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Abstract
Statistical whitening transformations play a funda-
mental role in many computational systems, and
may also play an important role in biological sen-
sory systems. Existing neural circuit models of
adaptive whitening operate by modifying synaptic
interactions; however, such modifications would
seem both too slow and insufficiently reversible.
Motivated by the extensive neuroscience literature
on gain modulation, we propose an alternative
model that adaptively whitens its responses by
modulating the gains of individual neurons. Start-
ing from a novel whitening objective, we derive
an online algorithm that whitens its outputs by ad-
justing the marginal variances of an overcomplete
set of projections. We map the algorithm onto
a recurrent neural network with fixed synaptic
weights and gain-modulating interneurons. We
demonstrate numerically that sign-constraining
the gains improves robustness of the network to
ill-conditioned inputs, and a generalization of
the circuit achieves a form of local whitening in
convolutional populations, such as those found
throughout the visual or auditory systems.

1. Introduction
Statistical whitening transformations, in which multi-
dimensional inputs are decorrelated and normalized to have
unit variance, are common in signal processing and ma-
chine learning systems. For example, they are integral to
many statistical factorization methods (Olshausen & Field,
1996; Bell & Sejnowski, 1996; Hyvärinen & Oja, 2000),
they provide beneficial preprocessing during neural network
training (Krizhevsky, 2009), and they can improve unsuper-
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vised feature learning (Coates et al., 2011). More recently,
self-supervised learning methods have used decorrelation
transformations such as whitening to prevent representa-
tional collapse (Ermolov et al., 2021; Zbontar et al., 2021;
Hua et al., 2021; Bardes et al., 2022). While whitening has
mostly been used for training neural networks in the offline
setting, it is also of interest to develop adaptive (run-time)
variants that can adjust to dynamically changing input statis-
tics with minimal changes to the network (e.g. Mohan et al.,
2021; Hu et al., 2022).

Single neurons in early sensory areas of many nervous sys-
tems rapidly adjust to changes in input statistics by scal-
ing their input-output gains (Adrian & Matthews, 1928).
This allows neurons to adaptively normalize the variance
of their outputs (Bonin et al., 2006; Nagel & Doupe, 2006),
maximizing information transmitted about sensory inputs
(Barlow, 1961; Laughlin, 1981; Fairhall et al., 2001). At the
neural population level, in addition to variance normaliza-
tion, adaptive decorrelation and whitening transformations
have been observed across species and sensory modalities,
including: macaque retina (Atick & Redlich, 1992); cat pri-
mary visual cortex (Muller et al., 1999; Benucci et al., 2013);
and the olfactory bulbs of zebrafish (Friedrich, 2013) and
mice (Giridhar et al., 2011; Gschwend et al., 2015). These
population-level adaptations reduce redundancy in addition
to normalizing neuronal outputs, facilitating dynamic effi-
cient multi-channel coding (Schwartz & Simoncelli, 2001;
Barlow & Foldiak, 1989). However, the mechanisms un-
derlying such adaptive whitening transformations remain
unknown, and would seem to require coordinated synap-
tic adjustments amongst neurons, as opposed to the single
neuron case which relies only on gain rescaling.

Here, we propose a novel recurrent network architecture for
online statistical whitening that exclusively relies on gain
modulation. Specifically, the primary contributions of our
study are as follows:

1. We introduce a novel factorization of the (inverse)
whitening matrix, using an overcomplete, arbitrary,
but fixed basis, and a diagonal matrix with statistically
optimized entries. This is in contrast with the conven-
tional factorization using the eigendecomposition of
the input covariance matrix.
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Figure 1. Schematic of a recurrent statistical whitening network with 2 primary neurons and 3 interneurons. Left: 2D Scatter plot of
network inputs x = [x1, x2]

⊤ (e.g. post-synaptic currents), with covariance indicated by the ellipse. Center: Primary neurons, with
outputs y = [y1, y2]

⊤, receive external feedforward inputs, x, and recurrent feedback from an overcomplete population of interneurons,
−
∑3

i=1 giziwi. Projection vectors {w1,w2,w3} ∈ R2 encode feedforward synaptic weights connecting primary neurons to interneuron
i = 1, 2, 3, with symmetric feedback connections. Weight vectors are shown in the left and right panels with corresponding colors. In
general, the network may require all-to-all connectivity between primary and interneurons; we use a reduced subset of connections here
for diagram clarity. Inset: The ith interneuron (e.g. here i = 2) receives input zi = w⊤

i y, which is multiplied by its gain gi to produce
output gizi. Its gain, gi, is adjusted s.t. ∆gi ∝ z2i − 1. The dark arrow indicates that the gain update operates on a slower time scale.
Right: Scatter plots of the whitened network outputs y. Outputs have unit variance along all wi’s, which is equivalent to having identity
covariance matrix, i.e., Cyy = IN (black circle).

2. We introduce an unsupervised online learning objective
using this factorization to express the whitening objec-
tive solely in terms of the marginal variances within
the overcomplete representation of the input signal.

3. We derive a recursive algorithm to optimize the objec-
tive, and show that it corresponds to an unsupervised
recurrent neural network (RNN), comprised of primary
neurons and an auxiliary overcomplete population of
interneurons, whose synaptic weights are fixed, but
whose gains are adaptively modulated. The network re-
sponses converge to the classical symmetric whitening
solution without backpropagation.

4. We show how enforcing non-negativity on the gain
modulation provides a novel approach for dealing with
ill-conditioned or noisy data. Further, we relax the
global whitening constraint in our objective and pro-
vide a method for local decorrelation of convolutional
neural populations.

2. A Novel Objective for Symmetric Whitening
Consider a neural network with N primary neurons. For
each t = 1, 2, . . . , let xt and yt be N -dimensional vectors
whose components respectively denote the inputs (e.g. post-
synaptic currents), and outputs of the primary neurons at
time t (Figure 1). Without loss of generality, we assume the
inputs xt are centered.

2.1. Conventional objective

Statistical whitening aims to linearly transform inputs xt so
that the covariance of the outputs yt is the identity, i.e.,

Cyy = ⟨yty
⊤
t ⟩t = IN , (1)

where ⟨·⟩t denotes the expectation operator over t, and IN
denotes the N ×N identity matrix (see Appendix A for a
list of notation used in this work).

It is well known that whitening is not unique: any orthog-
onal rotation of a random vector with identity covariance
matrix also has identity covariance matrix. There are sev-
eral common methods of resolving this rotational ambiguity,
each with their own advantages (Kessy et al., 2018). Here,
we focus on the symmetric whitening transformation, of-
ten referred to as Zero-phase Component Analysis (ZCA)
whitening or Mahalanobis whitening, which minimizes the
mean-squared error between the inputs and the whitened
outputs (alternatively, the one whose transformation matrix
is symmetric). The symmetric whitened outputs are the
optimal solution to the minimization problem

min
{yt}
⟨∥xt − yt∥22⟩t s.t. ⟨yty

⊤
t ⟩t = IN , (2)

where ∥ · ∥2 denotes the Euclidean norm on RN . Assuming
the covariance of the inputs Cxx := ⟨xtx

⊤
t ⟩t is positive

definite, the unique solution to the optimization problem
in Equation 2 is yt = C

−1/2
xx xt for t = 1, 2, . . . , where
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C
−1/2
xx is the symmetric inverse matrix square root of Cxx

(see Appendix B).

Previous approaches to online symmetric whitening have
optimized Equation 2 by deriving RNNs whose synaptic
weights adaptively adjust to learn the eigendecomposition
of the (inverse) whitening matrix, C

1/2
xx = VΛ1/2V⊤,

where V is an orthogonal matrix of eigenvectors and Λ
is a diagonal matrix of eigenvalues (Pehlevan & Chklovskii,
2015). We propose an entirely different decomposition:
C

1/2
xx = W diag (g)W⊤ + IN , where W is a fixed over-

complete matrix of synaptic weights, and g is a vector of
gains that adaptively adjust to match the whitening matrix.

2.2. A novel objective using marginal statistics

We formulate an objective for learning the symmetric
whitening transform via gain modulation. Our innovation
exploits the fact that a random vector has identity covari-
ance matrix (i.e., Equation 1 holds) if and only if it has
unit marginal variance along all possible 1D projections
(a form of tomography; see Related Work). We derive a
tighter statement for a finite but overcomplete set of at least
K ≥ KN := N(N + 1)/2 distinct axes (‘overcomplete’
means that the number of axes exceeds the dimensionality of
the input, i.e., K > N ). Intuitively, this equivalence holds
because an N × N symmetric matrix has KN degrees of
freedom, so the marginal variances along K ≥ KN distinct
axes are sufficient to constrain an N ×N covariance matrix.
We formalize this equivalence in the following proposition,
whose proof is provided in Appendix C.

Proposition 2.1. Fix K ≥ KN . Suppose w1, . . . ,wK ∈
RN are unit vectors1 such that

span({w1w
⊤
1 , . . . ,wKw⊤

K}) = SN , (3)

where SN denotes the KN -dimensional vector space of N×
N symmetric matrices. Then Equation 1 holds if and only if
the projection of yt onto each unit vector w1, . . . ,wK has
unit variance, i.e.,

⟨(w⊤
i yt)

2⟩t = 1 for i = 1, . . . ,K. (4)

Assuming Equation 3 holds, we can interpret the set of vec-
tors {w1, . . . ,wK} as a frame (i.e., an overcomplete basis;
Casazza et al., 2013) in RN such that the covariance of the
outputs Cyy can be computed from the variances of the K-
dimensional projection of the outputs onto the set of frame
vectors. Thus, we can replace the whitening constraint in
Equation 2 with the equivalent marginal variance constraint
to obtain the following objective:

min
{yt}
⟨∥xt − yt∥22⟩t s.t. Equation 4 holds. (5)

1The unit-length assumption is imposed, without loss of gener-
ality, for notational convenience.

3. An RNN with Gain Modulation for
Adaptive Symmetric Whitening

In this section, we derive an online algorithm for solving the
optimization problem in Equation 5 and map the algorithm
onto an RNN with adaptive gain modulation. Assume we
have an overcomplete frame {w1, . . . ,wK} in RN satis-
fying Equation 3. We concatenate the frame vectors into
an N × K synaptic weight matrix W := [w1, . . . ,wK ].
In our network, primary neurons project onto a layer of
K interneurons via the synaptic weight matrix to produce
the K-dimensional vector zt := W⊤yt, encoding the in-
terneurons’ post-synaptic inputs at time t (Figure 1). We
emphasize that the synaptic weight matrix W remains fixed.

3.1. Enforcing the marginal variance constraints with
scalar gains

We introduce Lagrange multipliers g1, . . . , gK ∈ R to en-
force the K constraints in Equation 4. These are con-
catenated as the entries of a K-dimensional vector g :=
[g1, . . . , gK ]⊤ ∈ RK , and express the whitening objective
as a saddle point optimization:

max
g

min
{yt}
⟨ℓ(xt,yt,g)⟩t, (6)

where ℓ(x,y,g) := ∥x− y∥22 +
K∑
i=1

gi
{
(w⊤

i y)
2 − 1

}
.

Here, we have exchanged the order of maximization over
g and minimization over yt, which is justified because
ℓ(xt,yt,g) satisfies the saddle point property with respect
to y and g, see Appendix E.

In our RNN implementation, there are K interneurons and
gi corresponds to the multiplicative gain associated with the
ith interneuron, so that its output at time t is gizi,t (Figure 1,
Inset). Equation 6, shows that the gain of the ith interneuron,
gi, encourages the marginal variance of yt along the axis
spanned by wi to be unity. Importantly, the gains are not
hyper-parameters, but rather they are optimization variables
which statistically whiten the outputs {yt}, preventing the
neural outputs from trivially matching the inputs {xt}.

3.2. Deriving RNN neural dynamics and gain updates

To solve Equation 6 in the online setting, we assume there is
a time-scale separation between ‘fast’ neural dynamics and
‘slow’ gain updates, so that at each time step the neural dy-
namics equilibrate before the gains are adjusted. This allows
us to perform the inner minimization over {yt} before the
outer maximization over the gains g. This is consistent with
biological networks in which a given neuron’s responses
operate on a much faster time-scale than its intrinsic input-
output gain, which is driven by slower processes such as
changes in Ca2+ concentration gradients and Na+-activated

3



Adaptive Whitening in Neural Populations with Gain-modulating Interneurons

K+ channels (Wang et al., 2003; Ferguson & Cardin, 2020).

3.2.1. FAST NEURAL ACTIVITY DYNAMICS

For each time step t = 1, 2, . . . , we minimize the objective
ℓ(xt,yt,g) over yt by recursively running gradient-descent
steps to equilibrium:

yt ← yt −
γ

2
∇yℓ(xt,yt(τ),g)

= yt + γ {xt −W(g ◦ zt)− yt} , (7)

where γ > 0 is a small constant, zt = W⊤yt, the circle
‘◦’ denotes the Hadamard (element-wise) product, g ◦ zt is
a vector of K gain-modulated interneuron outputs, and we
assume the primary cell outputs are initialized at zero.

We see from the right-hand-side of Equation 7 that the ‘fast’
dynamics of the primary neurons are driven by three terms
(within the curly braces): 1) constant feedforward exter-
nal input xt; 2) recurrent gain-modulated feedback from
interneurons−W(g ◦ zt); and 3) a leak term−yt. Because
the neural activity dynamics are linear, we can analytically
solve for their equilibrium (i.e. steady-state), ȳt, by setting
the update in Equation 7 to zero:

ȳt =
[
IN +W diag (g)W⊤]−1

xt

=

[
IN +

K∑
i=1

giwiw
⊤
i

]−1

xt, (8)

where diag (g) denotes the K ×K diagonal matrix whose
(i, i)th entry is gi, for i = 1, . . . ,K. The equilibrium feed-
forward interneuron inputs are then given by

z̄t = W⊤ȳt. (9)

The gain-modulated outputs of the K interneurons, g ◦ zt,
are then projected back onto the primary cells via symmetric
weights, −W (Figure 1). After g adapts to optimize Equa-
tion 6 (provided Proposition 2.1 holds), the matrix within
the brackets in Equation 8 will equal C1/2

xx , and the circuit’s
equilibrium responses are symmetrically whitened. The re-
sult is a novel overcomplete symmetric matrix factorization
in which W is arbitrary and fixed, while C1/2

xx is adaptively
learned and encoded in the gains g.

3.2.2. SLOW GAIN DYNAMICS

After the fast neural activities reach steady-state, the in-
terneuron gains are updated with a stochastic gradient-ascent
step with respect to g:

g← g +
η

2
∇gℓ(xt, ȳt,g)

= g + η
(
z̄◦2t − 1

)
, (10)

where η > 0 is the learning rate, z̄◦2t = [z̄2t,1, . . . , z̄
2
t,K ]⊤,

and 1 = [1, . . . , 1]⊤ is the K-dimensional vector of ones2.
Remarkably, the update to the ith interneuron’s gain gi
(Equation 10) depends only on the online estimate of the
variance of its equilibrium input z̄2t,i, and its distance from 1
(i.e. the target variance). Since the interneurons adapt using
local signals, this circuit is a suitable candidate for hard-
ware implementations using low-power neuromorphic chips
(Pehlevan & Chklovskii, 2019). Intuitively, each interneuron
adjusts its gain to modulate the amount of suppressive (in-
hibitory) feedback onto the joint primary neuron responses.
In Appendix D, we provide conditions under which g can
be solved analytically. Thus, while statistical whitening
inherently involves a transformation on a joint density, our
solution operates solely using single neuron gain changes in
response to marginal statistics of the joint density.

3.2.3. ONLINE UNSUPERVISED ALGORITHM

By combining Equations 7 and 10, we arrive at our online
RNN algorithm for adaptive whitening via gain modulation
(Algorithm 1). We also provide batched and offline versions
of the algorithm in Appendix G.

Algorithm 1 Adaptive whitening via gain modulation
1: Input: Centered inputs x1,x2, · · · ∈ RN

2: Initialize: W ∈ RN×K ; g ∈ RK ; η, γ > 0
3: for t = 1, 2, . . . do
4: yt ← 0
5: while not converged do
6: zt ←W⊤yt

7: yt ← yt + γ {xt −W(g ◦ zt)− yt}
8: end while
9: g← g + η

(
z◦2t − 1

)
10: end for

There are two points worth noting about this network: 1)
W remains fixed in Algorithm 1. Instead, g adapts to sta-
tistically whiten the outputs. 2) In practice, since network
dynamics are linear, we can bypass the inner loop (the fast
dynamics of the primary cells, lines 5–8), by directly com-
puting ȳt, and z̄t (Eqs. 8, 9).

4. Numerical Experiments and Applications
We provide different applications of our adaptive symmet-
ric whitening network via gain modulation, emphasizing
that gain adaptation is distinct from, and complementary to,
synaptic weight learning (i.e. learning W). We therefore
side-step the goal of learning the frame W, and assume it is
fixed (for example, through longer time scale learning). This
allows us to decouple and analyze the general properties of

2Appendix F generalizes the gain update to allowing for
temporal-weighted averaging of the variance over past samples.
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Figure 2. Network from Figure 1 (with corresponding colors;
N=2, K=KN=3, η=2E-3) adaptively whitening samples from
two randomly generated statistical contexts online (10K steps
each). Top: Marginal variances measured by interneurons ap-
proach 1 over time. Middle: Dynamics of interneuron gains,
which are applied to zi before feeding back onto the primary cells.
Dashed lines are optimal gains (Appendix D). Bottom: Error over
time, as measured by the maximal difference between the standard
deviation along the principal axes of Cyy and unity.

our proposed gain modulation framework, independently
of the choice of frame. Python code for this study can be
located at github.com/lyndond/frame whitening.

We evaluate the performance of our adaptive whitening
algorithm using the matrix operator norm, ∥ · ∥Op, which
measures the largest eigenvalue,

Error := ∥Cyy − IN∥Op.

As a performance criterion, we use ∥Cyy − IN∥Op ≤ 0.1,
the point at which the principal axes of Cyy are within 0.1 of
unity. Geometrically, this means the ellipsoid corresponding
to the covariance matrix lies between the circles with radii
0.9 and 1.1.

For visualization of output covariance matrices, we plot 2D
ellipses representing the 1-standard deviation probability
level-set contour of the density. These ellipses are defined
by the set of points {∥C1/2

yy v∥v : ∥v∥ = 1}.

4.1. Adaptive symmetric whitening via gain modulation

We first demonstrate that our algorithm successfully whitens
its outputs. We initialize a network with fixed interneuron
weights, W, corresponding to the frame illustrated in Fig-
ure 1 (N=2, K=KN=3). Figure 2 shows the network
adapting to inputs from two successively-presented contexts
with randomly-generated underlying input covariances Cxx

(10K gain update steps each). As update steps progress,
all marginal variances converge to unity, as expected from
the objective (top panel). Since the number of interneurons
satisfies K=KN , the optimal gains to achieve symmetric

whitening can be solved analytically (Appendix D), and are
shown in the middle panel (dashed lines).

Figure 2 illustrates the online, adaptive nature of the net-
work; it whitens inputs from novel statistical contexts at
run-time, without supervision. By Proposition 2.1, measur-
ing unit variance along KN unique axes, as in this exam-
ple, guarantees that the underlying joint density is statis-
tically white. Indeed, the whitening error (bottom panel),
approaches zero as all KN marginal variances approach
1. Thus, with interneurons monitoring their respective
marginal input variances z2i , and re-scaling their gains to
modulate feedback onto the primary neurons, the network
adaptively whitens its outputs in each context.

4.2. Algorithmic convergence rate depends on W

Our model assumes that the frame, W, is fixed and known
(e.g., optimized via pre-training or development). This dis-
tinguishes our method from existing symmetric whitening
methods, which typically operate by estimating and trans-
forming to the eigenvector basis. By contrast, our network
obviates learning the principal axes of the data altogether,
and instead uses a statistical sampling approach along the
fixed set of measurement axes spanned by W. While the
result expressed in Proposition 2.1 is exact, and the optimal
solution to the whitening objective Equation 5 is indepen-
dent of W (provided Equation 3 holds), we hypothesize that
the algorithmic convergence rate would depend on W.

Figure 3 summarizes an experiment assessing the conver-
gence rate of different networks whitening inputs with a
random covariance, Cxx, with N = 2 (the results are con-
sistent when N > 2). We initialize three kinds of frames
W ∈ RN×KN with 100 repetitions each: ‘Random’, a
frame with i.i.d. Gaussian entries; ‘Optimized’, a randomly
initialized frame whose columns are then optimized to have
minimum mutual coherence and cover the ambient space;
and ‘Spectral’, a frame whose first N columns are the eigen-
vectors of the data and the remaining KN −N columns are
zeros. For clarity, we remove the effects of input sampling
stochasticity by running the offline version of our network,
which assumes having direct access to the input covariance
(Appendix G); the online version is qualitatively similar.

When the input distribution is known, then using the input
covariance eigenvectors, as with the Spectral frame, de-
fines a bound on achievable performance, converging faster,
on average, than the Random and Optimized frames (Fig-
ure 3A,B). This is because the frame is aligned with the
input covariance’s principal axes, and a simple gain scaling
along those directions is sufficient to achieve a whitened
response. We find that the networks with Optimized frames
converge at similar rates to those with Spectral frames, de-
spite the frame vectors not being aligned with the principal
axes of the data (Figure 3B). Comparing the Random to
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A B

Figure 3. Convergence rate depends on structure of W. For each
network, η=1E-2. A: Error over time. Curves are median and
[25%, 75%] quantile regions over 100 repeats. Dashed line in-
dicates when the principal axes of 1-standard deviation ellipse
representing Cyy are within 0.1 of unity. B: Scatter plots and
covariance ellipses of y for a single experiment with each frame
type at different steps. Gray dashed lines are axes spanned by W.

Optimized frames gives a better understanding of how one
might choose a frame in the more realistic scenario when
the input distribution is unknown. The networks with Opti-
mized frames systematically converge faster than Random
frames. Thus, when the input distribution is unknown, we
empirically find that the convergence rate of Algorithm 1
benefits from a frame that is optimized to splay the ambient
space. Increased coverage of the space by the frame vectors
facilitates whitening with our gain re-scaling mechanism.
Sec. 4.5 elaborates on how underlying signal structure can
be exploited to inform more efficient choices of frames.

4.3. Implicit sparse gating via gain modulation

Motivated by the findings in Sec 4.2, and concepts from
sparse coding (Olshausen & Field, 1996), we explore how
adaptive gain modulation can complement or augment a
‘pre-trained’ network with context-dependent weights. Fig-
ure 4 shows an experiment using either a pre-trained Spec-
tral, or Random W (N=6, K=KN=21) adaptively whiten-
ing inputs from two random, alternating statistical contexts,
A and B, for 10K steps each. The first and second N
columns of the Spectral frame are the eigenvectors of con-
text A and B’s covariance matrix, respectively, and the re-
maining elements are random i.i.d. Gaussian; the Random
frame has all i.i.d. Gaussian elements. Figure 4 (top panel)
shows that both networks successfully adapt to whiten the in-
puts from each context, with the Spectral frame converging
faster than the Random frame (as in Sec 4.2).

Inspecting the Spectral frame’s K interneuron gains during
run-time (bottom panel) reveals that they sparsely ‘select’
the frame vectors corresponding to the eigenvectors of each
respective condition (indicated by the blue/red intensity).
This effect arises without a sparsity penalty or modifying
the objective. Gain modulation thus sparsely gates context-
dependent information without an explicit context signal.

Figure 4. Gain modulation as a fast implicit sparse gating mech-
anism. Top: Error over time for Spectral vs. Random networks
(N=6; K=KN=21; η=1E-3) adapting to 2 alternating statistical
contexts with different input covariances. Dashed line indicates
when the principal axes of 1-standard deviation ellipsoid represent-
ing Cyy are within 0.1 of unity. Bottom: Gains act as implicit
context switches, sparsely gating the respective eigenbases embed-
ded in the Spectral frame to optimally whiten each context.

4.4. Normalizing ill-conditioned data

Foundational work by Atick & Redlich (1992) showed that
neural populations in the retina may encode visual inputs by
optimizing mutual information in the presence of noise. For
natural images with 1/f spectra, the optimal transform is
approximately a product of a whitening filter and a low-pass
filter. This is a particularly effective solution because when
inputs are low-rank, Cxx is ill-conditioned (Figure 5A), and
classical whitening leads to noise amplification along axes
with small variance. In this section, we show how a simple
modification to the objective allows our gain-modulating
network to handle these types of inputs.

We prevent amplification of inputs below a certain variance
threshold by replacing the unit marginal variance equality
constraints with upper bound constraints3:

⟨(w⊤
i yt)

2⟩t ≤ 1 for i = 1, . . . ,K. (11)

Our modified network objective then becomes

min
{yt}
⟨∥xt − yt∥22⟩t s.t. Equation 11 holds. (12)

Intuitively, if the projected variance along a given direction
is already less than or equal to unity, then it will not affect
the overall loss. Interneuron gain should accordingly stop
adjusting once the marginal variance along its projection
axis is less than or equal to one. To enforce these upper

3We set the threshold to 1 to remain consistent with the whiten-
ing objective, but it can be any arbitrary variance.
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Figure 5. Two networks (N=2, K=3, η=0.02) whitening ill-
conditioned inputs. A: Outputs without whitening. 2D scatterplot
of a non-Gaussian density whose underlying signal lies close to
a latent 1D axis. Many points lie outside of the axis limits in this
panel. Signal magnitude along that axis is denoted by the grayscale
gradient. The 1-standard deviation covariance matrix is depicted as
a black ellipse. Colored lines are axes spanned by Optimal frame
(see Sec 4.2). B: Symmetric whitening boosts noise along the
uninformative direction. C: Modulating gains according to Eq. 14
rescales the data without amplifying noise. D: Gains updated with
Eq. 10 vs. Eq. 14. Colors correspond to frame axes in panels A–C.

bound constraints, we introduce gains as Lagrange multi-
pliers, but restrict the domain of g to be the non-negative
orthant RK

+ , resulting in non-negative optimal gains:

max
g∈RK

+

min
{yt}
⟨ℓ(xt,yt,g)⟩t, (13)

where ℓ(x,y,g) is defined as in Equation 6. At each time
step t, we optimize Equation 13 by first taking gradient-
descent steps with respect to yt, resulting in the same neu-
ral dynamics (Equation 7) and equilibrium solution (Equa-
tion 8) as before. To update g, we modify Equation 10 to
take a projected gradient-ascent step with respect to g:

g← ⌊g + η(z̄◦2t − 1)⌋ (14)

where ⌊·⌋ denotes the element-wise half-wave rectification
operation that projects its inputs onto the non-negative or-
thant RK

+ , i.e., ⌊v⌋ := [max(v1, 0), . . . ,max(vK , 0)]⊤.

Figure 5 shows a simulation of a network whitening
ill-conditioned inputs with an Optimized frame (N=2,
K=KN ; see Sec. 4.2) where gains are either unconstrained
(Equation 10), or rectified (Equation 14). We observe that
these two models converge to two different solutions (Fig-
ure 5B, C). When gi is unconstrained, the network achieves

global whitening, as before, but in doing so it amplifies
noise along the axis orthogonal to the latent signal axis. The
gains constrained to be non-negative converged to different
values than the unconstrained gains (Figure 5D), with one of
them (green) converging to zero rather than becoming neg-
ative. In general, with constrained gi, the whitening error
network converges to a non-zero value (see Appendix H for
details). Thus, with a non-negative constraint, the network
normalizes the responses y, and does not amplify the noise.
In Appendix H we show additional cases that provide fur-
ther geometric intuition on differences between symmetric
whitening with and without non-negative constrained gains.

4.5. Gain modulation enables local spatial decorrelation

Requiring KN interneurons to guarantee a statistically white
output (Proposition 2.1) becomes prohibitively costly for
high-dimensional inputs: the number of interneurons scales
as O(N2). This leads us to ask: how many interneurons
are needed in practice? For natural sensory inputs such as
images, it is well-known that inter-pixel correlation is highly
structured, decaying as a function of distance. We simulate
an experiment of visual gaze fixations and micro-saccadic
eye movements using a Gaussian random walk, drawing
12×12 patch samples from a region of a natural image (Fig-
ure 6A; van Hateren & van der Schaaf, 1998); this can
be interpreted as a form of video-streaming dataset where
each frame is a patch sample. We repeat this for different
randomly selected regions of the image (Figure 6A colors).
The image content of each region is quite different, but the
inter-pixel correlation within each context consistently falls
rapidly with distance (Figure 6B).

We relax the O(N2) marginal variance constraint to instead
whiten spatially local neighborhoods of primary neurons
whose inputs are the image patches. We construct a frame
W that exploits spatial structure in the image patches, and
spans K < KN axes in RN . W is convolutional, such that
overlapping neighborhoods of 4 × 4 primary neurons are
decorrelated, each by a population of interneurons that is
‘overcomplete’ with respect to that neighborhood (see Ap-
pendix I for details). Importantly, taking into account local
structure dramatically reduces the interneuron complexity
from O(N2) → O(N), thereby making our framework
practically feasible for high-resolution image inputs and
video streams. This frame is still overcomplete (K > N ),
but because K < KN , we no longer guarantee at equilib-
rium that Cyy = IN (Proposition 2.1).

After the network converges to the inputs drawn from the
red context (Figure 6C): i) inter-pixel correlations drop
within the region specified by the local neighborhood; and
ii) surprisingly, correlations at longer-range (i.e. outside
the window of the defined spatial neighborhood) are also
dramatically reduced. Accordingly, the eigenspectrum of
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A B D

C

Figure 6. Local spatial whitening. A) Large grayscale image from which 12×12 image patch samples are drawn. Colors represent
random-walk sampling from regions of the image corresponding to contexts with different underlying statistics. Six samples from each
context are shown below. B) Without whitening, pixel correlations decay rapidly with spatial distance in each context, suggesting that
local whitening may be effective. C) Binned pairwise output pixel correlation of patches from the red context before (gray) and after
global (black dots) vs. local whitening with overlapping 4×4 neighborhoods (red). Shaded regions represent standard deviations. D) Top:
Correlation matrices of flattened patches from the red context before whitening (left), and after local symmetric whitening (right). Both
panels use the same color scale. Bottom: Corresponding covariance eigenspectra. Dashed lines are spectra after global whitening.

the locally whitened outputs is significantly flatter compared
to the inputs (Figure 6D left vs. right columns). We also
provide an example using 1D inputs in Appendix I. This
empirical result is not obvious — that whitening individual
overlapping local neighborhoods of neurons should produce
a more globally whitened output covariance. Indeed, ex-
actly how or when a globally whitened solution is possible
from whitening of spatial overlapping neighborhoods of the
inputs is a problem worth pursuing.

5. Related Work
5.1. Biologically plausible whitening networks

Biological circuits operate in the online setting and, due
to physical constraints, must learn exclusively using local
signals. Therefore, to plausibly model neural computation,
a neural network model must operate in the online setting
(i.e., streaming data) and use local learning rules (Pehlevan
& Chklovskii, 2019). There are a few existing normative
models of adaptive statistical whitening and related trans-
formations; however, these models use synaptic plasticity
mechanisms (i.e., changing W) to adapt to changing in-
put statistics (Pehlevan & Chklovskii, 2015; Westrick et al.,
2016; Chapochnikov et al., 2021; Młynarski & Hermund-
stad, 2021; Lipshutz et al., 2023). Adaptation of neural
population responses to changes in sensory input statistics
occurs rapidly, on the order of hundreds of milliseconds to
seconds (Muller et al., 1999; Wanner & Friedrich, 2020), so
it could potentially arise from short-term synaptic plasticity,
which operates on the timescale of tens of milliseconds to

minutes (Zucker & Regehr, 2002), but not by long-term
synaptic plasticity, which operates on the timescale of min-
utes or longer (Martin et al., 2000). Here, we have proposed
an alternative hypothesis: that modulation of neural gains,
which operates on the order of tens of milliseconds to min-
utes (Ferguson & Cardin, 2020), facilitates rapid adaptation
of neural populations to changing input statistics.

5.2. Tomography and “sliced” density measurements

Leveraging 1D projections to compute the symmetric
whitening transform is reminiscent of approaches taken in
the field of tomography. Geometrically, our method repre-
sents an ellipsoid (i.e., the N dimensional covariance ma-
trix) using noisy 1D projections of the ellipsoid onto axes
spanned by frame vectors (i.e., estimates of the marginal
variances). This is a special case of reconstruction problems
studied in geometric tomography (Karl et al., 1994; Gardner,
1995). A distinction between tomography and our approach
to symmetric whitening is that we are not reconstructing
the multi-dimensional inputs; instead, we are utilizing the
univariate measurements to transform an ellipsoid into a
hyper-sphere.

In optimal transport, “sliced” methods offer a way to mea-
sure otherwise intractable p-Wasserstein distances in high
dimensions (Bonneel et al., 2015), thereby enabling their
use in optimization loss functions. Sliced methods estimate
Wasserstein distance by taking series of 1D projections of
two densities, then computing the expectation over all 1D
Wasserstein distances, for which there exists an analytic so-
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lution. The 2-Wasserstein distance between a 1D zero-mean
Gaussian with variance σ2 and a standard normal density is

W2

(
N
(
0, σ2

)
;N (0, 1)

)
= ∥σ − 1∥ .

This is strikingly similar to Equation 10. However, distin-
guishing characteristics of our approach include: 1) min-
imizing distance between variances rather than standard
deviations; 2) directions along which we compute slices are
fixed, whereas sliced methods compute a new set of pro-
jections at each optimization step; 3) our network operates
online, without backpropagation.

6. Discussion
Our study introduces a recurrent circuit for adaptive whiten-
ing using gain modulation to transform joint second-order
statistics of their inputs based on marginal variance mea-
surements. We demonstrate that, given sufficiently many
marginal measurements along unique axes, the network
produces symmetric whitened outputs. Our objective (Equa-
tion 5) provides a novel way to think about the classical
problem of statistical whitening, and draws connections to
old concepts from tomography and transport theory. This
framework is flexible and extensible, with some possible
generalizations explored in Appendix J. For example, we
show that our model provides a way to prevent represen-
tational collapse in the analytically tractable example of
online principal subspace learning (Appendix J.1). Addi-
tionally, by replacing the unity marginal variance constraint
by a set of target variances differing from 1, the network
can be used to transform its input density to one matching
the corresponding (non-white) covariance (Appendix J.2).

6.1. Implications for machine learning

Decorrelation and whitening are canonical transformations
in signal processing, widely used in compression and chan-
nel coding. Deep nets are generally not trained to whiten,
although their response variances are generally normalized
during training through batch normalization, and recent
methods (e.g. Bardes et al., 2022) do impose global whiten-
ing properties in their objective functions. Modulating fea-
ture gains has proven effective in adapting pre-trained neural
networks to novel inputs with out-of-training distribution
statistics (Ballé et al., 2020; Duong et al., 2023; Mohan
et al., 2021). Future architectures may benefit from adap-
tive run-time adjustments to changing input statistics (e.g.
Hu et al., 2022). Our framework provides an unsupervised,
online mechanism that avoids ‘catastrophic forgetting’ in
neural networks during continual learning.

6.2. Implications for neuroscience

It has been known for nearly 100 years (Adrian & Matthews,
1928) that single neurons rapidly adjust their sensitivity

(gain) adaptively, based on recent response history. Experi-
ments suggest that neural populations jointly adapt, adjust-
ing both the amplitude of their responses, as well as their
correlations (e.g. Benucci et al., 2013; Friedrich, 2013) to
confer dynamic, efficient multi-channel coding. The natural
thought is that they achieve this by adjusting the strength
of their interactions (synaptic weights). Our work provides
a fundamentally different solution: these effects can arise
solely through gain changes, thereby generalizing rapid and
reversible single neuron adaptive gain modulation to the
level of a neural population.

Support for our model will ultimately require careful exper-
imental measurement and analysis of responses and gains
of neurons in a circuit during adaptation (e.g. Wanner &
Friedrich, 2020). Our model predicts: 1) Specific architec-
tural constraints, such as reciprocally connected interneu-
rons (Kepecs & Fishell, 2014), with consistency between
their connectivity and population size (e.g. in the olfac-
tory bulb). 2) Synaptic strengths that remain stable during
adaptation, which would adjudicate between our model and
more conventional adaptation models relying on synaptic
plasticity (e.g. Lipshutz et al., 2023). 3) Interneurons that
modulate their gains according to the difference between
the variance of their post-synaptic inputs and some target
variance (Equation 10; also see Appendix J.2). Experiments
could assess whether interneuron input variances converge
to the same values after adaptive whitening. 4) Interneurons
that increase their gains with the variance of their inputs
(i.e. z̄2i,t). Input variance-dependent gain modulation may
be mediated by changes in slow Na+ currents (Kim & Rieke,
2003). This predicts a mechanistic role for interneurons dur-
ing adaptation, and complements the observed gain effects
found in excitatory neurons described in classical studies
(Fairhall et al., 2001; Nagel & Doupe, 2006).

6.3. Conclusion

Whitening is an effective constraint for preventing feature
collapse in representation learning (Zbontar et al., 2021;
Ermolov et al., 2021). The networks developed here pro-
vide a whitening solution that is particularly well-suited
for applications prioritizing streaming data and low-power
consumption.
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A. Notation
For N ≥ 2, let KN := N(N + 1)/2. Let RN denote N -dimensional Euclidean space equipped with the Euclidean norm,
denoted ∥ ·∥2. Let RN

+ denote the non-negative orthant in RN . Given K ≥ 2, let RN×K denote the set of N ×K real-valued
matrices. Let SN denote the set of N ×N symmetric matrices and let SN++ denote the set of N ×N symmetric positive
definite matrices.

Matrices are denoted using bold uppercase letters (e.g., M) and vectors are denoted using bold lowercase letters (e.g., v).
Given a matrix M, Mij denotes the entry of M located at the ith row and jth column. Let 1 = [1, . . . , 1]⊤ denote the
N -dimensional vector of ones. Let IN denote the N ×N identity matrix.

Given vectors v,w ∈ RN , define their Hadamard product by v ◦ w := (v1w1, . . . , vNwN ) ∈ RN . Define v◦2 :=
(v21 , . . . , v

2
N ) ∈ RN .

Let ⟨·⟩t denote expectation over t = 1, 2, . . . .

The diag (·) operator, similar to numpy.diag() or MATLAB’s diag(), can either: 1) map a vector in RK to the
diagonal of a K × K zeros matrix; or 2) map the diagonal entries of a K × K matrix to a vector in RK . The specific
operation being used should be clear by context. For example, given a vector v ∈ RK , define diag(v) to be the K ×K
diagonal matrix whose (i, i)th entry is equal to vi, for i = 1, . . . ,K. Alternatively, given a sqaure matrix M ∈ RK×K ,
define diag(M) to be the K-dimensional vector whose ith entry is equal to Mii, for i = 1, . . . ,K.

B. Optimal Solution to Symmetric Whitening Objective

In this section, we prove that the optimal solution to the optimization problem in equation 2 is given by yt = C
−1/2
xx xt for

t = 1, . . . , T (we treat the case that T <∞).

We first recall Von Neumann’s trace inequality (see, e.g., Carlsson, 2021, Theorem 3.1).

Lemma B.1 (Von Neumann’s trace inequality). Suppose A,B ∈ Rn×m with n ≤ m. Let σA
1 ≥ · · · ≥ σA

n ≥ 0 and
σB
1 ≥ · · · ≥ σB

n ≥ 0 denote the respective singular values of A and B. Then

Tr(AB⊤) ≤
n∑

i=1

σA
i σ

B
i .

Furthermore, equality holds if and only if A and B share left and right singular vectors.

We can now proceed with the proof of our result. We first concatenate the inputs and outputs into data matrices X =
[x1, . . . ,xT ] ∈ RN×T and Y = [y1, . . . ,yT ] ∈ RN×T . We can write equation 2 as follows:

min
Y
∥X−Y∥2F subject to YY⊤ = T IN .

Expanding, substituting in with the constraint YY⊤ = T IN and dropping terms that do not depend on Y results in the
objective

max
Y

Tr(XY⊤) subject to YY⊤ = T IN .

By Von Neumann’s trace inequality, the trace is maximized when the singular vectors of Y are aligned with the singular
vectors of X. In particular, if the SVD of X is given by X = UxSxV

⊤
x , then the optimal Y is given by Y =

√
TUxV

⊤
x ,

which is precisely C
−1/2
xx X, where Cxx := 1

T XX⊤ = UxS
2
xU

⊤
x .

C. Proof of Proposition 2.1
Proof of Proposition 2.1. Suppose Equation 1 holds. Then, for i = 1, . . . ,K,

⟨(w⊤
i yt)

2⟩t = ⟨w⊤
i yty

⊤
t wi⟩t = w⊤

i wi = 1.

Therefore, Equation 4 holds.
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Now suppose Equation 4 holds. Let v ∈ RN be an arbitrary unit vector. Then vv⊤ ∈ SN and by Equation 3, there exist
g1, . . . , gK ∈ R such that

vv⊤ = g1w1w
⊤
1 + · · ·+ gKwKw⊤

K . (15)

We have

v⊤⟨yty
⊤
t ⟩tv = Tr(vv⊤⟨yty

⊤
t ⟩t) =

K∑
i=1

gi Tr(wiw
⊤
i ⟨yty

⊤
t ⟩t) =

K∑
i=1

gi Tr(wiw
⊤
i ) = Tr(vv⊤) = 1. (16)

The first equality is a property of the trace operator. The second and fourth equalities follow from Equation 15 and the
linearity of the trace operator. The third equality follows from Equation 4, the cyclic property of the trace, and the fact that
each wi is a unit vector. The final equality holds because v is a unit vector. Since Equation 16 holds for every unit vector
v ∈ RN , Equation 1 holds.

D. Frame Factorizations of Symmetric Matrices
D.1. Analytic solution for the optimal gains

Recall that the optimal solution of the symmetric objective in Equation 5 is given by yt = C
−1/2
xx xt for t = 1, 2, . . . . In our

neural circuit with interneurons and gain control, the outputs of the primary neurons at equilibrium is (given in Equation 8,
but repeated here for clarity),

ȳt =
[
IN +W diag (g)W⊤]−1

xt,

where W ∈ RN×K is overcomplete, arbitrary (provided Equation 3 holds), and fixed; and elements of g ∈ RK can be
interpreted as learnable scalar gains. The circuit performs symmetric whitening when the gains g satisfy the relation

IN +W diag (g)W⊤ = C1/2
xx . (17)

It is informative to contrast this with conventional approaches to symmetric whitening, which rely on eigendecompositions,

V diag (λ)
1/2

V⊤ = C1/2
xx ,

where V ∈ RN×N and λ are the eigenvectors and eigenvalues of Cxx, respectively. Note that in this eigenvector formulation,
both vector quantities (columns of V) and scalar quantities (elements of λ) need to be learned, whereas in our formulation
(Equation 17), only scalars need to be learned (elements of g).

When K ≥ N(N + 1)/2, we can explicitly solve for the optimal gains g∗ (derived in the next subsection):

g∗ =
[(
W⊤W

)◦2]† [
w⊤

1 C
1/2
xx w1 − 1, . . . ,w⊤

KC1/2
xx wK − 1

]⊤
. (18)

D.2. Isolating g embedded in a diagonal matrix

In the upcoming subsection, our variable of interest, g, is embedded along the diagonal of a matrix, then wedged between
two fixed matrices, i.e. A1 diag (g)A2. We employ the following identity to isolate g,

diag (A1 diag (g)A2) =
(
A1 ◦A⊤

2

)
g, (19)

where, on the left-hand-side, the inner diag (·) forms a diagonal matrix from a vector, the outer diag (·) returns the diagonal
of a matrix as a vector, and ◦ is the element-wise Hadamard product.

D.3. Deriving optimal gains

Let C ∈ SN , where SN is the set of symmetric N ×N matrices. Suppose g ∈ RK is such that the following holds:

W diag (g)W⊤ = C (20)
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where W ∈ RN×K is some fixed, arbitrary, frame with K ≥ N(N+1)
2 (i.e. a representation that is O(N2) overcomplete).

To solve for g, we multiply both sides of Equation 20 from the left and right by W⊤ and W, respectively, then take the
diagonal4 of the resultant matrices,

diag
(
W⊤W diag (g)W⊤W

)
= diag

(
W⊤CW

)
. (21)

Finally, employing the identity in Equation 19 yields

(W⊤W)◦2g = diag
(
W⊤CW

)
, (22)

g =
[
(W⊤W)◦2

]†
diag

(
W⊤CW

)
, (23)

where (·)◦2 denotes element-wise squaring, (W⊤W)◦2 is positive semidefinite by the Schur product theorem and (·)†
denotes the Moore-Penrose pseudoinverse. Thus, any N ×N symmetric matrix, can be encoded as a vector, g, with respect
to an arbitrary fixed frame, W, by solving a standard linear system of K equations of the form Ag = b. Importantly, when
K = N(N+1)

2 and the columns of W are not collinear, we have empirically found the matrix on the LHS, (W⊤W)◦2, to be
positive definite, so the vector g is uniquely defined.

Without loss of generality, assume that the columns of W are unit-norm (otherwise, we can always normalize them by
absorbing their lengths into the elements of g). Furthermore, assume without loss of generality that C ∈ SN++, the set of all
symmetric positive definite matrices (e.g. covariance, precision, PSD square roots, etc.). When C is a covariance matrix,
then diag

(
W⊤CW

)
can be interpreted as a vector of projected variances of C along each axis spanned by W. Therefore,

Equation 22 states that the vector g is linearly related to the vector of projected variances via the element-wise squared
frame Gramian, (W⊤W)◦2.

E. Saddle Point Property
In this section, we prove the following minimax property (for the case t = 1, . . . , T with T finite):

min
{yt}

max
g
⟨ℓ(xt,yt,g)⟩t = max

g
min
{yt}
⟨ℓ(xt,yt,g)⟩t. (24)

The proof relies on the following minimax property for a function that satisfies the saddle point property (Boyd &
Vandenberghe, 2004, section 5.4).

Theorem E.1. Let V ⊆ Rn, W ⊆ Rm and f : V ×W → R. Suppose f satisfies the saddle point property; that is, there
exists (a∗,b∗) ∈ V ×W such that

f(a∗,b) ≤ f(a∗,b∗) ≤ f(a,b∗), for all (a,b) ∈ V ×W.

Then

min
a∈V

max
b∈W

f(a,b) = max
b∈W

min
a∈V

f(a,b) = f(a∗,b∗).

In view of Theorem E.1, it suffices to show there exists (y∗
1, . . . ,y

∗
T ,g

∗) such that

ℓ(y∗
1, . . . ,y

∗
T ,g) ≤ ℓ(y∗

1, . . . ,y
∗
T ,g

∗) ≤ ℓ(y1, . . . ,yT ,g
∗), for all y1, . . . ,yT ∈ RN and g ∈ RK . (25)

Define y∗
t := C

−1/2
xx xt for all t = 1, . . . , T and define g∗ as in equation 18 so that equation 17 holds. Then, for all g ∈ RK ,

ℓ(y∗
1, . . . ,y

∗
T ,g) =

1

T

T∑
t=1

∥xt − y∗
t ∥22.

4Similar to commonly-used matrix libraries, the diag (·) operator here is overloaded and can map a vector to a matrix or vice versa.
See Appendix A for details.
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Therefore, the first inequality in equation 25 holds (in fact it is an equality for all g). Next, we have

ℓ(y1, . . . ,yT ,g
∗) =

1

T

T∑
t=1

∥xt − yt∥22 +
1

T

T∑
t=1

Tr
[
Wdiag(g∗)W⊤(yty

⊤
t − IN )

]
=

1

T

T∑
t=1

(x⊤
t xt − 2x⊤

t yt) +
1

T

T∑
t=1

Tr
[
(IN +Wdiag(g∗)W⊤)(yty

⊤
t − IN )

]
=

1

T

T∑
t=1

(x⊤
t xt − 2x⊤

t yt) +
1

T

T∑
t=1

Tr
[
C1/2

xx (yty
⊤
t − IN )

]
Since C

1/2
xx is positive definite, ℓ(y1, . . . ,yT ,g

∗) is strictly convex in (y1, . . . ,yT ) with its unique minimum obtained at
yt = C

−1/2
xx xt for all t = 1, . . . , T (to see this, differentiate with respect to y1, . . . ,yT , set the derivatives equal to zero and

solve for y1, . . . ,yT ). This establishes the second inequality in equation 25 holds. Therefore, by Theorem E.1, equation 24
holds.

F. Weighted Average Update Rule for g

The update for g in Equation 10 can be generalized to allow for a weighted average over past samples. In particular, the
general update is given by

g← g + η

(
1

Z

t∑
s=1

γt−sz◦2s − 1

)
,

where γ ∈ [0, 1] determines the decay rate and Z := 1 + γ + · · ·+ γt−1 is a normalizing factor.

G. Batched and Offline Algorithms for Whitening with RNNs via Gain Modulation
In addition to the fully-online algorithm provided in the main text (Algorithm 1), we also provide two variants below. In
many applications, streaming inputs arrive in batches rather than one at a time (e.g. video streaming frames). Similarly
for conventional offline stochastic gradient descent training, data is sampled in batches. Algorithm 2 would be one way to
accomplish this in our framework, where the main difference between the fully online version is taking the mean across
samples in the batch to yield average gain update ∆g term. Furthermore, in the fully offline setting when the covariance of
the inputs, Cxx is known, Algorithm 3 presents a way to whiten the covariance directly.

Algorithm 2 Batched symmetric whitening
1: Input: Data matrix X ∈ RN×T (centered)
2: Initialize: W ∈ RN×K ; g ∈ RK ; η; batch size B
3: while not converged do
4: XB ← sample batch(X, B)
5: YB ← [IN +W diag (g)W⊤]−1XB

6: ZB ←W⊤YB

7: ∆g← 1
T diag(ZBZ

⊤
B)− 1

8: g← g + η mean(∆g,axis=1)
9: end while

Algorithm 3 Offline symmetric whitening
1: Input: Input covariance Cxx

2: Initialize: W ∈ RN×K ; g ∈ RK ; η
3: while not converged do
4: M← [IN +W diag (g)W⊤]−1

5: Cyy ←MCxxM
6: ∆g← diag

(
W⊤CyyW

)
− 1

7: g← g + η∆g
8: end while

H. Normalizing Ill-conditioned Inputs with Non-negative Constrained Gains
H.1. Quantifying whitening error

Whitening with non-negative gains does not, in general, produce an output with identity covariance matrix; therefore,
quantifying algorithm performance with the error defined in the main text would not be informative. Because this extension
shares similarities with ideas of regularized whitening, in which principal axes whose eigenvalues are below a certain
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threshold are unaffected by the whitening transform, we quantify algorithmic performance using thresholded Spectral Error,

Spectral Error :=
1

N

N∑
i

max(λi − 1, 0)2,

where λi is the ith eigenvalue of Cyy . Here, as in the main text, we set the threshold to 1. Figure 7 shows that this network
reduces spectral error. Importantly, the converged solution depends on the initial choice of frame (see next subsection).

Figure 7. Whitening ill-conditioned inputs with non-negative gains. A) An equi-angular frame (red, blue, green; see Sec. 4.2) whitening
ill-conditioned inputs. B) Gains as algorithm progresses, using updates with either rectified or unrectified constraints. C) Spectral Error
(see text).

H.2. Geometric intuition behind thresholded whitening with non-negative gains

In general, the modified objective with rectified gains (Equation 14) does not statistically whiten the inputs x1,x2, . . . ,
but rather adapts the non-negative gains g1, . . . , gK to ensure that the variances of the outputs y1,y2, . . . in the directions
spanned by the frame vectors {w1, . . . ,wK} are bounded above by unity (Figure 8). This one-sided normalization
carries interesting implications for how and when the circuit statistically whitens its outputs, which can be compared with
experimental observations. For instance, the circuit performs symmetric whitening if and only if there are non-negative
gains such that Equation 17 holds (see, e.g., the top right example in Figure 8), which corresponds to cases such that the
matrix C

1/2
xx is an element of the following cone (with its vertex translated by IN ):{

IN +

K∑
i=1

giwiw
⊤
i : g ∈ RK

+

}
.

On the other hand, if the variance of an input projection is less than unity — i.e., w⊤
i Cxxwi ≤ 1 for some i — then the

corresponding gain gi remains zero. When this is true for all i = 1, . . . ,K, the gains all remain zero and the circuit output
is equal to its input (see, e.g., the bottom middle panel of Figure 8).

I. Whitening Spatially Local Neighborhoods
I.1. Spatially local whitening in 1D

For an N -dimensional input, we consider a network that whitens spatially local neighborhoods of size M < N . To this end,
we can construct N filters of the form

wi = ei, i = 1, . . . , N
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Figure 8. Geometric intuition of whitening with/without inequality constraint. Whitening efficacy using non-negative gains depends on W
and Cxx. For N = 2 and K = 3, examples of covariance matrices Cyy (red ellipses) corresponding to optimal solutions y of objective
12, for varying input covariance matrices Cxx (black ellipses) and frames W (spanning axes denoted by gray lines). Unit circles, which
correspond to the identity matrix target covariance, are shown with dashed lines. Each row corresponds to a different frame W and each
column corresponds to a different input covariance Cxx.

and M(N − M+1
2 ) filters of the form

wij =
ei + ej√

2
, i, j = 1, . . . , N, 1 ≤ |i− j| ≤M.

The total number of filters is (M + 1)(N − M
2 ), so for fixed M the number of filters scales linearly in N rather than

quadratically.

We simulated a network comprising N = 10 primary neurons, and a convolutional weight matrix connecting each interneuron
to spatial neighborhoods of three primary neurons. Given input data with covariance Cxx illustrated in Figure 9A (left
panel), this modified network succeeded to statistically whiten local neighborhoods of size of primary 3 neurons (right
panel). Notably, the eigenspectrum (Figure 9B) after local whitening is much closer to being equalized. Furthermore, while
the global whitening solution produced a flat spectrum as expected, the local whitening network did not amplify the axis
with very low-magnitude eigenvalues (Figure 9B right panel).

I.2. Filter bank construction in 2D

Here, we describe one way of constructing a set of convolutional weights for overlapping spatial neighborhoods (e.g. image
patches) of neurons. Given an n×m input and overlapping neighborhoods of size h × w to be statistically whitened, the
samples are therefore matrices X ∈ Rn×m. In this case, filters w ∈ R1×n×m can be indexed by pairs of pixels that are in
the same patch:

((i, j), (k, ℓ)), 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ |i− k| ≤ h, 0 ≤ |j − ℓ| ≤ w

We can then construct the filters as,

w(i,j),(k,ℓ)(X) =

{
xi,j if (i, j) = (k, ℓ),
xi,j+xk,ℓ√

2
if (i, j) ̸= (k, ℓ).

In this case there are

nm+ wh

[
(n− w)(m− h) + (n− w)

(h+ 1)

2
+ (m− h)

(w + 1)

2
+ (h+ 1)

(w + 1)

2

]
such filters, so the number of filters required scales linearly with nm rather than quadratically.
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Figure 9. Statistically adapting local neighborhoods of neurons. A) Ĉxx denotes correlation matrix, which are shown here for display
purposes only, to facilitate comparisons. Network with 10-dimensional input correlation (left) 10-dimensional output correlation matrix
after global whitening (middle); and output correlation matrix after statistically whitening local neighborhoods of size 3. The output
correlation matrix of the locally adapted circuit has block-identity structure along the diagonal. B) Corresponding eigenspectra of
covariance matrices of unwhitened (left), global whitened (middle), and locally whitened (right) network outputs. The y-axis limits of the
middle and right columns are the same, but different than the left column. The black dashed line denotes unity.

J. Additional Applications
J.1. Preventing representational collapse in online principal subspace learning

Here, similar to Lipshutz et al. (2023), we show how whitening can prevent representational collapse using the analytically
tractable example of online principal subspace learning. Recent approaches to self-supervised learning have used decorrela-
tion transforms such as whitening to prevent collapse during training (e.g. Zbontar et al., 2021). Future architectures may
benefit from online, adaptive whitening to allow for continual learning and test-time adaptation.

Consider a primary neuron whose pre-synaptic input at time t is st ∈ RD, and corresponding output is yt := v⊤st, where
v ∈ RD are the synaptic weights connecting the inputs to the neuron. An online variant of power iteration algorithm learns
the top principal component of the inputs by updating the vector v as follows:

v← v + ζ
(
ytst − y2t v

)
v← 1

∥v∥
v

where ζ > 0 is small.

Next, consider a population of 2 ≤ N ≤ D primary neurons with outputs yt ∈ RN and feedforward synaptic weight
vectors v1, . . . ,vN ∈ RD connecting the pre-synaptic inputs st to the N neurons. Running N parallel instances of the
power iteration algorithm defined above without a decorrelation process results in representational collapse, because each
synaptic weight vector vi converges to the top principal component (Figure 10, orange). We demonstrate that our whitening
algorithm via gain modulation readily solves this problem. Here, it is important that the whitening happen on a faster
timescale than the principal subspace learning, to avoid collapse (see Lipshutz et al., 2023, for details).

For this simulation, we set D = 3, N = 2 and randomly sample i.i.d. pre-synaptic inputs st ∼ N (0,diag(5, 2, 1)). We
randomly initialize two vectors v1,v2 ∈ R3 with i.i.d. Gaussian entries. At each time step t, we project pre-synaptic inputs
to form the post-synaptic primary neuron inputs, xt :=

[
v⊤
1 st,v

⊤
2 st
]⊤

, forming the input to Algorithm 1. Let yt be the
primary neuron steady-state output; that is, yt =

(
IN +W diag (g)W⊤)−1

xt (Equation 8). For i = 1, 2, we update vi

according to the above-defined update rules, with ζ = 10−3. We update the gains g according to Algorithm 1 with η = 10ζ .
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To measure the online subspace learning performance, we define

Subspace error :=
∥∥∥V (V⊤V

)−1
V⊤ − diag ([1, 1, 0])

∥∥∥2
Frob

, V := [v1,v2] ∈ R3×2

Figure 10 (blue) shows that our adaptive whitening algorithm with gain modulation successfully facilitates subspace learning
and prevents representational collapse.

Figure 10. Adaptive symmetric whitening with gain modulation prevents representational collapse during online principal subspace
learning. Without whitening, subspace error stabilizes at a non-zero value, indicating that the network has converged to a collapsed
representation. Shaded curves are median and [25%, 75%] quantiles over 50 random intializations.

J.2. Generalized adaptive covariance transformations

Our framework for adaptive whitening via gain modulation can easily be generalized to adaptively transform a signal with
some initial covariance matrix to one with any target covariance (i.e. not just the identity matrix). This demonstrates that
our adaptive gain modulation framework has implications beyond statistical whitening. This could, for example, allow
online systems to stably maintain some initial/target (non-white) output covariance under changing input statistics (i.e.
covariance homeostasis, Westrick et al., 2016; Benucci et al., 2013). The key insight, similar to the main text, is that a
full-rank covariance matrix has KN degrees of freedom, and therefore marginal measurements along KN distinct axes is
necessary and sufficient to represent the matrix (Karl et al., 1994).

Let Ctarget be some arbitrary target covariance matrix. Then the general objective is

min
{yt}
⟨∥xt − yt∥22⟩t s.t. ⟨yty

⊤
t ⟩t = Ctarget. (26)

Following the same logic as in the main text, the Lagrangian becomes

max
g

min
{yt}
⟨ℓ(xt,yt,g)⟩t, (27)

where ℓ(x,y,g) := ∥x− y∥22 +
K∑
i=1

gi
{
(w⊤

i y)
2 − σ2

i

}
,

where σ2
i = w⊤

i Ctargetwi is the marginal variance along the axis spanned by wi. When Ctarget = IN , then σ2
i = 1 for all

i, and this reduces to our original overcomplete whitening objective (Equation 5). The only difference in the recursive
algorithm optimizing this generalized objective is the gain update rule,

gi ← gi +
η

2
∇giℓ(xt, ȳt,g)

= gi + η
(
z̄2i,t − σ2

i

)
. (28)
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We can interpret this formulation as each interneuron having a pre-determined target input variance (perhaps learned over
long time-scales), and adjusting its gains to modulate the joint responses of the primary neurons until its input variance
matches the target.
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