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Tübingen, Germany
felix.wichmann@tuebingen.mpg.de

Eero P. Simoncelli
Howard Hughes Medical Institute

Center for Neural Science
New York University, USA

Heinrich H. Bülthoff and Bernhard Schölkopf
Max Planck Institute for Biological Cybernetics
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Abstract

We study gender discrimination of human faces using a combination
of psychophysical classification and discrimination experiments together
with methods from machine learning. We reduce the dimensionality of
a set of face images using principal component analysis, and then train a
set of linear classifiers on this reduced representation (linear support vec-
tor machines (SVMs), relevance vector machines (RVMs), Fisher linear
discriminant (FLD), and prototype (prot) classifiers) using human clas-
sification data. Because we combine a linear preprocessor with linear
classifiers, the entire system acts as a linear classifier, allowing us to vi-
sualise the decision-image corresponding to the normal vector of the sep-
arating hyperplanes (SH) of each classifier. We predict that the female-to-
maleness transition along the normal vector for classifiers closely mim-
icking human classification (SVM and RVM [1]) should be faster than
the transition along any other direction. A psychophysical discrimina-
tion experiment using the decision images as stimuli is consistent with
this prediction.

1 Introduction

One of the central problems in vision science is to identify the features used by human
subjects to classify visual stimuli. We combine machine learning and psychophysical tech-
niques to gain insight into the algorithms used by human subjects during visual classifica-
tion of faces. Comparing gender classification performance of humans to that of machines
has attracted considerable attention in the past [2, 3, 4, 5]. The main novel aspect of our
study is to analyse the machine algorithms to make inferences about the features used by
human subjects, thus providing an alternative to psychophysical feature extraction tech-
niques such as the “bubbles” [6] or the noise classification image [7] techniques. In this
“machine-learning-psychophysics research” we first we train machine learning classifiers
on the responses (labels) of human subjects to re-create the human decision boundaries by
learning machines. Then we look for correlations between machine classifiers and sev-



eral characteristics of subjects’ responses to the stimuli—proportion correct, reaction times
(RT) and confidence ratings. Ideally this allows us to find preprocessor-classifier pairings
that are closely aligned with the algorithm employed by the human brain for the task at
hand. Thereafter we analyse properties of the machine closest to the human—in our case
support vector machines (SVMs), and to slightly lesser degree, relevance vector machines
(RVMs)—and make predictions about human behaviour based on machine properties.

In the current study we extract a decision-image containing the information relevant for
classification by the machine classifiers. The decision-image ~W is the image corresponding
to a vector ~w orthogonal to the SH of the classifier. The decision-image has the same
dimensionality as the (input-) images—in our case 256× 256—whereas the normal vector
lives in the (reduced dimensionality) space after preprocessing—in our case in 200 × 1
after Principal Component Analysis (PCA). Second, we use ~w of the classifiers to generate
novel stimuli by adding (or subtracting) various “amounts” (λ~w) to a genderless face in
PCA space. The novel stimuli, images, I(λ) are generated as I(λ) = PCA−1λ ~w

‖~w‖ . We
predict that the female-to-maleness transition along the vectors normal to the SHs, ~wSVM

and ~wRVM, should be significantly faster than those along the normal vectors of machine
classifiers that do not correlate as well with human subjects. A psychophysical gender
discrimination experiment confirms our predictions: the female-to-maleness axis of the
SVM and, to a smaller extent, RVM, are more closely aligned with the human female-to-
maleness axis than those of the prototype (Prot) and a Fisher linear discriminant (FLD)
classifier.

2 Preprocessing and Machine Learning Methods

We preprocessed the faces using PCA. PCA is a good preprocessor in the current con-
text since we have previously shown that in PCA-space strong correlations exist between
man and machine [1]. Second, there is evidence that the PCA representation may be
biologically-plausible [8]. The face stimuli were taken from the gender-balanced Max
Planck Institute (MPI) face database1 composed of 200 greyscale 256 × 256-pixel frontal
views of human faces, yielding a data matrix X ∈ R

200×2562

. For the gender discrimina-
tion task we adhere to the following convention for the class labels: y = −1 for females
and y = +1 for males. We consider no dimensionality reduction and keep all 200 compo-
nents of the PCA. This implies that the reconstruction of the data from the PCA analysis
is perfect and we can write: E = X̄BT ⇔ X̄ = EB where E ∈ R

200×200 is the ma-
trix of the encodings (each row is a PCA vector in the space of reduced dimensionality),
B ∈ R

200×2562

is the orthogonal basis matrix and X̄ the centered data matrix. The combi-
nation of the encoding matrix E with the true class labels y of the MPI database yields the
true dataset, whereas its combination with the class labels yest by the subjects yields the
subject dataset.

To model classification in human subjects we use methods from supervised machine learn-
ing. In particular, we consider linear classifiers where classification is done using a SH de-
fined by its normal vector ~w and offset b. Furthermore the normal vector ~w of our classifiers
can then be written as a linear combination of the input patterns ~xi with suitable coefficients
αi as ~w =

∑
i αi~xi. We define the distance of a pattern to the SH as δ(~x) = 〈~w|~x〉+b

‖~w‖ . Note

that in our experiments the ~xi are the PCA coefficients of the images, that is ~xi ∈ R
200,

whereas the images themselves are in R
2562

. For the subject dataset we chose the mean
values of ~w, b and ~w± over all subjects.

1The MPI face database is located at http://faces.kyb.tuebingen.mpg.de
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2.1 Machine Classifiers
The Support Vector Machine (SVM, [9, 10]) is a state-of-the-art maximum margin algo-
rithm based on statistical learning theory. SVMs have an intuitive geometrical interpreta-
tion: they classify by maximizing the margin separating both classes while minimizing the
classification error.

The Relevance Vector Machine (RVM, [11]) is a probabilistic Bayesian classifier. It opti-
mises the expansion coefficients of a SV-style decision function using a hyperprior which
favours sparse solutions.

Common classifiers in neuroscience, cognitive science and psychology are variants of the
Prototype classifier (Prot, [12]). Their popularity is due to their simplicity: they classify
according to the nearest mean-of-class prototype; in the simplest form all dimensions are
weighted equally but variants exist that weight the dimensions inversely proportional the
class variance along the dimensions. As we cannot estimate class variance along all 200
dimensions from only 200 stimuli, we chose to implement the simplest Prot with equal
weight along all dimensions.

The Fisher linear discriminant classifier (FLD, [13]) finds a direction in the dataset which
allows best linear separation of the two classes. This direction is then used as the normal
vector of the separating hyperplane. In fact, FLD is arguably a more principled whitened
variant of the Prot classifier: Its weight vector can be written as ~w = S−1

W (~µ+−~µ−), where
S−1

W is the within class covariance matrix of the two classes, and µ± are the class means.
Consequently, if we disregard the constant offset b, we can write the decision function as
〈~w|~x〉 = 〈S−1

W (~µ+−~µ−)|~x〉 = 〈S
−1/2
W (~µ+−~µ−)|S

−1/2
W ~x〉, which is a prototype classifier

using the prototypes ~µ± after whitening the space with S
−1/2
W .

2.2 Decision-Images and Generalised Portraits
We combine the linear preprocessor (PCA) X̄ = EB and the linear classifier (SVM, RVM,
Prot, FLD) y(~x) = 〈~w|~x〉+ b to yield a linear classification system: ~y = ~wT ET +~b where
~b = b~1. We define the decision-image as the vector ~W effectively used for classification as:
~y = ~WT X̄T +~b. We then have ~wT ET = ~WT X̄T ⇔ ~wT B−T X̄T = ~WT X̄T where B−1

is the pseudo-inverse of B. For the last condition, we obtain a definition of the decision-
image ~W = B−1 ~w ∈ R

2562

. In the case of PCA where B−1 = BT , we simply have
~W = BT ~w.

Figure 1 shows the decision-images ~W for the four classifiers, SVM, RVM, Prot and FLD.
The decision-images in the first row are those obtained if the classifiers are trained on the
true dataset; those in the second row if trained on the subject dataset, marked on the right
hand side of the figure by “true data” and “subj data”, respectively. Decision-images are
represented by a vector pointing to the positive class and can thus be expected to have male
attributes (the negative of it looks female). Both dark and light regions are more important
for classification than the grey regions. Inspection of the decision-images is instructive. For
the prototype learner, the eye and beard regions are most important. SVM, RVM and FLD
have somewhat more “holistic” decision-images. Equally instructive is the comparison of
the optimal decision-images of the machine classifiers in row one (0 to 1% classification
error for SVM, RVM and FLD) and those trained on the subject labels in row two (the
average subject error is 16 % when classifying the faces; the machines attempt to re-create
the decision boundaries of the subjects and thus show similar mis-classification errors).
The decision-images for the subject dataset are slightly more “face-like” and less holistic
than those obtained using the true labels; the eye and mouth regions are more strongly
emphasised. This trend is true across all classifiers. This suggest that human subjects base
their gender classification strongly on the eye and mouth regions of the face—clearly a
sub-optimal strategy as revealed by the more holistic true dataset SVM, RVM and FLD
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decision-images.

A decision-image thus represents a way to extract the visual cues and features used by hu-
man subjects during visual classification without using a priori assumptions or knowledge
about the task at hand.

SVM RVM Prot FLD trained
on

→
W

true
data

→
W

subj
data

Figure 1: Decision-images ~W for each classifier for both the true and the subject dataset; all
images are rescaled to [0, 1] and their means set to 128 for illustration purposes (different
scalers for different images).

We can also define generalised portraits2 ~W±. The generalised portraits ~W± can be
seen as “summary” faces in each class reflecting the decision rule of the classifier. They
can be viewed as an extension of the concept of a prototype: they are the prototype
of the faces the classifier bases its decision on. We note that ~w can be written as:
~w =

∑
i αi~xi =

∑
i| sign(αi)=+1 αi~xi −

∑
i| sign(αi)=−1 |αi|~xi. This allows to define

the generalized portraits as ~W± which are computed by inverting the PCA transformation

on the patterns ~w± =
∑

i| sign(αi)=±1 αi~xi
∑

i| sign(αi)=±1 αi

. The vector ~w± is constrained to be in the convex

hull of the respective data in order to yield a “viewable” portrait. The generalised por-
traits for the SVM, RVM and FLD together with the Prot, where the prototype is the same
as the generalised portrait, are shown in figure 2. We also note that ~w can be written as
~w =

∑
i αi~xi =

∑
i| sign(αi)=+1 αi~xi −

∑
i| sign(αi)=−1 |αi|~xi.

The generalised portraits can be associated with the correct class: ~W+ are males whereas
~W− are females. The SVM and the FLD use patterns close to the SH for classification
and hence their decision-images appear androgynous, whereas Prot and RVM tend to use
patterns distant from the SH resulting in more female and male generalised portraits. Com-
parison of the optimal, true, generalised portraits to those based on the subject labels shows
that classification has become more difficult: generalised portraits have moved closer to
each other in gender space, narrowing the distance between the classes and thereby dimin-
ishing the gender typicality of the generalised portraits for all classifiers.

3 Human Gender Discrimination along the Decision-Image Axes

The decision-images introduced in section 2.2 are based purely on machine learning, albeit
on labels provided by human subjects in the case of the subject dataset. Our previous paper
[1] reported that the subjects’ responses to the faces—proportion correct, reaction times

2This term was introduced by [14] with the idea in mind that when trained on a set of portraits of
members of a family, one would obtain a “generalized” portrait which captures the essential features
of the family as a superposition of all family members.
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Figure 2: Generalised portraits ~W± for each classifier for both the true and the subject
dataset; all images are rescaled to [0, 1] and their means set to 128 for illustration purposes
(different scalers for different images). [Unfortunately the downsampling (low-pass filter-
ing) of the faces necessary to fit them in the figure makes all the faces somewhat more
androgynous than they are viewed at full resolution.]

(RT) and confidence ratings—correlated very well with the distance of the stimuli to their
separating hyperplane (SH) for support and relevance vector machines (SVMs, RVMs) but
not for simple prototype (Prot) classifier. If these correlations really implied that SVM
and RVM capture some crucial aspects of human internal face representation the following
prediction must hold: already for small |λ| ISVM(λ) and IRVM(λ) should look male/female
whereas |λ| IProt(λ) and IFLD(λ) should only be perceptually male/female for larger |λ|.
In other words: the female-to-maleness axis of SVM and RVM should be closely aligned
to those of our subjects whereas that is not expected to be the case for FLD and Prot.

3.1 Psychophysical Methods
Four observers—one of the authors (FAW) with extensive psychophysical training and
three naı̈ve subjects paid for their participation—took part in a standard, spatial (left ver-
sus right) two-alternative forced-choice (2AFC) discrimination experiment. Subjects were
presented with two faces I(−λ) and I(λ) and had to indicate which face looked more
male. Stimuli were presented against the mean luminance (50 cd/m2) of a carefully lin-
earised Clinton Monoray CRT driven by a Cambridge Research Systems VSG 2/5 display
controller. Neither male nor female faces changed the mean luminance. Subjects viewed
the screen binocularly with their head stabilised by a headrest. The temporal envelope of
stimulus presentation was a modified Hanning window (a raised cosine function with rise
and fall times of 500 ms and a plateau time of 1000 ms). The probability of the female
face being presented on the left was 0.5 on each trial and observers indicated whether they
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Figure 3: a. Shows raw data and fitted psychometric functions for one observer (FAW).
b–e. For each of four observers the threshold elevation for the RVM, Prot and FLD
decision-image relative to that of the SVM; results are shown for both 75 and 90% cor-
rect together with 68%-CIs. f. Same as in b–e but pooled across observers.
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thought the left or right face was female by touching the corresponding location on a Elo
TouchSystems touch-screen immediately in front of the display; no feedback was provided.

Trials were run in blocks of 256 in which eight repetitions of eight stimulus levels
(±λ1 . . . ± λ8) for each of the four classifiers were randomly intermixed. The naı̈ve sub-
jects required approximately 2000 trials before their performance stabilised; thereafter they
did another five to six blocks of 256 trials. All results presented below are based on the
trials after training; all training trials were discarded.

3.2 Results and Discussion
Figure 3a shows the raw data and fitted psychometric functions for one of the observers.
Proportion correct gender identification on the y-axis is plotted against λ on the x-axis
on semi-logarithmic coordinates. Psychometric functions were fitted using the psignifit
toolbox for Matlab which implements the constrained maximum-likelihood method de-
scribed in [15]. 68%-confidence intervals (CIs), indicated by horizontal lines at 75 and
90-% correct in figure 3a, were estimated by the BCa bootstrap method also implemented
in psignifit [16]. The raw data appear noisy because each data point is based on only eight
trials. However, none of fitted psychometric functions failed various Monte Carlo based
goodness-of-fit tests [15].

To summarise the data we extracted the λ required for two performance levels (“thresh-
olds”), 75 and 90% correct, together with their corresponding 68%-CIs. Figure 3b–e
shows the thresholds for all four observers normalised by λSVM (the “threshold eleva-
tion” re. SVM). Thus values larger than 1.0 for RVM, Prot and FLD indicate that more
of the corresponding decision-images had to be added for the human observers to be able
to discriminate females from males. In figure 3f we pool the data across observers as the
main trend, poorer performance for Prot and FLD compared to SVM and RVM, is appar-
ent for all four observers. The difference between SVM and RVM is small; going along
the direction of both Prot and FLD, however, results in a much ”slower” transition from
female-to-maleness.

The psychophysical data are very clear: all observers require a larger λ for Prot and FLD;
the length ratio ranges from 1.2 to nearly 3.0, and averages to around 1.7 across observers.
In the pooled data all the differences are statistically significant but even at the individual
subject level all differences are significant at the 90% performance level, and five of eight
are significant at the 75% performance level. It thus appears that SVM and RVM capture
more of the psychological face-space of our human observers than Prot and FLD. From
our results we cannot exclude the possibility that some other direction might have yielded
even steeper psychometric functions, i.e. faster female-to-maleness transitions, but we can
conclude that the decision-images of SVM and RVM are closer to the decision-images
used by human subjects than those of Prot and FLD. This is exactly as predicted by the
correlations between proportion correct, RTs and confidence ratings versus distance to the
hyperplane reported in [1]—high correlations for SVM and RVM, low correlations for Prot.

4 Summary and Conclusions

We studied classification and discrimination of human faces both psychophysically as well
as using methods from machine learning. The combination of linear preprocessor (PCA)
and classifier (SVM, RVM, Prot and FLD) allowed us to visualise the decision-images of
a classifier corresponding to the vector normal to the SH of the classifier. Decision-images
can be used to determine the regions of the stimuli most useful for classification simply
by analysing the distribution of light and dark regions in the decision-image. In addition
we defined the generalised portraits to be the prototypes of all faces used by the classifier
to obtain its classification. For the SVM this is the weighted average of all the support
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vectors (SVs), for the RVM the weighted average of all the relevance vectors (RVs), and
for the Prot it is the prototype itself. The generalised portraits are, like the decision-images,
another useful visualisation of the categorisation algorithm of the machine classifier.

However, the central result of our paper is the corroboration of the machine-learning-
psychophysics research methodology. In the machine-learning-psychophysics research we
substitute a very hard to analyse complex system (the human brain) by a reasonably com-
plex system (learning machine) that is complex enough to capture essentials of our human
subjects’ behaviour but is nonetheless amenable to close analysis. From the analysis of
the machines we then derive predictions for human subjects which we subsequently test
psychophysically.

Given the success in predicting the steepness of the female-to-male transition of the ~wSVM

-axis we believe that the decision-image ~WSVM captures some of the essential characteris-
tics of the human decision algorithm.
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