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Sensory neurons have been hypothesized to efficiently encode signals from the natural environment subject to resource constraints. The
predictions of this efficient coding hypothesis regarding the spatial filtering properties of the visual system have been found consistent
with human perception, but they have not been compared directly with neural responses. Here, we analyze the information that retinal
ganglion cells transmit to the brain about the spatial information in natural images subject to three resource constraints: the number of
retinal ganglion cells, their total response variances, and their total synaptic strengths. We derive a model that optimizes the transmitted
information and compare it directly with measurements of complete functional connectivity between cone photoreceptors and the four
major types of ganglion cells in the primate retina, obtained at single-cell resolution. We find that the ganglion cell population exhibited
80% efficiency in transmitting spatial information relative to the model. Both the retina and the model exhibited high redundancy
(!30%) among ganglion cells of the same cell type. A novel and unique prediction of efficient coding, the relationships between projec-
tion patterns of individual cones to all ganglion cells, was consistent with the observed projection patterns in the retina. These results
indicate a high level of efficiency with near-optimal redundancy in visual signaling by the retina.

Introduction
The computations performed by neural circuits are essential for
survival but come at a cost. It has been hypothesized that the early
stages of sensory processing have evolved to accurately encode
environmental signals with the minimal consumption of biolog-
ical resources (Attneave, 1954; Barlow, 1961; Atick and Redlich,
1990; van Hateren, 1992b; Laughlin, 2001; Chklovskii et al., 2002;
Bialek et al., 2006). This theoretical hypothesis, generally known
as efficient coding, has been used to explain a variety of observed
properties of sensory systems (Laughlin, 1981; Srinivasan et al.,
1982; Atick and Redlich, 1992; van Hateren, 1992a; Rieke et al.,
1995; Dan et al., 1996; Olshausen and Field, 1996; Baddeley
et al., 1997; Bell and Sejnowski, 1997; Machens et al., 2001;

Schwartz and Simoncelli, 2001; Vincent and Baddeley, 2003;
Chechik et al., 2006; Graham et al., 2006; Smith and Lewicki, 2006;
Doi and Lewicki, 2007; Borghuis et al., 2008; Liu et al., 2009).

The retina provides a natural choice for the study of coding
efficiency, given its role in transmitting visual information to the
brain and the extensive literature documenting its anatomical
and functional properties. Previous work showed that behavioral
measurements of bandpass contrast sensitivity in the primate
visual system (Kelly, 1972; De Valois et al., 1974) are generally
consistent with efficient coding (Atick and Redlich, 1992; van
Hateren, 1992b; Dan et al., 1996). However, it is still far from
clear whether the specific organization of the retinal circuitry—
consisting of distinct types of retinal ganglion cells (RGCs)
(Masland, 2001), each blanketing the entire visual field with a
lattice of irregularly shaped receptive fields (Gauthier et al.,
2009)—is consistent with efficient coding. Although the patterns
of spike trains observed in individual retinal neurons appear to re-
flect metabolically efficient information transmission (Balasubra-
manian and Berry, 2002; Koch et al., 2004), recent studies have
shown significant redundancy between pairs of retinal responses
(Meister et al., 1995; Puchalla et al., 2005; Schneidman et al., 2006;
Shlens et al., 2006; Ala-Laurila et al., 2011), potentially at odds with
coding efficiency (Puchalla et al., 2005; Ala-Laurila et al., 2011).

In this paper, we test the efficiency of spatial processing of
visual signals that transforms the responses of cone photorecep-
tors to those of RGCs. Using data from a high-density multielec-
trode array, we measure the functional connectivity between the
lattice of cones and multiple complete populations of RGCs. We
then compare these with the proposed connectivity model opti-
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mized for transmitting spatial information in natural images sub-
ject to the same neural resources found in the measured retinal
region. The results indicate high efficiency of the retinal circuitry
and an accompanying redundancy of neural signals conveyed to
the brain.

Materials and Methods
Physiological data. We examined electrophysiological recordings ob-
tained from three macaque monkeys based on segments of retina taken
from regions at 27, 38, and 28 degrees of eccentricity from the fovea,
respectively. Stimulus generation and calibration, spike identification,
cell-type classification, and estimation of functional connectivity have
been described by Field et al. (2010). Briefly, the connectivities were
obtained by reverse correlating the measured spike trains of RGCs
against the stimuli, which were spatiotemporal white noise with red,
green, and blue monitor primary intensities drawn from a binary distri-
bution. Pixel sizes (with side length !1.5 min of arc) were small enough
that the spike-triggered average revealed the locations of individual cones
as well as their identity: (L)ong, (M)edium, or (S)hort wavelength sensi-
tive. The measurements of functional connectivity were restricted to L
and M cones and to ON-Parasol, OFF-Parasol, ON-Midget, and OFF-
Midget RGCs, identified by the spatiotemporal properties of their recep-
tive fields. Each type tiled the region of retina examined, in all three
datasets. The numbers of cones and RGCs in the three datasets were,
respectively, {706,131}, {520,89}, and {569,92}, corresponding to a cell
ratio of 5.8 " 0.4 (mean " SD). The ratios broken down by RGC type
were 71.5 " 6.7 (ON-Parasol), 70.2 " 9.6 (OFF-Parasol), 13.7 " 0.5
(ON-Midget), and 14.1 " 1.7 (OFF-Midget). The results shown in Fig-
ures 2–5 were obtained with the first dataset. Consistent results were
obtained with the other two datasets.

RGC response model. For analysis of coding efficiency, we assume the
following functional model of RGC responses:

r ! W#s " !$ " ", (1)

where s is an N-dimensional vector of cone responses, # (input noise) is
Gaussian white noise with variance $#

2, W is an M % N matrix expressing
the functional connectivity between cones and RGCs, and % (output
noise) is Gaussian white noise with variance $%

2. The resulting
M-dimensional vector, r, represents the response of the RGCs. The
model structure is similar to that of previous studies (Linsker, 1989; Atick
and Redlich, 1990; Atick et al., 1990; Bialek et al., 1991; van Hateren,
1992b) but does not assume a regular lattice of cones. The connectivity
matrix W is permitted to represent an inhomogeneous RGC population
of arbitrary size.

The information transmitted by the RGC population was estimated by
assuming a Gaussian probability model for the cone signal s. The empir-

ical covariance of the cone responses, Cs, was computed as follows. First,
a set of 62 calibrated achromatic natural images (Doi et al., 2003) was
blurred (Fig. 1) according to the modulation transfer function of the
human eye (Navarro et al., 1993) at 30, 40, and 30 degrees of eccentricity
for the three retina datasets. Next, the retinal images were sampled using
the physiologically measured cone mosaic, simulating photon absorp-
tion values across the cone lattice. These were transformed with a com-
pressive cone nonlinearity followed by subtraction of the mean across
stimuli (Baylor et al., 1987; Doi et al., 2003). For accurate covariance
estimation, cone signals were sampled from 6,200,000 randomly selected
image patches.

The model also includes input noise [capturing the effects of photon
shot noise, phototransduction noise, and membrane noise in the cone
(Srinivasan et al., 1982; Atick and Redlich, 1990; van Hateren, 1993;
Ruderman, 1994)] and output noise [capturing noise introduced after
the linear combination of cone responses, including synaptic noise, RGC
membrane noise, and the loss of information in the conversion of syn-
aptic currents to spikes (Srinivasan et al., 1982; Atick and Redlich, 1990;
van Hateren, 1993; Ruderman, 1994; Dhingra and Smith, 2004)]. The
noise variances, $#

2 and $%
2, were selected to produce signal-to-noise ra-

tios (SNRs) of 1 and 10 (corresponding to 0 and 10 dB), respectively. The
input SNR was defined as !j&1

N Var#sj$/N$#
2, where N is the number of

cones and sj is the jth cone signal, and the output SNR was defined
similarly as tr(WCsWT ' $#

2WWT)/M$%
2 [note that the numerator is the

sum of variances of RGC responses before output noise is added, W(s '
#)]). These choices are not strongly constrained by currently available
measurements. However, perturbing these SNR values by "10 dB pro-
duced minor changes in the results.

Given the linear-Gaussian RGC response model, the mutual informa-
tion between cone signal s and the RGC response r can be computed
explicitly for any given connectivity matrix W (Atick and Redlich, 1990;
Atick et al., 1990; van Hateren, 1992b; Campa et al., 1995):

I(s;r) !
1

2
log2

det#WCsWT " $#
2WWT " $%

2I)

det#$#
2WWT " $%

2I)
, (2)

where I is the identity matrix.
The information present in the cone responses is computed as the

mutual information between the cone signal, s, and the noise-corrupted
cone responses, s ' #:

I(s;r) !
1

2
log2

det#Cs " $#
2I)

det#$#
2I)

, (3)

Efficient coding solution. The connectivity matrix W that maximizes the
transmitted information (Eq. 2) was derived subject to three constraints.
First, the size of W was chosen to match that of the physiological connec-

Figure 1. Functional model of RGC responses, used for assessment of efficient coding theory. The model consists of retinal images of natural scenes, represented in the cone photoreceptor mosaic
obtained from the data. A linear combination of these cone signals, specified by a connectivity matrix, W, governs model RGC responses. White Gaussian noise is added before and after the linear
combination, with amplitude set in accordance with previous studies (Atick and Redlich, 1990; van Hateren, 1993). The set of connectivity weights arising from a single cone (red) constitute the
projective field (PF) of that cone.
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tivity matrix Wret (i.e., numbers of cones and RGCs). Second, the total
response variance,

&#W$ ! !
i&1

M

Var#ri$ ! tr#WCsWT " $#
2WWT " $%

2I). (4)

was constrained to match that of Wret. Third, the total squared synaptic
strength,

'#W$ ! !
i&1

M !
j&1

N

Wij
2 ! tr#WWT$, (5)

was constrained to match that of Wret. Although each of these constraints
may be found in previous literature, the present model is the first to
include all three. In particular, most previous studies (Atick and Redlich,
1990; Atick et al., 1990; van Hateren, 1992b; Haft and van Hemmen,
1998) assumed only the total response variance constraint without
matching cell numbers to physiological data, and Campa et al. (1995)
provided the analysis for arbitrary cell numbers but convergent cell ratio
(M ( N ). Our analysis is more general in that the cell ratio may also be
divergent (M ( N ) and in the inclusion of two additional constraints.
We have shown that those constraints play an important role in shaping
the solution (Doi et al., 2010).

The optimal connectivity is computed by solving a constrained opti-
mization problem for W that maximizes Equation 2 subject to the two
equality constraints (Eqs. 4, 5). The conventional procedure of rewriting
the objective function using Lagrange multiplier terms for the two equal-
ity constraints was adopted (Chong and Zak, 2001). The resulting prob-
lem is not easily solved, because the primary objective function (Eq. 2) is
not convex with respect to W. The following analysis transforms the
problem into a convex one, thus guaranteeing a globally optimal solution
for W.

The connectivity matrix can be reexpressed as W & P)QT, using the
singular-value decomposition (Strang, 2005), in which the first and third
matrices are orthogonal and the middle one diagonal. First, the first
orthogonal matrix, P, does not affect the values of either the objective
function (Eq. 2) or the two constraints (Eqs. 4, 5) and thus can be chosen
arbitrarily (see below, Best-fitting solutions). Second, it can be shown
that, for the optimal connectivity, the second orthogonal matrix, Q,
should be set to the eigenvector matrix of the signal covariance matrix
(Campa et al., 1995). This implies that the signal is first represented in the
coordinates of its principal axes, as in principal component analysis
(Zhaoping, 2006). Once represented in this coordinate system, the signal
is modulated along the axes (via the diagonal matrix )) and finally
represented with the new basis functions (columns of P) with dimension
equal to the number of RGCs. What remains is to optimize the diagonal
entries of ), denoted as )i. Thus, the objective function (Eq. 2) is now
reduced to a concave function with respect to the squares of those diag-
onal entries:

I(s;r) !
1

2 !
i&1

min *M, N +

log2 " *i

$#
2 " $%

2/)i
2 " 1#. (6)

One can show that the second derivative of Equation 6 with respect to )i
2

is always strictly negative. It is useful to note that
*i

$#
2 " $%

2/)i
2 ! SNRi

represents the effective SNR of the ith signal eigenvalue in the neural
representation (Rieke et al., 1997), and Equation 6 is the sum of infor-
mation over noisy Gaussian channels, 1⁄2log2(SNRi ' 1) (Cover and
Thomas, 2006). The two constraints (Eqs. 4, 5) are also reduced, respec-
tively, to

&#W$ ! &#*)i
2+i&1

min *M, N +$ ! !
i&1

min *M, N +

)i
2 #*i

2 " $#
2$, (7)

where *i
2 are the eigenvalues of Cs, and

'#W$ ! '#*)i
2+i&1

min*M,N +$ ! !
i&1

min*M, N +

)i
2. (8)

The feasible set of optimization parameters, )i
2, is convex. Because the

objective function is concave and the feasible set is convex, this optimi-
zation problem can be solved using the Karush–Kuhn–Tucker condition,
a standard result in optimization theory (Chong and Zak, 2001).

It is important to note that the efficient coding solution, Wopt, is not a
whitening matrix except for the special case in which the input noise is
zero and the resources are solely constrained by the total response vari-
ance. Because the input noise of the retina is significant (Ala-Laurila et
al., 2011) and the synaptic weights in the retina are naturally assumed to
have a direct bearing on the cost of synaptic resource usage, Wopt will
never be a whitening matrix for the retinal transform.

Best-fitting solution. A set of connectivity matrices that are equally
optimal is given by PWopt, where P is an orthogonal matrix, and Wopt is
an arbitrarily selected optimal connectivity matrix. We obtained Wopt

with Prnd#optQopt
T , where Prnd is a left orthogonal matrix of the singular

value decomposition of an M-dimensional matrix with elements ran-
domly drawn from the normal distribution, and )opt and Qopt are the
optimal components of W as defined in the previous section. The best-
fitting orthogonal matrix for the optimal connectivity matrix, Pfit, is
given by the minimizer of the squared error, +(P) & $$PWopt , Wret$$F2,
where $$. . . $$F denotes Frobenius norm (the sum of squares of the matrix
entries). This type of optimization is known as the orthogonal Procrustes
problem and can be solved in closed form (Gower and Dijksterhuis,
2004). We reported the squared error relative to the data variance,
+/$$Wret$$F2.

Each RGC receptive field outlined in Figure 2 is the effective linear
weighting that maps visual stimuli to RGC response. This is constructed
by convolving the receptive fields of individual cones (depicted by small
circles in Fig. 1) with the point spread function of the eye at the relevant
eccentricity (Navarro et al., 1993) and then summing all these cone pro-
files with the weights specified by the connection matrix entries for that
RGC.

Boundary handling. Most of the analyses were conducted without spe-
cial handling of the boundaries of the recording. Exceptions are as fol-
lows. In Figure 2, those cones on the boundary of the retinal patch were
excluded. To solve for Pfit, several RGCs on the boundary of the retinal
patch were excluded. In this case, Pfit is rectangular with the row vectors
orthogonal to each other, and a standard solution for the orthogonal
Procrustes problem cannot be used (Gower and Dijksterhuis, 2004).
Thus, Pfit was obtained numerically by iterating the gradient descent to
minimize the squared error and the orthogonalization of rows of Pfit. The
analysis was repeated without this boundary handling, producing similar
but noisier results.

Unique prediction about connectivity. The family of efficient connectiv-
ity matrices Wopt, which differ from each other only by an orthogonal
transformation, provides a novel theoretical prediction that can be com-
pared with data: the uniquely specified matrix Z & Wopt

T Wopt, for any
given Wopt. This matrix is a unique prediction of efficient coding, be-
cause it is determined solely by the two unique optimal components,
)opt and Qopt, and is invariant to the choice of the orthogonal matrix P
[because (PWopt)

T(PWopt) & Wopt
T PTPWopt & Wopt

T Wopt, for any or-
thogonal P]. The individual elements Zij of Z represent the inner product
of the ith and jth columns of the connectivity matrix, which contain the
weights of the ith and jth cone projective fields (PFs). If i & j, then Zij

indicates the squared strength (or norm) of the PF of the ith cone.
Definition of redundancy. A general form of redundancy that quantifies

the informational overlap in a neural population is the sum of the infor-
mation transmitted by disjoint subpopulations of neurons (e.g., individ-
ual neurons), ri, minus the information transmitted jointly by the
population formed from their union, {ri; i & 1, . . . , M},

-I({ri; i ! 1,. . .,M}) ! !
i&1

M

I#s;ri$ , I#s; {ri; i ! 1,. . .,M}). (9)

The negative of this quantity is also referred to as synergy (Gawne and
Richmond, 1993; Brenner et al., 2000; Machens et al., 2001; Schneidman
et al., 2003; Latham and Nirenberg, 2005).
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The portion of information that is uniquely conveyed by the kth neu-
ron is given by

Iuni(k) ! I(s;r) , I(s;r¬k), (10)

where r is the responses of the full neural population, and r¬k is the
responses of the same population, with the kth neuron removed. The
portion of information conveyed by the kth neuron that is also conveyed
by all the other neurons in the population is thus given by

-Isc#k$ ! I#s;rk$ , Iuni#k$
! I#s;rk$ " I#s;r¬k$ , I#s;r), (11)

referred to here as the single-cell redundancy. Note that this is a special
case of Equation 9 because the union of rk and r¬k is r. In Results, the ratio
of single-cell redundancy to the information conveyed by the single neu-
ron is reported, -Isc(k)/I(s;rk).

The pairwise redundancy shown in Figure 4 is also given by Equation
9, with the population consisting of two neurons. The quantity reported
in Figure 4 is normalized in accordance with previous work (Puchalla et
al., 2005):

I#s;r1$ " I#s;r2$ , I#s;{r1,r2+)

min*I#s;r1$, I#s;r2$+
,

for which the maximum possible value, corresponding to a completely
redundant pair, is 1 (Machens et al., 2001).

To gain insights into efficient coding, it is also useful to examine the
redundancy of Equation 9 for the full set of individual neurons within a
population. The information transmitted by the entire population can be

expressed as the sum of information transmitted by individual neurons,
minus the redundancy:

I(s;r) ! !
i&1

M

I#s;ri$ , -I#r). (12)

This implies that maximizing information, I(s;r), is a tradeoff between
maximizing the sum of transmitted information by individual neurons
(the first term on the right side) and minimizing the redundancies be-
tween them (the second term). This tradeoff has been discussed previ-
ously with a different definition of redundancy (Borghuis et al., 2008;
Balasubramanian and Sterling, 2009). Note that Equation 12 makes it
explicit that redundancy reduction is not equivalent to information
maximization.

Simple developmental model of retinal connectivity. We simulated a
developmental model (see Fig. 5) to obtain an alternative connectivity
matrix, W. The elements of this matrix, Wij, were adjusted using an
iterative learning rule with initial conditions. This iteration was imple-
mented to achieve two goals.

(1) Response variance, $ 2, should equal the average variance of RGCs
with the connectivity Wret in response to natural images. The target
variance was set for each individual RGC type separately. In each itera-
tion, the value Wij (connectivity from the jth cone to the ith model RGC)
was incremented by a local update rule:

-Wij. , ($i
2 , $ 2)%(sj " #j)ui&, (13)

where $i
2 is the response variance of the ith neuron, sj and #j are, respec-

tively, the signal and noise of the jth cone, ui is the response of the ith

Wret

Wopt-!t

Wopt

high-dimensional W space

Retinal: Wret

Optimal (best-!t): Wopt-!t Optimal (arbitrary): Wopt

(b)

(c) (d)

ON-Parasol

ON-Midget

OFF-Parasol

OFF-Midget

(a)

Figure 2. Comparison of RGC receptive field spatial structure to theoretical predictions. a, A schematic of connectivity matrices. Each point in space corresponds to one connectivity matrix, and
three such matrices are indicated. Note that PWopt is the optimal connectivity with any choice of orthogonal matrix P, constituting a manifold of the optimal solution as illustrated by the ellipsoid.
b, Measured RGC receptive fields, i.e., (the rows of) Wret. c, The optimal connectivity closest to the retinal data, Wopt-fit. d, Arbitrarily chosen optimal connectivity, Wopt. Each panel in b– d shows
contours of receptive fields of the four major RGC types at 30% of maximum, superimposed on the cone lattice. A contour from one cell per each panel is highlighted in orange for clarity.

Doi et al. • Efficient Retinal Coding of Spatial Information J. Neurosci., November 14, 2012 • 32(46):16256 –16264 • 16259



neuron, and %. . . & indicates the ensemble average over the presentation of
natural images.

(2) Magnitude of the cone PF within each RGC type, -, should equal
the average magnitude of the PF in the measured connectivity Wret. A
constant magnitude of cone PF per RGC type ensures that each RGC type
uniformly samples the cone lattice without gaps, tiling the region of
retina (Gauthier et al., 2009). In each iteration, Wij was incremented by
another local update rule:

-Wij. , (-j
2 , - 2)Wij, (14)

where -j is the PF norm of the jth cone . Importantly, the optimal con-
nectivity exhibits nearly constant PF norm for an entire RGC population
(and we proved that this is exactly constant in the ideal case of a regular
cone lattice with shift-invariant natural images). Hence, this biologically
plausible rule leads to connectivity that satisfies a necessary condition for
optimal information transmission.

The connectivity matrix was initialized by the model receptive fields
(rows of W ) with spatially localized Gaussian profiles with center loca-
tions taken from the data and SD equal to half the distance to the nearest
RGC of the same type (Devries and Baylor, 1997). This effectively pro-
hibited long-range connections, because the objective function is non-
convex (fourth power of Wij) and has local minima. Iterative adjustment
of the entries of W terminated when both target values in goals 1 and 2
were achieved simultaneously. These conditions satisfy the constraints of
total response variance and squared synaptic strength, respectively, and
hence allowed a fair comparison of the resulting connectivity with retinal
(Wret) and efficient (Wopt) connectivity matrices.

Results
The circuitry of the retina transforms the visual information cap-
tured by a cone photoreceptor mosaic into the electrical signals in
multiple types of RGCs, which is then transmitted to the brain.
We compared the spatial properties of a linear approximation of
this transformation, measured at single-cell resolution, against
predictions of efficient coding theory.

Measuring and modeling spatial processing in the retina
The spatial transformation from cone to RGC responses was mea-
sured using multielectrode recordings of peripheral macaque mon-
key retina ex vivo (Field et al., 2010). These recordings sampled the
electrical activity of complete populations of the four numerically
dominant primate RGC types: ON-Parasol, OFF-Parasol, ON-
Midget, and OFF-Midget. Fine-grained visual stimulation was used
to measure the spatial receptive fields of complete populations of
these RGCs at the resolution of individual cones. These measure-
ments quantified the strength of functional connection from ev-
ery cone to every recorded RGC over a region of the retina.

The predictions of efficient coding were derived using a sim-
plified response model, constructed to be comparable with the
data while incorporating the statistical properties of natural im-
ages, noise, and biological constraints (Fig. 1). Achromatic natu-
ral images were obtained from a database (Doi et al., 2003),
blurred according to the optics of the eye (Navarro et al., 1993),
and represented in terms of the elicited photon absorptions of
cones laid out in an irregular lattice as measured using physiolog-
ical data (Field et al., 2010). These model cone signals, trans-
formed by an instantaneous compressive nonlinearity (Baylor et
al., 1987; Doi et al., 2003) and corrupted by noise, were combined
linearly to produce model RGC signals. Finally, model RGC sig-
nals were corrupted with additive independent noise. The free
parameters of the model were the strengths of inputs from all the
model cones to all the model RGCs, summarized in a connectiv-
ity matrix W. By construction, W is directly comparable with the
physiologically measured weights of cone inputs to RGCs, Wret.
To test the predictions of efficient coding for the retinal circuitry,

Wret was compared with an optimal connectivity matrix, Wopt,
that was numerically optimized for information transmission.
This optimization was performed subject to three resource con-
straints relevant to the retinal circuitry (see Materials and Meth-
ods): (1) number of RGCs (Campa et al., 1995; Doi and Lewicki,
2007); (2) total response variance of RGCs (Atick and Redlich,
1990, 1992; Atick et al., 1990; van Hateren, 1992b, 1993; Ruder-
man, 1994; Haft and van Hemmen, 1998; Doi and Lewicki, 2007);
and (3) total squared synaptic strengths (Campa et al., 1995).

Coding efficiency of the retina
How efficiently does the retina process the spatial information in
natural images? To answer this question, information transmis-
sion was calculated for two different model RGC populations:
one with the physiologically measured connectivity (Wret) and
the other with optimal connectivity subject to resource con-
straints (Wopt). Comparison of these values indicates the degree
to which the retinal connectivity is efficient. In three recordings
from different retinas, the retinal connectivity preserved 59.4 "
8.1% (mean " SD across datasets) of the visual information pres-
ent in the cone lattice (defined by the information about cone
signal that is gained after input noise is added; see Materials and
Methods) compared with 74.8 " 6.7% preserved with the opti-
mal connectivity. Thus, RGCs transmit a large fraction of the
visual information possible, exhibiting an overall efficiency of
!80% of the maximum possible (82.4, 81.2, and 74.2%, respec-
tively, for three datasets).

Receptive field organization
Does the retinal circuitry exhibit spatial structure consistent with
efficient coding? A direct comparison of the measured RGC re-
ceptive fields (rows of Wret) with the optimal receptive fields
(rows of Wopt) is not informative, because the optimal connec-
tivity matrix Wopt is not uniquely specified by efficient coding.
Specifically, multiplying a connectivity matrix by any orthogonal
matrix P yields a new connectivity matrix that uses the same
resources and transmits the same amount of information (see
Materials and Methods). Thus, spatial receptive field structure
does not provide a unique test of efficient coding.

A partial test of efficiency can be developed by finding, within
the family of optimal connectivity matrices Wopt, the single con-
nectivity matrix Wopt-fit that most closely matches the data (Fig.
2a). Mathematically, finding this matrix is equivalent to starting
with any choice of Wopt and finding an orthogonal matrix P that
minimizes $$Wret , PWopt$$ 2. A close match between Wret and
Wopt-fit would indicate efficient spatial structure of retinal recep-
tive fields. The results show that indeed the receptive fields in
Wopt-fit are similar to those in the retina (Fig. 2b,c). In three
datasets, the squared error of Wopt-fit was 41.5 " 10.5% of the
sum of squared weights of Wret (34.3, 36.6, and 53.5%, respec-
tively, for three datasets). For comparison, the receptive fields
obtained with a randomly selected orthogonal matrix P (Fig. 2d)
differ substantially from the measured receptive fields, with
squared errors of 193.8 " 2.4% (mean " SD across three data-
sets, 100 samples each).

Projective field organization
Given the non-uniqueness of optimal receptive field structure
(above), an incisive test of efficiency would ideally focus on an
aspect of retinal circuitry that is both necessary and sufficient for
optimality. We find that such unique predictions of efficient cod-
ing are given in terms of weights on the signals flowing from a
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particular cone to all the RGCs (across all RGC types), which we
refer to as the projective field (PF) of the cone (Lehky and Se-
jnowski, 1988). More specifically, the unique spatial predictions
of efficient coding are the squared magnitudes of the PF of each
cone (i.e., strength of the diverging signal) and the similarity
between the PFs of different cones (i.e., spatial overlap in their
projections to RGCs) (see Materials and Methods).

The complete connectivity maps obtained in the physiological
data (Field et al., 2010) provide the first opportunity to compare
the spatial structure of cone PFs to the predictions of efficient
coding. Figure 3a shows the inner products of the PF of one cone
with the PFs of other cones, computed for retinal (Wret) and
optimal (Wopt) connectivity matrices. In both cases, the inner
products assume high positive values for nearby cones (indicat-
ing similarity of PFs), smaller negative values for surrounding
cones (dissimilarity), and near-zero values for more distant
cones. Figure 3b shows that this trend holds for all cone pairs:
although the values obtained from the physiological data are sig-
nificantly more variable than for the optimal solution, the aver-
age PF inner products as a function of distance are consistent with
the theory.

Redundancy
Is efficient coding consistent with the re-
dundancy observed previously in RGCs
(Meister et al., 1995; Puchalla et al., 2005;
Schneidman et al., 2006; Shlens et al.,
2006; Ala-Laurila et al., 2011)? Because re-
dundancy means that a portion of the in-
formation transmitted by one neuron is
also transmitted by others (Gawne and
Richmond, 1993; Brenner et al., 2000;
Machens et al., 2001; Schneidman et al.,
2003; Latham and Nirenberg, 2005), one
might intuitively expect that a redundant
code must be inefficient. Indeed, redun-
dancy reduction has often been stated as
an objective synonymous with efficient
coding, and, in some special cases, this is
correct (Barlow, 1961; Atick and Redlich,
1990; Atick et al., 1990; van Hateren,
1992b; Bell and Sejnowski, 1997). In other
cases, however, redundancy can serve to
overcome the deleterious effects of noise,
improving information transmission
(Atick and Redlich, 1990; Atick et al.,
1990; van Hateren, 1992b; Barlow, 2001;
Zhaoping, 2006; Doi and Lewicki, 2007;
Borghuis et al., 2008; Tkacik et al., 2010).
This raises the possibility that the redun-
dancy found in the retina is consistent
with efficient coding.

As a measure of redundancy, we esti-
mated the fraction of the spatial informa-
tion conveyed by a single RGC that is also
conveyed by other RGCs of the same type
(see Materials and Methods). The redun-
dancy associated with the connectivity in
the retina (Wret) was 28.7 " 7.8%
(mean " SD for each cell type, three data-
sets), whereas the redundancy associated
with efficient coding (Wopt-fit) was 26.3 "
11.5%. Although substantial, both of
these were much lower than the 86.5 "

3.7% redundancy in the cone lattice, analogous to the previous
findings of redundancy reduction in the successive stages of au-
ditory sensory systems (Chechik et al., 2006). Also, consistent
with previous reports of correlated activity in the retina (Mastro-
narde, 1989; Meister et al., 1995; Puchalla et al., 2005; Shlens et al.,
2006; Ala-Laurila et al., 2011), redundancy between pairs of
neighboring cells of the same type was high (up to 30%) and
declined with distance, for both the retina and the efficient cod-
ing model (Fig. 4). In summary, we found that the degree and
spatial organization of redundancy in the retina closely matched
the predictions of efficient coding.

Discussion
A detailed test of the efficiency of spatial information coding in
the retina was made possible by two advances. First, we developed
a tractable model that allowed the computation and optimization
of transmitted information in inhomogeneous neural circuits,
with multiple constraints on biological resources. Second, we
made use of new experimental data and analyses that allow de-
termination of complete functional connectivity between popu-
lations of cones and RGCs. The combination of these approaches
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Figure 3. Comparison of cone PF spatial structure to theoretical predictions. a, Each panel shows the inner product of the PF of
a single cone (yellow) with the PFs of all other cones. The diameter of each circle indicates the magnitude of the inner product; the
color indicates the sign (black, negative; white, positive). Top panels show inner products for three cones from the retina; bottom
panels show predictions of efficient coding theory for those cones. b, The PF inner product as a function of distance between cones.
Solid lines indicate average values; shaded regions indicate the 5th to 95th percentile range. Values at zero separation indicate
squared norms of individual PFs. The gap at small separations reflects the minimum separation between cones in the lattice.
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yielded several new findings. First, under
these resource constraints, we find that
the retina transmits !80% of the maxi-
mally achievable spatial information
about natural images. Second, the func-
tional connectivity between cones and
RGCs exhibits unique spatial structure, as
captured by PF inner products, consistent
with coding efficiency. Finally, the redun-
dancy of spatial information encoded by
RGCs has the degree and spatial organiza-
tion expected from an efficient code.

Previous work has shown that behav-
ioral measurements of visual sensitivity in
humans exhibit a bandpass spatial charac-
teristic and changes with light level that
are broadly consistent with efficient cod-
ing theory (Atick and Redlich, 1990, 1992;
van Hateren, 1992b, 1993). Although this
result was interpreted in terms of the prototypical center-
surround receptive field structure of RGCs, it provided no means
to directly compare with physiological measurements. In addi-
tion, the theoretical formulation assumed a homogeneous pop-
ulation of rotationally symmetric receptive fields, laid out on a
uniform lattice, and equal in number to the cones. In contrast,
our formulation (Doi et al., 2010) incorporates much of the vari-
ability and irregularity observed in real retinas, including the
mismatch in sizes of the populations of cones and RGCs. The use
of response variance as a constraint to account for the metabolic
cost of spike generation may be found in several previous studies
(Atick and Redlich, 1990, 1992; Atick et al., 1990; van Hateren,
1992b, 1993; Ruderman, 1994; Doi and Lewicki, 2007). However,
we included an additional constraint on total squared strength of
connectivity, reflecting the cost of synaptic maintenance and
transmission; this has a significant effect on shaping the solution
(Doi et al., 2010). [We chose the L2 norm constraint for connec-
tivity weights because of its analytical tractability (Campa et al.,
1995), although the L1 norm constraint may be a more natural
choice (Vincent and Baddeley, 2003; Vincent et al., 2005).] Incor-
porating these constraints, as well as the measured organization
of the cone lattice, made it possible to derive and test the theoret-
ical predictions of efficient coding directly in individual retinas.

The present work reveals two novel aspects of efficient coding.
First, the theory shows that the necessary and sufficient empirical
predictions of efficient coding relate to PF structure rather than
receptive field structure. Traditional measurement approaches
do not reveal PFs, but the physiological measurement of com-
plete functional circuitry presented here made it possible to test
this key theoretical prediction directly. Second, the significant
spatial redundancy found among RGCs (!30%) is consistent
with the predictions of efficient coding (cf. Puchalla et al., 2005;
Ala-Laurila et al., 2011). Although previous theoretical work has
shown that efficient coding can lead to redundant representa-
tions (Atick and Redlich, 1990; Atick et al., 1990; van Hateren,
1992b; Barlow, 2001; Zhaoping, 2006; Doi and Lewicki, 2007;
Borghuis et al., 2008; Tkacik et al., 2010) and experimental work
has shown that the retinal signals are redundant (Meister et al.,
1995; Puchalla et al., 2005; Schneidman et al., 2006; Shlens et al.,
2006; Ala-Laurila et al., 2011), the results presented here provide
the first direct test of the consistency between these theoretical
predictions and experimental results.

The high degree of efficiency exhibited by the retina is presum-
ably achieved through a combination of genetic, developmental, and

homeostatic mechanisms. It seems unlikely that such mechanisms
could be orchestrated to directly optimize information transmis-
sion, as we have done in optimizing our model. However, it is natural
to ask whether a simpler and more plausible set of constraints might
provide a sufficient proxy. Toward this end, a “developmental”
model was considered (see Materials and Methods) based on three
constraints: (1) the response variances should be constant across
RGCs; (2) the PFs of cones to a given RGC type should have fixed
magnitude; and (3) long-distance connections between cones and
RGCs are prohibited. All three can be plausibly optimized using local
learning rules, and all three constraints are consistent with the opti-
mally efficient solution, as well as the regular and uniform arrange-
ment of retinal circuitry. Simulations of this model lead to receptive
field structure and organization (Fig. 5), coding efficiency (82.4%),
and redundancy (26.1 " 11.0%), similar to those observed in the
data. We conclude that the retina could, in principle, achieve effi-
cient information transmission and the associated redundancy using
simple developmental mechanisms.

Several significant limitations in the analysis of efficiency
could be addressed in future work. First, our model does not
account for temporal properties of neural response or temporal
structure in natural scenes. Inclusion of temporal domain infor-
mation might help to explain the existence of multiple types of

0 200 400 600

0

0.2

0.4

RGC pair distance [µm]

Fr
ac

tio
na

l r
ed

un
da

nc
y

Retinal Optimal (best-!t)

Figure 4. Comparison of RGC spatial redundancy to theoretical predictions. Each panel shows the spatial redundancy between
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Figure 5. Receptive fields obtained from simulations of the developmental model. Panels
show 30% maximum contours of receptive fields of each cell type (compare to Figure 2b).
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RGCs (van Hateren, 1992a; Dong and Atick, 1995). Second, the
theory was made tractable by assumptions of linear processing,
additive Gaussian noise, and Gaussian signal statistics. All of
these assumptions are contradicted to some degree by empirical
findings, but substantial advances in analytical methods will be
required to incorporate them into the theory (but see Borghuis et
al., 2008; Ratliff et al., 2010; Karklin and Simoncelli, 2011; Rah-
nama Rad and Paninski, 2011; Pitkow and Meister, 2012). Fi-
nally, the predictions of efficient coding were tested only in the
retina, a neural circuit with unique experimental accessibility that
makes high-resolution and complete measurements possible.
However, the theory is general and will undoubtedly be investi-
gated in other neural structures as advances in measurement
technology permit.
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