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ABSTRACT

We propose a methodology for comparing and refining perceptual image quality metrics based on synthetic
images that are optimized to best differentiate two candidate quality metrics. We start from an initial distorted
image and iteratively search for the best/worst images in terms of one metric while constraining the value of
the other to remain fixed. We then repeat this, reversing the roles of the two metrics. Subjective test on the
quality of pairs of these images generated at different initial distortion levels provides a strong indication of the
relative strength and weaknesses of the metrics being compared. This methodology also provides an efficient
way to further refine the definition of an image quality metric.

1. INTRODUCTION

Objective quality metrics are a fundamental ingredient in the formulation of a variety of image processing
problems. In the literature, mean squared error (MSE) has been nearly exclusively employed as the standard
metric for algorithm design, parameter optimization and system testing in most image processing applications.
However, for applications in which the processed images are meant to be viewed by humans, the quality metric
should provide a measure of perceptual image quality. Despite its simplicity and mathematical convenience for
optimization purposes, MSE has long been criticized for poorly correlating with perceived image quality (e.g.1).
A large number of methods for automatically predicting perceptual image quality have been proposed in recent
years,2–4 and extensive studies have been (and continue to be) conducted in order to evaluate and compare
these methods (e.g.2, 5).

The most standard form of evaluation is the direct one: the objective metric is compared to ratings by
human subjects on an extensive database of images. Typically, the database contains a variety of reference
images along with versions that have been distorted by different amounts. The total number of images in a
database of reasonable size is typically in the order of hundreds. Gathering reliable data in such a large-scale
subjective experiment is a very time-consuming and expensive task. In order to hold down the number of
subjective comparisons that must be measured, the form of distortion is usually highly restricted. For example,
the VQEG2 and LIVE5 databases include images distorted by lossy block-DCT and wavelet-based compression
artifacts, as well as a small set of channel transmission errors. Thus, despite the substantial time involved in
collecting psychophysical data in these experiments, there is no guarantee that the test results on these restricted
databases provide a sufficient test for a “general-purpose” image quality metric. On the other hand, one cannot
hope to simulate and test all possible image distortions.

The purpose of this study is to design subjective experiments that can efficiently evaluate the relative strength
and weaknesses of different quality metrics with a relatively small number of subjective comparisons. The key
idea is to conduct subjective tests on synthesized images that best differentiate two candidate quality metrics
(rather than a large number of images with known types of distortions). In previous work, the idea of synthesizing
images for subjective testing has been employed by the “synthesis-by-analysis” methods of assessing statistical
texture models, in which the model is used to generate a texture with statistics matching an original texture,
and a human subject then judges the similarity of the two textures.6–10 These synthesis methods provide a
very powerful and efficient means of testing a model (much more so than, for example, classification), and have
the added benefit that the resulting images suggest improvements that might be made to the model.10 In
the context of image quality assessment, similar concept has also been used for qualitatively demonstrating the
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Figure 1. The level set of an image quality metric constitutes a manifold in the image space. Subjective comparison of
the best and worst quality images is the strongest test on this manifold.

performance11–13 and calibrating the parameter settings14 of image quality metrics. In this paper, we attempt
to formulate this approach and propose a systematic methodology that can be used for comparing image quality
metrics and may potentially be generalized to a much broader range of psychophysical studies for performance
evaluation of computational perceptual models.

2. METHOD

An image quality metric maps each image into a single quality number. The level sets of such a metric define a
manifold in the space composed of all possible images, as illustrated in Fig. 1. A complete test of the metric on
the level set would require subjective comparisons of all the images on the manifold to see if they have the same
perceptual quality. Such a test is impossible due to the enormous number of comparisons needed. If one could
somehow obtain the best and worst quality images on the manifold, a comparison of these two images would
provide an immediate indication of perceptual adequacy of the metric. Specifically, if the best/worst images
appear to be of very different visual quality, then the metric is failing to capture some important aspect of
perceptual quality. This is conceptually the strongest test on the level set because the quality of all other images
is in-between. However, this test is also not feasible because without seeing all the images on the manifold, one
cannot find the best and worst subjective quality images. Instead, we can look for the best/worst case images
on the manifold according to a second objective quality metric. This second metric is not meant to provide
an equivalent replacement for perceptual distortion. Rather, its role is adversarial, in that it is used to probe
potential weaknesses of the first metric, and possibly to suggest improvements.

The proposed performance evaluation system has two major components: stimulus synthesis and subjective
test. Figure 2 illustrates the framework of the stimulus synthesis system. We denote the two image quality
metrics as M1 and M2, respectively. Throughout this paper, we assume that all the image quality metrics
being compared are full-reference metrics (meaning that a perfect quality reference image is always available
for comparison), although the methodology may also be extended to the more general case, where the reference
image is not available or only partially available. For each reference image and a given initial distortion level l,
the system generates two pairs of synthesized image stimuli. First, the reference image is altered according to
the given initial distortion level l (e.g., white noise of a specified variance, σ2

l , is added) to generate an initial
distorted image. Second, the quality of the initial image is calculated using the two given metrics M1 and
M2, respectively. Third, the system searches for the maximum/minimum quality images in terms of M2 while
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Figure 2. Framework of stimulus synthesis system.

constraining the value of M1 to remain fixed. The result is a pair of images T+
1 (l) and T−1 (l) that have the

same M1 value, but potentially very different M2 values. This procedure is also applied with the roles of the
two metrics reversed, to generate the maximum/minimum quality images in terms of M1 while constraining the
value of M2 to be fixed. The second pair of synthesized images are denoted as T+

2 (l) and T−2 (l), respectively.
This image synthesize procedure is repeated for each of N reference images at L initial distortion levels, resulting
in a total of 2NL pairs of synthesized image stimuli.

Depending on the specific formulation and complexity of the quality metrics being compared, there may be
various methods of finding the maximum/minimum quality image in terms of one of the metrics while constraining
the other to be fixed. In this paper, we use a constrained gradient ascent/descent iterative search method, which
is illustrated in Fig. 3. In the image space, the initial distorted image is a common point of a level set of M1

as well as a level set of M2. As demonstrated in Fig. 3(a), starting from the initial image, we iteratively move
along the direction of (or opposite to) the M2 gradient vector after its component in the direction of the M1

gradient has been projected out. The iteration continues until a maximum/minimum M2 image is reached. Fig.
3(b) demonstrates the reverse procedure for searching the maximum/minimum M1 images along the M2 level
set.

Figure 4 illustrates a single step of the constrained gradient ascent/descent algorithm for optimization of
M2. We represent images as column vectors, in which each entry represents the gray-scale value of one pixel.
Denote the reference image X and the distorted image at the n-th iteration Yn (with Y0 representing the initial
distorted image). We compute the gradient of the two quality metrics, evaluated at Yn:

G1,n = ~5YM1(X,Y)|Y=Yn , G2,n = ~5YM2(X,Y)|Y=Yn .

We define a modified gradient direction, Gn, by projecting out the component of G2,n that lies in the direction
of G1,n:

Gn = G2,n −
GT

2,nG1,n

GT
1,nG1,n

G1,n .

A new distorted image is computed by moving in the direction of this vector:

Y′
n = Yn + λGn . (1)

Finally, the gradient of M1 is evaluated at Y′
n, and an appropriate amount of this vector is added in order to

guarantee that the new image has the correct value of M1:

Yn+1 = Y′
n + ν G′

1,n , s.t. M1(X,Yn+1) = M1(X,Y0) . (2)
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Figure 3. Illustration of constrained gradient ascent/descent iterative procedure for (a) searching the maximum/minimum
M2 image on M1 level set, and (b) searching the maximum/minimum M1 image on M2 level set. This illustration is in
2-D space. In practice, the dimension equals the number of image pixels.

For the case of MSE, the selection of ν is straightforward, but in general it might require a one-dimensional (line)
search.

During the iterations, the parameter λ is used to control the speed of convergence and ν must be adjusted
dynamically so that the resulting vector does not deviate from the level set of M1. The iteration continues until
it satisfies certain convergence condition, e.g., mean squared change in the distorted image in two consecutive
iterations is less than some threshold. If Metric M2 is differentiable, then this procedure will converge to a local
maximum/minimum of M2. In general, however, to find the global maximum/minimum is difficult (note that the
dimension of the search space is equal to the number of pixels in the image), unless the quality metric satisfies
certain properties (e.g., convexity or concavity). In practice, there may be some additional constraints that need
to be imposed during the iterations. For example, for 8bits/pixel gray-scale images, we may need to limit the
pixel values to lie between 0 and 255.

The second major component of the proposed system is pair-wise subjective image quality comparison on
the synthesized image stimuli. Subjective discrimination test on the quality of the image pairs (T+

1 (l), T−1 (l))
and (T+

2 (l),T+
2 (l)) at different distortion level l (as illustrated in Fig. 2) provides a strong means of testing

the performance of the quality metrics. For example, if M1 is a good image quality metric, then the pairs of
images with M1 fixed (T+

1 (l), T−1 (l)) should have similar perceptual quality. Furthermore, quantitative measure
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Figure 4. Illustration of the n-th iteration of the gradient ascent/descent search procedure for optimizing M2 while
constraining on the M1 level set. This illustration is in 2-D space. In practice, the dimension equals the number of image
pixels.

of the goodness of the quality metric can be obtained using 2-alternative forced choice (2AFC)15, 16 tests on the
subjective discriminability of the quality of these image pairs.

3. DEMONSTRATION

In this section, we use MSE and the recently proposed Structural SIMilarity (SSIM) index approach13 as two
examples of image quality metrics to demonstrate the usage and effectiveness of the proposed performance
comparison methodology.

3.1. Definitions of Image Quality Metrics

Given two images X and Y, the MSE between them can be written in vector format as

MSE(X,Y) =
1

NI
(X−Y)T (X−Y) , (3)

where NI is the number of pixels in the image.

The SSIM index13 is usually applied over local image patches and then combined into a quality measure of
the whole image. Let x and y be column vector representations of two image patches (e.g., 8 × 8 windows)
extracted from the same spatial location from images X and Y, respectively. Let µx, σ2

x and σxy represent the
mean of x, the variance of x, and the covariance of x and y, respectively:

µx =
1

NP
(1T · x) ,

σ2
x =

1
NP − 1

(x− µx)T (x− µx) ,

σxy =
1

NP − 1
(x− µx)T (y − µy) ,

where NP is the number of pixels in the local image patch and 1 is a vector with all entries equaling 1. The
SSIM index between x and y is defined as13

SSIM(x,y) =
(2 µx µy + C1) (2 σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)
, (4)



where C1 and C2 are small constants given by C1 = (K1 R)2 and C2 = (K2 R)2, respectively. Here, R is the
dynamic range of the pixel values (e.g., R = 255 for 8 bits/pixel gray scale images), and K1 ¿ 1 and K2 ¿ 1
are two scalar constants (specifically, K1=0.01 and K2=0.03 in our experiments13). It can be shown that the
SSIM index achieves its maximum value of 1 if and only if the two image patches x and y being compared are
exactly the same.

The SSIM indexing algorithm is applied for image quality assessment using a sliding window approach. The
window moves pixel-by-pixel across the whole image space. At each step, the SSIM index is calculated within
the local window. This will result in an SSIM index map (or a quality map) over the image space. To avoid
“blocking artifacts” in the SSIM index map, a smooth windowing approach can be used for local statistics.13

However, for simplicity, we use an 8× 8 square window in this paper. Finally, the SSIM index map is combined
using a weighted average to yield an overall SSIM index of the whole image:

SSIM(X,Y) =

NS∑

i=1

W (xi,yi) · SSIM(xi,yi)

NS∑

i=1

W (xi,yi)

, (5)

where xi and yi are the i-th sampling sliding windows in images X and Y, respectively, W (xi,yi) is the weight
given to the i-th sampling window, and NS is the total number of sampling windows. NS is generally smaller than
the number of image pixels NI to avoid the sampling window exceed the boundaries of the image. The previous
implementations of the SSIM measure13, 14 corresponds to the case of uniform pooling, where W (x,y) ≡ 1.

3.2. Results
For given reference images, we create the initial distorted images by adding Gaussian white noise, where the
variance σ2

l of the noise is determined by the initial distortion level l. Specifically, we let σ2
l = 2l for l = 1, 2, ...,

and 10, respectively. We then follow the iterative constrained gradient ascent/descent procedure described in
Section 2 to search for the images with maximum/minimum SSIM for fixed MSE, as well as the images with
minimum/maximum MSE for fixed SSIM. During the iterations, the gradients of MSE and SSIM with respect
to the image are calculated explicitly using the methods described in Appendix.

Figure 5 shows the synthesized images for performance comparison of MSE and uniform-pooling SSIM at
initial distortion level l = 10. Visual inspection of the images indicates that both metrics fail to capture some
important aspects of perceptual image quality. In particular, the images in Group (c) and Group (d) have the
same MSE with respect to their original images in Group (a). However, Group (c) images have very high quality,
but Group (d) images poorly represent many important structures in the original images. On the other hand,
although the corresponding images in Group (e) and Group (f) have the same SSIM values with respect to their
original images, the distortions in some parts of Group (f) images are extremely annoying, leading to low overall
image quality.

Perceptual evaluation of these images immediately reveals clear failures of both quality metrics. Specifically,
MSE is blind in distinguishing between structural distortions (Group (d) images) and luminance/contrast changes
(Group (c) images), while uniform pooling SSIM does not adequately penalize extreme local distortions (Group
(f) images). Such observation also leads us to solutions for the improvement of image quality metrics. In
particular, we could use a non-uniformly weighted method in the pooling of local SSIM measurement. As an
attempt, here we consider a variance-weighted pooling method, where

W (x,y) = σ2
x + σ2

y + C2 . (6)

Figure 6 gives the synthesized images for performance comparison of MSE against SSIM with variance-weighted
pooling (weights are given as of Eq. (6)). In this test, SSIM with variance-weighted pooling turns out to perform
much better than MSE. On the one hand, for fixed MSE, the maximum SSIM images appear to have significantly
better quality than minimum SSIM images at middle and high initial distortion levels. On the other hand, for
fixed SSIM, the minimum MSE images are not obviously better than the maximum MSE images at any distortion
level, and in some cases they are arguably worse. This comparison remains consistent across a variety of different
image types, as is shown in Fig. 7.
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Figure 5. Synthesized images for performance comparisons of MSE and SSIM (uniform pooling: W (x,y) ≡ 1) at initial
distortion level l = 10 (σ2

l = 1024). Both metrics fail to capture some important aspects of perceptual image quality.

4. DISCUSSION

We propose a new methodology for performance comparison of perceptual image quality metrics, in which the
distorted test images are not predefined, but are optimally synthesized so as to best differentiate the metrics. A
systematic way to create such image stimuli is presented and the algorithm is demonstrated using MSE and the
SSIM image quality metrics. Subjective image quality comparison with these image stimuli proves to be a very
strong and efficient test, and directly reveals the perceptual implications of the quality metrics. It also provides
an intuitive and effective way to discover the weaknesses of image quality metrics. This can help us improve a
quality metric, and can potentially suggest a means of combining the advantages of a number of weak quality
metrics in order to create a much stronger one.

Although the algorithm proposed in this paper is described and demonstrated in the context of general-
purpose full-reference image quality assessment, the methodology can be easily adapted to a much broader range
of applications. For example, in the scenario of no-reference image quality assessment, the overall stimulus
synthesis system shown in Fig. 2 can be applied with minimal modification. Our method may also be restricted
to specific-purpose image quality assessment (e.g., quality assessment of compressed images), in which case the
search space (level sets in Figs. 3 and 4) for generating the image stimuli is reduced, or equivalently, additional
constraints are needed during the iteration procedures described in Section 2. The methodology may also be
extended beyond the scope of image quality assessment for performance comparison of competing computational
models of a perceptual discrimination quantity.
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APPENDIX

In order to use the constrained gradient ascent (descent) algorithm described in Section 2, we need to calculate
the gradients of the quality metrics with respect to the distorted image. Here the gradients are represented as
column vectors that have the same dimension as the images.

For MSE, it can be easily shown that

~5YMSE(X,Y) = − 2
NI

(X−Y) . (7)

For SSIM, taking the derivative of Eq. (5) with respect to Y, we have

~5YSSIM(X,Y)

=

~5Y

[
NS∑

i=1

W (xi,yi) SSIM(xi,yi)

]
·

NS∑

i=1

W (xi,yi)−
NS∑

i=1

W (xi,yi) SSIM(xi,yi) · ~5Y

[
NS∑

i=1

W (xi,yi)

]

[
NS∑

i=1

W (xi,yi)

]2 (8)

where

~5Y

[
NS∑

i=1

W (xi,yi)

]
=

NS∑

i=1

~5YW (xi,yi) =
NS∑

i=1

~5yW (x,y)|x=xi,y=yi (9)

and

~5Y

[
NS∑

i=1

W (xi,yi) SSIM(xi,yi)

]
=

NS∑

i=1

~5Y [W (xi,yi) SSIM(xi,yi)]
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Figure 7. Synthesized images at initial distortion level l = 10 for performance comparisons of MSE and SSIM with
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=
NS∑

i=1

[
W (xi,yi) · ~5ySSIM(x,y)|x=xi,y=yi

]
+

NS∑

i=1

[
SSIM(xi,yi) · ~5yW (x,y)|x=xi,y=yi

]
. (10)

Thus, the gradient calculation of an entire image is converted into weighted summations of the local gradient
measurements. For a local SSIM measure as of Eq. (4), we define

A1 = 2 µx µy + C1 , A2 = 2 σxy + C2 ,

B1 = µ2
x + µ2

y + C1 , B2 = σ2
x + σ2

y + C2 .

Then it can be shown that

~5ySSIM(x,y) =
2

NP B2
1B2

2

[A1B1 (B2 x−A2 y) + B1B2 (A2 −A1)µx + A1A2 (B1 −B2)µy ] . (11)

For the case that W (x,y) ≡ 1, we have ~5yW (x,y) ≡ 0 in Eq. (9). Therefore,

~5YSSIM(X,Y) =
1

NS

NS∑

i=1

~5ySSIM(x,y)|x=xi,y=yi . (12)

In the case of variance-weighted average as of Eq. (6), we have

~5yW (x,y) = 2(y − µy) . (13)

Thus, ~5YSSIM(X,Y) can be calculated by combining Eqs. (8), (9), (10), (11) and (13).
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