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ABSTRACT
We describe a framework for decomposing the distortion between
two images into a linear combination of components. Unlike con-
ventional linear bases such as those in Fourier or wavelet decom-
positions, a subset of the components in our representation are not
fixed, but are adaptively computed from the input images. We
show that this framework is a generalization of a number of ex-
isting image comparison approaches. As an example of a specific
implementation, we select the components based on the structural
similarity principle, separating the overall image distortions into
non-structural distortions (those that do not change the structures
of the objects in the scene) and the remaining structural distor-
tions. We demonstrate that the resulting measure is effective in
predicting image distortions as perceived by human observers.

1. INTRODUCTION

Signal analysis often involves decomposing a given signal into a
linear combination of basic components. For discretely-sampled
finite-length signals, we can write:

x = Lc = c1l1 + c2l2 + · · · + cM lM , (1)

where x is an N -dimensional column vector representing the given
signal, L is an N × M matrix whose columns {l1, l2, · · ·, lM} are
the components, and c is an M -dimensional column vector con-
taining a set of weighting coefficients, each associated with one
component. Classical examples include Fourier and wavelet de-
compositions, in which the components are sinusoids and local-
ized bandpass filters, respectively. Although such a linear decom-
position paradigm has achieved great success in a wide variety of
signal and image processing applications, the need for nonlinear
signal representations is apparent in many problems. In partic-
ular, from the viewpoint of image statistics, no matter how the
linear system L is designed, it seems impossible to achieve the
desirable property of statistical independence between the coeffi-
cients in c, because natural image signals are generally not linear
combinations of independent sources (occlusion provides a clear
counterexample).

Several methods have been proposed that depart from the basic
linear system framework, while retaining some of its elegance and
simplicity. One approach uses a large overcomplete “dictionary”
of components [1], from which a subset are selected in an adap-
tive signal-dependent manner. The selection is optimized for some
desired properties such as sparseness or independence. Other ap-
proaches incorporate an additional nonlinear stage after the linear
system. For example, it has been shown that a divisive normaliza-
tion procedure can substantially reduce the dependencies between
the wavelet coefficients [2, 3].

Here we describe a different approach, in which the compo-
nents (or a subset of the components) are not fixed, but are adap-
tively computed from the input signals. We find that this method is
particularly effective in analyzing the distortions between two im-
age signals. Specifically, we select the components based on the
structural similarity principle [4]. The basic assumption is that the
human visual system is designed to extract structural information
from the visual scene, and it is thus sensible to separate the non-
structural distortions (those that do not change the structures of the
objects in the scene) and the remaining structural distortions.

This idea is demonstrated in Fig. 1, where the overall distor-
tion signal (c) between the original image (a) and the distorted im-
age (b) is separated into non-structural and structural distortions
(d) and (e). The separation is implemented by decomposing (c)
into a linear combination of two sets of components. The first
set {(f), (g), ..., (h)} are considered “non-structural”, in the sense
that adding them into the original image (a) has little effect on the
structural information of the image, as can be observed in image
(l). But this is clearly not true of the second set {(i), (j), ..., (k)}, as
can be observed in image (m). Fig. 1 also illustrates that the non-
structural image distortion components are generally not fixed, but
must be adaptively computed from the input image signals.

2. ADAPTIVE LINEAR SYSTEM FRAMEWORK

2.1. General framework

Given two signals x and y, we decompose the distortion signal
∆x = y − x using an adaptive linear system L(x,y):

∆x = L(x,y) ∆c . (2)

In general, the distortion measure between x and y may then be
defined as a function of the coefficients ∆c. Specifically, we de-
fine the distortion measure as the minimum of a weighted square
energy function:

D(x,y) = min
∆c

‖W(x,y)∆c‖2 , (3)

where ‖ · ‖ is the l2 norm of a vector and W(x,y) is a diagonal
matrix, in which the i-th diagonal entry is the weight assigned to
the i-th coefficient ∆ci. As with L(x,y), these weights may also
be adaptively computed from x and y. For notational convenience,
we replace D(x,y), L(x,y) and W(x,y) with D, L and W,
respectively, for the remainder of the paper.

Finding the optimal ∆c is a least square optimization problem.
When the representation is overcomplete, it can be solved using a
Lagrange multiplier approach. Substituting the solution back into
Eq. (3), we obtain

D = ‖W−1
L

T (LW−2
L

T )−1∆x‖2 . (4)
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Fig. 1. Separation of structural and non-structural distortions using an adaptive linear system.

This distortion measure is general, and relies only on the inver-
ability of matrices W and LW−2LT . In practice, however, such
computation can be very expensive because it requires inverting
an M × M matrix LW−2LT . Even worse, when the distortion
measure is applied locally in an image (as in our implementation,
see Section 3), such matrix inversion needs to be computed at ev-
ery spatial location because both L and W may vary across the
image.

To simplify the computation, we divide L into two parts: L =
[A B], where B contains a complete generic (non-adaptive) basis
for the space of all images (B is N × N and full rank) and A

contains M − N adaptive components. Correspondingly, the co-
efficient vector ∆c and the weighting matrix W are divided into
∆cA and ∆cB , and WA and WB , respectively. Thus we can
write

∆x = L∆c = A∆cA + B∆cB , (5)

‖W∆c‖2 = ‖WA∆cA‖2 + ‖WB∆cB‖2 . (6)

From Eq. (5), we have ∆cB = B−1(∆x − A∆cA). Substi-
tuting this into Eq. (6), setting the partial derivative of ‖W∆c‖2

with respect to ∆cA to zero, and solving for ∆cA, we obtain the
least square solution (the convex formulation of Eq. (6) ensures a
unique minimum):

ˆ∆cA = (W2

A + A
T
GA)−1

A
T
G∆x , (7)

where G = B−T W2

B B−1. Finally, we can write the overall
distortion measure as:

D = ‖WA
ˆ∆cA‖2 + ‖WB B

−1(∆x − A ˆ∆cA)‖2 . (8)

Compared with Eq. (4), the advantage of this solution is that we
only need to adaptively invert an (M − N) × (M − N) matrix
(for the calculation of ˆ∆cA in Eq. (7)). Since B is non-adaptive,
B−1 and G only need to be computed once.

2.2. Relationship to existing methods

A number of existing image comparison methods may be described
within the context of this general framework, each associated with
a particular choice of L and W.

Mean squared error (MSE) is the most widely used image dis-
tortion measure. It is non-adaptive and corresponds to the simple
case that L = W = I, where I denotes the identity matrix.

Space/frequency weighting: The key idea of this approach is
that the visual error sensitivity of different components are dif-
ferent and therefore should be given different weights. Usually
the weights do not change with the input image signal, so the
method is still non-adaptive. Depending on the linear transform,
the weights (given by W) may be space-variant (when L = I)
[5], frequency-variant (when L is of Fourier-type) [6], or jointly
space/frequency-variant (when L is of wavelet-type) [7]. This type
of method has been widely used in the design of transform-based
image coders such as JPEG and JPEG2000.

Transform domain masking: Masking refers to the psychophys-
ical/physiological phenomenon that the visual sensitivity of one
image component is surpressed by the other components that are
close in space, frequency and orientation. Therefore, the weight
given to one component should be adjusted according to the streng-
th of the other components (e.g., [8–10]). We consider this method
to be partially adaptive because although W is adaptively adjusted
with the input signal, the component matrix L is not.

The tangent distance [11] has been successfully used in pattern
recognition, especially digit recognition applications. The idea is
to define a set of operations that are invariant for pattern recogni-
tion tasks, e.g., small spatial translation and rotation. A set of tan-
gent vectors are computed by taking derivatives of the image with
respect to these invariant variables. Let A = [d1(x) d2(x) · · ·
−d1(y) −d2(y) · · ·], where {d1(x), d2(x), · · ·} and {d1(y),
d2(y), · · ·} are the tangent vectors computed from the two im-
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ages, respectively. Also, let B = I, WA = 0 and WB = I. The
solution of Eq. (7) becomes ˆ∆cA = (AT A)−1AT ∆x and we
obtain the distortion measure D = ‖(I−A(AT A)−1AT )∆x‖2.
Careful comparison shows that the square root of D is indeed the
tangent distance measure given in [11]. Although the weighting
matrix W is fixed here, the linear system L is adapted to the input
signal, so this method is categorized as an adaptive approach.

Differential methods for optical flow estimation [12] have a
broad application in motion/velocity estimation and image regis-
tration. The formulations of many of these algorithms are quite
similar to the tangent distance measure. The differences are 1)
only spatio-temporal derivatives (those directly related to spatial
translation) are used; 2) the estimated coefficients ˆ∆cA, and not
the distortion measure D, are of primary interest; and 3) the mea-
surement is localized to allow calculation of an optical flow field,
as opposed to the tangent distance measure (which is global).

The structural similarity index (SSIM) [4] is an adaptive im-
age quality measure that provides a convenient way to separate out
the non-structural luminance and contrast distortions. It cannot be
written exactly in the adaptive linear system framework because it
adopts a polar, rather than rectilinear, coordinate system. In the
limit of small distortions, the two coordinate systems are indis-
tinguishable, but it is not clear which provides a better prediction
for the perception of large distortions. Nevertheless, we find that
the adaptive linear system framework is more general and more
flexible, easily allowing inclusion of additional non-structural dis-
tortion components.

3. STRUCTURAL IMAGE DISTORTION ANALYSIS

To decompose the image distortions as demonstrated in Fig. 1,
we first need to define the non-structural and structural compo-
nents. From the perspective of image formation, gentle distortions
caused by variations of lighting conditions, spatial movement, or
pointwise monotonic intensity changes caused by image acquisi-
tion and display devices should not change the perceived struc-
ture of the objects in the scene. The structural similarity principle
posits that the human visual system discounts these distortions,
and is primarily sensitive to the remaining distortions that change
the structural information in the scene. Specifically, we define the
following non-structural distortion components:

• Luminance change: a1 = 1/
√

N , where 1 denotes a col-
umn vector with all entries set to 1.

• Contrast change: a2 = (x − µx1) /‖x − µx1‖, where µx

is the mean of x.

• Gamma distortion: This is a type of pointwise nonlinear in-
tensity distortion (modelled as f(x) = xγ ) commonly used
in describing image acquisition and display devices. Ex-
panding in a Taylor series with respect to γ around γ = 1,
and dropping the higher-order terms, we have f(x) ≈ x +
x log(x)(γ − 1). As such, we define a3 = x∗/‖x∗‖, where
x∗ is a vector whose i-th entry is given by x∗

i = xi log(xi).

• Horizontal translation: Writing a Taylor expansion of x

with respect to horizontal translation and dropping higher-
order terms, the distortion is approximated linear in the
first-order horizontal derivative, dh(x). Thus, we define
a4 = dh(x)/‖dh(x)‖.

• Vertical translation: Similar to horizontal translation, we
define a5 = dv(x)/‖dv(x)‖, where dv(x) is the partial
derivative of x with respect to the vertical spatial position.

We can now define a matrix of non-structural components, A =
[a1 a2 a3 a4 a5], with corresponding weights given by:

wa1
= W0 +

|µx − µy|
√

µ2
x + µ2

y

, wa2
= W0 +

|σx − σy|
√

σ2
x + σ2

y

,

wa3
= wa4

= wa5
= W0 , (9)

where σx and σy are the standard deviations of x and y, respec-
tively, and W0 is employed as a baseline (minimum) weight for
all components. We set W0 = 0.1 in our current implementation.
Note that the weights given to the luminance and contrast compo-
nents are adaptive, in order to enhance penalties for large distor-
tions. For example, the weight given to the contrast component
has minimum value W0 when the two images have the same stan-
dard deviations, but grows when the ratio between them (σx/σy

or σy/σx) is large. For structural distortion components, we apply
a frequency decomposition method so that the variations of visual
error sensitivity with respect to spatial frequency can be taken into
account. In particular, for every local 8 × 8 image patch, we let
B = F−1, where F is the discrete cosine transform (DCT) matrix.
We then define the diagonal entries of WB to be inverse propor-
tional to the JPEG DCT quantization table.

For a given pair of original and distorted images, we apply
our distortion measure locally. At each spatial location, we extract
the corresponding local 8 × 8 windows from the two images, and
calculate the distortion measure. This results in a distortion map,
and the total distortion is computed by averaging the distortion
map.

We use the examples shown in Fig. 2 to demonstrate the per-
formance of the proposed distortion measure. In Fig. 2, the orig-
inal image is altered with a variety of distortion types. We have
adjusted the degree of each distortion, so that all distorted images
have very similar MSE with respect to the original image (although
note that images (i) and (j) have slightly higher MSEs). By con-
trast, the perceived image distortion is drastically different: the
quality of images (b)-(e) is quite poor, but images (f)-(j) do not
appear to have significant loss of image quality. Three methods,
in addition to MSE, are used to provide an objective evaluation of
perceived image distortion/quality. The weighted MSE (WMSE)
measure provides a direct comparison with respect to the proposed
method when the adaptive part is removed. In particular, it uses
L = F−1 and the diagonal entries of W are set to be inverse pro-
portional to the JPEG DCT quantization table. Using Eq. (4) (and
given the fact that F is orthogonal: F−1 = FT ), we have WMSE
= ‖WF∆x‖2. In Fig. 2, we see that WMSE does not show a
significant improvement over MSE. The SSIM index is adaptive
and provides a much more consistent image quality prediction for
images (b)-(h), but it assumes all images are perfectly aligned and
thus is too sensitive to the spatially-shifted images in (i) and (j).
The proposed measure, D, is clearly the closest to human percep-
tion of the distortions in these example images.

4. CONCLUSION

We have formulated an adaptive linear system framework that gen-
eralizes many image comparison algorithms. The combination of
this framework with the structural similarity principle gives rise
to a new image distortion measure that correlates well with per-
ceived image distortion. One attractive feature of the framework is
that it provides a flexible nonlinear solution without sacrificing the
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(d) MSE=212, WMSE=600
SSIM=0.760, D=131

(b) MSE=212, WMSE=508
SSIM=0.675, D=296

(h) MSE=212, WMSE=542
SSIM=0.979, D=3.41

(j) MSE=219, WMSE=500
SSIM=0.822, D=1.96

(a) MSE = 0, WMSE = 0
SSIM = 1, D = 0

(f) MSE=212, WMSE=595
SSIM=0.950, D=4.47

(e) MSE=212, WMSE=204
SSIM=0.802, D=166

(i) MSE=224, WMSE=534
SSIM=0.816, D=2.34

(c) MSE=210, WMSE=580
SSIM=0.713, D=248

(g) MSE=212, WMSE=542
SSIM=0.971, D=3.90

Fig. 2. Comparison of image distortion measures. (a) original image; (b) JPEG compression; (c) JPEG2000 compression; (d) blurring; (e)
salt-pepper noise; (f) contrast reduction; (g) gamma distortion (γ > 1); (h) gamma distortion (γ < 1); (i) horizontal shift; (j) vertical shift.

elegance and tractability of representing signals with linear combi-
nations of simple components. In particular, the nonlinear aspect
of the process lies in the adaptive computation of the components
and their associated weights, which is implemented as a prepro-
cessing stage. The remaining process (signal decomposition and
distortion measure) can be computed using standard linear alge-
bra techniques. Of course the adherence to linearity also limits the
framework to describing only those non-structural distortion types
that lie within linear subspaces. This assumption may not hold
when the distortion is highly nonlinear in the image space, such as
large geometric distortions or changes in viewpoint.

Future work will include validation of the measure against hu-
man subjective data, both with standard image databases and with
a set of images specifically optimized to compare this measure
against other measures [13]. Finally, we believe that the measure
may be extended by applying it to coefficients of a multi-scale de-
composition, and by including other nonstructural distortions.
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