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Abstract

Statistical whitening transformations play a fun-
damental role in many computational systems,
and may also play an important role in biologi-
cal sensory systems. Individual neurons appear
to rapidly and reversibly alter their input-output
gains, approximately normalizing the variance of
their responses. Populations of neurons appear
to regulate their joint responses, reducing correla-
tions between neural activities. It is natural to see
whitening as the objective that guides these be-
haviors, but the mechanism for such joint changes
is unknown, and direct adjustment of synaptic in-
teractions would seem to be both too slow, and in-
sufficiently reversible. Motivated by the extensive
neuroscience literature on rapid gain modulation,
we propose a recurrent network architecture in
which joint whitening is achieved through modu-
lation of gains within the circuit. Specifically, we
derive an online statistical whitening algorithm
that regulates the joint second-order statistics of a
multi-dimensional input by adjusting the marginal
variances of an overcomplete set of interneuron
projections. The gains of these interneurons are
adjusted individually, using only local signals,
and feed back onto the primary neurons. The net-
work converges to a state in which the responses
of the primary neurons are whitened. We demon-
strate through simulations that the behavior of the
network is robust to poor conditioning or noise
when the gains are sign-constrained, and can be
generalized to achieve a form of local whitening
in convolutional populations, such as those found
throughout the visual or auditory system.

*Equal contribution 1Center for Neural Science, New York Uni-
versity, New York, NY 2Center for Computational Neuroscience,
Flatiron Institute, New York, NY 3Neuroscience Institute, New
York University School of Medicine, New York, NY. Correspon-
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Lipshutz <dlipshutz@flatironinstitute.org>.
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1. Introduction
Statistical whitening transformations, in which multi-
dimensional inputs are decorrelated and normalized to have
unit variance, are common in statistical signal processing
and machine learning systems. For example, they provide a
common step in statistical factorization methods (Hyvärinen
& Oja, 2000) and are often used as a preprocessing step
for training deep networks (Krizhevsky, 2009). Empiri-
cal evidence shows that statistical whitening improves un-
supervised feature learning (Coates et al., 2011). More
recently, self-supervised learning methods have used sta-
tistical whitening or related decorrelation transformations
to prevent representational collapse (Ermolov et al., 2021;
Zbontar et al., 2021; Bardes et al., 2021; Hua et al., 2021).
Whitening in neural networks is often performed in the of-
fline setting. However, online methods are useful, especially
when the inputs are from dynamic environments.

In early sensory systems, which receive inputs from dy-
namic environments, changes in sensory input statistics
induce rapid changes in the input-output gains of single
neurons, allowing cells to normalize their output variance
(Fairhall et al., 2001; Nagel & Doupe, 2006). This is hypoth-
esized to enable maximal information transmission (Barlow,
1961; Laughlin, 1981; Fairhall et al., 2001). At the popu-
lation level, whitening and related adaptive decorrelation
transformations have been reported in sensory areas such
as the early visual cortex of cats (Benucci et al., 2013) and
the olfactory bulb in zebrafish (Friedrich, 2013; Wanner &
Friedrich, 2020) and mice (Giridhar et al., 2011; Gschwend
et al., 2015). However, the mechanisms underlying such
whitening behaviors are unknown, and would seem to re-
quire coordination among all pairs of neurons, as opposed to
the single-neuron case which relies only on gain rescaling.

Here, motivated by the large neuroscience literature on rapid
gain modulation, we propose a novel recurrent network ar-
chitecture for statistical whitening that exclusively relies on
gain modulation. In particular, we introduce a novel objec-
tive for statistical whitening that is expressed solely in terms
of the marginal variances of an overcomplete representation
of the input signal. We derive a recurrent circuit to optimize
the objective, and show that it corresponds to a network
comprising primary neurons and an auxiliary population of
interneurons with scalar gain modulation. Importantly, the
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Figure 1. Schematic of a recurrent statistical whitening network with 2 primary neurons and 3 interneurons. Left: 2D Scatter plot of the
(non-Gaussian) network inputs x = (x1, x2) whose covariance is the ellipse. Center: Primary neurons, whose outputs are y = (y1, y2),
receive external feedforward inputs, x, and recurrent feedback inputs from an auxiliary population of interneurons, −

∑3
i=1 giziwi.

Linear projection vectors {w1,w2,w3} ∈ R2 encode non-negative feedforward synaptic weights connecting the primary neurons to
interneuron i = 1, 2, 3 (symmetric weights are used for feedback connections). The weights are shown in the left and right panels with
corresponding colors. Inset: The ith interneuron (e.g. here i = 2) receives input zi = w>

i y, which is multiplied by its gain gi to produce
output gizi. Its gain, gi, is adjusted s.t. ∆gi ∝ z2i − 1. The dark arrow indicates that the gain update operates on a slower time scale.
Right: Scatter plots of the whitened network outputs y. Outputs have unit variance along all wi’s, which is equivalent to having identity
covariance matrix, i.e., Cyy = IN (black circle).

network operates online, and its responses converge to the
classical ZCA whitening solution without supervision or
backpropagation. To demonstrate potential applications of
this framework, we show that gain modulation serves as an
implicit gating mechanism, which facilitates fast context-
dependent whitening. Further, we show how non-negative
gain modulation provides a novel approach for dealing with
ill-conditioned or noisy data. Finally, we relax the overcom-
pleteness constraint in our objective and provide a method
for local decorrelation of convolutional populations.

2. A novel objective for ZCA whitening
Consider a neural network with N primary neurons. For
each t = 1, 2, . . . , let xt and yt be N -dimensional vectors
whose components respectively denote the inputs and out-
puts of the primary neurons at time t, Figure 1. Without loss
of generality we assume the inputs xt are centered.

2.1. Conventional objective

Statistical whitening aims to linearly transform inputs xt so
that the covariance of the outputs yt is identity, i.e.,

Cyy = 〈yty
>
t 〉t = IN , (1)

where 〈·〉t denotes the expectation operator over t, and IN
denotes the N ×N identity matrix (see Appendix A for a
list of notation used in this work).

It is well known that whitening is not unique: any orthog-
onal rotation of a random vector with identity covariance

matrix also has identity covariance matrix. There are sev-
eral common choices to resolve this rotational ambiguity,
each with their own advantages (Kessy et al., 2018). Here,
we focus on the popular whitening transformation called
Zero-phase Component Analysis (ZCA) whitening or Ma-
halanobis whitening, which is the whitening transformation
that minimizes the mean-squared error between the inputs
and the whitened outputs (alternatively, the one whose trans-
formation matrix is symmetric). Mathematically, the ZCA-
whitened outputs are the optimal solution to the minimiza-
tion problem

min
{yt}
〈‖xt − yt‖22〉t s.t. 〈yty

>
t 〉t = IN , (2)

where ‖ · ‖2 denotes the Euclidean norm on RN . Assuming
the covariance of the inputs Cxx := 〈xtx

>
t 〉t is positive

definite, the unique solution to the optimization problem
in Equation 2 is yt = C

−1/2
xx xt for t = 1, 2, . . . , where

C
−1/2
xx is the inverse matrix square root of Cxx.

Equation 2 provides a starting point for deriving online ZCA
whitening algorithms that can be implemented with recur-
rent neural networks that learn by updating their synaptic
weights (Pehlevan & Chklovskii, 2015).

2.2. A novel objective using marginal statistics

We formulate a novel objective for learning the ZCA whiten-
ing transform via gain modulation. Our innovation exploits
the fact that a random vector has identity covariance matrix
(i.e., Equation 1 holds) if and only if it has unit marginal
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variance along all possible 1D projections (a form of to-
mography; see Related Work). We can derive a tighter
statement, that holds for a finite but overcomplete set of at
least K ≥ KN := N(N + 1)/2 distinct axes (‘overcom-
plete’ simply means that the number of axes exceeds the
dimensionality of the input, i.e., K > N ). Intuitively, this
equivalence holds because an N ×N symmetric matrix has
KN degrees of freedom, so the marginal variances along
K ≥ KN distinct axes are sufficient to constrain theN ×N
(symmetric) covariance matrix. We formalize this equiva-
lence in the following proposition, whose proof is provided
in Appendix B.

Proposition 2.1. Fix K ≥ KN . Suppose w1, . . . ,wK ∈
RN are unit vectors1 such that

span({w1w
>
1 , . . . ,wKw>K}) = SN , (3)

where SN denotes theKN -dimensional vector space ofN×
N symmetric matrices. Then Equation 1 holds if and only if
the projection of yt onto each unit vector w1, . . . ,wK has
unit variance, i.e.,

〈(w>i yt)
2〉t = 1 for i = 1, . . . ,K. (4)

Assuming Equation 3 holds, we can interpret the set of
vectors {w1, . . . ,wK} as a frame (i.e., an overcomplete
basis; Casazza et al., 2013) in RN such that the covariance
of the outputs Cyy can be computed from the variances of
the K-dimensional projection onto the set of frame vectors.
Thus, we can replace the whitening constraint in Equation 2
with the equivalent marginal variance constraint to obtain
the following objective:

min
{yt}
〈‖xt − yt‖22〉t s.t. Equation 4 holds. (5)

3. A recurrent neural network with gain
adaptation for ZCA whitening

In this section, we derive an online algorithm for solving
the optimization problem in Equation 5 and map the algo-
rithm onto a recurrent neural network with gain modulation.
We first introduce Lagrange multipliers to enforce the con-
straints, which transforms the minimization problem into a
minimax problem. We then solve the minimax problem by
taking stochastic gradient steps.

Assume we have an overcomplete frame {w1, . . . ,wK} in
RN satisfying Equation 3. We concatenate the frame vectors
into anN×K matrix W := [w1, . . . ,wK ]. In our network,
primary neurons project onto the layer of K interneurons
with the synaptic weights representing matrix W. Then,
the post-synaptic currents in interneurons at time t encode

1The unit-length assumption is without loss of generality and
is imposed here for notational convenience.

the K-dimensional vector zt := W>yt (Figure 1). We
emphasize that the synaptic weight matrix W will remain
fixed in our whitening algorithm.

3.1. Enforcing the marginal variance constraints with
scalar gains

We introduce Lagrange multipliers g1, . . . , gK ∈ R to en-
force the K constraints in Equation 4. We concatenate
the Lagrange multipliers into the K-dimensional vector
g := [g1, . . . , gK ]> ∈ RK , and formulate the problem as a
saddle point optimization,

max
g

min
{yt}
〈`(xt,yt,g)〉t, (6)

where `(x,y,g) := ‖x− y‖22 +

K∑
i=1

gi
{

(w>i y)2 − 1
}
.

Here, we have interchanged the order of maximization over
g and minimization over yt, which is justified because
`(xt,yt,g) is convex in yt and linear in g, see Appendix C.

In our neural network implementation, gi will correspond
to the multiplicative gain associated with the ith interneuron,
so that its output at time t is gizi,t (Figure 1, Inset). From
Equation 6, we see that the gain of the ith interneuron, gi,
enforces the marginal variance of yt along the axis spanned
by wi to be unity. Importantly, the gains are not hyper-
parameters, but rather they are optimization variables which
promote statistical whitening of {yt}, preventing the neural
outputs from trivially matching the inputs {xt}.

3.2. Deriving recurrent neural network update rules

To solve Equation 6 in the online setting, we assume there
is a time-scale separation between ‘fast’ neural dynamics
and ‘slow’ gain updates, so that at each time step the neural
dynamics equilibrate before the gains are adjusted. This al-
lows us to perform the inner minimization over {yt} before
the outer maximization over the gains. In biological neural
networks, this is justifiable because a given neuron’s activa-
tions (i.e. action potential firing) operate on a much more
rapid time-scale than its intrinsic input-output gain, which
is driven by slower processes such as changes in calcium
ion concentration gradients (Ferguson & Cardin, 2020).

3.2.1. FAST NEURAL ACTIVITY DYNAMICS

For each time step t = 1, 2, . . . , we minimize the objective
`(xt,yt,g) over yt by recursively running gradient-descent
steps to equilibrium:

yt ← yt −
γ

2
∇y`(xt,yt(τ),g)

= yt + γ {xt −W(g ◦ zt)− yt} , (7)

where γ > 0 is a small constant, the circle ‘◦’ denotes the
Hadamard (element-wise) product, g ◦ zt is a vector of K
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gain-modulated interneuron outputs, and we assume the
primary cell outputs are initialized at zero.

We see from the right-hand-side of Equation 7 that the ‘fast’
dynamics of the primary neurons are driven by three terms
(inside the curly braces): i) constant feedforward external
input xt; ii) recurrent gain-modulated feedback from in-
terneurons −W(g ◦ zt); and iii) a leak term −yt. Because
the neural activity dynamics are linear, we can analytically
solve for their equilibrium (i.e. steady-state), ȳt, by setting
the update in Equation 7 to zero:

ȳt =
[
IN + W diag (g)W>]−1 xt

=

[
IN +

K∑
i=1

giwiw
>
i

]−1
xt, (8)

where diag (g) denotes the K ×K diagonal matrix whose
(i, i)th entry is gi, for i = 1, . . . ,K. The equilibrium feed-
forward interneuron inputs are then given by

z̄t = W>ȳt. (9)

The gain-modulated outputs of the K interneurons, g ◦ zt,
are then projected back onto the primary cells via symmetric
weights, −W (Figure 1).

3.2.2. SLOW GAIN DYNAMICS

After the fast neural activities reach steady-state, the in-
terneuron gains are updated by taking a stochastic gradient-
ascent step with respect to g:

g← g +
η

2
∇g`(xt, ȳt,g)

= g + η
(
z̄◦2t − 1

)
, (10)

where η > 0 is the learning rate, the superscript
‘◦2’ denotes the element-wise squaring operation (i.e.,
z̄◦2t = [z̄2t,1, . . . , z̄

2
t,K ]>) and 1 = [1, . . . , 1]> is the K-

dimensional vector of ones2. Remarkably, the update to the
ith interneuron’s gain gi (Equation 10) depends only on the
online estimate of the variance of its equilibrium input z̄2t,i,
and its distance away from the target variance, 1. Networks
such as these which adapt using only local signals to each
interneuron are suitable candidates for hardware implemen-
tations using low-power neuromorphic chips (Pehlevan &
Chklovskii, 2019). Thus, although statistical whitening in-
herently requires a joint transformation in response to joint
statistics, our recurrent network solution operates solely
using single-neuron gain changes in response to marginal
statistics.

2Appendix D generalizes the gain update to allowing for
temporal-weighted averaging of the variance over past samples.

3.2.3. ONLINE UNSUPERVISED ALGORITHM

By combining Equations 7 – 10, we arrive at our online
recurrent neural network algorithm for statistical whitening
via gain modulation (Algorithm 1). We also provide batched
and offline versions of the algorithm in Appendix E.

Algorithm 1 Online ZCA whitening via gain modulation
1: Input: Centered inputs x1,x2, · · · ∈ RN

2: Initialize: W ∈ RN×K ; g ∈ RK ; η, γ > 0
3: for t = 1, 2, . . . do
4: yt ← 0
5: {Run yt and zt dynamics to equilibrium}
6: while not converged do
7: zt ←W>yt

8: yt ← yt + γ {xt −W(g ◦ zt)− yt}
9: end while

10: g← g + η
(
z◦2t − 1

)
{Update gains}

11: end for

There are a few points worth noting about this network:

• The weights W remain fixed in Algorithm 1. Rather,
the gains g adapt to statistically whiten the outputs.
This allows the whitening to be easily adjusted and
reversed, by simply returning the gains to their default
states.

• While the objective is effectively in the form of an auto-
encoding loss function involving an `2 reconstruction
term (Eq. 6), the recurrent network never explicitly
reconstructs its inputs.

• Since all recurrent dynamics are linear, it is possible to
bypass the inner loop representing the fast dynamics
of the primary cells (lines 6 – 9 of Algorithm 1), by
directly computing the equilibrium responses of ȳt,
and z̄ directly (Eqs. 8, 9).

4. Numerical experiments and applications
We provide different applications of our recurrent ZCA
whitening network via gain modulation. In particular, we
emphasize that gain adaptation is distinct from, while also
complementary to, a synaptic weight learning. We therefore
side-step the goal of learning the frame W, and assume it
is known. This allows us to decouple and analyze the gen-
eral properties of our proposed gain modulation framework,
independently from the choice of frame.

4.1. Gain modulation: a new solution to ZCA
whitening

We first demonstrate that our algorithm succeeds in yielding
statistically whitened outputs. We simulated a network with
interneuron weights, W, as illustrated in Figure 1 (N=2,
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Figure 2. Network from Figure 1 (with corresponding colors;
N=2, K=KN=3, η=2E-3) whitening to two randomly gener-
ated statistical contexts online (10K steps each). Top: Marginal
variances (log scale) measured by interneurons approach 1 over
time. Middle: Dynamics of interneuron gains, which are applied
to zi before feeding back onto the primary cells. Dashed lines are
optimal gains (Appendix F). Bottom: Whitening error over time.

K=KN=3). Figure 2 shows network adaptation to inputs
from two contexts with randomly generated underlying in-
put covariances Cxx (10K gain update steps each). As up-
date steps progress, all marginal variances converge to unity,
as expected from the objective (top panel). To achieve ZCA
whitening at equilibrium, then IN +

∑K
i=1 giwiw

>
i = C

1/2
xx

(Equation 8). When the number of interneurons satisfies
K=KN , the optimal gains to achieve ZCA whitening can
be solved analytically (see Appendix F for details). These
are displayed as dashed lines in the (middle panel). We
found that the network successfully adapted to the two ran-
dom statistical contexts, and converged to the optimal set
of gains to achieve whitened yt (Figure 2). Accordingly,
the whitening error, as measured by the Frobenius norm be-
tween Cyy and IN , approached zero (bottom panel). Thus,
with each interneuron monitoring their respective marginal
input variances z2i , and re-scaling their input-output gains to
modulate feedback onto the primary neurons, the network
succeeded in adapting to each context and yielded whitened
outputs.

4.2. Rate of convergence depends on frame W

Thus far, we have assumed the frame, W, was fixed and
known (e.g., optimized through pre-training or long time-
scale development). This distinguishes our method from
existing ZCA whitening methods, which typically operate
by estimating the eigenvectors of the data. By contrast, our
network obviates learning the principal axes of the data
altogether, and instead uses a statistical sampling approach
along a fixed set of measurement axes.

If the number of interneurons K=KN , their gains will de-
scend the gradient of the objective (Equation 10), and by
Proposition Theorem 2.1, the outputs will become whitened.
We were interested in how effectively the network whitened

randomly sampled inputs with fixed input covariance de-
pending on its initialization. Figure 3 summarizes an empir-
ical convergence test of 100 networks where N = 2 with
three different kinds of frame W ∈ RN×KN : i) with i.i.d.
Gaussian entries (‘Random’); ii) through an optimization
procedure that finds a frame whose columns have mini-
mum mutual coherence and cover the ambient space (‘Opti-
mized’); and iii) a frame whose first N columns were the
eigenvectors of the data and the remainingKN−N columns
were random Gaussian entries (‘Spectral’). For clarity, we
have removed the effects of sampling stochasticity by run-
ning the offline version of our network, which assumes
having direct access to the input covariance (Appendix E);
the online version was qualitatively similar.

Figure 3. Convergence depends on qualitative structure of W.
Networks each had N=2, K=KN=3, η=5E-3. Shaded error
regions are standard errors over the 100 repeats.

The Spectral frame defines a bound on achievable perfor-
mance, converging much faster than the Random and Op-
timized frames. This is because the interneuron axes were
aligned with the input’s principal axes, and a simple gain
scaling along those directions is the optimal whitening solu-
tion. Interestingly, we found that networks with optimized
weights systematically converged faster than randomly-
initialized frames. These results indicate that the choice
of frame does in fact play an important role in the effective-
ness of our algorithm. Namely, increased coverage of the
space by the frame vectors facilitates whitening with our
gain re-scaling mechanism. The random sampling approach
has little hope of scaling to high dimensional inputs, and the
green line in Figure 3 shows that one would benefit from
aligning the frame vectors to the principal axes of the inputs.

4.3. Implicit gating via gain modulation

Motivated by the findings in Figure 3, we wished to demon-
strate a way in which our adaptive gain modulation net-
work could complement or augment a network in which
context-dependent weights have already been learned. We
performed an experiment involving a network with ‘pre-
trained’ W (N=6, K=KN=21) whitening inputs from
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Figure 4. Gains can act as an implicit gating mechanism. Top:
Whitening error over time with a network (N=6; KN=21; η=1E-
3) adapting to 2 alternating statistical contexts A and B, with
different input covariances for 10K steps each. W was initialized
as a Spectral frame, with the first 2N columns set to be the eigen-
vectors of covariances of contexts A and B, respectively. Bottom:
Gains can be seen to act as switches for context, gating the spectral
components to optimally whiten each context.

two alternating statistical contexts, A and B, for 10K steps
each. The frame was constructed such that the first and
second N columns were the eigenvectors of context A and
B’s covariance, respectively, and the remaining K − 2N
columns’ elements were random i.i.d. Gaussian. Figure 4
(top panel) shows that the network adaptively whitens the
inputs from each successive context. Surprisingly, upon
closer inspection to the K interneurons’ gains over time
(bottom panel) showed that they approximately served to
‘select’ the frame vectors corresponding to the eigenvectors
of each respective condition (as indicated by the blue/red in-
tensity on the figure). Our gain modulation framework thus
serves as an effective means of gating context-dependent
information without an explicit context signal.

4.4. Normalizing ill-conditioned data

When inputs are low-rank, Cxx is ill-conditioned (Fig-
ure 5A), and whitening can amplify directions of small
variance that are due to noise. In this section, we show how
our gain-modulating network can be simply modified to han-
dle these types of inputs. To prevent amplification of inputs
below a certain threshold, we can replace the unit marginal
variance equality constraints with upper bound constraints:

〈(w>i yt)
2〉t ≤ 1 for i = 1, . . . ,K. (11)

Our modified network objective then becomes

min
{yt}
〈‖xt − yt‖22〉t s.t. Equation 11 holds. (12)

Figure 5. Two networks (N=2, K=3, η=0.02) whitening ill-
conditioned inputs. A: Outputs without whitening. 2D scatterplot
of a non-Gaussian density whose underlying signal lies close to
a latent 1D axis. The signal magnitude along that axis is denoted
by the colors. The covariance matrix is depicted as a black ellipse.
Gray dashed lines are axes spanned by W (here chosen to be an
equi-angular frame). B: ZCA whitening boosts small-amplitude
noise lying along the uninformative direction. C: Modulating gains
according to Eq. 14 rescales the data without amplifying noise. D:
Gains updated with Eq. 10 (solid) vs. Eq. 14 (dashed).

Intuitively, if the projected variance along a given direction
is already less than or equal to unity, then it will not affect
the overall loss. To enforce the upper bound constraints,
we introduce gains as Lagrange multipliers as before, but
restrict the domain of g to be the non-negative orthant RK

+ ,
resulting in non-negative optimal gains:

max
g∈RK

+

min
{yt}
〈`(xt,yt,g)〉t, (13)

where `(x,y,g) is defined as in Equation 6. At each time
step t, we optimize Equation 13 by first taking gradient-
descent steps with respect to yt, resulting in the same neu-
ral dynamics (Equation 7) and equilibrium solution (Equa-
tion 8) as before. After the neural activities equilibrate, we
take a projected gradient-ascent step with respect to g:

g← bg + η(z̄◦2t − 1)c (14)

where b·c denotes the element-wise half-wave rectification
operation that projects its inputs onto the positive orthant
RK

+ , i.e., bvc := [max(v1, 0), . . . ,max(vK , 0)]>.

We simulated a network with gains set to either updates
using unconstrained gains (Equation 10), or rectified gains
(Equation 14), and observed that these two models con-
verged to two different solutions (Figure 5B, C). When
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gi was not constrained to be non-negative, the network
achieved global whitening, as before. By contrast, the gains
constrained to be non-negative converged to different val-
ues altogether, with one of them converging to zero rather
than becoming negative. The whitening error for this net-
work unsurprisingly converged to a non-zero value with the
non-negative gain constraint. Thus, with a non-negative
constraint, the network failed to fully whiten y, but in doing
so, it did not amplify the noise. In Appendix G we show
additional cases that provide further geometric intuition on
differences between ZCA whitening and non-negative gain
constrained ZCA whitening with our network.

4.5. Gain modulation enables local spatial
decorrelation

The requirement of KN interneurons to ensure a statisti-
cally white output becomes prohibitively costly for high-
dimensional inputs due to the number of interneurons scal-
ing as O(N2). This led us to ask: how many interneurons
are needed in practice? For natural sensory inputs such
as images, it is well known that inter-pixel correlation is
highly structured, decaying as a function of distance. Using
a Gaussian random walk, we simulated gaze fixation and
micro-saccadic eye movements, drawing 12×12 patch sam-
ples from a natural image (Figure 6A; Hateren & Schaaf,
1998). We did this for different randomly selected regions
of the image (colors). The content of each region is quite
different, but the inter-pixel correlation within each context
fell rapidly with distance (Figure 6B).

We relaxed the O(N2) marginal variance constraint to in-
stead target whitening of spatially local neighborhoods of
primary neurons with image patch inputs. That is, the frame
W spannedK < KN axes in RN , but was constructed such
that overlapping neighborhoods of 4× 4 primary neurons
were decorrelated, each by a population of interneurons that
was ‘overcomplete’ with respect to that neighborhood (see
Appendix H for frame construction details). Importantly,
taking into account convolutional structure dramatically re-
duces the interneuron complexity from O(N2) → O(N)
(Appendix H). This frame is still overcomplete (K > N ),
but because K<KN , we no longer guarantee at equilibrium
that Cyy = IN .

After running this local whitening network on the inputs
drawn from the red context, we found that (Figure 6C): i)
inter-pixel correlations drop within the region specified by
the local neighborhood; and ii) surprisingly, correlations at
longer-range are dramatically reduced. Accordingly, the co-
variance eigenspectrum of the locally whitened outputs was
significantly flatter compared to the inputs (Figure 6D left
vs. right columns). We also provide a 1D example in Ap-
pendix H. We remark that this empirical result is not at all
obvious – that whitening individual overlapping neighbor-

hoods of neurons should produce a more globally whitened
output covariance. Indeed, studying whether and when a
globally whitened solution is possible from whitening of
spatial overlapping neighborhoods is an interesting problem
that is worth pursuing.

5. Related work
5.1. Biologically plausible whitening networks

Biological circuits operate in the online setting and, due
to physical constraints, learn exclusively using local sig-
nals. Therefore, to plausibly model neural computation, a
neural network model must operate in the online setting
(i.e., streaming data) and use local learning rules. There
are a few existing normative models of statistical whiten-
ing and related transformations; however, these models use
synaptic plasticity mechanisms (i.e., changing W) to adapt
to changing input statistics (Pehlevan & Chklovskii, 2015;
Pehlevan et al., 2017; Chapochnikov et al., 2021; Lipshutz
et al., 2022). Adaptation of neural population responses to
changes in sensory inputs statistics occurs rapidly, on the
order of seconds (Benucci et al., 2013; Wanner & Friedrich,
2020), so it could potentially be accounted for by short-
term synaptic plasticity, which operates on the timescale of
tens of milliseconds to minutes (Zucker et al., 2002), but
not by long-term synaptic plasticity, which operates on the
timescale of minutes or longer (Martin et al., 2000). Here,
we explore the alternative hypothesis that modulation of
neural gains, which operates on the order of tens of mil-
liseconds to minutes (Fairhall et al., 2001), facilitates rapid
adaptation of neural populations to changing input statistics.

5.2. Tomography and “sliced” density measurements

Our leveraging of 1D projections to compute the ZCA
whitening transform is reminiscent of approaches taken in
the field of tomography. Geometrically, our method repre-
sents an ellipsoid (i.e., the N dimensional covariance ma-
trix) using noisy 1D projections of the ellipsoid onto axes
spanned by frame vectors (i.e., estimates of the marginal
variances). This is a special case of reconstruction problems
that have been studied in geometric tomography (Karl et al.,
1994; Gardner, 1995). An important distinction between
tomographic reconstruction and our solution to ZCA whiten-
ing is that we are not using the 1D projections to reconstruct
the multi-dimensional inputs; instead, we are utilizing the
univariate measurements to transform the ellipsoid into a
new shape (a hyper-sphere, in the case of whitening).

In optimal transport, “sliced” methods offer a way to mea-
sure otherwise intractable p-Wasserstein distances in high
dimensions (Bonneel et al., 2015), thereby enabling its use
in optimization loss functions. Sliced methods compute
Wasserstein distance by repeatedly taking series of 1D pro-
jections of two densities, then computing the expectation



Statistical whitening of neural populations with gain-modulating interneurons

Figure 6. Local spatial whitening. A) Large grayscale image from which 12×12 image patch samples are drawn. Colors represent
random-walk sampling from regions of the image corresponding to contexts with different underlying statistics. Six samples from
each context are shown below. B) Without whitening, mean pairwise output pixel correlations decay rapidly with spatial distance in
each context, suggesting that local whitening may be effective. C) Pairwise output pixel correlation of patches from the red context
before (gray) and after global (black dots) vs. convolutional whitening with overlapping 4×4 neighborhoods (red). Shaded regions
represent standard deviations. D) Top: Expected correlation matrices of all flattened patches of the red context before whitening, and after
global/local ZCA whitening. Correlation and not covariance matrices are displayed here to facilitate comparison; all panels use the same
color scale. Bottom: Corresponding covariance eigenspectra.

over all 1D Wasserstein distances, for which there exists
an analytic solution. Notably, the 2-Wasserstein distance
between a 1D zero-mean Gaussian with variance σ2 and a
standard normal (i.e. white) density is

W2

(
N
(
0, σ2

)
;N (0, 1)

)
= ‖σ − 1‖ .

Comparing this with the rule by which we update each in-
terneuron gain, gi ← gi + η((w>i ȳt)

2 − 1) (Equation 10),
reveals striking similarity between our recurrent neural net-
work and methods optimizing using sliced Wasserstein dis-
tances. However, distinguishing characteristics of our ap-
proach include: 1) minimizing distance between univariate
variances rather than standard deviations; 2) the directions
along which we compute slices (columns of W) are fixed,
whereas sliced methods typically compute a new set of
random projections at each optimization step; 3) most im-
portantly, our network operates online, and minimizes sliced
variance distances without backpropagation.

6. Discussion
We have derived a novel family of recurrent models for
whitening, which use gain modulation to transform joint
second-order statistics of their inputs based on marginal
variance measurements. We showed that, given sufficiently
many marginal measurements along unique axes, the net-
work will produce ZCA whitened outputs. In particular,
our objective (Equation 5) provides an elegant way to think
about the classical problem of statistical whitening, and

draws connections to old concepts in tomography and trans-
port theory. The framework developed here is flexible, with
several generalizations or extensions that we omitted due
to space limitations. For example, by replacing the unity
marginal variance constraint by a set of target variances
differing from 1, the network can be used to transform (i.e.
transport) its input density to one matching the correspond-
ing (non-white) covariance.

Modulating feature gains has proven effective in adapting
pre-trained neural networks to novel inputs with out-of-
training distribution statistics (Ballé et al., 2020; Duong
et al., 2022; Mohan et al., 2021). In fact, adaptive gain
modulation is an old concept in neuroscience which we
believe would be of importance to the broader machine
learning community. In real neural networks, there exist
several computational processes operating concurrently at
different time-scales. Examples include synaptic weights
encoding long-term information, while faster processes like
gain modulation facilitate rapid adaptation to different con-
texts. Indeed, the demonstrations in this study were largely
agnostic to the exact structure of the weights W, and in-
stead focused on the computational role of adaptive gain
modulation itself. We showed how gains can adaptively
decorrelate a network’s outputs without modifying its pre-
trained weights in an online setting. Specifically, we showed
that gain modulation: 1) enables fast switching between pre-
learned context-dependent weight regimes; 2) can be used
in conjunction with properly-aligned interneuron projec-
tion weights to handle ill-conditioned inputs; and 3) reduce
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long-range dependencies by modifying local signals.

Feature whitening and decorrelation has become an im-
portant objective constraint in self-supervised contrastive
learning methods to help prevent representational collapse
(Bardes et al., 2021; Zbontar et al., 2021; Ermolov et al.,
2021). We believe that the networks developed in this study,
motivated by extensive neuroscience research on rapid gain
modulation, provide an effective whitening solution for
these methods – particularly in regimes which prioritize
streaming data, and networks designed for low-power con-
sumption hardware.
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A. Notation
For N ≥ 2, let KN := N(N + 1)/2. Let RN denote N -dimensional Euclidean space equipped with the Euclidean norm,
denoted ‖ ·‖2. Let RN

+ denote the non-negative orthant in RN . GivenK ≥ 2, let RN×K denote the set ofN ×K real-valued
matrices and SN denote the set of N ×N symmetric matrices.

Matrices are denoted using bold uppercase letters (e.g., M) and vectors are denoted using bold lowercase letters (e.g., v).
Given a matrix M, Mij denotes the entry of M located at the ith row and jth column. Let 1 = [1, . . . , 1]> denote the
N -dimensional vector of ones. Let IN denote the N ×N identity matrix.

Given vectors v,w ∈ RN , define their Hadamard product by v ◦ w := (v1w1, . . . , vNwN ) ∈ RN . Define v◦2 :=
(v21 , . . . , v

2
N ) ∈ RN . Define diag(v) to be the N ×N diagonal matrix whose (i, i)th entry is equal to vi, for i = 1, . . . , N .

Let 〈·〉t denote expectation over t = 1, 2, . . . .

The diag (·) operator, similar to numpy.diag() or MATLAB’s diag(), can either: 1) map a vector in RK to the
diagonal of a K × K zeros matrix; or 2) map the diagonal entries of a K × K matrix to a vector in RK . The specific
operation being used should be clear by context.

B. Proof of Proposition 2.1
Proof of Proposition 2.1. Suppose Equation 1 holds. Then, for i = 1, . . . ,K,

〈(w>i yt)
2〉t = 〈w>i yty

>
t wi〉t = w>i wi = 1.

Therefore, Equation 4 holds.

Now suppose Equation 4 holds. Let v ∈ RN be an arbitrary unit vector. Then vv> ∈ SN and by Equation 3, there exist
g1, . . . , gK ∈ R such that

vv> = g1w1w
>
1 + · · ·+ gKwKw>K . (15)

We have

v>〈yty
>
t 〉tv = Tr(vv>〈yty

>
t 〉t) =

K∑
i=1

gi Tr(wiw
>
i 〈yty

>
t 〉t) =

K∑
i=1

gi Tr(wiw
>
i ) = Tr(vv>) = 1. (16)

The first equality is a property of the trace operator. The second and fourth equalities follows from Equation 15 and the
linearity of the trace operator. The third equality follows from Equation 3. The final equality holds because v is a unit vector.
Since Equation 16 holds for every unit vector v ∈ RN , Equation 1 holds.

C. Saddle point property
We recall the following minmax property for a function that satisfies the saddle point property (Boyd & Vandenberghe, 2004,
section 5.4).
Theorem C.1. Let V ⊆ Rn, W ⊆ Rm and f : V ×W → R. Suppose f satisfies the saddle point property; that is, there
exists (a∗,b∗) ∈ V ×W such that

f(a∗,b) ≤ f(a∗,b∗) ≤ f(a,b∗), for all (a,b) ∈ V ×W.

Then

min
a∈V

max
b∈W

f(a,b) = max
b∈W

min
a∈V

f(a,b) = f(a∗,b∗).

D. Weighted average update rule for gi

The update for g in Equation 10 can be generalized to allow for a weighted average over past samples. In particular, the
general update is given by

g← g + η

(
1

Z

t∑
s=1

γt−sz◦2s − 1

)
,
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where γ ∈ [0, 1] determines the decay rate and Z := 1 + γ + · · ·+ γt−1 is a normalizing factor.

E. Batched and offline algorithms for whitening with RNNs via gain modulation
In addition to the fully-online algorithm provided in the main text (Algorithm 1), we also provide two variants below. In
many applications, streaming inputs arrive in batches rather than one at a time (e.g. video streaming frames). Similarly
for conventional offline stochastic gradient descent training, data is sampled in batches. Algorithm 2 would be one way to
accomplish this in our framework, where the main difference between the fully online version is taking the mean across
samples in the batch to yield average gain update ∆g term. Furthermore, in the fully offline setting when the covariance of
the inputs, Cxx is known, Algorithm 3 presents a way to whiten the covariance directly.

Algorithm 2 Batched ZCA whitening
1: Input: Data matrix X ∈ RN×T (assumed centered)
2: Initialize: W ∈ RN×K ; g ∈ RK ; η; batch size B
3: while not converged do
4: XB ← sample batch(X, B){N ×B}
5: Yb ← [IN + W diag (g)W>]−1XB

6: Zb ←W>Yb

7: ∆g← Z◦2B − 1 {Subtract 1 from all entries}
8: g← g + η mean(∆g,axis=1)
9: end while

Algorithm 3 Offline ZCA whitening
1: Input: Input covariance Cxx

2: Initialize: W ∈ RN×K ; g ∈ RK ; η
3: while not converged do
4: M← [IN + W diag (g)W>]−1

5: Cyy ←MCxxM
>

6: ∆g← diag
(
W>CyyW

)
− 1

7: g← g + η∆g
8: end while

F. Frame factorizations of symmetric matrices
F.1. Analytic solution for the optimal gains

Recall that the optimal solution of the ZCA objective in Equation 5 is given by yt = C
−1/2
xx xt for t = 1, 2, . . . . In our

neural circuit with interneurons and gain control, the outputs of the primary neurons at equilibrium is (given in Equation 8,
but repeated here for clarity)

ȳt =
[
IN + W diag (g)W>]−1 xt.

Therefore, the circuit performs ZCA whitening when the gains g satisfy the relation

IN + W diag (g)W> = C1/2
xx . (17)

When K is exactly N(N + 1)/2, we can explicitly solve for the optimal gains ḡ (derived in the next subsection):

ḡ =
[(
W>W

)◦2]−1 [
w>1 C

1/2
xx w1 − 1, . . . ,w>NC1/2

xx wN − 1
]>

. (18)

F.2. Deriving optimal gains

We find it useful to first demonstrate that any matrix C ∈ SN , where SN is the space of symmetric N ×N matrices, can be
factorized as

W diag (g)W> = C (19)

where W ∈ RN×K is some fixed, arbitrary, frame with K ≥ N(N+1)
2 (i.e. a representation that is O(N2) overcomplete),

and g ∈ RK is a variable vector encoding information about C. We multiply both sides of Equation 19 from the left and
right by W> and W, respectively, then take the diagonal3 of the resultant matrices,

diag
(
W>W diag (g)W>W

)
= diag

(
W>CW

)
. (20)

3Similar to commonly-used matrix libraries, the diag (·) operator here is overloaded and can map a vector to a matrix or vice versa.
See Appendix A for details.
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Finally, employing a simple matrix identity involving the diag (·) operator yields

(W>W)◦2g = diag
(
W>CW

)
, (21)

=⇒ g =
[
(W>W)◦2

]−1
diag

(
WTCW

)
, (22)

where (·)◦2 denotes element-wise squaring. Thus, any N ×N symmetric matrix, can be encoded as a vector, g, with respect
to an arbitrary fixed frame, W, by solving a standard linear system of K equations of the form Ag = b. Importantly, when
K = N(N + 1)/2, and the columns of W are not collinear, then the matrix on the LHS, (W>W)◦2 ∈ SK++, is invertible,
and the vector g is unique (Appendix B).

Without loss of generality, assume that the columns of W are unit-norm (otherwise, we can always normalize them by
absorbing their lengths into the elements of g). Furthermore, assume without loss of generality that C ∈ SN++, the set of all
symmetric positive definite matrices (e.g. covariance, precision, PSD square roots, etc.). When C is a covariance matrix,
then diag

(
W>CW

)
can be interpreted as a vector of projected variances of C along each axis spanned by W. Therefore,

Equation 21 states that the vector g is linearly related to the vector of projected variances via the element-wise squared
frame Gramian, (W>W)◦2.

G. Adaptation with inequality constraint
In general, the modified objective with rectified gains (Equation 14) does not statistically whiten the inputs x1,x2, . . . ,
but rather adapts the non-negative gains g1, . . . , gK to ensure that the variances of the outputs y1,y2, . . . in the directions
spanned by the frame vectors {w1, . . . ,wK} are bounded above by unity (Figure 7). This one-sided normalization
carries interesting implications for how and when the circuit statistically whitens its outputs, which can be compared with
experimental observations. For instance, the circuit performs ZCA whitening if and only if there are non-negative gains such
that Equation 17 holds (see, e.g., the top right example in Figure 7), which corresponds to cases such that the matrix C

1/2
xx is

an element of the following cone (with its vertex translated by IN ):{
IN +

K∑
i=1

giwiw
>
i : g ∈ RK

+

}
.

On the other hand, if the variance of an input projection is less than unity — i.e., w>i Cxxwi ≤ 1 for some i — then the
corresponding gain gi remains zero. When this is true for all i = 1, . . . ,K, the gains all remain zero and the circuit output
is equal to its input (see, e.g., the bottom middle example of Figure 7).

Figure 7. Geometric intuition of whitening with/without inequality constraint. Whitening efficacy using non-negative gains depends on W
and Cxx. For N = 2 and K = 3, examples of covariance matrices Cyy (red ellipses) corresponding to optimal solutions y of objective
12, for varying input covariance matrices Cxx (black ellipses) and frames W (spanning axes denoted by gray lines). Unit circles, which
correspond to the identity matrix target covariance, are shown with dashed lines. Each row corresponds to a different frame W and each
column corresponds to a different input covariance Cxx.
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H. Whitening spatially local neighborhoods
H.1. Spatially local whitening in 1D

For an N -dimensional input, we consider a network that whitens spatially local neighborhoods of size M < N . To this end,
we can construct N filters of the form

wi = ei, i = 1, . . . , N

and M(N − M+1
2 ) filters of the form

w =
ei + ej√

2
, i, j = 1, . . . , N, 1 ≤ |i− j| ≤M.

The total number of filters is (M + 1)(N − M
2 ), so for fixed M the number of filters scales linearly in N rather than

quadratically.

We simulated a network comprisingN = 10 primary neurons, and a convolutional weight matrix connecting each interneuron
to spatial neighborhoods of three primary neurons. Given input data with covariance Cxx illustrated in Figure 8A (left
panel), this modified network succeeded to statistically whiten local neighborhoods of size of primary 3 neurons (right
panel). Notably, the eigenspectrum (Figure 8B) after local whitening is much closer to being equalized. Furthermore, while
the global whitening solution produced a flat spectrum as expected, the local whitening network did not amplify the axis
with very low-magnitude eigenvalues (Figure 8B right panel).

Figure 8. Statistically adapting local neighborhoods of neurons. A) Ĉxx denotes correlation matrix, which are shown here for display
purposes only, to facilitate comparisons. Network with 10-dimensional input correlation (left) 10-dimensional output correlation matrix
after global whitening (middle); and output correlation matrix after statistically whitening local neighborhoods of size 3. The output
correlation matrix of the locally adapted circuit has block-identity structure along the diagonal. B) Corresponding eigenspectra of
covariance matrices of unwhitened (left), global whitened (middle), and locally whitened (right) network outputs. The black dashed line
denotes unity.

H.2. Filter bank construction in 2D

Here, we describe one way of constructing a set of convolutional weights for overlapping spatial neighborhoods (e.g. image
patches) of neurons. Given an n×m input and overlapping neighborhoods of size h × w to be statistically whitened, the
samples are therefore matrices X ∈ Rn×m. In this case, filters w ∈ R1×n×m can be indexed by pairs of pixels that are in
the same patch:

((i, j), (k, `)), 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ |i− k| ≤ h, 0 ≤ |j − `| ≤ w
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We can then construct the filters as,

w(i,j),(k,`)(X) =

{
xi,j if (i, j) = (k, `),
xi,j+xk,`√

2
if (i, j) 6= (k, `).

In this case there are

nm+ wh

[
(n− w)(m− h) + (n− w)

(h+ 1)

2
+ (m− h)

(w + 1)

2
+ (h+ 1)

(w + 1)

2

]
such filters, so the number of filters required scales linearly with nm rather than quadratically.


