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Abstract

How does the visual system determine when changes to an image are unnatural (image

distortions), how does it weight di�erent types of distortions, and where are these computa-

tions carried out in the brain? These questions have plagued neuroscientists, psychologists,

and engineers alike for several decades. Di�erent academic communities have approached

the problem from di�erent directions, with varying degrees of success. The one thing that

all groups agree on is that there is value in knowing the answer to the question. Models that

appropriately capture human sensitivity to image distortions can be used as a stand in for

human observers in order to optimize any algorithm in which fidelity to human perception

is necessary (i.e. image and video compression).

In this thesis, we approach the problem by building models informed and constrained by

both visual physiology, and the statistics of natural images, and train them to match human

psychophysical judgments about image distortions. We then develop a novel synthesis

method that forces the models to make testable predictions, and quantify the quality

of those predictions with human psychophysics. Because our approach links physiology

and perception, it allows us to pinpoint what elements of physiology are necessary to

capture human sensitivity to image distortions. We consider several di�erent models of the

visual system, some developed from known neural physiology, and some inspired by recent

breakthroughs in artificial intelligence (deep neural networks trained to recognize objects

within images at human performance levels). We show that models inspired by early brain

areas (retina and LGN) consistently capture human sensitivity to image distortions better

than both the state of the art, and better than competing models of the visual system.

We argue that divisive normalization, a ubiquitous computation in the visual system, is

viii



integral to correctly capturing human sensitivity.

After establishing that our models of the retina and the LGN outperform all other tested

models, we develop a novel framework for optimally rendering images on any display for

human observers. We show that a model of this kind can be used as a stand in for human

observers within this optimization framework, and produces images that are better than

other state of the art algorithms. We also show that other tested models fail as a stand in

for human observers within this framework.

Finally, we propose and test a normative framework for thinking about human sensitiv-

ity to image distortions. In this framework, we hypothesize that the human visual system

decomposes images into structural changes (those that change the identity of objects and

scenes), and non-structural changes (those that preserve object and scene identity), and

weights these changes di�erently. We test human sensitivity to distortions that fall into

each of these categories, and use this data to identify potential weaknesses of our model

that can be improved in further work.
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Chapter 1

Introduction

1.1 Quantifying the Visibility of Image Distortions

Digital images are subject to many potentially corrosive processes that introduce artifacts,

deviations, and distortions in the course of image capture, compression, transmission and

reproduction. Human observers can easily identify distortions, and can classify deviations

that lead to images that appear unnatural (and thus degrade the quality of the image)

separately from those that are natural (and do not degrade the quality of the image, or

even improve it). For many years, the field of image quality assessment (IQA) has been

structured around studying the set of distortions that are encountered in the processing of

digital images, and human sensitivity to them. The goal of this field has been to build a

metric, or model, that quantifies the visibility of di�erent types of image distortions, which

can be utilized to benchmark algorithms for all of the above processes in the image capture

and display pipeline.

There are three main approaches to this problem. The first, known as full-reference,

assumes a ground truth image is available for comparison to the distorted image. The

second, no-reference, works with only the distorted image, and compares the image to a

1



model of natural images (see Ma. et al., (Aug. 2017) and Ma et al., (2018) for examples

of modern no-reference IQA algorithms). The third, reduced-reference, assumes that a

reference image is only partially available, through extracted features or statistics. While

the latter two approaches have appealing applications both within engineering and for

understanding neural systems, the work presented in this thesis will focus entirely on the

first approach, full-reference IQA. This form of the problem aligns most closely with the

types of experiments we will carry out in the lab, as well as with the types of applications

we will pursue.

In the full-reference case, we can think of distorted images as an original image, X, plus

some corrupting unit vector, ų multiplied by a scalar amplitude, –. The simplest, and for a

long time most-common, choice to attempt to quantify perceptual sensitivity to distortions

was to use the mean squared error (MSE) between the pixel values of the original ground

truth image, X, and the distorted version of that image, X̂.

D(X, X̂) = ||X ≠ X̂||2 = ||(–ų)2|| = –

In this framework, larger MSE between two images indicates more visible distortion.

Under the assumptions above, MSE recovers the unit distortion vector, ų, as well as the

amplitude value, –, but only retains the amplitude as a measure of distortion. This model

implicitly assumes that the only attribute of a distortion that matters for assessing its

visibility is the amplitude, –, and that the type of distortion, or the direction that the

vector ų points in the space of possible distortions, is not relevant for assessing visibility.

While the amplitude of the distortion is certainly important, a simple demonstration reveals

why reliance on amplitude alone is not su�cient to capture perceptual sensitivity to image

distortions. Figure 1.1 shows 8 images which have equivalent MSE when compared to the

2



Figure 1.1: Failures of MSE as a Perceptual Metric: Each of the 8 images surrounding
the center image has the same MSE when compared to the center image. Despite this,
the images are of very di�erent levels of degradation, showing that MSE does not capture
perceptual sensitivity to image distortions well. (Adapted from (Ponomarenko et al., 2009))

image in the center, or put di�erently, the same amplitude of distortion. It is immediately

apparent that all 8 images are not of equivalent perceptual quality. In fact some of the

images are quite degraded, while others appear nearly identical to the original. This result

has been confirmed by several careful studies of visual quality assessment (Eckert & Bradley,

(Nov. 1998), Eskicioglu & Fisher, (Dec. 1995), Girod, (1993), Teo & Heeger, (1994b), Wang

& Bovik, (Mar. 2002), Wang, (Dec. 2001), Winkler, (1999), and Z. Wang & Lu, (May

2002)).
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MSE fails because it implicitly assumes that humans make judgments about image

distortion by comparing the pixel values as rendered on the screen. In reality, however,

the brain doesn’t have access to the raw pixel values. Instead, to make this judgment,

human subjects are comparing representations of those pixel values within neural popula-

tions within their visual system. Distortions that are of equivalent amplitude in raw pixel

di�erences may not be of equivalent amplitude, or discriminability, in their neural repre-

sentation. The failure of MSE as a metric has led many to realize that an appropriate IQA

metric has to be sensitive to both the amplitude, –, and the direction, ų, of the distortion,

and has to re-weight its sensitivity along di�erent dimensions to accommodate the fact

that humans are di�erently sensitive to distortions of equal amplitude that lie in di�erent

directions (see figure 1.2).

There are many approaches to solve this problem, the simplest and most appealing

of which is to build a function, f , that approximates the transformations of the human

visual system, and to take the di�erence between the representations of x̨ and x̂ within the

representation space of f .

D(X, X̂) = ||f(X) ≠ f(X̂)||2

This approach was first pursued by Mannos and Sakrison in 1974 in their pioneering study

"The E�ects of a Visual Fidelity Criterion on the Encoding of Images" (Mannos & Sakrison,

1974). This approach was subsequently followed up on by many researchers, and the func-

tions they created to approximate the human visual system quickly became more detailed,

informed by troves of psychophysical and physiological data describing the human visual

system that was being concurrently amassed(see Teo & Heeger, (1994b) and Watson, (Jan

2000) and Eckert & Bradley, (Nov. 1998) and Pappas & Safranek, (2000) for reviews.

4
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Figure 1.2: Humans are di�erently sensitive to distortions along di�erent dimen-
sions. We can plot a hypothetical 2 pixel image, x̨, as a point in a 2 dimensional space.
Around this point, there is a circle of distorted images, x̂ = x̨ + ų, such that all x̂ have
the same amplitude, – and MSE. Human judgments about the similarity of x̨ and x̂ are
computed based on the similarity of the representations of x̨ and x̂ within noisy neural
populations within their visual system (here plotted as noise clouds representing a set of
neural responses upon repeated viewing). Human sensitivity to a particular distortion is
limited by the amount of overlap between the noisy response to the original image, and
the noisy response to the distorted image. Despite the fact each of the distortions, ų1 and
ų2, had the same amplitude in the pixel space, they may have very di�erent amounts of
overlap in this neural space after having been transformed by they human visual system,
and thus the human viewer will be di�erently sensitive to each of them. In the example
pictured above, the observer is more sensitive to changes in the direction of ų2 than ų1.
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Despite this complexity, a study by the Visual Quality Experts Group released in March

2000 showed that the performance of most models were statistically indistinguishable from

PSNR (Peak Signal-to-Noise Ratio), a direction agnostic quality metric computed from the

ratio of the maximum displayable luminance to the MSE (VQEG, (Mar. 2000)).

PSNR(x̨, x̂) = 10 ú log10
1 I2

max

MSE(x̨, x̂)
2

Where Imax is the maximum displayable luminance (or pixel value).

This study called into question the entire approach to building a cohesive model of the

action of the human visual system on natural images from the bottom up , and cleared

the field for a di�erent approach, the top-down approach, to step in and become the

defacto standard. In 2004, Wang et al. introduced the Structural Similarity Metric, based

on the hypothesis that the human visual system is highly adapted to extract structural

information from the world (Wang et al., (2004)). Additionally, they proposed that instead

of trying to model the action of the visual system by appending the results from many

psychophysical studies, you could instead use this intuition to design a metric that separates

structural and non-structural elements of images, and weighs them di�erently (See Figure

1.3). SSIM worked significantly better than PSNR, and all of its contemporary competitors,

and quickly became the defacto standard visual quality metric, even winning a Engineering

Emmy for contributions that significantly improve existing methods, or innovations that

materially a�ect the transmission, recording or reception of television in 2015.
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Figure 1.3: SSIM Signal Processing Diagram: SSIM decomposes both images into a measure
of local luminance, a measure of local contrast, and a measure of local structure. In order
to compare the two images, SSIM finds the correlation between images for each of these
measures. Finally, these three measures are exponentiated and combined by taking the
product between them. Adapted from Wang et al., (2004)

1.2 Returning to the Bottom-Up Approach with Better Neural

Models

Despite its success, it is di�cult to relate SSIM directly to functions carried out in actual

neural networks, leaving open questions about how to relate it to neuroscience as well as

how best to extend its function. In addition, recent advances in modeling neural responses

have called into question the fundamental assumptions that led to the abandonment of the

bottom-up approach in 2003 that paved the way for SSIM’s top-down approach.

In their paper, Wang et. al laid out what they saw as the four main issues with the

traditional bottom up approach that can be reduced down to two fundamental points Wang

et al., (2004). The first problem arises from the fact that the majority of the models were

constructed out of linear, or quasi-linear, operators created to capture psychophysical phe-
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nomena that were characterized on simple unnatural stimuli under restricted experimental

paradigms. Despite reproducing the observed psychophysical results, it was not clear that

these models generalized from simple stimuli to natural images, or from restricted exper-

imental settings to the much larger space of real-world conditions. The second problem

arises from the fact that the majority of these models utilized a distance metric, like MSE

in their response space, which implicitly assumes that errors in di�erent spatial locations

are independent. This assumption stands in contradiction to the inherent correlation of

neighboring pixels within images, and most of the linear and quasi-linear decompositions

employed in these models did not e�ectively reduce the correlation between channels, and

thus were combining redundant error signals.

Since this time, there have been significant advances in modeling neural responses to

natural images, many of which answer directly to the above issues. In this thesis, we aim

to utilize these advances to return to the bottom-up approach, and attempt to relate the

structure of visual physiology to the perceptual problem of image quality assessment. We

will examine several di�erent models of neural physiology, each of which is inspired by

di�erent approaches to modeling neural populations.

1.3 LN Models and Deep Neural Networks

Neurons have long been modeled as a combination of linear filters or receptive fields (ap-

proximating dendritic summation) and pointwise nonlinearities (approximating spiking

nonlinearities) (see Chichilnisky, (2001), Enroth-Cugell & Pinto, (1970), Marmarelis &

Naka, (1972), Marmarelis, (1978), Movshon et al., (1978), and Simoncelli et al., (2004) for

early examples, reviews, and methods for estimating model parameters from neural data).

These models, known as LN models, provide a simple, mathematically tractable approxi-
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mation to more biologically detailed models of single neurons, such as the Hodgkin-Huxley

model, that capture the functional behavior of neurons (Hodgkin & Huxley, 1952). Sim-

ple LN models, as well as short cascades of LN operations, have been shown to explain

responses of neurons in many sensory areas.

In 1980, Kunihiko Fukushima introduced the Neocognitron, a stacked LN model, or a

multilayered artificial neural network in the terminology of artificial intelligence, based on

the work of Hubel and Wiesel explaining their observations of cell responses in the first

cortical visual area, V1 (Fukushima, (1980) and Hubel & Wiesel, (1959)). Neocognitron

was capable of very simple handwritten character recognition and served as a proof of

concept that stacked LN models could perform complicated perceptual tasks (Fukushima,

1980). In 1991 Kurt Hornik published a proof that neural networks of this form (Mulit-

layer feedforward networks) could universally approximate, up to a given level of error, any

continuous function (Hornik, (1991)). This led to great excitement about the potential

of neural networks as a tool for artificial intelligence, but a lack of computational power,

data, and di�culty learning appropriate parameters led early neural networks to fade into

obscurity (LeCun et al., 2015). The combination of several breakthroughs have resusci-

tated neural networks in recent years: massive increases in compute power, the emergence

of big data, the invention of convolutional neural networks (neural networks that share

the same weights at every spatial location), rediscovery of the power of old training meth-

ods (such as stochastic gradient descent and backpropogation), and the recognition that

deeper networks, or networks with more layers of LN operations, could learn to solve more

complicated and abstract tasks than shallow networks (LeCun, 1985; LeCun et al., 1989;

Rumelhart et al., 1986 and see LeCun et al., 2015 for a review of the reemergence of deeper

neural network methods). This new version of artificial neural networks, known as deep
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neural networks, burst onto the scene in 2012 with the introduction of AlexNet, a deep

neural network that competed in the annual ImageNet Large Scale Visual Recognition

Challenge, a 1000-way object recognition challenge (Krizhevsky et al., 2012). The network

not only won the competition and set new performance records, but e�ectively redefined

what was achievable, with a top-5 error more than 10 percentage points ahead of the next

best algorithm (Krizhevsky et al., 2012). In the years hence, deep neural networks have

been utilized to solve many complicated, and previously unsolved, sensory and cognitive

tasks, and are now the defacto solution for many problems in artificial intelligence (LeCun

et al., 2015).

Since 2013, several groups have shown a striking similarity between responses in deep

layers within performance optimized deep neural networks and the responses of neurons

in deep areas of the ventral visual stream, such as V4 and IT, that had previously been

di�cult to model (Cichy et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al.,

2014; Yamins et al., 2013).This approach to modeling neural circuits not by fitting to neural

data, but by forcing neural circuits to perform a complicated objective at human levels by

was introduced by Yamins and DiCarlo in 2014 and expanded on in their 2016 review paper,

"Using goal-driven deep learning models to understand sensory cortex" (Yamins & DiCarlo,

(2016)). This strategy is based in the principle that a neural network will have to be e�ective

at solving the behavioral tasks the sensory system supports to be a correct model of a given

sensory system (Yamins & DiCarlo, (2016)). In their work, they first train the parameters

of a neural network model, constrained to loosely reflect the architecture of the ventral

visual stream, to perform an ethologically relevant task, in their case a complicated form

of object recognition (See Figure 1.4). They subsequently compare the optimized network

to neural responses and find that they are able to predict neural responses in macaque
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Figure 1.4: Similarity of Deep Neural Network Architecture and the Ventral
Visual Stream: The architecture of deep neural networks trained to perform complicated
visual tasks at or above human performance levels superficially resemble the architecture
of the primate ventral visual stream. (Adapted from Yamins & DiCarlo, (2016))

IT and V4 better than any previous image computable models (Yamins et al., 2014) (See

Figure 1.5). Several other groups have subsequently shown that these neural networks also

predict fMRI responses along the ventral stream in human subjects in response to natural

images(Cichy et al., (2016) and Khaligh-Razavi & Kriegeskorte, (2014)). Additionally, it

has been shown that despite the fact that these networks are trained only on a global

objective computed from the output of their latest layers, the filters in early layers of these

networks resemble localized oriented band pass filters, like those found V1, and early layers

of these networks predict fMRI responses in early ventral visual stream areas in humans

(Khaligh-Razavi & Kriegeskorte, (2014), See Figures 1.5 and 1.6).
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Figure 1.5: Deep Neural Networks Trained On Complex Visual Tasks Predict
Responses Along the Ventral Visual Stream. Responses in late layers of deep neu-
ral networks are predictive of responses of V4 and IT neurons to natural images (A and
B). In addition, the metric across object classes in human IT and the response space of
neural networks show a large degree of correlation (C). Finally, early layers of performance-
optimized deep networks predict fMRI activity in early layers of the ventral visual stream
(D). (Adapted from Yamins & DiCarlo, (2016))

Figure 1.6: Visualizing Filters from the first layer of AlexNet, a deep neural network trained
on object recognition. Learned filters from the first layer are localized, oriented band pass
filters resembling response properties of neurons found in the first cortical visual area, V1.
(Adapted from Krizhevsky et al., 2012)
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The success of these networks at capturing complicated neural and behavioral responses

to natural images suggests that they may be su�ciently nonlinear, and su�ciently good

models of visual processing in realistic situations, to overcome the limitations of earlier

linear and quasi-linear models used for image quality assessment. In fact, several authors

have already begun exploring this space, constructing distortion metrics from the responses

of intermediate and deep layers of several di�erent deep neural networks (Dosovitskiy &

Brox, (2016), Héna� & Simoncelli, (2016), Johnson et al., (2016), and Parthasarathy et al.,

(2017)). Many of these authors have employed these metrics as perceptual loss functions

in order to optimize a neural network to generate images under di�erent constraints, and

have shown that networks optimized with these perceptual loss functions produce better

results than networks optimized with MSE (See Figure 1.7 for a result from Johnson et al.,

(2016)). Though these results are potentially exciting, no one has rigorously explored the

capability of deep neural networks to capture human perceptual sensitivity, nor compared

their performance to other models that outperform MSE. In this thesis, we will take up

this objective.

1.4 Moving Beyond LN Models

1.4.1 Coding E�ciency

While deep neural networks may address some of the concerns Wang et al. expressed

about the bottom up approach, it is not clear that a cascade of LN operations addresses

their redundancy concerns (Wang et al., (2004)). As such, we would like to compare the

performance of stacked LN operators to a set of models designed to simultaneously match

neural responses to natural stimuli, and reduce redundancy between output coe�cients.
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Figure 1.7: Deep Neural Network based loss functions for Super-Resolution:
Johnson et. al. trained two neural networks to produce x4 and x8 super-resolution images
from down-sampled inputs. In order to train the weights of the networks, the authors
computed the perceptual distortion distance between the original, full-size images, and the
super-resolution images that the network produced, and backpropogate the errors to the
weights of the network. The first network was trained using Pixel MSE as a perceptual
metric. The second network was trained using MSE computed within the response space
of intermediate layers of VGG16, a deep neural network trained on object recognition
(Simonyan & Zisserman, (2015)). The authors show that across many images, the network
trained to minimize the VGG16-based metric produces significantly better images than the
network trained with Pixel MSE. (Adapted from Johnson et al., (2016))
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In 1961, Horace Barlow hypothesized that the goal of neural systems (specifically early

vision) was to remove statistical redundancy in natural signals it encountered (Barlow,

1961; Simoncelli & Olshausen, 2001). This is known as the e�cient coding hypothesis. In

1996, Olshausen and Field showed that optimizing a linear filter bank from natural images

for a sparsity objective (a variant of the e�cient coding hypothesis) produced filters that

resemble V1 neurons (much like the first stage of deep neural networks)(Olshausen & Field,

(1996)). Following this finding, a class of methods oriented around searching for a linear

representation of images (or data more generally) in which the output coe�cients are as

independent as possible, known collectively as Independent Components Analysis (ICA),

arose (Hyvärinen & Oja, 2000). It was similarly shown that this objective led to basis

functions that resemble V1 simple-cells (Bell & Sejnowski, 1997; Hyvärinen & Oja, 2000).

These results suggest that models of V1 simple-cells would be a good place to start if one

wanted to simultaneously match neural responses to natural stimuli, and reduce redundancy

between output coe�cients.

In the early 2000’s, however; Schwartz and Simoncelli showed that even though ICA

filters were optimized to make signals as independent as possible, there were still signifi-

cant higher-order correlations between filter responses to natural images (See Figure 1.8)

(Schwartz & Simoncelli, (2001)). Schwartz and Simoncelli also showed that a simple non-

linear operation, divisive normalization, could easily remove these remaining redundancies,

producing signals that were significantly more independent (See Figure 1.8) (Schwartz &

Simoncelli, (2001)). Divisive normalization, in which the response of a neuron is divided

by a weighted sum of the responses of its neighbors, has been found throughout the brain

and has been hypothesized to be a canonical neural computation (Carandini & Heeger,

(2012)).
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Figure 1.8: Normalization Reduces Correlated Variability of Linear Filter Out-
puts: Schwartz and Simoncelli examined the higher order correlations between the outputs
of 2 linear bandpass filters designed to make image signals independent (A). By examining
the joint histograms of 2 filters at di�erent spatial locations within an image, they found
that the filters displayed higher order correlations (specifically, while the responses of L1
and L2 are decorrelated, the variance of the distribution of L2 increases with increasing
value of L1) (B). Finally, they showed that by dividing the linear filter responses by a
weighted sum of the squared responses of neighboring filters produced responses that were
truly independent (C). (Adapted from Schwartz & Simoncelli, (2001))

These results together suggest that the addition of a simple divisive nonlinearity, chang-

ing the LN model into an LG model, may provide a powerful toolset for simultaneously

reducing redundancy in model representations and better capturing responses of real neural

circuits with fewer layers. This finding is no doubt partially responsible for the success of

SSIM, which implements a form of divisive normalization, as well as the more recent success

of models of V1 containing normalization between filters as perceptual metrics (Laparra

et al., (2010)).

Models like that of Laparra et al., (2010), as well as traditional solutions to the e�cient

coding hypothesis such as ICA, curiously bypass early processing stages in the retina and

LGN and begin with a bank of linear filters that resemble the function of V1. However,

in 2011, Karklin and Simoncelli showed that under realistic assumptions of metabolic con-
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Figure 1.9: On-O� filters Optimally Reduce Mutual Information in the Presence
of Noise: Karklin and Simoncelli showed in 2011 that filters optimized for e�cient coding
under the presence of significant input and output noise (matching real world conditions)
did not produce V1-like oriented filters (as in the case with no noise), but instead produced
populations of On and O� center-surround filters like those found in the earliest visual
processing stages, the retina and LGN. (Adapted from Karklin & Simoncelli, (2011))

straints, as well as the presence of input (cone) noise and output noise, the e�cient coding

framework produces a population of On and O� center-surround filters, like those found

in the Retina and LGN (See Figure 1.9)(Karklin & Simoncelli, (2011)). Additionally, it

has long been known that the responses of cells in the Retina and LGN are highly non-

linear, and their function cannot easily be subsumed by a simple linear filter (See Figure

1.10) (Mante et al., (2005), Mante et al., (2008), and Shapley et al., (1972)). For example,

in 2008, Mante and Carandini showed that they could capture a large percentage of the

response variance of cat LGN neurons in response to drifting gratings and natural images

using an LN model with hierarchically stacked stages of gain control following a fixed linear

filter (See Figure 1.11)( Mante et al., (2008)). Thus, under realistic physiological noise as-

sumptions, an LG model of On and O� center-surround filters followed by successive stages

of divisive normalization (which is a static version of the dynamic gain control from Mante
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et al., (2008)) both reduces correlations between output coe�cients more than a model of

oriented band-pass v1-like filters and captures neural responses of the first stages of visual

processing in the primate visual system.

In this thesis, we will build on these observations, and test the ability of a model of the

often-overlooked early visual processing (Retina and LGN), with hierarchically cascaded

stages of divisive normalization inspired by the model of Mante and Carandini, to capture

human perceptual similarity (Mante et al., (2008)). We will compare the performance

of this highly nonlinear one stage model to the performance of much deeper neural net-

works constructed from simple LN operators, as described above. To do so, we will draw

inspiration from the goal-directed network modeling of Yamins and DiCarlo, and fit the pa-

rameters of each of our physiological models such that they perform a natural image-based

psychophysical task at a high level. Details of the models, task, data and optimization are

described below.

1.5 Capturing Perceptual Distortion Sensitivity within Neural

Networks

In order to capture human perceptual distortion sensitivity within our set of neural network

models and to fit the parameters of the models that are unknown, or underconstrained

by physiological data, we trained each of the networks to predict human sensitivity to

distortions to natural images. We utilized the publicly available TID-2008 database, which

contains a large set of distorted image pairs and corresponding human ratings of distortion

(Ponomarenko et al., (2009)).

18



Figure 1.10: Nonlinear response of Cat LGN to a step in Luminance and Contras:
Predictions of a linear filter (In green) and measured neural responses from cat LGN in
response to: (A.) an increment in luminance, (B.) a decrement in luminance, (C.) an
increment in contrast, and (D.) a decrement in contrast. In each case, the linear filter
poorly predicts the behavior of the neurons. (Adapted from Mante et al., (2005))
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B.

Figure 1.11: A dynamic normalized model of Cat LGN explains a large fraction of response
variance to drifting gratings and Natural Images. (Adapted from Mante et al., (2008))

1.5.1 Estimating Model Parameters from Perceptual Data

Perceptual distortion distance for each model was calculated as the Euclidean distance

between the model’s representations of the original, x̨, and distorted images, x̨ Õ:

D„ = ||f„(x̨) ≠ f„(x̨ Õ)||2

For each of our models, we optimized the parameters, „, so as to maximize the correlation

between the model-predicted perceptual distance, D„ and the human mean opinion scores

(MOS) reported in the TID-2008 database:

„ú = arg max
„

3
corr(D„, MOS)

4

Optimization for all models was performed using regularized stochastic gradient ascent

with the Adam algorithm and backpropogation, with the exception of our deepest neural

network, for which optimization was performed using non-negative least squares (details

below).(Kingma & Ba, (2014)).
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Figure 1.12: Architecture of VGG16: VGG16 is constructed from a series of convo-
lutional filtering layers, rectified linear units (ReLu), and max-pooling stages. We only
consider the first thirteen layers of the network here (those preceding the fully-connected
layers) (Adapted from Simonyan & Zisserman, (2015))

1.5.2 Deep Neural Networks

VGG-IQA

We begin with one of the deep neural networks most commonly utilized as a perceptual

metric, VGG16 (See figure 1.12) (Simonyan & Zisserman, (2015)). We call our modified

version targeted at image quality assessment (VGG-IQA). VGG16 performs object recog-

nition at human levels, and we want to preserve the information about vision that VGG16

has learned in the process of being optimized for this task. As such, our version leaves the

linear filters trained on object recognition as they are, and simply computes a weighted

mean squared error over all rectified convolutional layers of the VGG16 network between

the image pairs (13 weight parameters, Â, in total):

D(x̨, x̨ Õ)vgg =
13ÿ

i

Âi||layeri(x̨) ≠ layeri(x̨ Õ)||2
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with weights trained on the perceptual task above. The output space created by ap-

pending each layer of VGG16 is remarkably large, and creates problems for optimizing

our parameters using stochastic gradient descent. Instead, we precomputed the layer-wise

MSE between each image pair in our database, and utilized non-negative least squares to

optimize the 13 weight parameters, Â, to best match the reported human distortion ratings.

4-stage Cascaded LN Network

VGG16 is a powerful neural network capable of solving complicated visual tasks. However,

in utilizing a network pre-trained on a separate task, we are not taking advantage of the

full power of neural networks to learn from data. To rectify this, we constructed a generic

4-layer convolutional neural network (CNN, 436908 parameters - Fig. 1.13) which we will

train from scratch on the perceptual task described above.

Within this network, each layer applies a bank of 5◊5 convolution filters to the outputs

of the previous layer (or, for the first layer, the input image). The convolution responses

are subsampled by a factor of 2 along each spatial dimension (the number of filters at each

layer is increased by the same factor to maintain a complete representation at each stage).

Following each convolution, we employ batch normalization, in which all responses are

divided by the standard deviation taken over all spatial positions and all layers, and over

a batch of input images (Io�e & Szegedy, (2015)). The output stage of each layer in the

network (following the subsampling stage) serve as the inputs to the Batch Normalization

stage. For the outputs of a given layer for a given minibatch, B = {x1 . . . m}, the outputs

of the corresponding Batch Normalization stage, yi = BN(xi), is computed as follows: We

first compute the minibatch mean, µB, and variance, ‡2
B, globally across all coe�cients in
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Figure 1.13: Architecture of a 4-layer Convolutional Neural Network (CNN). Each layer
consists of a convolution, downsampling, and a rectifying nonlinearity (see text). The
network was trained, using batch normalization, to maximize correlation with the TID-
2008 database of human image distortion sensitivity.

B.

µB = 1
m

mÿ

i=1
xi (1.1)

‡2
B = 1

m

mÿ

i=1
(xi ≠ µB)2 (1.2)

We then normalize the coe�cients of B by µB and ‡2
B.

x̂i = (xi ≠ µB)
Ò

‡2
B + ‘

; (1.3)

We then scale and shift the output parameters, x̂i, with parameters that are learned from

the data.

yi = ⁄x̂i + — (1.4)

Finally, outputs are rectified with a softplus nonlinearity, log(1 + exp(x)). After training,

these normalization parameters (µB, ‡2
B) are fixed to the global mean and variance across

the training set, and the scale and shift parameters (⁄, and —), are fixed to the learned

values.
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On-Off

Figure 1.14: Architecture of our full LGN model (On-O�). (See text (and Appendix A)
for details)

1.5.3 Models of Early Visual Physiology

We constructed a set of models reflecting the structure and computations of the Lateral

Geniculate Nucleus (LGN), the visual relay center of the Thalamus. The full model (On-

O�), is inspired by the model of Mante and Carandini, and is constructed from a cascade of

linear filtering, and nonlinear computational modules (local gain control and rectification)

(Mante et al., (2008)). The other three models are sub-models of the On-O� model.

On-O� Model

The first stage decomposes the image into two separate channels. Within each channel,

the image is filtered by a di�erence-of-Gaussians (DoG) filter (2 parameters, controlling

spatial size of the Gaussians - DoG filters in On and O� channels are assumed to be of
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LN

LG

LGG

Figure 1.15: Architecture of our reduced LGN models. (See text (and Appendix A) for
details)

opposite sign). Following this linear stage, the outputs are normalized by two sequential

stages of gain control, a known property of LGN neurons (Mante et al. [2008]). Filter

outputs are first normalized by a local measure of luminance (2 parameters, controlling

filter size and amplitude), and subsequently by a local measure of contrast (2 parameters,

again controlling size and amplitude). Finally, the outputs of each channel are rectified by

a softplus nonlinearity, for a total of 12 model parameters.

In order to evaluate the necessity of each structural element of this model, we also test

three reduced sub-models, each trained on the same data.
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LGG Model

In the first reduced model (Linear-Gain Control-Gain Control, or LGG), we reduce the

number of channels to one, but keep both stages of normalization. This model has half

the parameters of the full On-O� model controlling the shape of the di�erence-of-gaussians

filter, as well as the size of both normalization pools and the strength of each normalization

(a total of 6 parameters).

LG Model

In the second reduced model (Linear-Gain Control, or LG), we reduce the number of

channels to one, and also remove one stage of normalization. The parameters of this model

control the shape of the di�erence-of-gaussians filter, as well as the size of the normalization

pool and the strength of the normalization (a total of 4 parameters).

LN Model

In the final reduced model (Linear Nonlinear, or LN), we reduce the number of channels to

one, and also remove both stages of normalization. The parameters of this model control

the shape of the di�erence-of-gaussians filter (a total of 2 parameters).

1.6 Model Performance and Comparison with the State of the

Art

After optimizing each of our networks on a subset of the TID-2008 database (900 distorted

image pairs), we tested each model’s performance at predicting a held-out set of testing

data (800 distorted image pairs). We find that both deep neural networks, as well as the
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TID 2008 Held-out Testing Set
PSNR SSIM V1 LN LG LGG On-O� VGG-IQA CNN

fl 0.52 0.74 0.81 0.66 0.74 0.83 0.82 0.84 0.86

Table 1.1: Evaluation of neural IQA models in the held-out testing set of TID2008 (Ponomarenko et al., 2009). Pearson
correlation of distance metrics vs. human perceptual judgments. Numbers were obtained using the gray-scale version of the
images in databases (see the text for details)

two LDN models that contain more than one stage of divisive normalization, perform at a

high level on this held out dataset (See Table 1.1). In fact, we find that all four of these

models outperform both PSNR, and two state-of-the-art metrics (SSIM and the V1 model

of (Laparra et al., 2010). Unsurprisingly, our two simplest models (LN and LG) perform

significantly worse.

1.7 New Applications Demand More of our Models

Surprisingly, we find that the most generic neural network, with ≥ 500, 000 parameters,

and lacking any prior information about vision, or visual physiology, predicts our held out

testing set slightly better than our more physiologically informed models. While this re-

sult may seem on immediate inspection like a victory for the generic neural network, the

truly surprising result is that a model of the LGN with 12 parameters (the On-O� model)

performs at nearly the same level as the much more complicated neural networks. The

explanation for this lies partly in the particular construction of this database, which was

created by image processing engineers, and represents the set of most commonly encoun-

tered image distortions within that community (Ponomarenko et al., (2009)). The space

of possible image distortions, however, is very high-dimensional, and unlikely to be well

spanned by this subset of distortions. While the models did not see the testing data during

training, both subsets of data likely cover a similar subspace of the overarching distortion
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space. While our models may generalize within, or near, this subspace, it is not clear that

they will generalize correctly to distortions that lie in other parts of the space.

If our goal was only to build a model that could identify commonly encountered im-

age distortions, and identify their visibility correctly, we may not worry so much about

this problem. Recently, however, with the increase in computing power, and the advent

of machine learning and high dimensional optimization, there has been a resurgence of

interest in perceptual metrics. Many researchers are searching for perceptual loss functions

that they can utilize to optimize auto-endcoders, end-to-end optimized image compression

algorithms, generative adversarial networks, and many other algorithms. Utilized in this

way, a good perceptual metric needs to generalize across the much larger space of possible

distortions.

In the subsequent chapters of this thesis, we will explore the ability of each of our models

to generalize beyond the database using a novel image synthesis test. After analyzing the

performance of each of our models, we develop a novel image rendering framework, which

requires a perceptual loss function, and analyze the performance of our models in this

framework. Finally, we will make progress towards developing and testing a normative

model of perceptual distortion sensitivity, based on the intuitions of Wang and Simoncelli

that led them to develop SSIM (Wang et al., (2004)).
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Chapter 2

Eliciting Predictions from
High-Dimensional Representations

2.1 Eigen-distortions of Hierarchical Representations

Human capabilities for recognizing complex visual patterns are believed to arise through

a cascade of transformations, implemented by neurons in successive stages in the visual

system. Several recent studies have suggested that representations of deep convolutional

neural networks trained for object recognition can predict activity in areas of the primate

ventral visual stream better than models constructed explicitly for that purpose (Khaligh-

Razavi & Kriegeskorte, (2014) and Yamins et al., (2014)). These results have inspired

exploration of deep networks trained on object recognition as models of human perception,

explicitly employing their representations as perceptual distortion metrics or loss functions

(Dosovitskiy & Brox, (2016), Héna� & Simoncelli, (2016), and Johnson et al., (2016)). On

the other hand, several other studies have used synthesis techniques to generate images

that indicate a profound mismatch between the sensitivity of these networks and that of

human observers. Specifically, Szegedy et al., (2013) constructed image distortions, im-
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Image
Adversarial

Noise
Image 

+ Noise

“dog” “ostrich”

Figure 2.1: Adversarial Examples Szegedy et al. showed that classification performance
within deep neural networks trained on object recognition is vulnerable to small targeted
noise perturbations. In the example shown here, the neural network in question misclassfies
the image of the dog on the right (which is a combination of the picture of the dog on the
left, and the noise vector in the center) as an ostrich. Subsequent studies have found that
di�erent network architectures are vulnerable to the same image perturbations. This result
indicates that neural networks and humans di�er in their sensitivity to a least a subset of
image distortions. (Adapted fromSzegedy et al., (2013))

30



perceptible to humans, that cause their networks to grossly misclassify objects (see figure

2.1). Similarly, Nguyen & Clune, (2015) optimized randomly initialized images to achieve

reliable recognition by a network, but found that the resulting ‘fooling images’ were un-

interpretable by human viewers (see figure 2.2). Simpler networks, designed for texture

classification and constrained to mimic the early visual system, do not exhibit such fail-

ures (Portilla & Simoncelli, (2000)). These results have prompted e�orts to understand

why generalization failures of this type are so consistent across deep network architectures,

and to develop more robust training methods to defend networks against attacks designed

to exploit these weaknesses (Goodfellow et al., (2014)). From the perspective of model-

ing human perception, these synthesis failures suggest that representational spaces within

deep neural networks deviate significantly from those of humans, and that methods for

comparing representational similarity, based on fixed object classes and discrete sampling

of the representational space, are insu�cient to expose these deviations. If we are going to

use such networks as models for human perception, we need better methods of comparing

model representations to human vision. Recent work has taken the first step in this direc-

tion, by analyzing deep networks’ robustness to visual distortions on classification tasks, as

well as the similarity of classification errors that humans and deep networks make in the

presence of the same kind of distortion (Dodge & Karam, (2017)).

Here, we aim to accomplish something in the same spirit, but rather than testing on

a set of hand-selected examples, we develop a model-constrained synthesis method for

generating targeted test stimuli that can be used to compare the layer-wise representational

sensitivity of a model to human perceptual sensitivity. Synthesis tests, like that introduced

by Freeman and Simoncelli (Freeman & Simoncelli, (2011)), give us the ability to compare

model representations with human representations. In their paper, Freeman and Simoncelli
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Figure 2.2: Fooling Images: The above images were synthesized from white noise samples
to maximize network confidence that the object listed below the image was present. The
authors dubbed these images, "Fooling Images" because the neural network is fooled, despite
the fact that humans can tell clearly that the object in question is not present in the image.
This result suggests that the network may be overly tolerant to unnatural image features.
(Adapted from Nguyen & Clune, (2015))
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Figure 2.3: Metamers of the ventral stream Freeman and Simoncelli introduced a
method for generating multiple images which di�ered only along dimensions within the
null space of a model (in their case, a model of the intermediate layers of the ventral
visual stream) (Freeman & Simoncelli, (2011)). They refer to these images as metamers.
Images B. and C. are model synthesized metamers of the original image, A. (D.) The
authors showed that when the size of the receptive fields in the model used to generate the
images matched the size of receptive fields in area V2, the human observers were unable to
distinguish between metameric images. (Adapted from Freeman & Simoncelli, (2011))
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introduced a method for generating multiple images which di�ered only along dimensions

within the null space of a model (in their case, a model of the intermediate layers of the

ventral visual stream). They referred to these images as ventral-stream metamers, and were

able to show that humans cannot distinguish between two di�erent, but metameric, images

when the size of the receptive fields in the model used to generate the images matched

the size of receptive fields in area V2 (see figure 2.3). This method is a strong test of the

similarity of the model representation and the human perceptual representation.

Similarly, we could synthesize images that di�er along dimensions that lie outside of

the null space of the model. Unlike metamers, these di�erences between images should be

noticeable to human observers. Not every di�erence will be equally noticeable, however, and

the model’s predictions of the ranking of detectability of these di�erences is also a strong

test of the similarity of a model representation and the human perceptual representation.

Utilizing Fisher information, we isolate the model-predicted most and least noticeable

changes to an image. We test these predictions by determining how well human observers

can discriminate these same changes (see figure 2.4). We apply this method to six layers

of VGG16 (Simonyan & Zisserman, (2015)), a deep convolutional neural network (CNN)

trained to classify objects. We also apply the method to several models explicitly trained

to predict human sensitivity to image distortions, including both a 4-stage generic CNN, an

optimally-weighted version of VGG16, and a family of highly-structured models explicitly

constructed to mimic the physiology of the early human visual system. Example images

from the paper, as well as additional examples, are available at http://www.cns.nyu.edu/

~lcv/eigendistortions/.
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Figure 2.4: Using Fisher Information to elicit extremal predictions from each
model:A model is are applied to an image (depicted as a point x̨ in the space of pixel
values), producing a response vector. The level set of equivalently detectable image dis-
tortions lie on a circle (or hypersphere in higher dimensions) around the response to this
image, because we utilize MSE to measure distance in this space. The Fisher Information
Matrix (FIM) of the model allows us to describe this level set in the pixel space. We test
the model’s predictions of the most and least-noticeable distortions by measuring human
discriminability in these directions. If the model is a bad model for human sensitivity, the
detection thresholds in the directions of these two extremal predictions will be similar (A.).
If the model is a good model for human sensitivity, the detection threshold in the direction
of the least noticeable prediction of the model will be higher than the detection threshold
for the least noticeable prediction (B.).
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2.2 Synthesizing Model Predictions

2.2.1 Predicting Discrimination Thresholds

Suppose we have a model for human visual representation, defined by conditional density

p(r̨|x̨), where x̨ is an N -dimensional vector containing the image pixels, and r̨ is an M -

dimensional random vector representing responses internal to the visual system (e.g., firing

rates of a population of neurons). For our analysis, we require If the image is modified by

the addition of a distortion vector, x̨ + –û, where û is a unit vector, and scalar – controls

the amplitude of distortion, the model can be used to predict the threshold at which the

distorted image can be reliably distinguished from the original image. Specifically, one can

express a lower bound on the discrimination threshold in direction û for any observer or

model that bases its judgments on r̨ (Seriès et al., (2009)):

T (û; x̨) Ø —
Ò

ûT J≠1[x̨]û (2.1)

where — is a scale factor that depends on the noise amplitude of the internal representation

(as well as experimental conditions, when measuring discrimination thresholds of human

observers), and J [x̨] is the Fisher information matrix (FIM; Fisher, (1925)), a first-order

expansion of the log likelihood:

J [x̨] = Er̨|x̨

C3
ˆ

ˆx̨
log p(r̨|x̨)

43
ˆ

ˆx̨
log p(r̨|x̨)

4T
D

(2.2)

Here, we restrict ourselves to models that can be expressed as a deterministic (and di�eren-

tiable) mapping from the input pixels to mean output response vector, f(x̨), with additive

white Gaussian noise in the response space. The log likelihood in this case reduces to a
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quadratic form:

log p(r̨|x̨) = ≠1
2

3
[r̨ ≠ f(x̨)]T [r̨ ≠ f(x̨)]

4
+ const.

The derivative of the log p(r̨|x̨) with respect to x is:

ˆ

ˆx̨
log p(r̨|x̨) = ˆf

ˆx̨

T

[r ≠ f(x)]

Substituting this into Eq. (2.2) gives:

J [x̨] = Er̨|x̨

C
ˆf

ˆx̨

T

[r ≠ f(x)][r ≠ f(x)]T ˆf

ˆx̨

D

The expectation of [r ≠ f(x)][r ≠ f(x)]T = � = I, and can be dropped, giving:

J [x̨] = ˆf

ˆx̨

T ˆf

ˆx̨

Thus, for these models, the Fisher information matrix induces a locally adaptive Euclidean

metric on the space of images, as specified by the Jacobian matrix, ˆf/ˆx̨. Our analysis

relies on an invertible J [x̨], which requires that M Ø N , or that the representation space is

either complete or overcomplete. An undercomplete representation results in an J [x̨] that

is singular, and is not invertible. Thus, for all models explored in this section, we require

that M Ø N .

2.2.2 Extremal Eigen-Distortions

The FIM is generally too large to be stored in memory or inverted. Even if we could store

and invert it, the high dimensionality of input (pixel) space renders the set of possible

distortions too large to test experimentally. We resolve both of these issues by restricting
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our consideration to the most- and least-noticeable distortion directions, corresponding to

the eigenvectors of J [x̨] with largest and smallest eigenvalues, respectively. First, note that

if a distortion direction ê is an eigenvector of J [x̨] with associated eigenvalue ⁄, then it

is also an eigenvector of J≠1[x̨] (with eigenvalue 1/⁄), since the FIM is symmetric and

positive semi-definite. In this case, Eq. (2.1) becomes

T (ê; x̨) Ø —/
Ô

⁄

If human discrimination thresholds attain this bound, or are a constant multiple above it,

then the ratio of discrimination thresholds along two di�erent eigenvectors is the square

root of the ratio of their associated eigenvalues. In this case, the strongest prediction

arising from a given model is the ratio of the extremal (maximal and minimal) eigenvalues

of its FIM, which can be compared to the ratio of human discrimination thresholds for

distortions in the directions of the corresponding extremal eigenvectors (Fig. 2.5).

Although the FIM cannot be stored, it is straightforward to compute its product with

an input vector (i.e., an image). We can decompose this product into a series of Matrix-

vector products, requiring us to store only a vector the size of the input image at each stage.

Using this operation, we can solve for the extremal eigenvectors using the well-known power

iteration method (Mises & Pollaczek-Geiringer, (1929)). Specifically, to obtain the maximal

eigenvalue of a given function and its associated eigenvector (⁄m and êm, respectively), we

start with a vector consisting of white noise, ê(0)
m , and then iteratively apply the FIM,

renormalizing the resulting vector, until convergence:

⁄ (k+1)
m =

...J [x̨]ê (k)
m

... ; ê (k+1)
m = J [x̨]ê (k)

m /⁄(k+1)
m

To obtain the minimal eigenvector, êl, we perform a second iteration using the FIM with
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Figure 2.5: Two models are applied to an image (depicted as a point x̨ in the space of pixel
values), producing response vectors r̨A and r̨B. Responses are assumed to be stochastic,
and drawn from known distributions p(r̨A|x̨) and p(r̨B|x̨). The Fisher Information Ma-
trices (FIM) of the models, JA[x̨] and JB[x̨], provide a quadratic approximation of the
discriminability of distortions relative to an image (rightmost plot, colored ellipses). The
extremal eigenvalues and eigenvectors of the FIMs (directions indicated by colored lines)
provide predictions of the most and least visible distortions. We test these predictions by
measuring human discriminability in these directions (colored points). In this example,
the ratio of discriminability along the extremal eigenvectors is larger for model A than for
model B, indicating that model A provides a better description of human perception of
distortions (for this image).
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the maximal eigenvalue subtracted from the diagonal:

⁄
(k+1)

l =
...(J [x̨] ≠ ⁄mI) ê

(k)
l

... ; ê
(k+1)

l = (J [x̨] ≠ ⁄mI) ê
(k)

l /⁄
(k+1)
l

2.2.3 Measuring Human Detection Thresholds

For each model under consideration, we synthesized extremal eigen-distortions for 6 images

from the Kodak image set1. We then estimated human thresholds for detecting these

distortions using a two-alternative forced-choice task. On each trial, subjects were shown

(for one second each with a half second blank screen between images, and in randomized

order) a photographic image (18 degrees across), x̨, and the same image distorted using one

of the extremal eigenvectors, x̨+–ê, and then asked to indicate which image appeared more

distorted. This procedure was repeated for 120 trials for each distortion vector, ê, over a

range of – values, with ordering chosen by a standard psychophysical staircase procedure.

The proportion of correct responses, as a function of –, was fit with a cumulative Gaussian

function (see Appendix B), and the subject’s detection threshold, Ts(ê; x̨) was estimated

as the value of – for which the subject could distinguish the distorted image 75% of the

time. We computed the natural logarithm of the ratio of these detection thresholds for

the minimal and maximal eigenvectors, and averaged this over images (indexed by i) and

subjects (indexed by s):

D(f) = 1
S

1
I

Sÿ

s=1

Iÿ

i=1
log ÎTs(êli; x̨i)/Ts(êmi; x̨i)Î

where Ts indicates the threshold measured for human subject s. D(f) provides a measure

of a model’s ability to predict human performance with respect to distortion detection: the
1
Downloaded from http://www.cipr.rpi.edu/resource/stills/kodak.html.
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Figure 2.6: Top: Average log-thresholds for detection of the least-noticeable (red) and
most-noticeable (blue) eigen-distortions derived from IQA models (19 human observers).

ratio of thresholds for model-generated extremal distortions will be larger for models that

are more similar to the human subjects (Fig. 2.5).

2.3 Quantifying the Quality of Model Predictions

2.3.1 Comparing Perceptual Predictions of Generic and Structured Models

After training, we evaluated each model’s predictive performance using traditional cross-

validation methods on a held-out test set of the TID-2008 database. By this measure,

all three models performed well (Pearson correlation: CNN fl = .86, On-O�: fl = .82,

VGG-IQA: fl = .84).
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Most-noticeable eigen-distortion (4êm)
LG LGG On-O� CNN VGG-IQA

Least-noticeable eigen-distortion (30êl)
LG LGG On-O� CNN VGG-IQA

Figure 2.7: Eigen-distortions for several models trained to maximize correlation with human
distortion ratings in TID-2008 Ponomarenko et al., (2009). Images are best viewed in a
display with luminance range from 5 to 300 cd/m2 and a “ exponent of 2.4. Top: Most-
noticeable eigen-distortions. All distortion image intensities are re-scaled by the same
amount (◊4). Second row: Original image (x̨), and sum of this image with each eigen-
distortion. Third and fourth rows: Same, for the least-noticeable eigen-distortions. All
distortion image intensities re-scaled by the same amount (◊30).
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Stepping beyond the TID-2008 database, and using the more stringent eigen-distortion

test, yielded a very di�erent outcome (Figs. 2.7, 2.6 and 2.10). The average detection

thresholds measured across 19 human subjects and 6 base images indicates that all of our

models surpassed the baseline model in at least one of their predictions. However, the eigen-

distortions derived from the generic CNN and VGG-IQA were significantly less predictive

of human sensitivity than those derived from the On-O� model (Fig. 2.6) and, surprisingly,

even somewhat less predictive than early layers of VGG16 (see Fig. 2.10). Thus, the eigen-

distortion test reveals generalization failures in the CNN and VGG16 architectures that

are not exposed by traditional methods of cross-validation. On the other hand, the models

with architectures that mimic biology (On-O�, LGG, LG) are constrained in a way that

enables better generalization.

We compared these results to the performance of each of our reduced LGN models

(Fig. 1.15), to determine the necessity of each structural element of the full On-O� model.

As expected, the models incorporating more LGN functional elements performed better on

a traditional cross-validation test, with the most complex of the reduced models (LGG)

performing at the same level as On-O� and the CNN (LN: fl = .66, LG: fl = .74, LGG:

fl = .83). Likewise, models with more LGN functional elements produced eigen-distortions

with increasing predictive accuracy (Fig. 2.6 and 2.10). It is worth noting that the three

LGN models that incorporate some form of local gain control perform significantly better

than the CNN and VGG-IQA models, and better than all layers of VGG16, including the

early layers (see Fig. 2.10).
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2.3.2 Probing Representational Sensitivity of VGG16 Layers

We also examined discrimination predictions derived from several layers of original VGG16

model, which has been previously studied in the context of perceptual sensitivity. Specifi-

cally, Johnson et al., (2016) trained a neural network to generate super-resolution images

using the representation of an intermediate layer of VGG16 as a perceptual loss function,

and showed that the images this network produced looked significantly better than images

generated with simpler loss functions (e.g. pixel-domain mean squared error). Héna� &

Simoncelli, (2016) used VGG16 as an image metric to synthesize minimal length paths

(geodesics) between images modified by simple global transformations (rotation, dilation,

etc.). The authors found that a modified version of the network produced geodesics that

captured these global transformations well (as measured perceptually), especially in deeper

layers. Implicit in both of these studies, and others like them (e.g., Dosovitskiy & Brox,

(2016)), is the idea that a deep neural network trained to recognize objects may exhibit

additional human perceptual characteristics.

Here, we compare VGG16’s sensitivity to distortions directly to human perceptual sen-

sitivity to the same distortions. We transformed luminance-valued images and distortion

vectors to proper inputs for VGG16 following the preprocessing steps described in the origi-

nal paper, and verified that our implementation replicated the published object recognition

results. For human perceptual measurements, all images were transformed to produce the

same luminance values on our calibrated display as those assumed by the model.

We computed eigen-distortions of VGG16 at 6 di�erent layers: the rectified convolu-

tional layer immediately prior to the first max-pooling operation (Front), as well as each

subsequent layer following a pooling operation (Layer2–Layer6). A subset of the eigen-

distortions are shown, both in isolation and superimposed on the image from which they
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Figure 2.8: Top: Average log-thresholds for detection of the least-noticeable (red) and
most-noticeable (blue) eigen-distortions derived from layers within VGG16 (10 observers),
and a baseline model (MSE) for which distortions in all directions are equally visible.
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Most-noticeable eigen-distortions
4êm Front Layer 3 Layer 5

Image X

Least-noticeable eigen-distortions
30êl Front Layer 3 Layer 5

Image X

Figure 2.9: Eigen-distortions derived from three layers of the VGG16 network for an ex-
ample image. Images are best viewed in a display with luminance range from 5 to 300
cd/m2 and a “ exponent of 2.4. Top: Most-noticeable eigen-distortions. All distortion
image intensities are scaled by the same amount (◊4). Second row: Original image (x̨),
and sum of this image with each of the eigen-distortions. Third and fourth rows: Same,
for the least-noticeable eigen-distortions. Distortion image intensities are scaled the same
(◊30).
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were derived, in Fig. 2.9. Average Human detection thresholds measured across 10 subjects

and 6 base images are summarized in Fig. 2.8.Note that the detectability of these distor-

tions in isolation is not necessarily indicative of their detectability when superimposed on

the underlying image, as measured in our experiments. We compared all of these predic-

tions to a baseline model (MSE), where the image transformation, f(x̨), is replaced by the

identity matrix. For this model, every distortion direction is equally discriminable, and

distortions are generated as samples of Gaussian white noise.

The results from our eigen-distortion analysis indicate that the early layers of VGG16 (in

particular, Front and Layer3) are better predictors of extremal human sensitivity than the

deeper layers (Layer4, Layer5, Layer6). Specifically, the most noticeable eigen-distortions

from representations within VGG16 become more discriminable with depth, but so gener-

ally do the least-noticeable eigen-distortions. This discrepancy could arise from overlearned

invariances, or invariances induced by network architecture (e.g. layer 6, the first stage in

the network where the number of output coe�cients falls below the number of input pixels,

is an under-complete representation). Notably, including the "L2 pooling" modification

suggested in Héna� & Simoncelli, (2016) did not significantly alter the visibility of eigen-

distortions synthesized from VGG16 (images and data not shown).

2.3.3 Comparing Model Sensitivity Predictions to Human Sensitivity

In the above section, we compared only whether each model’s predictions of most- and

least-noticeable distortion directions (the eigenvectors of their Fisher Information matrix)

was well aligned with human perceptual sensitivity. The eigenvalues associated with those

eigenvectors also carry a testable prediction. Specifically, the model’s prediction of human

detection threshold in the direction of the eigenvectors is proportional to the square root
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Figure 2.10: Average empirical log-threshold ratio (D) for eigen-distortions derived from
each IQA optimized model and each layer of VGG16.

of the associated eigenvalue.

T (ê; x̨) Ø —/
Ô

⁄

If human discrimination thresholds attain this bound, or are a constant multiple above it,

then the ratio of discrimination thresholds along two di�erent eigenvectors is the square

root of the ratio of their associated eigenvalues. In this case, the strongest prediction

arising from a given model is the ratio of the extremal (maximal and minimal) eigenvalues

of its FIM, which can be compared to the ratio of human discrimination thresholds for

distortions in the directions of the corresponding extremal eigenvectors (Fig. 2.10).

We can test the quality of each model’s predictions by comparing the square root of the

ratio of its eigen-distortion eignvalues, and compare them to the ratio of measured human

detection thresholds for the same images (D) (see Figure 2.11). This measure gives us a

more nuanced picture of the ability of a model to capture human sensitivity. Both this
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Figure 2.11: Comparison of Eigenvalue Ratios to Empirical Threshold Ratios for Each
Model’s Eigen-distortions shows that no models perfectly predict human sensitivity ratios.
The models that under predict their own eigen-distortion detection ratio (LGG and OnO�)
also found the set of distortions with the largest empirical ratios. At the same time, deeper
layers of VGG produce larger and larger predicted threshold ratios while the empirically
measured ratios get smaller and smaller.
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measure, and the measures reported above, must be taken in tandem to understand the

quality of a model.

An analysis of the models tested here suggests that none of our models perfectly predict

the empirical threshold ratio of their own eigen-distortions, with LGG as the best perform-

ing model (See Figure 2.11). This is not entirely surprising, and it is important to take

these results together with the ranking of the empirical detection threshold ratios across

models. In our data, the models that under predict their own eigen-distortion detection

ratio (LGG and OnO�) also found the set of distortions with the largest empirical ratios.

At the same time, deeper layers of VGG produce larger and larger predicted threshold

ratios while the empirically measured ratios get smaller and smaller.

2.3.4 Models as Observers

In addition to comparing model predictions about the detection ratios of their own eigen-

distortions, we would like to quantify how well each model predicts the detectability of every

other model’s eigen-distortions. This analysis is partly related to the above analysis (models

that over predict their own eigen-distortion detection ratio are incapable of accounting for

the eigen-distortions of other model’s with larger detection thresholds than their own).

To compare model derived distances for the eigendistortions across models, we can cal-

culate the distance between our original image, and each distorted image shown to a subject

in each of the model’s response spaces (See Figure 2.12). We first show each model every

eigen-distortion scaled at the same amplitude – = .1. We then find the Pearson correlation

between the measured distances from each model and the mean detection thresholds for

each Eigen-distortion (See Figure 2.13.

Distances measured from the three models containing gain control modules (LG, LGG,
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Figure 2.12: Observer (columns) Distances for Every Eigen-Distortion scaled at a single
amplitude – = .1 derived from each generator model (rows) (distances are normalized
within each column for display purposes)

and OnO�) have the highest correlation with empirical human detection thresholds. The

model with the next highest correlation, VGG layer 3, performs significantly worse than

any of these modelss

The results above show that for small distortions, distances measured within models that

contain gain control (especially within our OnO� model) best explain the observed human

detection thresholds. We can also ask how well this result holds for over larger distortion

amplitudes. To do so, we show each model each eigen-distortion scaled at every amplitude

that our human subjects saw during the experiment. Taking all of this data together, we ask

how likely the measured model distances at each of these amplitudes explains the observed

hits and misses from our psychophysical measurements (see Appendix B for details and

Figure 2.13 for data). The results in Figure 2.13 show that, over the range of amplitudes

shown to human observers in our experiments, the OnO� model best explains the observed
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Figure 2.13: (A.) Pearson Correlation between Model Observer Distances and Average Em-
pirical Detection Thresholds Across All Eigen-distortions. Our LGN models significantly
outperform any version of VGG, or our CNN, at predicting this data. (B.) Log-Likelihoods
of observed data given each model as an observer (See Appendix B for details). This analy-
sis allows us to ask how well model-derived distances match human perception over longer
distances. These results also show that our LGN models (specifically OnO�) outperform
our other model classes.
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psychophysical results, butressing the results above.

2.4 Analysis and Extensisions to Realistic Models of Neural Noise

We have presented a new methodology for synthesizing most and least-noticeable distor-

tions from perceptual models, applied this methodology to a set of di�erent models, and

tested the resulting predictions by measuring their detectability by human subjects. We

show that this methodology provides a powerful form of “Turing test”: perceptual mea-

surements on this limited set of model-optimized examples reveal failures that are not be

apparent in measurements on a large set of hand-curated examples.

We are not the first to introduce a method of this kind. Wang & Simoncelli, (2008)

introduced Maximum Di�erentiation (MAD) competition, which creates images optimized

for one metric while holding constant a competing metric’s rating. Our method relies on

a Fisher approximation to generate extremal perturbations, and uses the ratio of their

empirically measured discrimination thresholds as an absolute measure of alignment to

human sensitivity (as opposed to relative pairwise comparisons of model performance).

Our method can easily be generalized to incorporate more physiologically realistic noise

assumptions, such as Poisson noise, and could potentially be extended to include noise at

each stage of a hierarchical model.

We’ve used this method to analyze the ability of VGG16, a deep convolutional neural

network trained to recognize objects, to account for human perceptual sensitivity. First, we

find that the early layers of the network are moderately successful in this regard. Second,

these layers (Front, Layer 3) surpassed the predictive power of a generic shallow CNN

explicitly trained to predict human perceptual sensitivity, but underperformed models of

the LGN trained on the same objective. And third, perceptual sensitivity predictions
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synthesized from a layer of VGG16 decline in accuracy for deeper layers.

We also showed that a highly structured model of the LGN generates predictions that

substantially surpass the predictive power of any individual layer of VGG16, as well as a

version of VGG16 trained to fit human sensitivity data (VGG-IQA), or a generic 4-layer

CNN trained on the same data. These failures of both the shallow and deep neural networks

were not seen in traditional cross-validation tests on the human sensitivity data, but were

revealed by measuring human sensitivity to model-synthesized eigen-distortions. Finally,

we confirmed that known functional properties of the early visual system (On and O�

pathways) and ubiquitous neural computations (local gain control, Carandini & Heeger,

(2012)) have a direct impact on perceptual sensitivity, a finding that is buttressed by several

other published results (Ballé et al., (2017), Laparra et al., (2017, 2010), Lyu & Simoncelli,

(2008), and Malo et al., (2006)).

Most importantly, we demonstrate the utility of prior knowledge in constraining the

choice of models. Although the biologically structured models used components similar to

generic CNNs, they had far fewer layers and their parameterization was highly restricted,

thus allowing a far more limited family of transformations. Despite this, they outperformed

the generic CNN and VGG models. These structural choices were informed by knowledge

of primate visual physiology, and training on human perceptual data was used to deter-

mine parameters of the model that are either unknown or underconstrained by current

experimental knowledge. Our results imply that this imposed structure serves as a power-

ful regularizer, enabling these models to generalize much better than generic unstructured

networks.
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2.4.1 Predictions Under Poisson Noise Assumptions

In the preceding sections, we made simplifying assumptions about the noise character-

istics within our neural network models, assuming homoskedastic gaussian noise. This

choice made sense for our initial analysis for several reasons; first, the models we tested

all utilized Euclidean distance in their internal representation as a measure of distortion

distance, thus implicitly assuming a model of homoskedastic noise, and second, making the

noise isotropic allowed us to tease apart how well each model stretches and compresses the

perceptual space in line with human perceptual sensitivity without contamination from

the e�ects of a noise model that also reshapes the distortion space. As a model of hu-

man physiology and perception, however, our simplifying assumptions deviate from noise

distributions observed in the primate visual system. We can reformulate the problem to

incorporate Poisson noise by re-deriving the closed-form Fisher Information matrix (from

section 3.2.1) under Poisson noise assumptions.

We again return to a set of models that can be expressed by a deterministic (and dif-

ferentiable) mapping from the input pixels to a mean output firing rate response vector,

⁄̨ = f(x̨), and with covariance matrix � = diag(⁄). The vector of spike counts, r̨, on any

given observation is a sample from N independent poisson distributions with mean firing

rates determined by the elements in ⁄̨. The log likelihood for a neural population with

independent Poisson variability is:

p(r̨|x̨) =
NŸ

i=1

fi(x̨)r
ie≠f

i

(x̨)

ri !
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And the log likelihood is:

log p(r̨|x̨) =
Nÿ

i=1
ri log(fi(x̨)) ≠ fi(x̨) ≠ log(ri !)

Taking the derivative with respect to x̨:

ˆ

ˆx̨
log p(r̨|x̨) =

Nÿ

i=1

(rif
Õ
i(x̨))

fi(x̨) ≠ f Õ
i(x̨)

We can rearrange this, and combine terms such that:

ˆ

ˆx̨
log p(r̨|x̨) =

Nÿ

i=1

(ri ≠ fi(x̨))f Õ
i(x̨)

fi(x̨)

We can rewrite this in vector notation, substituting the precision matrix �≠1 for 1
f(x̨) :

ˆ

ˆx̨
log p(r̨|x̨) = ˆf

ˆx̨

T

�≠1[r̨ ≠ f(x̨)]

Plugging into equation 3.2, we obtain the following:

J [x̨] = Er̨|x̨

S

Uˆf

ˆx̨

T

�≠1[r̨ ≠ f(x̨)][r̨ ≠ f(x̨)]T �≠1 ˆf

ˆx̨

T

V

The expectation over r̨ of [r̨ ≠ f(x̨)][r̨ ≠ f(x̨)]T = �, by definition. Substituting this back

into the equation above:

J [x̨] = ˆf

ˆx̨

T

�≠1 ˆf

ˆx̨

That is, the Fisher Information under Poisson noise assumptions induces a locally adaptive

metric on the space of images weighted by the precision matrix of the representation. Unlike
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the homoskedastic Gaussian noise case, output coe�cients with large responses will have

larger uncertainty than coe�cients with a smaller response, and thus distortions that cause

changes to coe�cients with large responses will be less detectable than equivalent changes

to coe�cients with small responses.

We can see the e�ect that this weighted precision matrix has on the eigen-spectrum

of a model by comparison to the eigen-spectrum of the same model under homoeskedastic

gaussian noise assumptions. To remind us, the Fisher information in the homoskedastic

Gaussian case, J [x̨]G was defined as:

J [x̨]G = ˆf

ˆx̨

T ˆf

ˆx̨

ˆf
ˆx̨

can be rewritten as its singular-value decomposition:

ˆf

ˆx̨
= USV T

And the Fisher Information can thus be rewritten as:

J [x̨]G = V S2V T

That is, the eigenvectors of J [x̨]G are equivalent to the right-singular vectors of ˆf
ˆx̨

, and the

eigenvalues of J [x̨]G are the squared singular values of ˆf
ˆx̨

.

Returning to the Fisher Information under Poisson assumptions, J [x̨]P , we can similarly

rewrite J [x̨]P as:

J [x̨]P = V SUT �≠1USV T
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Figure 2.14: Gaussian noise and Poisson noise behave di�erently, impacting the sensitivity
of the model under di�erent noise assumptions. In the gaussian case, the noise variance
is indpendent of the mean firing rate, and so the set of detectable distortions around an
image always lie on a circular level set (or hyperspherical in higher dimensions) around
the mean response to the image. In the Poisson case, the variance of the noise scales with
the mean, and so the level set of equivalent sensitivity will be di�erent for di�erent mean
responses. Unless the mean values of di�erent neurons are equivalent, the noise cloud in the
Poisson case is ellipsoidal (or hyper-ellipsoidal in higher dimensions) and stretched along
dimensions with higher response means, decreasing model sensitivity along those directions
(by the inverse of the variance of the noise).
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If we rename the internal rotation and scaling:

A = UT �≠1U

and rewrite J [x̨]P :

J [x̨]P = V SASV T

We see that, unlike in the Gaussian case, the relationship between the singular vectors of
ˆf
ˆx̨

and J [x̨]P is much more complicated. In fact, we cannot know a priori if the e�ects of

the matrix A will be to stretch the space in the same directions as the components of ˆf
ˆx̨

,

if it will have counteractive e�ects to the components of ˆf
ˆx̨

, or simply no e�ect at all. We

can however, examine the e�ects empirically.

We utilize the method introduced above for finding the maximum and minimum eigen-

vector, now under the assumptions of Poisson noise. We find that in general, eigenvectors

from models that contain divisive normalization do not change significantly, while eigen-

vectors from the neural networks lacking divisive normalization change substantially. The

simple reason for this is that divisive normalization acts to equalize the variance between

neurons, counteracting the e�ects of the Poisson noise on detectability. We can under-

stand this di�erence by examining the coe�cients of variation for the output response of

di�erent models to the same image. Because neurons suppress each other, the relative vari-

ance of outputs within normalized models in response to a natural image is much smaller

than for non-normalized models, and thus the precision matrix does not reshape the space

significantly. For models without local normalization, the relative variance between out-

put coe�cients can be much larger, and thus the change from isotropic Gaussian noise to

Poisson noise has a large e�ect on the most and least detectable directions. This helps to
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Figure 2.15: Eigen-Distortions for On-O� Model and VGG Layer 3 with Poisson Noise.
The predictions from the OnO� model are not substantially modified by changing the noise
assumptions. The Predictions from VGG layer 3, however, substantially change when we
incorporate Poisson noise assumptions.
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explain why, even though we used a simplified noise model, the biological model predictions

matched human perception fairly well. A quick glance at the Poisson generated predictions

from VGG however shows that under realistic biological noise assumptions, the predictions

from VGG get even worse than under our simplified model.

2.4.2 Developing a Poisson Noise Based Distance Metric

If we re-express MSE, or rather the identity transform, Ix̨, in our Fisher information

framework, we can find a simple generalization to computing distance within a space warped

by Poisson noise. ˆf
ˆx̨

in this case is of course also the identity matrix, I, and thus Fisher

Information for the case of MSE reduces to the identity matrix, as discriminability is

equivalent in every direction. The eigenvector problem in this case is degenerate.

MSE = ||x̨ ≠ (x̨ + –ų)||2

We can rewrite this in terms of Fisher information:

MSE = [x̨ ≠ (x̨ + –ų)]T J [f(x̨)][x̨ ≠ (x̨ + –ų)]

Or equivalently for the Gaussian case where J [f(x̨)] = I:

MSE = [–ų]T [–ų]

For a Poisson noise metric, however, the case is slightly more interesting. The Fisher infor-

mation matrix under Poisson noise assumptions is equivalent in this case to the precision

matrix, �≠1, a diagonalized version of the inverse of the image pixel values. The equivalent
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Figure 2.16: Coe�cients of Variation within Di�erent Representations. The coe�cient of
Variation within the OnO� representation is significantly smaller than that of the VGG
layer 3 representation. This means that, for the OnO� model, the precision matrix in the
Poisson derivation of Fisher Information is close to a scaled version of the identity matrix.
This partially explains the relative insensitivity of the OnO� metric to the change from
Gaussian to Poisson noise assumptions.
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metric in this case is:

MSEP = [x̨ ≠ (x̨ + –ų)]T �≠1
x̨ [x̨ ≠ (x̨ + –ų)]

Or, equivalently:

MSEP = [–ų]T �≠1
x̨ [–ų]

Where �≠1
x̨ is the Fisher Information matrix of the undistorted image, x̨. This metric can

be used as a substitute for measuring distance within a model that assumes Poisson noise.

The eigenvector problem in this case is not degenerate, so we may sample the most- and

least-noticeable predictions given this model (see Figure 2.17). This demonstration shows

that the Poisson metric, when applied to image pixels, is less sensitive to distortions in high

luminance areas of the image. This is predictable from the formulation above. However,

at the same time, it is overly sensitive to small distortions low-luminance areas within the

image that are hard for humans to see. It is easy to see from this demonstration how the

combination of a model like OnO� with Poisson noise would make strong predictions about

human sensitivity in both directions.

2.4.3 Models with Equivalent Fisher Information Under Di�erent Noise As-

sumptions

We may want to evaluate models that incorporate Poisson noise assumptions using the

standard psychophysical toolset from signal detection theory, which is constructed under

Gaussian noise assumptions. Because Fisher Information depends on both the underlying

deterministic transform, and the type of noise within the system, we can trade the e�ects of

one type of noise on model sensitivity with additional deterministic transformations that
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Figure 2.17: Eigen-distortions derived from a Poisson MSE metric show that this simple
modification to MSE predicts insensitive directions, but makes worse predictions of sensitive
directions than MSE or even our basic LGN models.
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Figure 2.18: Finding a model f2 under Gaussian noise assumptions with equivalent Fisher
Information to model f1 under Poisson noise assumptions. (See text for details)

have the same e�ects. We take advantage of this by finding a transformation, f2 that

produces the same Fisher Information under Gaussian noise assumptions as our original

transformation, f1, under Poisson noise assumptions (see Figure 2.18).

J [f2(x̨)]G = J [f1(x̨)]P

For the case where f1 is the identity matrix times an image, Ix̨ :

ˆf2

ˆx̨

T ˆf2

ˆx̨
= �≠1
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Where the diagonal elements of �≠1 are the inverse of the pixel values, 1
x
. In the one

dimensional case, this is:

f Õ
2(xi)2 = 1

xi

Or, equivalently:

f Õ
2(xi) = 1

Ô
xi

Taking the integral (and disposing of the constant):

f2(xi) = 2Ô
xi

That is, replacing f1 = I with f2 = 2x̨
1
2 , results in an equivalent Fisher information matrix

under Gaussian noise assumptions for f2 and Poisson noise assumptions for f1.

ˆf2

ˆx̨

T ˆf2

ˆx̨
= (�≠ 1

2 )T (�≠ 1
2 ) = �≠1

Using this, we can utilize distances in the space of f2 to fit psychophysical data using the

same Gaussian assumptions commonly used, while simultaneously matching distances, in

the non-Euclidean space of f1.

The inverse of this, in which we wish to find a function f1 with Poisson noise that has

equivalent Fisher Information to a function f2 with gaussian noise (see Figure 2.19), is not

uniquely constrained, but a family of solutions can be easily found (see Figure 2.19).

Again, we have:

J [f2(x̨)]G = J [f1(x̨)]P
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However, in this case, let us assume that f2 is the identity matrix times an image, Ix̨ :

I = ˆf1

ˆx̨

T

�≠1 ˆf1

ˆx̨

In the one dimensional case: this is:

(f Õ
1(x))2

f1(x) = 1

This is a first-order nonlinear ordinary di�erential equation that is under constrained and

thus, there are an infinite family of functions that satisfy this condition. We will solve for

one condition assuming all constants c = 0. Since we have all terms that depend on f(x)

on one side, we can take the integral of both sides:

⁄ f Õ
1(x)dx

Ò
f1(x)

=
⁄

1dx

Which is equal to:

2
Ò

f1(x) = x

Rearranging:

f1(x) = 1
4x2

That is, replacing f2 = I with f1 = 1
4 x̨.2, where .2 indicates an element wise squaring oper-

ation, results in an equivalent Fisher information matrix under Poisson noise assumptions

for f1 and Gaussian noise assumptions for f2.

1 =
(1

2x)2

1
4x2 = (f Õ

1(x))2

f1(x)

68



The transferability of Fisher Information between two di�erent deterministic models under

di�erent stochastic assumptions highlights a key benefit to our method of constructing

neural perceptual quality metrics as a combination of deterministic transformations plus

additive noise. The contributions to the sensitivity of these metrics that are properties of

the noise can alternatively be traded o� for specific transformations preceding the noise,

allowing for model simplification and extension.

Generating Eigen-distortions for single-scale SSIM

Because SSIM is still the most widely used perceptual similarity metric, we wanted to com-

pare the predictions of our models to its predictions. However, SSIM is composed from the

product of three correlations, and cannot be decomposed into a form that is compatible

with our eigen-distortion analysis, as it can not be reduced to a simple transformation with

additive noise. While this is unsatisfactory from our perspective, as we would like to com-

pare SSIM’s predictions to the rest of our models, it highlights one of the main advantages

of our models, and one of the main disadvantages of SSIM. Our metrics are optimized

to model perceptual distances under Euclidean assumptions, allowing us to separate the

action of the function and the assumed noise model. In addition, we can easily extend our

metrics to include more processing stages and more complicated forms of noise, and we can

test those extended models with closed form solutions for their Fisher information. Our

models also allow us to ask to what degree di�erent elements of the functional architecture

of the visual system contribute to capturing human perceptual sensitivity, allowing us to

tie together physiology and perception. It is not clear how to extend SSIM beyond its

current iteration.
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Chapter 3

Perceptually Optimized Image
Rendering

3.1 The Problem of Optimal Image Rendering

A general goal in designing a pipeline for the capture and display of photographic images is

to remain as faithful to the original source as possible, minimizing distortions introduced by

the sensor, coding, transmission, or display processes. If images are meant for presentation

to human observers, distortion should be measured accordingly, penalizing errors that are

most visually noticeable and/or disturbing, while permitting those that are perceptually

unnoticeable. This strategy is most evident in the handling of color, in which both sensors

and displays are designed so as to accurately capture and render the three-dimensional sub-

space of wavelengths relevant for human trichromatic visual representation, while allowing

significant distortion outside of this subspace.

Arguably the most significant limitations of current sensors and displays are with regard

to dynamic range. Early digital sensors were restricted to capturing a limited luminance

range, and were unable to adequately capture the majority of realistic natural scenes, which
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contain luminances spanning up to roughly 20 orders of magnitude. In contrast, the human

visual system is capable of sensing fixed scenes with a range of over 5 orders of magnitude in

real time, up to 8 orders of magnitude in the photopic regime when the e�ects of extended

temporal adaptation mechanisms are incorporated Hoe�inger, (2007), and up to 14 orders

of magnitude when including the scotopic and mesopic regimes (see Fig. 3.1). The dynamic

range of sensors has steadily improved, and current sensors (often augmented with software

solutions that fuse images captured at di�erent exposures) are capable of acquiring images

with luminance ranges approximating those of human vision. Despite this, even the best

display devices are limited to a significantly lower dynamic range than these sensors can

capture.

The simplest solution to the problem of displaying high dynamic range (HDR) images

on a low dynamic range (LDR) rendering device is to linearly rescale the luminance values

recorded by the sensor into the display’s reproducible range of luminances. This, however,

produces images that look nothing like the original scene – typically all of the low-luminance

information is lost. A variety of tone-mapping methods have been proposed to solve this

problem by nonlinearly remapping the intensities of the original image into the output

range, in a way that least interferes with the visual appearance of the original scene.

Most of these are based on heuristics, and require manual parameter adjustment for best

results. In addition, many displays introduce constraints other than global luminance

range, such as restriction to discrete luminance levels (i.e. halftoning), maximal average

power consumption, and interactions between pixel values over space or time. Separate

methods have been developed for solving each of these problems.

Perceptual optimization of tone mapping was introduced in a seminal paper by Tumblin

and Rushmeier, who proposed the selection of a tone mapping transformation from HDR
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images to LDR displays so as to best match the appearance of the original scene Tumblin

& Rushmeier, (1993). A variety of tone mapping papers have followed this framework

(see for instance Ferwerda et al., (1996), Mantiuk & Kerofsky, (2008), Pattanaik et al.,

(1998, 2000), and Tumblin et al., (1999)). These methods are dependent on the parametric

function used as a tone mapping operator, which restricts the space of possible solutions:

A given functional form may not be able to achieve a perceptually optimal solution, or may

only work satisfactorily for a particular type of rendering constraint.

Here, we formulate a more general solution for perceptually accurate rendering, directly

optimizing the rendered image so as to minimize perceptual di�erences with the light inten-

sities of the original scene, subject to all constraints imposed by the display (Fig. 3.1). This

constrained optimization formulation relies on four ingredients: knowledge of the original

scene luminances (or calibration information that allows calculation of those luminances),

a measure of perceptual similarity between images, knowledge of the display constraints,

and a method for optimizing the image to be rendered. We use a model of perceptual

similarity, loosely based on the transformations of the early stages of the Human Visual

System (specifically, the retina and LGN), that has previously been fit to a database of

human psychophysical judgments. Because this model is continuous and di�erentiable, our

method can be e�ciently solved by first-order constrained optimization techniques. We

show that the solution is well-defined and general, and therefore represents a framework

for solving a wide class of rendering problems.

In section 3.3.1, we optimize images captured under di�ering acquisition conditions

for rendering on the same display. We show one result per experiment – more images

can be found at http://www.cns.nyu.edu/~lcv/perceptualRendering/. We start with

calibrated images, where the original scene luminances are known. We also deal with the
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more common scenario in which the exact luminances of the original scene are unknown (the

tone mapping problem). In this scenario, we have to make some educated guesses about

the luminance range of the original scene, and we demonstrate the e�ect that di�erent

assumptions have on the optimized images. Moreover, we take advantage of these e�ects

to solve other image processing problems, such as detail enhancement and haze removal,

by manipulating these source assumptions. For each of these tasks, we compare the results

with state-of-the-art algorithms designed to solve each specific case. In section 3.3.4, we

optimize images to be displayed under di�ering display restrictions, including luminance

limited displays, power limited displays, and displays restricted to a small set of output

values. Finally, we analyze the e�ect that each component of our perceptual measure has

on the quality of our optimized images.

3.2 Framework Development

3.2.1 Optimal Rendering Framework

Optimally rendering an image, I, on a given display means displaying it in such a way

that it remains faithful to the human perception of the original scene, S. Here, S and I

are vectors representing the luminances of all pixels in the respective images. We formalize

this as a constrained optimization problem:

ÎC(S) = arg min
I

D(S, I), s.t. I œ C, (3.1)

where D(·, ·) is a measure of human perceptual dissimilarity, and C is the set of all images

that can be rendered on the display. This formulation can express many well-known render-

ing problems, such as tone mapping or dithering, which di�er only in the specification of C.
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Figure 3.1: Perceptually optimized rendering framework. When we view a real-world scene,
the luminances, specified by a vector S, give rise to an internal perceptual representation
f(S). While luminances in the real world can range from complete darkness (0 cd/m2)
to extremely bright (e.g., midday sun, roughly 109 cd/m2), a typical display can generate
a relatively narrow range of roughly 5 to 300 cd/m2. The optimization goal is to adjust
luminances I generated by the display, so as to minimize the di�erence between the per-
ceptual representations, f(S) and f(I), while remaining within the set of images that can
be generated by the display.
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In general, the optimization problem expressed in Eq. (3.1) cannot be solved analytically,

and thus we will not obtain an explicit function to compute ÎC(S), given S and C. Instead,

we choose a perceptual measure that is di�erentiable with respect to I, and use modern

high-dimensional optimization tools to numerically solve for ÎC(S). Specifically, we descend

the objective function, alternating between minimizing the perceptual distance, and pro-

jecting the image back onto the constraint set. Specific formulations for di�erent example

problems can be found online at http://www.cns.nyu.edu/~lcv/perceptualRendering/.

We follow a principled, two-step approach to quantify perceptual distance. Rather than

defining a perceptual distance directly (as in SSIM (Wang et al., 2004), for example), we

first define a nonlinear perceptual transform f(·), which approximates the computations

performed within the early stages of the human visual system. We apply this to both the

original scene luminances, S, and the rendered image, I, and then measure the distance

between f(S) and f(I). We refer to this casually as a “metric” (as is common in the image

quality assessment literature), even though it is not guaranteed to satisfy all requirements

of the mathematical definition of a metric. Specifically, it is symmetric and yields a value

zero for identical images, but for some parameter values the transformation can discard

information (allowing it to produce a zero distance for non-identical images), and it also

may not satisfy the triangle inequality.

3.2.2 Development of a Multiscale Metric

Normalized Laplacian pyramid model

Figure 3.2 illustrates the components of the perceptual transform, which we call the Nor-

malized Laplacian Pyramid (NLP), a multi-scale nonlinear representation. We developed

this particular multi-scale metric in order to account for real-world viewing conditions. In
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Figure 3.2: Perceptual transform f(S), constructed as a Normalized Laplacian Pyramid
(NLP) (Laparra et al., 2016). Scene luminances S (in cd/m2) are first transformed using
a power function (top left). The transformed luminance image is then decomposed into
frequency channels, using the recursive implementation of the Laplacian Pyramid (Burt &
Adelson, 1983). Each channel z

(k) is then divided by a weighted sum of local amplitudes
(computed with lowpass filter P ) plus a constant, ‡. The final lowpass channel x

(N
k

) is also
normalized, but with distinct parameters (top right). Symbols ø and ¿ indicate upsampling
and downsampling by a factor of 2, respectively.
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the real-world, viewers will not always see images displayed on a screen from a fixed viewing

distance, and thus a functionally useful metric needs to work over many viewing distances

at once. The single-scale metrics developed and explored in chapters 1 and 2, while not

appropriate for this real-world application as constructed, did inspire many of the choices

we made in construction of this metric, i.e. it is a metric that mimics the operations of

the early stages of the human visual system. This representation is inspired by a model

for responses of the lateral geniculate nucleus (LGN) (Mante et al., 2008), and includes

contrast gain control mechanisms. This transform bears some resemblance to previously

published image metrics that utilize local normalization but di�ers in motivation, struc-

ture, and implementation (Laparra et al., 2016; Mittal et al., 2012, 2013; Teo & Heeger,

1994a; Wang et al., 2004).

Local Mutual information

We view the local luminance subtraction and contrast normalization seen in retinal and

LGN computation as a means of reducing redundancy in natural images (as described

in chapter 1). Most of the redundant information in natural images is local, and can be

captured with a Markov model. That is, the distribution of an image pixel (xi) conditioned

on all others is well approximated by the conditional

p(xi|xNi), (3.2)

where xNi is the vector of pixels in its immediate neighborhood. This redundancy can

be removed by a parametric estimate of a statistic of the central pixel, gathered from its

neighbors.

In a initial version of the model, we estimated the normalization parameters from a
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large set of undistorted images only (Laparra et al., 2016). This formulation allowed us to

build an architecture inspired by the computations of the early visual system and to use

a statistical criterion to select the local gain control parameters. Specifically, the weights

used in computing the gain signal were chosen so as to minimize the conditional dependency

of neighboring transformed coe�cients.

In this model, an image is first decomposed by a recursive partition into frequency

channels, as in the Laplacian Pyramid (Burt & Adelson, 1983), mimicking the center-

surround receptive fields found in retina (and LGN):

x

(k+1) = DLx

(k), k œ {1, . . . , Nk ≠ 1}, (3.3)

z

(k) = x

(k) ≠ LUx

(k+1), (3.4)

z

(N
k

) = x

(N
k

), (3.5)

where D and U indicate down/up-sampling by a factor of two, respectively (figure 3.2). For

the filtering operation L, we apply a spatially separable 5-tap filter, (0.05, 0.25, 0.4, 0.25, 0.05),

as originally specified in (Burt & Adelson, 1983).

Within each channel, each coe�cient is divided by a weighted local sum of the element-

wise amplitudes (absolute values) plus a constant:

yi = zi/fC(zNi; ‡, p). (3.6)

As an estimate of the local amplitude of a coe�cient, fc, at a given scale, k, we used a

linear combination of rectified neighbors:

fC(z(k)
Ni ; ‡(k), p

(k)) = ‡(k) +
ÿ

jœNi

p
(k)
j

---z(k)
j

--- , (3.7)
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where p

(k) is the vector of non-negative weights, and ‡(k) is a positive-valued constant, such

that fC is guaranteed to be positive for all neighborhoods, avoiding division by zero. For

each scale, the constant is set to the average of the absolute value:

‡(k) = 1
N

(k)
s

N
(k)
sÿ

i=1

---z(k)
i

--- , (3.8)

where N (k)
s is the number of coe�cients in the subband at scale k. The weight vector is

chosen as the solution of the optimization problem:

p

(k) = arg min
p

N
(k)
sÿ

i=1

3---z(k)
i

--- ≠ fC(z(k)
Ni ; ‡(k), p)

42
. (3.9)

Our final measure of distance is a simple extrapolation of the distance measure we have

been utilizing for our single scale metrics. We take the mean squared error across within

each scale, and then average across scales.

D(x, x̃) = 1
N

Nÿ

k=1

1
Ò

N
(k)
s

...y

(k) ≠ ỹ

(k)
...

2
(3.10)

where y

(k) and ỹ

(k) denote vectors containing the transformed reference and distorted

image data, respectively. This distance metric implicitly gives more weight to lower fre-

quency coe�cients (of which there are fewer, due to subsampling).

We showed that this metric performed at or above the state of the art on several human

databases of perceptual quality assessment despite being fit to image statistics and not to

human perceptual data (See Appendix C) (Laparra et al., 2016).

Figure 3.4 illustrates the reduction of redundant information at each stage of the model.

Each image shows the empirical pairwise mutual information between a given coe�cient

79



x

z

(1)
z

(2)
z

(3)

y

(1)
y

(2)
y

(3)

Figure 3.3: Representation of an example image. x is the original image (left). z is the
decomposition of the image using the Laplacian pyramid (three scales shown), each image
corresponding to a di�erent scale. Note that the Laplacian pyramid includes downsampling
in each scale. The examples shown here have been upsampled for visualization purposes.
y are the corresponding locally contrast-normalized images.
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Image Laplacian NLP

MI avg = 0.98 MI avg = 0.16 MI avg = 0.06

Figure 3.4: Local mutual information between coe�cients and their spatial neighbors within
an 11 ◊ 11 local region, for three representations (image pixels, Laplacian pyramid sub-
band, normalized Laplacian pyramid subband). Brightness is proportional to the mutual
information between a central coe�cient and the neighbor at that relative location. Values
are estimated from one million image patches. The average mutual information over the
whole neighborhood is given above each panel.
(central pixel of each image) and each of its neighbors. Mutual information has been

computed using one million samples from the reference images in the TID database (Pono-

marenko et al., 2009). The figure reports the results for the first scale – results for the

other scales are similar. The information reduction from both stages of processing is seen

to be quite substantial – a factor of roughly six and three, respectively.

Improving this metric by training on a psychophysical objective

In order to improve the performance and generality of this model, first published in (Laparra

et al., 2016), we attempted to leverage the power of our previous approaches to the problem,

by fitting a model with structure inspired by both the statistics of natural images, as well

as the early visual system, to maximize a psychophysical objective. All parameters of the

perceptual transform and metric were optimized to best explain human perceptual ratings

of distorted images in a public database of grayscale images (Ponomarenko et al., 2009).

Specifically, we chose parameters to maximize the correlation between the mean opinion
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scores from the human observers and the distance computed by the metric (as in chapter

2). Modifications to the model are shown below.

Here, we adapt this model to operate directly on luminances (in cd/m2, rather than val-

ues that have been gamma-adjusted for a particular display), which provides a standardized

set of units for defining constraints on acquisition and display.

Luminances are first transformed element-wise using a power law, which approximates

the transformation of light to response of retinal photoreceptors:

x

(1) = S

“. (3.11)

The optimized exponent for the front-end nonlinearity was “ = 1
2.6 . This initial nonlin-

ear transformation is followed by a recursive partition into frequency channels, as in the

Laplacian Pyramid (Burt & Adelson, 1983), just as in the original model:

x

(k+1) = DLx

(k), k œ {1, . . . , Nk ≠ 1}, (3.12)

z

(k) = x

(k) ≠ LUx

(k+1), (3.13)

z

(N
k

) = x

(N
k

), (3.14)

Within each channel, each coe�cient is divided by a weighted local sum of the element-wise

amplitudes (absolute values) plus a constant:

y

(k) = z

(k) £
1
‡ + P |z(k)|

2
, (3.15)

where P indicates convolution with a filter, and £ indicates point-wise division. All band-

pass channels and the highpass channel share the same parameters P and ‡, whereas the
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lowpass (k = Nk) has its own parameter set, Pl and ‡l. This function is a simplified variant

of divisive normalization, used to describe the responses of neurons in di�erent parts of the

visual system (Carandini & Heeger, 2012; Heeger, 1992; Schwartz & Simoncelli, 2001).

For bandpass channels, the additive constant was ‡ = 0.17, and the local weighting

functions P were filters with 5 ◊ 5 support, with values:

P =
C 4 4 5 4 4

4 3 4 3 4
5 4 5 4 5
4 3 4 3 4
4 4 5 4 4

D

· 10≠2. (3.16)

The parameters for the lowpass channel were Pl = 1 (the identity) and ‡l = 4.86. Op-

timized exponents for the metric were – = 2.0 and — = 0.6. The NLP coe�cients of all

channels y

(k) combined represent the response of the perceptual transform:

f(S) =
Ó
y

(k); k = 1, . . . , Nk

Ô
. (3.17)

We wished to see if we could improve upon MSE measured across all channels as the

final distance metric in this space. Figure 3.5 illustrates the construction of the metric

that we employed to do so. We first computed the L–-norm of the di�erences between

NLP coe�cients within each frequency channel (that is, we raise the absolute value of each

coe�cient di�erence to the power –, sum over the entire channel, and take the –th root).

These values are then combined across channels using an L—-norm, to yield the final NLP

distance (NLPD):

D(S, I) =

S

WWU
1

Nk

N
kÿ

k=1

Q

ca
1

N
(k)
c

N
(k)
cÿ

i=1

---y(k)
i ≠ ỹ

(k)
i

---
–

R

db

—

–

T

XXV

1
—

, (3.18)
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Figure 3.5: Construction of the Normalized Laplacian Pyramid Distance (NLPD) measure.
Two images are transformed by f(·) to a perceptual representation, yielding two NLPs (see
Fig. 3.2). We compute the –-norm over the vector of di�erences for each frequency channel,
and then combine these over channels using a —-norm. For all rendering results, we use
– = 2.0 and — = 0.6, which are optimized to fit the human perceptual ratings of distorted
images reported in (Ponomarenko et al., 2009).

where ỹ
(k)
i indicates the kth subband arising from the displayed image I (i.e. f(I) =

{ỹ

(k); k = 1, . . . , Nk}) and N (k)
c is the number of coe�cients in that subband. A similar

summation model has been employed in previous perceptual quality metrics (Laparra et

al., 2010; Watson, 1993). We optimized the parameters, – and —, alongside the rest of

our parameters. This optimized distance metric allows us to account for di�erences in

weighting within and across scales.

In Appendix C, we show that the performance of this extended and optimized version

of the NLP metric surpasses that of state-of-the-art image quality metrics, as well as our

original version. This metric, with parameters held fixed at their optimized values, was

used to optimize all of the rendering results presented below.
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3.3 Application of the Rendering Framework

3.3.1 Varying Image Acquisition Conditions

We performed a set of experiments to test the capabilities of our optimization framework

over di�erent image acquisition conditions. We begin with calibrated images, for which we

know the the exact luminance values (in cd/m2) of the original scene. We then move on to

uncalibrated images, for which we need to make an assumption about the luminance values

in the original scene. Finally, we close this section by demonstrating that the method is

stable and flexible enough that it can be used to solve other rendering problems, such as

haze removal and artificial detail enhancement.

Each example requires us to minimize the perceptual distance with respect to the ren-

dered image I, subject to the display constraints. In general, this is accomplished by

alternating between projection onto the constraint set and minimization of the distance

using the Adaptive Moment Estimation (Adam) algorithm (Kingma & Ba, 2014). The

gradient of the perceptual distance with respect to I is described in appendix ??. Im-

plementation of the derivatives, along with additional optimized examples, are provided

on the project webpage http://www.cns.nyu.edu/~lcv/perceptualRendering/. All im-

ages presented here are intended for viewing on a display with luminance ranging from 5

to 300 cd/m2, and a gamma value of 2.2. Computation time scales linearly with the size

of the image. When optimized on a Tesla K40 GPU card, it takes approximately 1 second

per 10000 pixels (i.e. an image of 1000 ◊ 1000 requires less than 2 minutes).
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rescaled Paris et al., (2011) NLPD

Figure 3.6: Rendering of a calibrated HDR image on a display with a limited luminance
range. The scene luminances for this image spanned the range from Smin = 0.78 cd/m2 to
Smax = 16200 cd/m2, whereas the display luminances are assumed to lie between 5 cd/m2

and 300 cd/m2. Left: the image rendered by linear rescaling of luminance values into
the display range. Center: the image rendered using a state-of-the-art tone mapping al-
gorithm (Paris et al., 2011). Right: the image rendered using the proposed method of
minimizing the NLPD metric subject to the display constraints.
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original Paris et al., (2011) NLPD

Figure 3.7: Rendering of two calibrated LDR images to a display with a limited luminance
range of [5, 300]cd/m2 (see caption of Fig. 3.6).
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Rendering Calibrated HDR Luminances

We begin by considering rendering of images S obtained from a calibrated HDR imaging

device, such that we know the true luminance values of all pixels. As an example, Fig. 3.6

shows an image from the database of Mark Fairchild (Fairchild, n.d.), with luminance

range Smin = 0.78 to Smax = 16200 cd/m2. We wish to display this image on a device with

a limited luminance range of Imin = 5 to Imax = 300 cd/m2 (typical values for a computer

monitor). We solve for the perceptually optimal rendered image:

Î(S) = arg min
I

D(S, I), s.t. ’i : Imin Æ Ii Æ Imax. (3.19)

Figure 3.6 shows the original image intensities, linearly rescaled to fit within the lu-

minance range [Imin, Imax], an image tone-mapped using a recent state-of-the art method

by Paris et. al. (Paris et al., 2011), and our perceptually optimized image Î(S). The

second image was computed using the default parameters recommended by the authors

for tone mapping of HDR images: – = 1, — = 0, and ‡ = log 2.5. Linearly rescaling

yields a rendered image in which most of the the details cannot be seen or di�erentiated.

The algorithm by Paris et. al. (Paris et al., 2011) does an excellent job in mitigating this

problem, rendering an image that reveals detail in both dark and bright regions. Never-

theless, the solution appears less detailed and lower in contrast than the image computed

using our method. This is mostly because the Paris algorithm does not take into account

the display luminance range. Although it (and most other tone-mapping algorithms) has

additional parameters that can be adjusted, it is not obvious to a naive user how to select

these parameters based on the display properties. In contrast, our solution is fully auto-

matic (assuming the luminance values of the source image and the range of the display are
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known), albeit at the expense of significantly more computation.

Rendering LDR Images with an Image Acquisition Model

Our method can also be used to improve the appearance of images acquired with a conven-

tional low dynamic range (LDR) digital camera that has been calibrated to allow recovery

of luminance values from recorded pixel values, R. For most modern digital cameras, the

acquisition luminance range is still generally much larger than the display range, and in any

case, is unlikely to be exactly matched. Thus, we need to solve the following optimization

problem analogous to the previous section:

Î(R) = arg min
I

D(g(R), I), s.t. ’i : Imin Æ Ii Æ Imax (3.20)

where g is the mapping from recorded pixel values to estimated scene luminances (in

cd/m2).

Results for two example grayscale images from the McGill database (Olmos & Kingdom,

2004) are shown in Fig. 3.7. For each image, we again compare the original image intensities,

linearly rescaled to fit within the luminance range [Imin, Imax], to our perceptually optimized

image Î(R), and a tone-mapped image computed using the Paris et. al method. (Paris et

al., 2011). For the latter, we have again used the parameters recommended by the authors

for tone mapping of HDR images: – = 1, — = 0, and ‡ = log 2.5. Our method again o�ers

a visual advantage, producing higher contrast and more visible details. The improvement

here is perhaps even more noticeable than in the HDR case, for which the Paris et. al.

algorithm was developed.
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Rendering Uncalibrated HDR Images

Unlike the situation in section 3.3.1, the typical scenario for images acquired from HDR

cameras is that they are uncalibrated. That means that we have access to measurements

L that are linearly related to actual luminances, but we do not have access to the scaling

parameters (for instance, they might be normalized values, lying between 0 and 1). To

apply our method, the measurements need to be linearly rescaled to luminance values,

which amounts to estimating the minimum and the maximum luminance in the original

scene (Smin and Smax, respectively). One can often use an educated guess for those values

given the content of the image – for instance, the luminance of a filament of a clear incan-

descent lamp is roughly 106 cd/m2. As in the previous experiments, we solve the resulting

optimization problem:

Î(S) = arg min
I

D(S, I), s.t. ’i : Imin Æ Ii Æ Imax (3.21)

where S = (Smax ≠ Smin) · L + Smin.

Figure 3.8 shows the results for the widely-used HDR image “Memorial” for di�erent

values of Smax (and a fixed value of Smin = 5). The proposed method converges to an

image that exhibits enhanced contrast in all the regions, preserving the details, but also

preserving the relative contrast and luminance between regions. This is particularly evident

in high luminance regions (for instance the bright window behind the altar, or the round

window in the top of the dome), where both the perceived details and luminance intensity

is e�ectively portrayed.

As we increase the assumed maximum luminance of the original scene (while fixing the

display restrictions), our algorithm further amplifies the contrast of details in the image.
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rescaled, Smax = 300 rescaled, Smax = 106 Paris et al., (2011)

NLPD, assuming Smax = 105 NLPD, assuming Smax = 106 NLPD, assuming Smax = 107

Figure 3.8: Rendering of an uncalibrated HDR image on a display with a limited luminance
range. Linear mapping of luminances leads to loss of detail (top left: rescaling of luminances
to the display range, assuming Smax = 300 cd/m2; top center: rescaling of luminances,
assuming a more realistic value of Smax = 106cd/m2). Top right: the image rendered
using (Paris et al., 2011). Bottom: the image optimized for NLPD, with di�erent assumed
maximum luminance values.
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original Paris et al., (2011)

NLPD, assuming Smax = 103 NLPD, assuming Smax = 104 NLPD, assuming Smax = 106

Figure 3.9: Example of artificial detail enhancement by simulating more light in the original
scene. Top left: original image. Top center: image enhanced using (Paris et al., 2011).
Bottom: image optimized for NLPD, with di�erent assumed values of maximum luminance.
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This makes sense from a perceptual perspective: If the original scene was brighter, an

observer would be able to perceive more details within the scene. Therefore the method

has to artificially enhance these details to mimic the appearance of the original scene. In

the next two sections we take advantage of this behavior.

3.3.2 Artificial Detail Enhancement

We showed in the preceding sections that using knowledge about the image acquisition

process helps greatly in automatically rendering images, given the display constraints. In

some cases, however, detail visibility in the scene might be unsatisfactory. Intuitively,

photographers know that the amount of detail visible in a scene depends on the amount of

available light. If the image has already been acquired, it is of course not possible to alter

the light sources. However, since the scene luminances scale linearly with the intensity of

the light sources, our method allows us to simulate increased intensity post hoc, by linearly

re-scaling the luminances of the scene, S.

Figure 3.9 shows the results of modifying our choice of Smax (as in the previous ex-

periment we fixed Smin = 5). Note that with increasing values of Smax, details become

more visible. We also show the results of applying the Paris et al. algorithm, for which we

have employed the parameters proposed in their paper for the detail enhancement problem:

– = 0.25, — = 1, and ‡ = 0.3.

3.3.3 Haze Removal

Surprisingly, this same method of detail enhancement can also be used for the problem

of haze removal. In a hazy scene, the local contrast has e�ectively been reduced (roughly

speaking, but adding a constant level of scattered light) which makes detail more di�cult
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original He et al. (He et al., 2011)

Fattal (Fattal, 2014) NLPD, Smax = 104

Figure 3.10: Example of haze removal. Top left: the original image. Top right: the image
processed using He et al. algorithm (He et al., 2011). Bottom left: the image processed
using Fattal algorithm (Fattal, 2014). Bottom right: the image processed by optimizing
NLPD with Smin = 5 and Smax = 104.
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to discern. In this experiment, we choose also Smin = 5 (we find that results are fairly

robust to the selection of this parameter) and Smax = 104.

Figure 3.10 compares the performance of our method with two other methods (Fattal,

2014; He et al., 2011). Our algorithm converges on an image that greatly enhances the

details of the original hazy image, boosting the contrast and reducing the perception of

haze within the image. Although the other two methods are specifically designed for this

particular problem, our method obtains a similar result without modification.

3.3.4 Varying Display Constraints

While examining the e�ects of various image acquisition scenarios in the previous section,

we assumed only that the display luminance is bounded. The upper bound is a natural

constraint for any real display. The lower bound is also relevant for a wide range of practical

display devices, and arises from reflected ambient light and scatter within the display. In

this section, we examine the e�ect of each of these constraints independently, along with a

few more complex constraints.

Figure 3.11 shows the results for di�erent minimum and maximum luminance bounds,

(Imax, Imin). Our method enhances local contrast, whereas linear rescaling can only manip-

ulate contrast globally. For a wide range of display characteristics, optimizing the image

to minimize the NLP distance reduces distortion in the rendered images, and increases the

visibility of perceptually relevant features.

Rendering with Limited Power Consumption

The proposed framework allows us to seamlessly introduce arbitrary display constraints.

For example, we can optimize the trade-o� between image quality and power consumption.
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Imax = 180 Imax = 100 Imax = 20 Imax = 10

linearly
rescaled

NLPD
optimized

Imin = 5 Imin = 30 Imin = 100 Imin = 180

linearly
rescaled

NLPD
optimized

Figure 3.11: E�ect of di�erent maximum and minimum display luminance constraints.
Top two rows: The image rendered for di�erent levels of maximum luminance (assuming
Imin = 5), by linearly rescaling (1st row) versus NLPD-optimization method (2nd row).
Bottom two rows: analogous, but for di�erent levels of minimum luminance (assuming
Imax = 300).
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original, Imean = 70.3 rescaled, Imean = 8.4 rescaled, Imean = 5.6 rescaled, Imean = 2.8

NLPD, Imean = 8.4 NLPD, Imean = 5.6 NLPD, Imean = 2.8

Figure 3.12: Rendering with a power consumption constraint. Top left: the image at full
luminance (smartphone screenshot). Top row: the image linearly rescaled to achieve target
mean luminance. Bottom row: the image optimized for NLPD with target mean luminance
constraint. Assuming power consumption is proportional to mean luminance, the NLPD-
optimized renderings convey more detail than their linearly-rescaled counterparts, while
consuming the same power.
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Figure 3.13: Trade-o� between power consumption and image quality, comparing linear
luminance rescaling to optimization of perceptual distortion with a mean luminance con-
straint. Top: the relationship between perceptual distortion D(S, I) and mean display lu-
minance Imean. For any given acceptable distortion level, the optimization method requires
only a fraction of the display luminance, hence significantly decreasing power consump-
tion. Bottom: power savings, quantified as one minus the ratio of required mean display
luminances for the two methods.
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To illustrate this, we assume power consumption is proportional to mean display luminance

(as for instance in organic light-emitting diode displays used in cell phones - if the relation-

ship were nonlinear, that could also be incorporated into the problem), and optimize the

NLPD while constraining both the mean luminance as well as the range:

Î(S) = arg min
I

D(S, I), s.t. ’i : Imin Æ Ii Æ Imax (3.22)

and 1
Ni

ÿ

i

Ii = Imean

Figure 3.12 shows images optimized for di�erent mean luminance values compared to im-

ages linearly rescaled to achieve the same target mean luminance. For each mean lumi-

nance value, the NLPD-optimized images retain more detail from the original scene than

the rescaled images. In figure 3.13, we plot mean luminance as a function of perceptual

distortion (NLPD) for both methods. Optimizing the images yields a clear benefit in terms

of the trade-o� between mean luminance and perceptual distortion. Over a wide range of

distortion levels, we see that the NLPD-optimized images reduce power consumption by

roughly 80% compared to linear rescaling.

Rendering with a Discrete Set of Gray Levels (Dithering)

Most displays have a limited number of available gray levels. In the extreme case this can

be as few as two (e.g., black-and-white printers, e-ink devices, etc). Here, we illustrate that

the proposed method is flexible enough to produce good results even under such extreme

constraints. The optimization problem is the same as before, but here, we restrict the pixel

values to be taken from a discrete set:

Î(S) = arg min
I

D(S, I), s.t. ’i : Ii œ {Imin, . . . , Imax}. (3.23)
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original Floyd–Steinberg, 2 gray levels NLPD, 2 gray levels

Floyd–Steinberg, 4 gray levels NLPD, 4 gray levels

Figure 3.14: Rendering with a discrete set of gray levels. Top left: the original image.
Center column: the image rendered with two or four gray levels using a standard error
di�usion (Floyd–Steinberg) method (Floyd & Steinberg, 1976). Right column: the image
rendered with NLPD error di�usion.
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Full NLP gamma multi-scale normalization

Figure 3.15: Rendering of an HDR image with di�erent parts of the NLP transformation
removed (see text). The ablated component of the model is listed above each example.

The discrete nature of the optimization problem prevents us from using a gradient-based

method. Instead, we use a greedy error-di�usion algorithm, analogous to the classic Floyd–

Steinberg method. We first initialize the image to the solution obtained for a continuous

range of luminances, as in previous experiments. Then, we iteratively select the discrete

value for each pixel of the image in raster-scan order, each time picking the discrete value

that minimizes the NLP distance of the intermediate result to the original scene.

Figure 3.14 shows the results for images rendered using two and four gray levels. In

low contrast regions, our method is seen to preserve significantly more detail than the

Floyd–Steinberg method. In addition, the Floyd–Steinberg algorithm tends to generate

artificial patterns in extensive regions of slowly-varying luminance, which can be seen in

the dark regions of the bird’s wings. Our method, however, does not generate these artificial

patterns.
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3.3.5 Contribution of Perceptual Metric Components

To provide intuition regarding the e�ect of each of the primary components of the NLP, we

optimized images for rendering while removing one of three components of the transform:

the initial point-wise nonlinearity (set “ = 1), the multi-scale decomposition (set Nk = 1),

and divisive normalization (set P = 0 and ‡ = 1). Figure 3.15 shows results for each

manipulation. Note that we did not refit each of the partial transforms to predict human

perceptual judgments; therefore, these results should be seen as a way to understand the

importance of each computation, and not as a quantitative comparison of image quality

assessment performance (see details in Appendix C).

Each of the three images di�ers noticeably from the one optimized with the full trans-

form. Without the initial point-wise nonlinearity, the algorithm produces images in which

low to medium luminance patches of an image are misrepresented. The high luminance

areas are detailed but some parts with medium or low luminance are reduced in contrast.

Without the multi-scale decomposition, the algorithm produces images in which extremely

high and extremely low frequencies are well preserved, but intermediate frequencies are

underrepresented, and in some cases nearly disappear. And without the contrast nor-

malization, the algorithm converges to images that saturate at the luminance boundary

constraints of the display. Normalization preserves the relative luminance changes between

coe�cients while allowing the absolute luminance to be modified. This allows the ren-

dered image pixel intensities to be proportional to the relative power in each local region.

Moreover, this ensures that regions with similar content scale in a similar way.
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3.4 Summary and Extensions

We have described a framework for directly optimizing rendered images, taking into account

display limitations, so as to minimize perceptual di�erences between the rendered image

and the original scene. The method is parameter-free and only requires knowledge of the

display restrictions and the original scene intensities. Since these restrictions are expressed

in standard physical units (cd/m2), if either is missing, suitable values can be estimated

easily. We have shown that our method matches or exceeds the state-of-the-art for rendering

across a variety of acquisition conditions and display restrictions.

We’ve employed a perceptual metric based on an abstraction of the transformations

implemented in the early stages of the human visual system. The metric is an extension

of the NLP distance presented in (Laparra et al., 2016), adapted to deal directly with

luminances and images of any size. We fit the parameters of this metric to optimize its

ability to predict human distortion ratings. We have shown that this metric is consistent

with human perception, exhibiting correlation with human quality ratings that is similar to

or better than full-reference models specifically designed to assess perceptual quality (see

appendix C). It is continuous and has well-behaved gradients, making it easy to incorporate

into a rendering optimization framework. In addition, it has also been previously employed

to optimize an image compression algorithm (Ballé et al., 2016).

Most contemporary tone mapping methods do not make explicit use of perceptual met-

rics (see Cerdá-Company et al., (2016) for a nice review), but rather provide the user with

a small set of free parameters to hand-adjust the mapping from scene to displayed image.

These methods are conceptually simpler than ours, and some of them can produce high

quality results in controlled situations (see for instance Paris et al., (2011)). Nevertheless,
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their parameters are often di�cult to interpret (and thus, to set), and the restriction to

particular functional forms may limit their applicability to specific rendering problems.

In contrast, by directly optimizing the rendered image itself, our method is able to take

into account di�erent display constraints, without requiring manual selection of an appro-

priate parametric mapping for each situation, and without requiring a human operator to

adjust any parameters. The downside of this approach is computational cost: optimization

over the high-dimensional space of feasible rendered images is expensive, and although both

hardware and software continue to improve, this optimization will always be significantly

more expensive than optimizing a small set of parameters for a fixed transformation. Even

if the computational costs prevent the use of this method in a real-world application, the

results can still serve as a benchmark for what is possible, thus facilitating the development

of alternative methods.

Although our framework may be applied to any display problem, the solution can

depend heavily on both the perceptual metric employed, and the method used to solve the

constrained optimization (for example, if the constraints force the problem into nonconvex

or discrete regimes). Optimization has undergone dramatic changes in the past decade,

and methods for handling nonconvex and discrete problems have become more reliable and

e�cient. As an example, we believe it will be possible to improve on our halftoning solution

(for which we used a simple greedy method with error di�usion).

Our use of a simple physiologically-inspired model for assessing perceptual distortion

also o�ers opportunities for improvement (note that most image quality models are less

physiologically motivated (Narwaria et al., 2015; Wang et al., 2004, 2003)). For example,

the NLPD can likely be improved by including relationships between frequency channels,

which could help to control artifacts such as halos that sometimes appear around high-
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contrast edges. In addition, the NLP model should be extended to operate on color images,

and to include another stage of processing corresponding to primary visual cortex (for

example, using oriented, multi-scale, derivative filters with cross-scale and cross-orientation

normalization). All of these improvements can be made following the same framework

that we have presented for the current model: defining a functional form based on the

transformations of sensory neurobiology, fitting the parameters using human perceptual

data, and using this model with fixed parameters to optimize the rendering of images.

3.4.1 Optimized Image Rendering as a Test of Perceptual Metric Quality

The rendering framework we developed relies critically on an accurate metric quantify-

ing the perceptual di�erences between the rendered image and the original scene, and

optimally-rendered images can thus provide a strong indication of the abilities of such a

metric. Here, we use our optimal rendering framework to test di�erent layers of VGG16 as

perceptual metrics and compare them to the performance of our NLPD metric show above.

We evaluated the ability of the representations at the 6 layers of VGG16 analyzed

in chapter 2 to serve as human perceptual metrics within our framework. Perceptual

distance, D(S, I), for each layer was computed as the Euclidean distance between that

layer’s representation of the scene, f(S), and the representation of the rendered image,

f(I).

D(S, I)f = ||f(S) ≠ f(I)||2 (3.24)

We compare the results to the NLP results above, as well as two point-wise tone-mapping

algorithms (linear-rescaling and non-linear “gamma” rescaling) that do not operate within

our rendering framework. In the NL-Rescaled example, we take the 6th root of each pixel

intensity before linearly rescaling the image to fit within the displayable range.
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LR Layer 1 Layer 2 Layer 3

Layer 4 Layer 5 Layer 6 NLP

Figure 3.16: Images optimized using di�erent perceptual models (see text). Original
Scene Luminance: Minimum: 0 cd

m2 , Maximum: 107 cd
m2 . Displayable Luminance: Min-

imum: 5 cd
m2 , Maximum: 300 cd

m2 .

Figure 3.16 shows the results for the optimization of the “Memorial” HDR image, un-

der the same display constraints, for each of our candidate perceptual metrics. Consistent

with results from chapter 2, we see that early layers (1-3) of VGG16 are better perceptual

metrics than Pixel MSE, and also better than deeper layers (4-6). The early layers generate

images that capture near-binary renditions of distinct image features, but discard nuances

of lighting, reflectance and shading. Later layers replace correct image content with hallu-
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cinated artifactual features (e.g., swirls). The LGN model, on the other hand, generates

a natural looking image, successfully balancing the content and contrast of the rendered

image better than any of the VGG16 layers, and better than the linear or nonlinear tone-

mapping solutions. Similary to our observer analysis in chapter 2, we now treat each model

as an observer and ask them to evaluate the perceptual distance between the original scene

and each fully-rendered image. Distances according to each observer model are reported

below (See Figure 3.17). Each observer reports the shortest distance for its own synthesized

image, and otherwise have very di�erent predictions about the perceptual distance between

each of the other image pairs. We ran a simple experiment that captured the rank ordering

of the naturalness of the synthesized images according to human observers (n of 2), and

compared the results to the rank order produced by each observer model. As expected

from visual inspection, the NLPD model not only synthesized the most realistic image,

but NLP distances also predict human rankings at a high level, higher than all layers of

VGG16. The only model that improves upon NLP’s predictions is our single-scale On-O�

model tested in Chapter 2, which perfectly predicts the human rank order. No layer of

VGG16 predicts the human rank order of these images at a high level.
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Figure 3.17: Observer Model’s ranking of Rendered Images. Top: Rendering distances for
each Observer Model (Columns) for images rendered using each Generator Model (Rows).
Bottom: Observer model’s Spearman (rank-order) correlation to human rankings of the
"naturalness" of rendered images. Only the OnO� and NLP metrics perform well at pre-
dicting human rankings.
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Chapter 4

Towards a Normative Model of
Perceptual Distortion Sensitivity

In the preceding chapters, we attempted to capture human perceptual distortion sensitiv-

ity within various models inspired, to di�erent degrees, by the architecture of the human

visual system. We showed that models of this nature, fit to a database of human percep-

tual judgments, outperformed the state of the art in the field significantly by traditional

measures of success at the task. In addition, we found that several di�erent neural network

inspired models performed equivalently well when measured by these traditional measures.

These measures, while standard, fail to capture the entire extent of the space of possible

image distortions. While they may be adequate if one wishes only to use the model to

evaluate known forms of distortion encountered regularly in the transmission of images,

for example errors introduced by a compression algorithm such as JPEG2000, performance

on these measures may be adequate. However, many modern applications utilize these

models to compute "perceptual loss functions", or objectives to be minimized in an opti-

mization procedure, standing in for an average human observer. The nature of possible

distortions encountered during an optimization of this kind covers much more of the poten-
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tial distortion space than simple distortions included in an engineer’s database. In order to

di�erentiate the performance of these models in this high-dimensional space, and to gain

insight into how each of them generalize to unseen types of distortions, we developed a

model-constrained synthesis method for generating targeted test-stimuli that can be used

to compare model sensitivity to human sensitivity.

Utilizing Fisher Information to predict model sensitivity to local perturbations of an

image, we found each model’s prediction of the most and least noticeable changes we could

make to an image, and a corresponding prediction of how sensitive the humans should be

to these changes. We compared these predictions to empirical human sensitivity to these

changes. We found that, despite the fact that all of our neural networks explained data

within our testing database equally well, they did not generalize equally well outside of

the database. In fact, we found that the networks that were more closely based on known

physiology, even the simple nonlinear computations of early visual physiology, generalized

significantly better than any of the other neural networks.

In a parallel line of work, we generalized our model based on the LGN to operate

at multiple scales, and found that models constructed to reflect the early visual system

significantly reduce mutual information between model coe�cients and their neighbors

compared to image pixels and their neighbors. Creating a multi-scale representation is

a necessary step for converting a model of the visual system optimized for a particular

viewing distance into a model that can operate on images in the real world, where viewers

may view any image from many di�erent distances. In parallel, we developed a framework

for optimally rendering images on a screen when the displayable luminance range of the

screen is smaller than the range of luminance captured by the camera sensor. We showed

that our multi-scale LGN model (NLPD) outperformed all of the other models we tested
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at explaining human perceptual data, including our own single scale LGN models. We

then put this model to work as "perceptual loss function" in our optimized image rendering

framework. We showed that this model performed well as a perceptual loss function in our

rendering framework, and in addition, showed that it performed significantly better as a

perceptual loss function than the other neural networks, trained on object recognition, that

we had tested in previous analyses. This result buttressed our previous results, showing

that neural networks that include more known physiology generalize better in the high

dimensional space of potential image distortions introduced by real-world applications.

While our models of early visual physiology seem to describe human perceptual sensi-

tivity better than other models, there are certainly dimensions along which such a simple

model is unable to distinguish true distortions from natural changes to images (such as

changes to semantic scene and object identity information). In addition, we do not have a

ground truth measure of how close the models are to the true model of human sensitivity.

It’s quite likely that we can create image perturbations that are both more and less notice-

able than even the very good predictions that come from our best performing model, but

it is di�cult to know how to achieve this without already having a perfect model of human

vision. In the absence of this perfect model, it may be possible to draw insight from a

normative model that describes the types of real-world image transformations that humans

are sensitive and insensitive to. It should also be possible to build this sort of knowledge

into a model of perceptual similarity. In fact, Zhou Wang and Eero Simoncelli explored

this line of thinking in their conference paper "An Adaptive Linear System Framework

for Image Distortion Analysis" (Wang & Simoncelli, (2005)). There are two key insights

in their paper. The first is that image distortions could be decomposed into "structural"

distortions, those that change the structure or identity of the objects in the scene, and
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Figure 4.1: Separation of structural and non-structural distortions using an adaptive linear
system (Adapted from Wang & Simoncelli, (2005))

"non-structural" distortions, those that don’t. The authors hypothesized that the human

visual system is built to be much more sensitive to the former than the latter. The sec-

ond insight is that non-structural components can not be computed from a fixed basis of

linear filters, but must be adaptively computed from the input signals themselves. In that

work, they constructed a metric from the combination of the discrete cosine transform

basis (structural components), and a small set of local Taylor expansions along di�erent

transformation dimensions (non-structural), and showed that this metric explained human

distortion judgments well (Wang & Simoncelli, (2005)).

Both of these insights help explain why our more nonlinear models perform better than

simpler linear and quasi-linear models of neural processing, like the LN model examined

here, or other carefully constructed linear models such as (See figure 4.2 for an example)

(Watson, (Jan 2000) and Watson & Ahumada, (2005)). The simpler linear models operate
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Figure 4.2: A well characterized model with non-adaptive structural (spatial-frequency)
sensitivity. While this model carefully captures human sensitivity to spatial frequencies
(as measured on controlled stimuli), it makes the same set of predictions for the most and
least-noticeable change for every image (noise composed of the spatial frequencies found
at its peak and trough, respectively) regardless of the underlying content. (Adapted from
Watson & Ahumada, (2005))

on a fixed (or mostly-fixed) basis, our models have components within them (the divisive

normalization modules), which are not fixed, but adapt to the input signal itself. We can

also map the eigen-distortions produced by our best performing models, such as OnO�,

onto this framework. On-O�’s predictions map loosely to a combination of structural and

non-structural changes, with a slight modification. The Most-Noticeable eigen-distortion

from a model with non-adaptive structural components, such as the LN model, is noise

composed of the spatial frequency that the model is most sensitive to dispersed across the

image and is equivalent regardless of the underlying image. The same is true for its least-

noticeable prediction, however it is now noise composed of the spatial frequency that the

model is least sensitive to (See Figures 4.2, 4.3, and 4.4).
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Most-noticeable eigen-distortions
LN OnO�

Least-Noticeable eigen-distortions

Figure 4.3: Comparing Predictions From Non-adaptive and Adaptive Structural
Representations. Predictions from the non-adaptive LN model are the same regardless
of underlying image content. Predictions from the Adaptive OnO� model change spatial
frequency content based on the underlying image content.
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2D FFT of Most-Noticeable eigen-distortions
LN OnO�

Hats Boats Hats Boats

2D FFT of Least-Noticeable eigen-distortions
LN OnO�

Hats Boats Hats Boats

Figure 4.4: Comparing Spatial-Frequency Content of Eigen-distortions from
Non-adaptive and Adaptive Structural Representations. The predictions for two
di�erent images (Hats and Boats), from the non-adaptive LN model have the same 2-D
Fourier spectra, indicating that the model is image agnostic. The predictions for the OnO�
model, however, have very di�erent 2-D Fourier spectra, indicating that the OnO� model
adaptively changes its sensitivity based on underlying image content.

The OnO� predictions, however, are local, image specific, patches of the model’s most

sensitive (or least sensitive) spatial frequencies, because the OnO� model adapts its sen-

sitivity to structural distortions based on local image content as well as its sensitivity to

non-structural changes, such as luminance and contrast changes (See Figure 4.3 and Figure

4.4). This ability to adapt its sensitivity simultaneously to structural and non-structural

distortion components based on the content of the image is what makes the OnO� model

so powerful.
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Though Wang and Simoncelli tested a perceptual sensitivity metricconstructed based

on these principles, they did not test this hypothesis directly using psychophysics, because

of many real-world limitations. However, the advent of high quality, physics-based image

rendering tools allows us to overcome those barriers and take steps towards testing this hy-

pothesis directly. The rendering environment gives us the ability to create images modified

by independently modifying elements that define scene elements, such as object location

and orientation, as well as image capture elements, such as the 3 dimensional location of

the camera within the scene. The work presented below is the start of an e�ort to do

just that, in collaboration with David Brainard at the University of Pennsylvania. For

this experiment, we utilize Professor Brainard’s Virtual World Toolbox, built on Render-

Toolbox4, to render images that di�er only along several non-structural dimensions defined

by rendering parameters, and compare human sensitivity along each of these dimensions

(Heasly et al., 2014). We also compare human sensitivity along these dimensions to hu-

man sensitivity to our OnO� models eigen-distortions (representing adaptive structural

and non-structural changes to the images). Finally, we analyze how well the OnO� model

captures human sensitivity along each of these dimensions in order to analyze potential

directions for improvement. This work is in progress and as such represents an incomplete

picture.

4.1 Developing a Normative Model

In their paper, Wang and Simoncelli defined non-structural perturbations as "gentle distor-

tions caused by variations of lighting conditions, spatial movement, or pointwise monotonic

intensity changes caused by image acquisition and display devices that should not change

the perceived structure" (Wang & Simoncelli, (2005)). In that work, they defined these
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axes as luminance changes, contrast changes, gamma distortion (a pointwise nonlinear in-

tensity distortion caused by image acquisition and display devices), as well as horizontal

and vertical translation (Wang & Simoncelli, (2005)). The structural distortions are what

is left over after removal of the non-structural components. Here, we attempt to modify our

base images along axes that roughly correspond to these axes. We also draw a distinction

between translation and motion of objects within and scene, and translation and motion

of the camera, which causes coherent changes across the entire scene at once.

4.1.1 Distorting Images Along Parameterized Rendering Dimensions

For image synthesis, we used David Brainard’s Vitrual World Toolbox, in combination with

RenderToolbox4 and Mitsuba physically-based renderer (Heasly et al., (2014),https://

github.com/RenderToolbox/RenderToolbox4, http://www.mitsuba-renderer.org/). We

generated 4 sets of images, each based on 1 base image and several modified images. We

modified the image along one rendering dimension until we achieved a unit length di�erence

vector between the modified and base image (measured in luminance values) analogously

to our eigen-distortion procedure. The modifications are loosely classified into two classes.

The first class, object-centric distortions, includes rotation of the central object in each

scene, as well as changing the brightness of the object itself, independent of it’s surround-

ings. For the second class, image capture distortions, we translated the camera laterally,

and zoomed the camera in towards the center of the scene. For each image set, we also com-

puted the eigen-distortions for the On-O� model. Loosely, we classify the eigen-distortions

generated by the model as adaptive structural changes.

To quantify human sensitivity to distortions along each of the above mentioned dimen-

sions, we utilized the same psychophysical task described in Chapter 2. To do so, we used
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Base Image Object Rotate Object Reflectance

Distortion Vectors

Camera Pan Camera Zoom

Distortion Vectors

Figure 4.5: Distortions along the canonical dimensions described above. Images are best
viewed in a display with luminance range from 5 to 300 cd/m2 and a “ exponent of 2.4.
Top: Object-centric distortions. Original image (x̨), and sum of this image with each of the
distortions. All distortion image intensities are scaled by the same amount (◊7). Second
row: Distortion Vectors for each modification. Third and fourth rows: Same, for the
Image-Capture distortions. Distortion image intensities are scaled the same (◊7).
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On-O� Model Eigen-Distortions
Base Image Most-Noticeable Least-Noticeable

Distortion Vectors

Figure 4.6: Eigen-distortions synthesized from the On-O� model. Images are best viewed
in a display with luminance range from 5 to 300 cd/m2 and a “ exponent of 2.4. Top:
Eigen Distortions + Base Image. Original image (x̨), and sum of this image with each
of the distortions. Most-noticeable distortions scalle ◊7, least-noticeable distortion scaled
◊20. Second row: Distortion Vectors for each modification.
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each unit length di�erence vector computed from the di�erence between the base image

and one of the modified images as a distortion vector, ų, and scaled the vector amplitude

–, until we located the human detection threshold. We estimated human thresholds for

detecting these distortions using a two-alternative forced-choice task. On each trial, sub-

jects were shown (for one second each with a half second blank screen between images, and

in randomized order) a photographic image (15 degrees across), x̨, and the same image

distorted using one of the distortions, x̨ + –û, and then asked to indicate which image

appeared more distorted. This procedure was repeated for 120 trials for each distortion

vector, û, over a range of – values, with ordering chosen by a standard psychophysical

staircase procedure. The proportion of correct responses, as a function of –, was fit with a

cumulative Gaussian function, and the subject’s detection threshold, Ts(û; x̨) was estimated

as the value of – for which the subject could distinguish the distorted image 75% of the

time (See Appendix B for details). The images utilized in this section are 290x210 pixels,

and thus detection thresholds for this section (– parameters) are not directly comparable

to chapter 2 (in which the images were 386x512 pixels).

This linear approximation to distortions along each of these dimensions only holds

for small distortion amplitudes, however, we find that the approximation holds across the

regime in which we are testing. In fact, our method can be thought of as a Taylor expansion

along our chosen distortion directions (object rotation, object reflectance change, lateral

camera movement, camera zoom), similar to the method of Wang & Simoncelli, (2005). To

measure human sensitivity to larger suprathreshold deviations along these dimensions, we

suggest that the perceptual geodesic method of Héna�, Goris and Simoncelli presents the

most promising approach (Héna� et al., (2017) and Héna� et al., (2018)).
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Model as observer

In addition to measuring human perceptual sensitivity to the above distortions, we also

analyzed the log-likelihood that distances measured within the OnO� model produced the

observed psychophysical data for each individual class of distortion. This analysis allows

us to better understand what types of structural distortions the model is capturing well,

and what types of structural distortion it weights di�erently than humans (see Appendix B

for details). This analysis can point us towards the most promising directions to e�ciently

expand and improve our model.

4.1.2 Preliminary Results

In our preliminary experiments, we gathered data from 10 human subjects, across four sets

of images. We begin by analyzing human detection thresholds for each of the rendering

distortions averaged across subjects and images (See Figure 4.7). The most salient result

is that the Adaptive structural distortions (the OnO� model’s eigen-distortions), have

the smallest and largest thresholds of the distortions that we measured. Of the class

of rendering distortions, all are significantly less detectable than white noise of equivalent

vector length. Contrary to what we expected, there is not a clean separation between object-

centric distortions (rotation and object reflectance) and image capture distortions (Camera

Zoom and Pan). This is somewhat surprising, as the distortions for the object-centric class

are much more localized (like the most-noticeable Eigen-distortions of the OnO� model),

but are still not more salient than the di�use image capture class. This result, however, fits

nicely into the framework we have developed. Despite the fact that these distortions are

spatially localized, they represent natural, non-structural, transformations of the image,

and so human observers are more tolerant to these modifications. We would like to note,
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Figure 4.7: Average Detection Thresholds for Rendering Distortions show that the render-
ing distortions we tested are all less detectable than the OnO� model’s most-noticeable
distortion, and less-detectable than the model’s least-noticeable distortion. Contrary to
our expectations, there is not a clear separation within the rendering distortions between
object-centric and image capture distortions.
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Figure 4.8: Log-Likelihood Analysis of OnO� Model Distances for Each Rendering Dis-
tortion (See Appendix B for details). While the OnO� model explains the responses to a
subset of the rendering distortions better than MSE (Object Reflectance and Camera Pan),
it performs equal to, or worse than, MSE at explaining human responses to the other three
distortion classes. These results can mostly be explained by the model’s oversensitivity to
local translation. This result suggests that building a model of v1-complex cells on top of
the OnO� representation would help the model capture local translation invariances that
it currently is lacking.
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however, that this is very preliminary data. These results are collected from a small batch

of images, and may to not hold for every image.

In addition to measuring the average detection thresholds for each distortion class,

we also analyzed the log-likelihood that the OnO� observer model produced the empiri-

cal psychophysical results for each of the rendering distortions and compared this to the

log-likelihood that these results were produced by distances measured by pixel MSE (See

Figure 4.8). This analysis shows that while OnO� distances explain some of these rendering

distortion classes better than MSE (Object Reflectance and Camera Pan distortions), they

underperform MSE at explaining Camera Zoom sensitivity, and are statistically indistin-

guishable from MSE for Object Rotation distortions. This result is somewhat unsurprising,

the OnO� model is a model of very early vision, and it is unable to capture more com-

plicated forms of image deformation. Both MSE and the OnO� model lack translation

invariance of any kind, and will drastically over-predict human sensitivity to even small

misalignments between elements of the original and distorted images. This results sug-

gests that building local spatial invariance into the OnO� representation is an important

direction for future work.

4.1.3 Future Work

Taken as a whole, the results in this thesis suggests that the nonlinear computations carried

out in the early processing areas of the human visual system cannot be discounted or

subsumed into the linear computations that begin with the first cortical area, V1. This

computations create an adaptive Euclidean metric on the space of images, and are useful as

a stand-in for human observers during complicated optimizations where fidelity to human

perception is desired. Even so, these computations alone are not enough to fully capture
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human perceptual sensitivity. There are many ways to improve upon our model. The most

obvious of which is to expand it to be able to process color information. The next most

obvious direction for further work, highlighted by results in this chapter, is to build in

other known invariances of the human visual system, such as local translation invariance.

Because our models are constructed as feedforward neural networks that loosely match

the physiology of the first processing stages of the human visual system, the obvious way

to build this invariance into the model is to cascade a model of V1 complex cells on

top of the OnO� model outputs. When constructing and fitting this model, it will be

important to carefully consider the nonlinearities at each stage. Another direction forward

will be to test our models on more naturalistic tasks. Human vision is not constructed

for viewing static images, but for natural sequences of static images. If the models are

creating a metric space that appropriately captures human perception, it should be able to

generalize to the sequential presentation of images. Though not explicitly constructed for

this purpose, Héna� and Simoncelli recently analyzed a cascaded neural model, constructed

by stacking a model of V1 complex cells on top of our normalized model of the LGN.

These authors showed that each stage of the mode significantly reduces the perceptual

curvature of the trajectory of natural scenes in the same way as human subjects (private

communication of unpublished data). They similarly showed that several classes of deep

neural networks, including VGG, actually increase the curvature of natural trajectories at

each stage, indicating a similar disconnect from Human perception for this class of models

as shown in this thesis.

In addition to showing the importance of the nonlinear computations of early visual

processing, we developed several toolsets that will be valuable to build upon in future

work. In chapter 2, we explored the use of multidimensional Fisher information as a
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toolset for exploring the high-dimensional sensitivity landscape of models. We derived

these tools under several di�erent model assumptions, related these tools to psychophysics,

and showed how they may be used to build better model-driven psychophysical studies.

These tools, however, are local approximations to the sensitivity of a model, meaning that

their predictions do not hold over large distances. It will be exciting to relate these tools to

the tools developed by Héna� and Simoncelli for measuring and capturing supra-threshold,

long-distance, perceptual deviations using perceptual geodesics. In addition, the noise

assumptions we used in this thesis are fairly simple (a single stage of Gaussian or Poisson

noise) (Héna� et al., (2017) and Héna� et al., (2018)). The reality of noise in actual neural

circuits is more complicated. Neural responses can be described as modulated Poisson, or

neurons with both independent Poisson variability and a multiplicative modulator shared

across neurons (Goris et al., (2014)). This significantly complicates the computation of

Fisher Information. Additionally, we have been approximating the function of stacked

neural modules as deterministic, with a single stochastic module at the output of the final

stage. In reality, neurons at every stage of the stack are noisy. This also creates di�culty

for computing Fisher Information, as we now need to integrate over the internal noise as

well as output noise. To properly capture how noise cascades through the system, we will

have to develop methods to estimate the Fisher Information at the output stage using

sampling methods.

In chapter 3, we developed a general purpose rendering framework for perceptually

optimizing any rendered image under any display constraints. While this framework is

useful as a benchmark, in practice, the optimization takes too much time to be utilized

in real-world applications (≥ 60 seconds per image). In future work, we would like to de-

velop one-shot algorithms that approximate the results of this optimization under di�erent
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constraints with one forward pass through a model (or neural network). In addition, we

would like to generalize the framework to optimize a sequence of images, concurrent with

the development of metrics that capture sensitivity appropriately for a progression of nat-

ural images in sequence. We also want to test the performance of our metrics under other

modern applications, and compare them to the performance of other metrics.

Finally, we would like to explore and understand the geometry of cascaded local divisive

normalization. Several recent results suggest that a generalized form of divisive normal-

ization can be utilized as a powerful tool for learning complicated image representations,

and cascaded divisively normalized representations can be used to create state-of-the-art

image compression algorithms (Ballé et al., (2017)) using many fewer layers that traditional

cascaded LN- type neural networks. We believe this presents a potentially powerful tool

for machine learning that is currently underutilized.
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Appendix A : Model Implementation and Parameters

LGN models

We start by describing the simplest LGN model, the LN model. As our LGN models are

a nested class, will build each successively more complicated model from the components

already described for the simpler models.

LN model

Our LN model is constructed from a di�erence-of-gaussians filter with 31x31 support (one

Gaussian representing the center receptive field, C, and one representing the surround

receptive field, S), applied convolutional to the image, x̨. Each of the gaussians is centered

on the central pixel of the filter support, u, and is parameterized by a single parameter,

‡ controlling its variance, and constructed as the outer product of two equivalent 1-D

gaussians. The gaussian representing the center receptive field is constructed as follows:

C̨ = 1
Ò

2fi‡2
C

e
≠ (x≠u)2

2‡

2
C

C = C̨C̨T

The gaussian representing the surround receptive field is constructed as follows:

S̨ = 1
Ò

2fi‡2
S

e
≠ (x≠u)2

2‡

2
S

S = S̨S̨T

128



For all models except for the OnO� model, we constrain our center-surround filters to be

of the On-center variety. Those filters are constructed as follows:

CS = C ≠ .8S

The surround is weighted less than the center to match observed physiology and the valule

.8 is fixed to reduce the number of learned parameters. O�-center filters are constructed

by subtracting the center receptive field from the surround.

We convolve this filter with the input image, x̨.

y̨ = CS ¢ x̨

For all models, we rectify the output coe�cients, y̨, using a rectifying nonlinearity. Across

all models, we utilize the "softplus" rectifier:

y̨ + = log(1 + ey̨)

Where y̨ + are the rectified output coe�cients.

LG Model

The linear filtering stage of the LG model is constructed in the same way as the LN model

filter. Prior to the rectifying nonlinearity, however, the LG model’s linear filter coe�cients,

y̨Linear, go through a stage of divisive luminance normalization. A gaussian luminance

pooling filter, L, is constructed in the same manner as the gaussian filters (C or S) above,

parameterized by its variance, ‡L. We convolve the filter, L, with the image x̨, to obtain a
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luminance map, Lum.

Lum = L ¢ x̨

And divide the output coe�cients from the linear stage, y̨Linear, by this luminance map

weighted by a learned parameter, –.

y̨Lum = y̨Linear

1 + –Lum

As above, we rectify the outputs, y̨Lum with a softplus nonlinearity to obtain the final

outputs, y̨ +
Lum.

LGG Model

The LGG model is constructed on top of the outputs of the LG model. We first convolve

the squared output coe�cients of the LG stage, y̨ 2
Lum with a gaussian "contrast pool" filter,

Con, (constructed in the same manner as above, and parameterized by a single variance

parameter, ‡Con) in order to obtain a contrast map.

Contrast =
Ò

Con ¢ y̨ 2
lum

We divide the output coe�cients of the LGG stage by this contrast map weighted by a

learned parameter, —.

y̨Con = y̨Lum

1 + —Contrast

As above, we rectify the outputs, y̨Con, with a softplus nonlinearity to obtain the final

outputs, y̨ +
Con.
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Models ‡c ‡s ‡L – ‡Con —
LN .5339 6.148 NA NA NA NA
LG 1.962 4.235 4.235 14.95 NA NA

LGG .7363 48.37 170.99 2.94 2.658 34.03
OnO�On 1.237 30.12 76.4 3.26 7.49 7.34
OnO�Off 0.3233 2.184 2.184 14.4 2.43 16.74

Table 2: LGN Model Parameters: Here we include the optimized parameters for each of the LGN models we tested in
this thesis.

OnO� Model

The OnO� model is constructed as two parallel LGG models with independent parameter-

izations. The only enforced di�erence between the channels is that one of the linear filters,

CSoff , is constructed to be an O�-center center-surround filter.

CSoff = Soff ≠ .8Coff

Model Parameters

Below, we include the optimized parameters for each of the LGN models tested in this

thesis ( See Table 2). These can be used, along with the formulations above, to reconstruct

the models.

Converting from SRGB to Linear with Luminance

We process all images in the luminance values they produce on the screen, in order to better

approximate the signal that human subjects are actually seeing. In order to convert from

SRGB pixel values that are linear with luminance, we utilize the following function. We

first divide the SRGB pixels, x̨SRGB by the maximum SRGB value, 255. We then convert
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to linear-with-luminance values, x̨L.

For values in x̨SRGB that are Æ .04045, we linearly remap these pixels by dividing their

values by 12.92. For values in x̨SRGB that are > .04045, we remap them as follows:

x̨L =
3

x̨SRGB + .055
1.055

42.4
;

In order to properly display the images, we need to convert back to SRGB values.

To do so, we undo the transformation above. For values in x̨L that are Æ .0031308, we

linearly remap these pixels by multiplying their values by 12.92. For values in x̨L that are

> .0031308, we remap them as follows:

x̨SRGB =
3

1.055 ú x̨L

4 1
2.4

≠ .055
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Appendix B : Estimating Human Perceptual Thresholds

To determine human perceptual thresholds for each eigendistortion, ęn, we perform a stair-

cased 2AFC (3 down, 1 up) in which we adjust variable – in the equation x̨n + (–ęn ). We

model the human subject’s performance on the 2AFC task as follows: The probability of

a correct response, P (c), is the product of the probability of a correct response given that

the subject is paying attention to the task, p(c|task), and 1 minus the probability that

the subject will lapse, p(lapse), plus the probability of a correct response despite lapsing,

p(c|lapse).

p(c) = p(c|task)(1 ≠ p(lapse)) + p(c|lapse)p(lapse)

Where p(c|task) is defined as a zero mean cumulative gaussian function defined by the

amplitude parameter, –, and a variance parameter, ‡, which defines the width of the

gaussian, and which we will fit to data.

p(c|task) = cdf(–, µ, ‡), µ = 0

cdf(–, µ, ‡) = 1
2

S

U1 + erf(– ≠ µ

‡
Ô

2
)
T

V

Since there are only two choices at each response stage, the probability of a correct response

despite lapsing is:

p(c|lapse) = 1
2

And we fit the probability that the subject lapses on any given trial, “, to the data.

p(lapse) = (“)
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Thus, the probability of a correct response given the parameters, –, “ and ‡, is

p(c|–, “, ‡) = [1 ≠ “] cdf(–, 0, ‡) + (“

2 )

For each sample of size n, the probability of k observed correct responses during an entire

trial is modeled as a the product of N indpendent Bernoulli processes:

p(k|–, “, ‡) =
NŸ

i=1

A
ni

ki

B

pi(c|–, “, ‡)k
i(1 ≠ pi(c|–, “, ‡))(n

i

≠k
i

)

The log likelihood of the observed responses, k, given parameters, “, ‡ and – is :

log(L(k|–, “, ‡)) =
Nÿ

i=1

1
log

A
ni

ki

B

+ kilog(pi(c|–, “, ‡)) + (ni ≠ ki)log(1 ≠ pi(c|–, “, ‡))
2

We first fit a cumulative gaussian function to our data by maximizing the likelihood that

the obeserved responses were produced given a single variance parameter, ‡ú, and a single

lapse parameter, “ú, for each stimulus presented for a given subject.

(“ú, ‡ú) = arg max
“,‡

log(L(k|–, “, ‡))

We then estimate the threshold, T (ęn), as the amplitude, –, which gives a p(c) of 75%,

given the fit cdf:

T (ęn) = cdf≠1(.75, 0, ‡ú)

If our estimate of the lapse parameter “ú > .2, indicating a high lapse rate, we exclude that

set of trials from our dataset.
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Estimating Log-Likelihood of Observed Psychophysical Data Given

Model Distances

To determine the likelihood that distances measured within a model produced the observed

psychophysical results, we first transform amplitude parameters, –, into model distances,

Dm.

Dm(x̨, ę, –) = ||fm(x̨) ≠ fm(x̨ + –ę)||2

We estimate the log likelihood that distances for each model can explain the observed

correct responses under a single noise variance parameter.

p(c|task) = cdf(Dm, 0, ‡m)

We maximize the log likelihood over the variance parameter, ‡m, for the same formula-

tion as above (with lapse parameter “ fixed at 0), and compare the log-likelihoods obtained

from each model at the optimal parameters, ‡ú
m across all stimuli presented across subjects.

Larger likelihood indicates a higher correspondence between model derived distances and

measured human response.

(‡ú
m) = arg max

‡
m

log(Lm(k|Dm, ‡m))

Estimating Log-Likelihoods for Each Individual Renderinyg Distortion Class

To determine the likelihood that distances measured within a model produced the observed

psychophysical results for each distortion class, we first transform amplitude parameters,

–, into model distances, Dm.
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Dm(x̨, ę, –) = ||fm(x̨) ≠ fm(x̨ + –ę)||2

We fix the noise variance parameter, ‡, to the optimal noise variance parameter, ‡ú
m esti-

mated from the eigen-distortion data. This ensures that we are testing each model’s ability

to generalize to distortion types that have not been used to train any of its parameters.

We evaluate the log-likelihood of the observed responses for the distance data, Dm,

given the previously fit optimal noise variance parameter ‡ú
m.

log(L(k|Dm, ‡ú
m)) =

Nÿ

i=1
log

A
ni

ki

B

+ kilog(pi(c|Dm, ‡ú
m)) + (ni ≠ ki)log(1 ≠ pi(c|Dm, ‡ú

m))

Larger likelihood indicates higher correspondence between model derived distances and

measured human response, indicating that the model captures this class of distortions well.

Low likelihood indicates areas where the model may be improved.
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Appendix C : Database Evaluation of Multi-scale IQA metrics

We compared the ability of each of our mutli-scale LGN based metrics to explain several

widely utilized databases of image quality assessment with several state-of-the-art metrics.

We report both Pearson and Spearman correlation, as is convention in the field. All corre-

lations are computed over the gray-scale versions of images within each database (images

transformed from RGB values to raw luminance values to match what the human viewer

is actually seeing displayed on the screen). The authors wish to note that our analysis in

preceding chapters suggests that these results on their own do not necessarily predict how a

model generalizes outside of these databases. However, they do provide some information,

and are the standard measure within the community.

Here, we refer to the version of the normalized laplacian pyramid distance (NLPD) with

parameters estimated from image statistics as NLPD V1, and the version with parameters

fit to the TID 2008 database as NLPD V2.
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Table 3: Evaluation of IQA methods in di�erent databases (Larson & Chandler, (2010), Ponomarenko et al., (2009), and
Ponomarenko et al., (2015)). Pearson correlation and Spearman correlation (in parentheses) of distance metrics vs. human
perceptual judgments. Numbers were obtained using the gray-scale version of the images in databases (see the text for
details).

TID 2008 TID 2013 CSIQ

PSNR 0.52 (0.55) 0.64 (0.67) 0.76 (0.81)
SSIM 0.74 (0.78) 0.77 (0.80) 0.79 (0.87)
V1 0.81 (0.82) 0.81 (0.81) 0.87 (0.87)
MS-SSIM 0.79 (0.85) 0.79 (0.86) 0.77 (0.91)
VDP 2.2 0.80 (0.85) 0.78 (0.84) 0.90 (0.92)
NLPD V1 0.86 (0.87) 0.88 (0.88) 0.92 (0.92)
NLPD V2 0.89 (0.89) 0.88 (0.88) 0.90 (0.93)

Both of our multi-scale LGN metrics (NLPD V1 and NLPD V2) consistently outperform

all of the tested state of the art metrics on these databases, in both absolute correlation,

and rank-order correlation.
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