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Abstract—We introduce a general framework for end-to-end
optimization of the rate–distortion performance of nonlinear
transform codes assuming scalar quantization. The framework
can be used to optimize any differentiable pair of analysis
and synthesis transforms in combination with any differentiable
perceptual metric. As an example, we consider a code built
from a linear transform followed by a form of multi-dimensional
local gain control. Distortion is measured with a state-of-the-
art perceptual metric. When optimized over a large database of
images, this representation offers substantial improvements in
bitrate and perceptual appearance over fixed (DCT) codes, and
over linear transform codes optimized for mean squared error.

I. INTRODUCTION
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Transform coding [1] is one of the most successful areas
of signal processing. Virtually all modern image and video
compression standards operate by applying an invertible trans-
formation to the signal, quantizing the transformed data to
achieve a compact representation, and inverting the transform
to recover an approximation of the original signal.

Generally, these transforms have been linear. Non-
Gaussian/nonlinear aspects of signal statistics are typically
handled by augmenting the linear system with carefully se-
lected nonlinearities (for example, companding nonlinearities
to enable non-uniform quantization, prediction for hybrid
compression, etc.). Deciding which combination of these op-
erations, also known as “coding tools,” are ultimately useful is
a cumbersome process. The operations are generally studied
and optimized individually, with different objectives, and any
proposed combination of coding tools must then be empirically
validated in terms of average code rate and distortion.

This is reminiscent of the state of affairs in the field of
object and pattern recognition about a decade ago. As in
the compression community, most solutions were built by
manually combining a sequence of individually designed and
optimized processing stages. In recent years, that field has seen
remarkable performance gains [2], which have arisen primar-
ily because of end-to-end system optimization. Specifically,
researchers have chosen architectures that consist of a cascade
of transformations that are differentiable with respect to their
parameters, and then used modern optimization tools to jointly
optimize the full system over large databases of images.

Here, we take a step toward using such end-to-end opti-
mization in the context of compression. We develop an op-
timization framework for nonlinear transform coding (fig. 1),
which generalizes the traditional transform coding paradigm.
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Fig. 1. Nonlinear transform coding optimization framework. See text.

An image vector x is transformed to a code domain vector
using a differentiable function y = ga(x;φ) (the analysis
transform), parameterized by a vector φ (containing linear
filter coefficients, for example). The transformed y is subjected
to scalar quantization, yielding a vector of integer indices q
and a reconstructed vector ŷ. The latter is then nonlinearly
transformed back to the signal domain to obtain the recon-
structed image x̂ = gs(ŷ;θ), where this synthesis transform
gs is parameterized by vector θ.

The code rate is assessed by measuring the entropy, H ,
of the discrete probability distribution Pq of the quantization
indices over an ensemble of images. Traditionally, the dis-
tortion is assessed directly in the image domain by taking
the squared Euclidean norm of the difference between x and
x̂ (or equivalently, the peak signal-to-noise ratio, PSNR).
However, it is well known that PSNR is not well-aligned
with human perception [3]. To alleviate this problem, we
allow an additional “perceptual” transform of both vectors
z = h(x) and ẑ = h(x̂), on which we then compute
distortion using a suitable norm. A well-chosen transform h
can provide a significantly better approximation of subjective
visual distortion than PSNR (e.g., [4]).

II. OPTIMIZATION FRAMEWORK

In the transform coding framework given above, we seek to
adjust the analysis and synthesis transforms ga and gs so as
to minimize the rate–distortion functional:

L[ga, gs] = H[Pq] + λE ‖z − ẑ‖. (1)

The first term denotes the discrete entropy of the vector
of quantization indices q. The second term measures the
distortion between the reference image z and its reconstruction
ẑ in a perceptual representation. Note that both terms are
expectations taken over an ensemble of images.
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Fig. 2. Relationship between densities of yi, ỹi, and ŷi. pỹi is a continuous
relaxation of the the probability masses in each of the quantization bins.

We wish to minimize this objective over the continuous
parameters {θ,φ}. Most optimization methods rely on dif-
ferentiability, but both terms in the objective depend on the
quantized values in q, and the derivative of the quantizer is dis-
continuous (specifically, it is zero or infinite everywhere). To
resolve this, we propose to approximate the objective function
with one that is continuously differentiable, by replacing the
deterministic quantizer with an additive uniform noise source.

A uniform scalar quantizer is a piecewise constant function
applied to each of the elements of y: ŷi = round(yi).1 The
marginal density of the quantized values is given by:

pŷi(t) =

∞∑
n=−∞

Pqi(n) δ(t− n), (2)

where

Pqi(n) = (pyi ∗ rect)(n), for all n ∈ Z, (3)

is the probability mass in the nth quantization bin. Here,
‘∗’ represents continuous convolution, and rect is a uniform
distribution on (− 1

2 ,
1
2 ). If we add independent uniform noise

to yi, i.e., form the signal ỹi = yi+∆yi, with ∆yi ∼ rect, then
the density of that signal is pỹi = pyi ∗ rect. pỹi is identical
to Pqi at all integer locations, and provides a continuous
relaxation for intermediate values (fig. 2). We propose to
optimize the differential entropy h[pỹi ] as a proxy for the
discrete entropy H[Pqi ]. To optimize it, we need a running
estimate of pỹi . This estimate need not be arbitrarily precise,
since pỹi is band-limited by convolution with rect. Here, we
simply use a non-parametric, piecewise linear function (a first-
order spline approximation). We also use ỹi rather than ŷi to
obtain gradients of the distortion term. The overall objective
can be written as:

L(θ,φ) = Ex,∆y

(
− log2 pỹ(ga(x;φ) + ∆y)

+ λ
∥∥h(gs(ga(x;φ) + ∆y;θ)

)
− h(x)

∥∥), (4)

where pỹ(ỹ) =
∏
i pỹi(ỹi). This is differentiable with respect

to θ and φ and thus suited for stochastic gradient descent.
Although finding a global optimum is not guaranteed, this op-
timization problem is similar to others which are encountered

1Without loss of generality, we assume that the quantization bin size is 1,
since we can always modify the analysis/synthesis transforms to include
a rescaling. Further, we can implement non-uniform quantization by using
nonlinear transforms (as in companding).

when optimizing deep neural networks, and which have been
found to behave well in practice.

III. CHOICE OF PARAMETRIC TRANSFORMS

In a traditional transform code, both analysis and synthesis
transforms are linear, and exact inverses of each other. In
general, this need not be the case, so long as the overall system
minimizes the rate–distortion functional. We have previously
shown that a linear transform followed by a particular form
of joint local gain control (generalized divisive normalization,
GDN) is well-matched to the local probability structure of
photographic images [5]. This suggests that jointly normalized
representations might also prove useful for compression. To
demonstrate the use of our optimization framework, we exam-
ine GDN as a candidate analysis transform, and introduce an
approximate inverse as the corresponding synthesis transform.
For the perceptual transform, we use the normalized Laplacian
pyramid [4] (NLP), which mimics the local luminance and
contrast behaviors of the human visual system.

A. Generalized divisive normalization (GDN)

The GDN transform consists of a linear decomposition H
followed by a joint nonlinearity, which divides each linear
filter output by a measure of overall filter activity:

y = ga(x;φ) s.t. yi =
vi(

βi +
∑
j γij |vj |αij

)εi
and v = Hx, (5)

with parameter vector φ = {α,β,γ, ε,H}.

B. Approximate inverse of GDN

The approximate inverse we introduce here is based on the
fixed point iteration for inversion of GDN introduced in [5]. It
is similar in spirit to the LISTA algorithm [6], in that it uses
the parametric form of the inversion iteration, but unties its
parameters from their original values for faster convergence.
We find that for purposes of image compression, one iteration
is sufficient:

x̂ = gs(ŷ;θ) s.t. x̂ = H ′w

and wi = ŷi ·
(
β′i +

∑
j

γ′ij |ŷj |α
′
ij
)ε′i , (6)

where the parameter vector consists of a distinct set of
parameters: θ = {α′,β′,γ′, ε′,H ′}.

C. Normalized Laplacian pyramid (NLP)

The NLP imitates the transformations associated with the
early visual system: local luminance subtraction and local
gain control [4]. Images are decomposed using a Laplacian
pyramid [7], which subtracts a local estimate of the mean
luminance at multiple scales. Each pyramid coefficient is then
divided by a local estimate of amplitude (a constant plus the
weighted sum of absolute values of neighbors). Perceptual
quality is assessed by evaluating a norm of the difference be-
tween reference and reconstruction in this normalized domain.
The parameters (constant and weights used for amplitudes)
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Fig. 3. Rate–distortion results averaged over the entire Kodak image set
(24 images, 752 × 496 pixels each). Reported rates are average discrete
entropy estimates. Reported distortion is average PSNR (top) and distance
in the normalized Laplacian pyramid domain (bottom – see text).

are optimized to best fit perceptual data in the TID2008
database [8], which includes images corrupted by artifacts aris-
ing from compression with block transforms. This simple dis-
tortion measure provides a near-linear fit to the human percep-
tual judgments in the database, outperforming the widely-used
SSIM [9] and MS-SSIM [10] quality metrics [4]. Examples
and code are available at http://www.cns.nyu.edu/~lcv/NLPyr.

IV. EXPERIMENTAL RESULTS

The proposed framework can be used to optimize any
differentiable pair of analysis and synthesis transforms in
combination with any differentiable perceptual metric. Here,
we consider two types of transform: a linear analysis and
synthesis transform operating on 16× 16 pixel blocks (in this
case, θ and φ each only consist of 256×256 filter coefficients),
and a 16 × 16 block GDN transform with the approximate
inverse defined above (with θ and φ consisting of filter
coefficients and normalization parameters, as defined above).
We optimized each of these for two distortion metrics: mean
squared error (MSE) and distance in the NLP domain [4].
Each combination of transform and distortion metric was
optimized for different values of λ. We also include a fixed
linear transform, the 16×16 discrete cosine transform (DCT),
with or without dead-zone quantization, serving as a baseline.
All other codes (i.e., those optimized in our framework) are
constrained to use uniform quantization.

We used the Adam algorithm [11], a variant of stochastic
gradient descent, to optimize all codes over a large collection

of images from the ImageNet database [2], initializing the
parameters randomly. For each optimization step, we used a
randomly selected mini-batch of 4 images of 128×128 pixels.
To prevent overfitting to the training database, we performed
all evaluations on a separate set of test images.2

We measured rate–distortion performance for all four trans-
form/distortion metric combinations, along with the DCT
transform. Note that the additive noise approximation was used
only for optimization, not for evaluation: We evaluated rates
by estimating discrete entropy of the quantized code vector q.
For each choice of λ, we optimized a separate set of transform
parameters, which could be stored in the encoder and decoder.
The only side information a real-world codec would need
to transmit is the choice of λ and the image size (although
it would be desirable to reduce the storage requirements by
storing parameters jointly for different λ).

For evaluation of the distortion, we first computed the mean
squared error (MSE) over the entire image set for each λ, and
then converted these values into PSNRs (fig. 3, top panel).
In terms of PSNR, the optimized linear transform is slightly
worse than the DCT, because the statistics of the ImageNet
database are slightly different from the Kodak set.3 The DCT
with dead-zone quantization is better, but doesn’t outperform
the MSE-optimized GDN transform, which uses only uniform
quantization. The NLP-optimized transforms don’t perform
well in terms of PSNR.

The situation is reversed, however, when we examine per-
formance in terms of perceptual distortion (fig. 3, bottom).
Here, we evaluated the norm in the NLP domain (D-NLP)
for each image in the set, and then averaged across images.
Note that this norm is almost (inversely) proportional to human
perceptual mean opinion scores (MOS) across several image
databases [4]. Overall, the combination of NLP and GDN
achieves an impressive rate savings at similar quality when
compared with MSE-optimized methods, and with the DCT
(both uniform and dead-zone quantizers). It is also interesting
to note that in terms of NLP distance, the optimized linear
transform with uniform quantization outperforms both versions
of the DCT. This may be because the optimized filters tend to
be spatially localized (and oriented/bandpass), which possibly
leads to visually less disturbing artifacts (not shown).

For visual evaluation, we show results on two example
images (figs. 4 and 5). Results for the entire test set are
available at http://www.cns.nyu.edu/~balle/nlpgdn. The figures
serve to illustrate the main effect of using a perceptual metric
that is aware of local relative contrast. Traditional, linear
systems optimized for MSE give too much preference to
high-contrast regions (e.g., the snow-covered mountains in the
background, or the pebbles/debris in the foreground; fig. 4,
center image). By performing joint normalization before quan-
tization, the NLP-optimized GDN transform allocates more

2The Kodak image set, downloaded from http://www.cipr.rpi.edu/resource/
stills/kodak.html. We converted the images to grayscale and discarded 8 pixels
from each side to eliminate boundary artifacts.

3If we validate on a held-out test set of images from ImageNet, the two
transforms perform equally well.

http://www.cns.nyu.edu/~lcv/NLPyr
http://www.cns.nyu.edu/~balle/nlpgdn
http://www.cipr.rpi.edu/resource/stills/kodak.html
http://www.cipr.rpi.edu/resource/stills/kodak.html


NLP-GDN, 0.190 bit/px. PSNR: 20.95 D-NLP: 0.21 MS-SSIM: 0.868

DCT (dead z.), 0.204 bit/px. PSNR: 21.81 D-NLP: 0.28 MS-SSIM: 0.827

Original, 8 bit/px. PSNR: ∞ D-NLP: 0 MS-SSIM: 1

Fig. 4. Example image from Kodak set (bottom), compressed with DCT and
hand-optimized (for MSE) dead-zone quantization (middle), and GDN with
uniform quantization optimized in the NLP domain (top). Cropped to fit page.

bits to represent detail in low-contrast regions (such as the
forest in the depicted scene; top image). Overall, the rate
allocation is perceptually more balanced, which leads to a
more appealing visual appearance.

V. DISCUSSION

We have introduced a framework for end-to-end optimiza-
tion of nonlinear transform codes, which can be applied to
any set of parametric, differentiable analysis and synthesis
transforms. By optimizing a nonlinear transform for a per-
ceptual metric over a database of photographs, we obtained a

NLP-GDN, 0.044 bit/px. PSNR: 26.37 D-NLP: 0.21 MS-SSIM: 0.881

DCT (dead z.), 0.044 bit/px. PSNR: 26.93 D-NLP: 0.24 MS-SSIM: 0.857

Original, 8 bit/px. PSNR: ∞ D-NLP: 0 MS-SSIM: 1

Fig. 5. A second example image from the Kodak set (see caption for fig. 4).

nonlinear code that respects the perception of local luminance
and contrast errors, allowing for significant rate savings.

The earliest instance of a linear transform optimized for
signal properties may be the Karhunen–Loève transform
(KLT), or principal components analysis (PCA). The DCT
was originally introduced as an efficient approximation to the
KLT for a separable autoregressive process of order 1 [12].
Other studies have optimized transform parameters specifically
for perceptual compression (e.g., [13, 14]), but these were
generally limited to optimizing weighting matrices for the
DCT. Models that use “matched” nonlinear transformations as
a means of converting to/from a more desirable representation



of the data are known in the machine learning literature as
autoencoders [15]. However, we are unaware of any work that
directly aims to optimize discrete entropy.

We assume uniform quantization in the transform domain,
and replace quantization with additive uniform noise to relax
the discontinuous problem into a differentiable one. We find
that this method empirically outperforms results obtained by
ignoring the effects of the discontinuous quantizer on the
backpropagation of gradients (not shown). Under the presented
conditions, adding noise is equivalent to performing dithered
quantization [16]. Dithering was used in some early image
coders [17], but generally does not improve rate–distortion
performance. To our knowledge, it has not been used as a form
of continuous relaxation for optimization purposes. While
uniform quantization has been shown to be asymptotically
optimal [18], it is well known that dead-zone quantization gen-
erally performs better for linear transform coding of images.
Here, we demonstrate empirically that the use of nonlinear
transforms with uniform quantization allows equivalent or
better solutions, and our framework provides a means of
finding these transforms.

Divisive normalization has previously been used in DCT-
based image compression, e.g., [19, 20]. These approaches use
the normalized representation both for coding and distortion
estimation, reasoning that this domain is both perceptually
and statistically uniform, and thus well-suited for both. The
framework introduced here offers more flexibility, by allowing
the perceptual domain and the code domain to be distinct
(fig. 1). Further, previous methods required the decoder to
invert the normalization transform, either by solving an itera-
tive set of linear equations for every block [19], estimating
the multipliers (i.e., the values of the denominators) from
neighboring blocks [20], or embedding the multipliers into
the code as side information. Our framework eliminates this
problem by introducing a highly efficient approximate inverse
transform, which is jointly optimized along with the normal-
ization transform.

There are several directions in which to proceed with
this work. Well-known techniques to improve performance of
linear transform codes, such as run-length encoding, adaptive
entropy coding, and signal-adaptive techniques in general,
should be investigated in the context of nonlinear transform
coding. Furthermore, our framework offers a means for ex-
ploring much more sophisticated nonlinear analysis/synthesis
transforms as well as perceptual metrics, since it is built on the
highly successful paradigm of end-to-end optimization over
training data.
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