−∆

2
− f∆

2

)

(A.2)

r =

√

‖f∆
2
− f0‖2

2

2
(

1 − cos
(

θ
2

)) (A.3)

where ∠(·, ·) is the angle between two functions. Eq. A.3 follows from

the cosine rule.
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A.0.2 Derivation of {c, u, v}

The functions {c, u, v} are obtained by solving a linear system of 3 equa-

tions corresponding to the reconstructions of {f−∆
2
, f0, f∆

2
}:











f−∆
2

f0

f∆
2











=











1 r cos
(

θ
2

)

−r sin
(

θ
2

)

1 r 0

1 r cos
(

θ
2

)

r sin
(

θ
2

)





















c

u

v











(A.4)

Inverting the matrix in Eq. A.4 gives the solution:











c

u

v











=















1

2(1−cos( θ
2))

− cos( θ
2)

1−cos( θ
2)

1

2(1−cos( θ
2))

−1

2r(1−cos( θ
2))

1

r(1−cos( θ
2))

−1

2r(1−cos( θ
2))

−1

2r sin( θ
2)

0 1

2r sin( θ
2)

























f−∆
2

f0

f∆
2











(A.5)

A.0.3 Orthogonality of {c, u, v}

Let α = 1

(1−cos( θ
2))

, β = 1

2 sin( θ
2)

, and f =
f∆

2
+f

−
∆
2

2
(i.e. the mean of the

oppositely-shifted versions). Then from Eq. A.5, we can see that:

c = αf + (1 − α)f0

u =
α

r
(f0 − f)

v =
β

r
(f∆

2
− f−∆

2
)

Since f ⊥ (f∆
2
− f−∆

2
) and f0 ⊥ (f∆

2
− f−∆

2
) (by symmetry), it follows

that c ⊥ v and u ⊥ v. Also, by construction of c we have that:

‖f−∆
2
− c‖2

2 = ‖f0 − c‖2
2 = ‖f∆

2
− c‖2

2 = r2

⇒ 〈c, f−∆
2
〉 = 〈c, f0〉 = 〈c, f∆

2
〉

⇒ 〈c, f0 − f〉 = 0

⇒ c ⊥ u
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A.0.4 Sinusoid example

The polar approximation of Eq. A can be more clearly understood by

considering the simple example when f(t) = sin (ωt). In this case we

have:

f−∆
2

= sin

(

ωt +
ω∆

2

)

(A.6)

= sin (ωt) cos

(

ω∆

2

)

+ cos (ωt) sin

(

ω∆

2

)

f0 = sin (ωt)

f∆
2

= sin

(

ωt − ω∆

2

)

= sin (ωt) cos

(

ω∆

2

)

− cos (ωt) sin

(

ω∆

2

)

These epressions follow from standard trigonometric identities. Using the

two observations 〈sin (ωt) , cos (ωt)〉 = 0 and ‖ sin (ωt) ‖2 = ‖ cos (ωt) ‖2,

we can use Eq. A.2 to derive the subtended angle θ:

θ = 4 cos−1

( 〈f0 − f∆
2
, f−∆

2
− f∆

2
〉

‖f0 − f∆
2
‖2‖f−∆

2
− f∆

2
‖2

)

(A.7)

= 4 cos−1

(

〈sin (ωt)
(

1 − cos
(

ω∆
2

))

+ cos (ωt) sin
(

ω∆
2

)

,−2 cos (ωt) sin
(

ω∆
2

)

〉
‖ sin (ωt)

(

1 − cos
(

ω∆
2

))

+ cos (ωt) sin
(

ω∆
2

)

‖2‖2 cos (ωt) sin
(

ω∆
2

)

‖2

)

= 4 cos−1

(

(

sin
(

ω∆
2

)

‖ cos (ωt) ‖2

)2

‖ sin (ωt)
(

1 − cos
(

ω∆
2

))

+ cos (ωt) sin
(

ω∆
2

)

‖2

(

sin
(

ω∆
2

)

‖ cos (ωt) ‖2

)

)

= 4 cos−1





√

√

√

√

sin2
(

ω∆
2

)

‖ cos (ωt) ‖2
2

(

(

1 − cos
(

ω∆
2

))2
+ sin2

(

ω∆
2

)

)

‖ cos (ωt) ‖2
2





= 4 cos−1





sin
(

ω∆
2

)

√

2
(

1 − cos
(

ω∆
2

))





= 4 cos−1

(

2 sin
(

ω∆
4

)

cos
(

ω∆
4

)

2 sin
(

ω∆
4

)

)

= ω∆
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We can then obtain the values of (c(t), u(t), v(t)) via Eq. A.5:













c

u

v













=















1
2(1−cos(ω∆

2 ))
− cos(ω∆

2 )
1−cos(ω∆

2 )
1

2(1−cos(ω∆
2 ))

−1
2r(1−cos(ω∆

2 ))
1

r(1−cos(ω∆
2 ))

−1
2r(1−cos(ω∆

2 ))
−1

2r sin(ω∆
2 )

0 1
2r sin(ω∆

2 )















(A.8)

×













sin (ωt) cos
(

ω∆
2

)

+ cos (ωt) sin
(

ω∆
2

)

sin (ωt)

sin (ωt) cos
(

ω∆
2

)

− cos (ωt) sin
(

ω∆
2

)













=













0

sin(ωt)
r

− cos(ωt)
r













Therefore, the center, c(t) of the circle used in the polar approximation is

identically 0, and so the circle is a “great circle” on the hypersphere. Using

Eq. A.4, the polar approximation in this example can be written as:

sin (ωt − ωτ) ≈













1

r cos (ωτ)

r sin (ωτ)













T 











0

sin(ωt)
r

− cos(ωt)
r













(A.9)

= sin (ωt) cos (ωτ) − cos (ωt) sin (ωτ) for |τ | <
π

2

Eq. A.9 in facts holds with equality for all t, τ and is a well-known trigono-

metric identity. Therefore, the polar approximation is exact for sinusoidal

waveforms for any spacing ∆, since the translational manifold really is a cir-

cle on the hypersphere whose center is the origin.

A.0.5 Fourier analysis

The sinusoid example motivates an analysis of the polar approximation in

the Fourier domain. Combining Eq. A with Eq. A.4 gives an expression
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for the interpolated time-shift as a linear function of the three timeshifts

{f−∆/2, f0, f∆/2}:

fτ ≈
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r sin
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τθ
∆
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2
(A.9)

Taking the Fourier transform of both sides gives:

e−iωτ f̂(ω) ≈













a(τ) − b(τ)

1 − 2a(τ)

a(τ) + b(τ)













T 











eiω ∆
2

1

e−iω ∆
2













f̂(ω) for |τ | <
∆

2
(A.10)

Dividing out f̂(ω) and equating real and imaginary parts gives the following

two approximations:

cos(ωτ) ≈ cos
(

τθ
∆

) (

1 − cos
(

ω∆
2

))

+
(

cos
(

ω∆
2

)

− cos
(

θ
2

))

1 − cos
(

θ
2

) (A.11)

sin(ωτ) ≈ sin
(

τθ
∆

)

sin
(

ω∆
2

)

sin
(

θ
2

) (A.12)

Notice that in the sinusoidal case f(t) = sin (ωt), we have θ = ω∆ and the

approximations in Eq. A.11-A.12 hold with equality. In the general case,

however, θ is not strictly linear in ∆ since it must integrate the translation-

induced changes at all frequencies at which f(t) has power. As a result,

we expect that polar interpolation accuracy to degrade as the bandwidth of

f(t) increases. However, unlike classical interpolation that derives from the

sampling theorem (i.e. interpolation using a sinc kernel), this degradation

is graceful and the interpolation is still quite accurate for non-bandlimited
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Figure A.2: Mean squared error of the polar interpolator approximation,

Eq. A.10, with respect to spacing ∆ and frequency ω for a waveform

f(t) ∝ te−αt2 .

functions. For example, Fig. A.2 plots the interpolation error for f(t) ∝ e−αt2 ,

which is not bandlimited.

A.0.6 Interpolation comparison

Figure A.3 compares nearest neighbor (implicitly used in BP), first-order Tay-

lor, and polar interpolation in terms of their accuracy in approximating time-

shifts of a Gaussian derivative waveform, f(t) ∝ te−αt2 . For reference, the

second-order Taylor interpolator is also included. The polar interpolator is

seen to be much more accurate than nearest-neighbor and 1st-order Taylor,

and even surpasses 2nd-order Taylor by an order of magnitude (although they

have the same asymptotic rate of convergence). This allows one to choose a
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much larger ∆ for a given desired accuracy.
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Figure A.3: Comparison of the nearest neighbor, first-order Taylor, and

polar interpolators (as used in BP, CBP-T, and CBP-P, respectively) for

a waveform f(t) ∝ te−αt2 . Second-order Taylor interpolation are also

shown. The estimated log-domain slopes (asymptotic rates of conver-

gence) are indicated in parenthesis in the legend.
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Appendix B

Spike sorting appendix

B.0.7 Clustering method

We implemented a conventional three-step clustering method [79], as illus-

trated in Fig. 3.1, and used it to obtain all performance benchmarks presented

in Section 3.2.

Detection. To identify segments of the voltage trace containing spiking

activity, we identify peaks in the voltage trace exceeding a threshold that is

derived from an estimate of the noise level [59, 112, 37]:

T := 4σ̂ σ̂ :=
median(|V (t)|)

0.6745
(B.1)

Five millisecond windows, centered around these peaks, are identified as seg-

ments of spiking activity in the signal. The windowed segments are tempo-

rally upsampled by a factor of five using cubic spline interpolation, re-centered

about the maximal value (across all electrodes) assuming zero padding on both

ends, and then downsampled to the original rate.
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Feature extraction. We then reduced the dimensionality of the data

by transforming each of the segments into a low-dimensional feature space.

Specifically, we formed a data vector for each segment (i.e., the voltage samples

of all electrodes lying within each temporal window were concatenated into a

single vector). We performed principal components analysis (PCA) on this set

of vectors, selected the leading components that accounted for 90 percent of

the variance over all the segments (e.g., see legends of Figs. 3.5(b-c)), and pro-

jected the contents of all windows onto these components. Figures 3.4(a,c,e)

show the projections of these segments onto the first two principal components

for three different data sets.

Clustering. The dimensionally-reduced feature vectors are then automat-

ically grouped according to similarity. For our primary comparisons we used

K-means clustering to accomplish this [38]. The number of clusters was man-

ually adjusted to minimize the number of errors, and several random initial-

izations were tried in order to get the optimal clustering assignment. For the

simulated data set we also compare our results with those of a superparam-

agnetic clustering method (in the space of wavelet coefficients) [112]. For this

method, we obtain a lower bound on the number of errors by adding three

numbers reported in their paper: (1) the number of detection errors, (2) the

number of classification errors, and (3) the number of detected voltage seg-

ments which contain two or more spikes (clustering must miss at least one

spike from each of these snippets).

B.0.8 Preprocessing of real data

Filtering of raw voltage trace. All extracellular traces, both simulated

and real, were highpass-filtered at 250Hz with a Butterworth filter of order 50.
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No preprocessing (other than amplitude re-scaling) was done for intracellular

traces. For each tetrode data set, a sustained period in which the recording

was stable was selected for analysis. For one of the tetrode sets [59], a period

of 0.8s containing anomalous bursting activity was removed from the analysis.

Ground truth spike identification from intracellular trace. For

real data, ground truth spikes were inferred by identifying peaks in the intra-

cellular traces that exceeded 4 standard deviations from the baseline. Since

the intracellular traces have almost no noise, this simple procedure can reliably

and accurately identify all spikes (see Fig. 3.6).

Noise covariance estimation. We assume that the full spatio-temporal

noise covariance matrix is space-time separable, allowing us to first whiten

each channel in time, and then whiten across channels. For each channel,

the temporal covariance matrix was assumed to be Toeplitz (i.e. stationary

noise), depending only on the noise autocovariance. The autocovariance was

estimated from “noise” regions in the extracellular trace which did not exceed

2σ̂ for a period of 50 ms or more, where σ̂ was computed as in Eq. B.0.7. A

whitening filter was then computed by taking the central column of the inverse

matrix-square-root of the temporal autocovariance matrix. The channel data

was then convolved with this whitening filter. Once each channel was whitened

in time, the spatial covariance matrix (across electrodes) was estimated from

the same noise regions. Each time slice was then left-multiplied by the inverse

matrix-square-root.

B.0.9 Evaluation

Counting misses and false positives. For evaluation, we matched

spikes in the estimated spike train with spikes in the true spike train. A true
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spike could be matched with an estimated spike of the same cell if it occurred

within 4 milliseconds of the true spike time.

Best ellipsoidal error rate (BEER) bounds error of clustering-

based methods. We computed the best ellipsoidal error rate (BEER)

measure [59], which serves as an upper bound on the performance of any

clustering-based spike sorting method that uses elliptical cluster boundaries.

After thresholding and feature extraction, the windowed segments of the trace

were labeled according to whether or not they contained a true spike. Half of

this labeled data set was then used to train a support vector machine whose

decision rule was a linear combination of all pairwise products of the features

of each segment, and was thus capable of achieving any elliptical decision

boundary. This decision boundary was then used to predict the occurrence

of spikes in the segments in the remaining half of the labeled data, and the

success or failure of these predictions then provided an estimate of the miss

and false positive rate.
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