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ABSTRACT

We develop a new class of non-Gaussian multiscale stochastic processes de�ned by random cascades on trees of
wavelet or other multiresolution coe�cients. These cascades reproduce a rich semi-parametric class of random
variables known as Gaussian scale mixtures. We demonstrate that this model class can accurately capture the
remarkably regular and non-Gaussian features of natural images in a parsimonious fashion, involving only a small set
of parameters. In addition, this model structure leads to e�cient algorithms for image processing. In particular, we
develop a Newton-like algorithm for MAP estimation that exploits very fast algorithms for linear-Gaussian estimation
on trees, and hence is e�cient. On the basis of this MAP estimator, we develop and illustrate a denoising technique
that is based on a global prior model, and preserves the structure of natural images (e.g., edges).
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1. INTRODUCTION

Statistical image models underlie a variety of applications in image processing and low-level computer vision; ac-
cordingly, the past decade has witnessed an increasing amount of research devoted to developing stochastic models
of images [e.g., 1{4]. Simultaneously, wavelet transforms and other multiresolution representations have profoundly
inuenced image processing and low-level computer vision [e.g. 5,6]. Moreover, multiscale theory has proven useful
in modeling and synthesizing a variety of stochastic processes, including fractional Brownian motion [e.g., 7], as well
as other Gaussian processes [e.g., 8,9]. The intersection of these three lines of research | statistical image models,
multiscale representations, and multiscale modeling of stochastic processes | constitute the focus of this paper.

In this paper, we develop a mathematical framework for capturing the statistical properties of natural images,
and show that it can be used as the consistent basis for a variety of image processing tasks. Our framework not
only captures the key characteristics of natural images, but does so in a parsimonious manner that requires a small
number of parameters. In particular, we de�ne a new class of multiscale stochastic processes by \mixing" a white
multiscale Gaussian process with a nonlinear function of a second Gaussian multiscale process (the premultiplier).
These cascade models represent a signi�cant variation on linear models de�ned on multiscale trees [e.g., 8], because
the nonlinear mixing operation produces highly non-Gaussian statistics. Nonetheless, we are able to exploit the
embedded linear-Gaussian structure to develop e�cient and optimal algorithms for image processing. To be sure, a
number of other researchers [e.g., 1{3,10] have studied and exploited the properties of natural images on which we
focus here, and our approach has both some similarities and important di�erences with this earlier work. Later in
the paper, we discuss these links both in image modeling (see Section 3.2), and in image denoising and coding (see
Section 4.2). We refer the interested reader to [11] for a more complete description of our work.

1.1. The statistics of natural images

We begin by describing some important statistical properties of natural images. A �rst important characteristic is the
fractal structure of natural images [e.g., 12,13]. Consistent with fractal behavior, a large body of empirical work has
shown that the power spectrum of natural images obeys a f� law [e.g., 12,2]. This power spectrum is only a partial
description, since natural images exhibit highly non-Gaussian behavior. Indeed, if natural images were Gaussian,
then any linear operation (e.g., a wavelet transform) applied to the image ensemble should also yield Gaussian

MW supported by NSERC 1967 fellowship; AW and MW by AFOSR grant F49620-98-1-0349 and ONR grant N00014-91-J-
1004; ES supported by NSF CAREER grant MIP-9796040.

1



statistics. However, when natural images are decomposed in a wavelet basis, the resulting marginal distributions
tend to be highly non-Gaussian, with high kurtosis and extended heavy tails [see 12]. These properties are found
for a wide range of �lters and natural images. The heavy-tailed shape of these marginals have been modeled by a
number of researchers [e.g., 6,3,4,14].

Another important feature of natural images is their approximate scale invariance or self-similarity. Intuitively,
there should be no preferred scale in an ensemble of natural images, since (disregarding occlusion) the same scene
is equally likely to be viewed from a range of distances. One manifestation of the scale invariance of natural images
is their f� spectral characteristic. The marginal distributions of wavelet coe�cients provide further support for
approximate scale invariance. When they are renormalized by a factor depending geometrically on scale, the resulting
histograms tend to coincide, as they should for a scale-invariant process [14].

Empirically, the coe�cients of orthonormal wavelet decompositions of natural images tend to be roughly decor-
related [e.g., 3]. Some theoretical analysis supports this observation, in that the orthonormal wavelet transform
provides a good approximation to the Karhunen-Lo�eve basis of f� stochastic processes [15]. More recent work has
shown that wavelet coe�cients from natural images, despite being roughly uncorrelated, exhibit striking dependen-
cies. In particular, they exhibit a striking self-reinforcing characteristic, in that if one wavelet coe�cient is large
in absolute value, then \nearby" coe�cients (where nearness is measured in scale, position, or orientation) also are
more likely to be large in absolute value. This self-reinforcing form of dependency is found for wavelet coe�cients at
nearby spatial positions, adjacent orientations and spatial scales, and over a wide range of natural images [16,17,3].

2. MATHEMATICAL PRELIMINARIES

2.1. Gaussian scale mixtures

In this section, we de�ne and provide examples of a semi-parametric class of random variables known as Gaussian
scale mixtures (GSMs). To begin, a GSM vector c is formed by taking the product of two independent random
variables, namely a positive scalar random variable z known as the multiplier or mixing variable, and a Gaussian

random vector u distributed as� N (0;�). With this notation, we have c
d
=
p
zu, where

d
= denotes equality in

distribution. The GSM variable c is speci�ed by the choice of mixing variable. As a special case, the �nite mixture of
Gaussians corresponds to choosing the density of the mixing variable pz to be a (discrete) probability mass function.

Conditions that characterize which random vectors can be represented as GSMs are given in [11,18]. The family
of Gaussian scale mixtures includes several well-known families of random variables [see 19,4,11]. A classical example
is the �-stable family which satis�es a generalized version of the central limit theorem [see 20]. The case � = 2
corresponds to the familiar Gaussian, whereas variables with 0 < � < 2 have increasingly heavy tails as � ! 0+.
A well-known example with heavy tails is the Cauchy distribution, which corresponds to � = 1. The generalized
Gaussian family (also known as the generalized Laplacian family) is described by a parameter � 2 (0; 2]. The choice
� = 2 again corresponds to a Gaussian, whereas � = 1 is a symmetrized Laplacian. The generalized Gaussian family
is often used to model the marginals of wavelet coe�cients [e.g., 6,21,14,17], where the tail parameter when �t to
empirical histograms is typically less than one. The symmetrized gamma family [19] is also important because it
(like the �-stable) is in�nitely divisible, a property emphasized in the context of natural images in [1].

In this paper, we will frequently exploit the fact that a large class of non-negative multipliers z can be generated
by passing a Gaussian random variable x through a nonlinearity h : R ! R

+ , thereby generating the multiplier
in the form z = h2(x). We refer to the Gaussian quantity x as the premultiplier since it is the stochastic input to
the nonlinearity h that generates the multiplier. Although it is often possible to determine explicitly the form of
h corresponding to a given GSM, the precise form of multiplier may not be critical for the purpose of application.
In this context, an advantage of the GSM framework is that it allows an arbitrary choice of the nonlinearity h,
thereby permitting the use of GSMs which may confer a computational or analytical advantage. For application,
we typically choose the nonlinearity from parameterized families of functions that generate random variables with
ranges of behavior. For this paper, we focus on the family f(x+)� j � > 0g, which generates a class of variables with
a range of tail behavior that is qualitatively similar to the symmetrized gamma and generalized Gaussian families.y

�The notation x � N (�;�) means that x is distributed as a Gaussian with mean � and covariance �.
yHere the notation x+ denotes the positive part of x, de�ned by x+ = x for x � 0 and 0 otherwise.
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2.2. Multiscale stochastic processes

In this section, we introduce some of the basic concepts and results concerning linear multiscale models de�ned on
trees. We limit our treatment to those aspects required for subsequent development; the reader is referred to other
literature [e.g., 7{9] for further details of these models, and their application to a variety of 1-D and 2-D statistical
inference problems.

The processes of interest to us are de�ned on a tree, as illustrated in Figure 1, where the nodes s 2 T are
organized into a series of scales, which we enumerate m = 0; 1; : : : ;M . At the coarsest scale m = 0 (the top of the
tree) there is a single node s = 0, which we designate the root node. At the next �nest scale m = 1 are q nodes, that
correspond to the children of the root node. We specialize here to regular trees, so that each parent node has the
same number of children (q). This procedure of moving from parent to child is then applied recursively, so that a
node at scale m < M gives birth to q children at the next scale (m+ 1). These children are indexed by s�1; : : : s�q .
Similarly, each node s at scale m > 0 has a unique parent �s at scale (m� 1).

s
_
γ

s

αs 1 αs 2 αs q

...

...

Figure 1: A segment of a q-adic tree, with the unique parent s� and children s�q ; : : : s�q corresponding to node s.

It should be noted that such trees arise naturally from multiresolution decompositions. For instance, a wavelet
decomposition of a 1D signal generates a binary tree (q = 2), whereas decomposing an image will generate a quadtree
(q = 4). To de�ne a multiscale stochastic process, we assign to each node of the tree a random vector x(s). The
processes of interest to us are a particular class that are Markov with respect to the graph structure of the tree. A
multiscale Markov tree process x(s); s 2 T has the property that for any two distinct nodes s; t 2 T , x(s) and x(t)
are conditionally independent given x(�) at any node � on the unique path from s to t. Here we focus on Gaussian
multiscale processes, speci�ed by the distribution x(0) � N (0; Px(0)) at the root node, together with coarse-to-�ne
dynamics x(s) = A(s)x(s�) +B(s)w(s) where the process noise is whitez on T . Processes de�ned according to these
dynamics in are called multiscale autoregressive (MAR) processes. It has been shown that the MAR framework can
e�ectively model a wide range of Gaussian stochastic processes [7{9].

An additional bene�t of the MAR framework is that it leads to extremely e�cient algorithms for estimating the
process x(s) on the basis of noisy observations of the form y(s) = C(s)x(s) + v(s) where v(s) is a zero-mean white
noise process with covariance R(s). In particular, the optimal estimates of x(s) at every node of the tree based on
fy(s); s 2 T g can be calculated very e�ciently by a direct algorithm [8] with computational complexity of O(d3N)
where d is the maximal dimension of x(s) at any node, and N is the total number of nodes. This same algorithm
also computes Pe(s), the covariance of the error [x(s)� bx(s)] at each node s 2 T .

For notational reasons, it is useful to write down a vectorized form of the solution to the estimation problem. Let
x be a vector formed by stacking the vectors x(s) from each node s 2 T in a �xed order, and de�ne y analogously
so that y = Cx + v where C is a block diagonal matrix comprised of the C(s) matrices, and v � N (0; R) where
R is the block diagonal matrix formed using the R(s) matrices. The Bayes least-squares (BLS) and maximum a
posteriori (MAP) estimates are identical in this case, and are given by

bx = PeC
TR�1y Pe =

�
P�1
x

+ CTR�1C
��1

(1)

where Pe is the covariance of the error e = x�bx. It is important to realize that for typical image processing problems
(with several hundred thousand nodes), bx and Pe are of extremely high dimension, and thus their computation as
suggested by equation (1) is prohibitive. Instead, the fast tree algorithm solves the set of equations P�1

e
bx = CTR�1y

and simultaneously computes the diagonal blocks of Pe, with the two pass procedure outlined previously.

zHere we assume without loss of generality that means are zero, since it is straightforward to add in non-zero means.
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3. RANDOM CASCADES ON WAVELET TREES

In this section, we introduce and develop a new type of multiscale stochastic process de�ned by random cascades on
trees. As noted previously, naturally associated with a multiresolution decomposition like the wavelet transform is
a tree of coe�cients (a binary tree for 1D signals; a quadtree for images). Lying at each node is a random vector
c(s), which will be used to model a vector of d wavelet coe�cients at the same scale and position, but di�erent
orientations. We model the wavelet vector c(s) as a GSM of the form

c(s)
d
= h(x(s)) � u(s) (2)

where x(s) and u(s) are d�dimensional independent Gaussian random vectors. Here the nonlinearity h acts element-
wise on the vector x(s), and � denotes element-wise multiplication of the two d-vectors. Here we assume that h has
been appropriately normalized so that E [h2 (xj(s))] = 1 for j = 1; : : : d where xj(s) denotes the j

th element of the
vector x(s). Under this condition, u(s) controls the variance of c(s).

To specify a multiscale stochastic process, we need to de�ne parent-to-child dynamics on the underlying state
variables x(s) and u(s). We can express the covariance between c(s) and its parent c(s�) as follows:

cov
�
c(s); c(s�)

�
= E

�
c(s)cT (s�)

�
= E

�
h(x(s))[h(x(s�))

�T�� E
�
u(s)uT (s�)

�
where we have used the independence of x and u. Since each element of Efh(x(s))[h(x(s� ))]T g is positive, this relation
shows that the decorrelation of c(s) and c(s�) is determined by the u process. Recall that for wavelet coe�cients
of natural images, the parent and child vectors are close to decorrelated. Therefore, to model wavelet coe�cients
of natural images, it is appropriate to choose u(s) as a white noise process on the tree T , uncorrelated from node
to node. In contrast, the vector x(s) must depend on its parent x(s�), in order to capture the strong property of
local reinforcement in wavelet coe�cients of natural images. Therefore, the GSM representation of equation (2)
decomposes the wavelet vector c(s) into two random components, one of which controls the correlation structure,
while the other controls reinforcement among wavelet coe�cients. We model the white noise process u(s) as

u(s) = D(s)�(s) ; �(s) � N (0; I) (3)

so that D(s) controls any scale-to-scale variation (and hence the scaling law) for the process. To capture the
dependency in the premultiplier process x(s), we use a MAR model:

x(s) = Ax(s�) +Bw(s) (4)

with x(0) � N (0; Px(0)) and �(s) � N (0; I) at the root node. Although we specialize here to the stationary case of
a MAR model (i.e., A(s) � A and B(s) � B for all nodes s 2 T ), it is clear that GSM cascades with non-stationary
MAR dynamics are also possible.

Equations (2), (3) and (4) together specify the random coe�cients c(s) of a multiresolution decomposition on
a tree. Here each node s corresponds to a particular scale m(s) and spatial location p(s) in the image plane, and
c(s) is a random vector of wavelet coe�cients for a set of di�erent orientations at the same spatial location. These

coe�cients then de�ne a random image via the inverse transform I(p1; p2) =
P

s2T

Pd
i=1 ci(s) i;s(p1; p2) where

(p1; p2) is a point in the 2-D image plane, ci(s) is the i
th element of c(s) (corresponding to the ith orientation),

and  i;s corresponds to the multiresolution basis element corresponding to orientation i, and centered at scale and
position (m(s); p(s)).

3.1. Properties of GSM cascades

In other work [4,11], we have shown that GSM cascades capture the statistical behavior of wavelet coe�cients
from natural images. First of all, that the marginal densities of wavelet coe�cients are well-�t by at least one
GSM family | namely, the generalized Gaussian with tail exponent � used as a �tting parameter | is widely
known [e.g., 6,21,14,17]. We have found that in addition, the symmetrized gamma family can also provide good
�ts to wavelet marginals [4]. Second, in contrast to local models, the global nature of our model (as de�ned by the
tree structure) allows us to predict the joint distributions of any collection of coe�cients. Empirically, it has been
documented [22,4,14] that the joint distributions of wavelet coe�cients exhibit a variety of shapes, ranging from
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circular to concave star-shaped. We �nd that GSM cascades de�ned on trees account well for this range of shapes, as
well as for the drop-o� in dependence between pairs of coe�cients as the spatial separation is increased [see 4]. Third
of all, note that GSM tree processes are generated by a multiresolution transform discretized in scale, and therefore
cannot be strictly self-similar. However, by choosing x(s) to be stationary in scale and choosing D(s) = 2�m(s) in
equation (3), we can ensure that they are dyadically self-similar. In particular, dyadic self-similarity of the random

image I(p1; p2) means that I(p1; p2) d
= 2�kI�2k(p1; p2)� for all integers k, where  is a parameter. The parameter

 > 0 controls the drop-o� in the power spectrum of the synthesized process [e.g., 7].

An attractive feature of the wavelet cascade models developed here is that they are speci�ed by a rather small
set of parameters: (a) the matrices D(s) determine any scale-to-scale variation in the process, and hence the scaling
law; (b) the choice of the nonlinearity h determines the form of the marginal distributions of wavelet coe�cients,
including tail behavior and kurtosis; and (c) the system matrices A and B determine the dependency of the underlying
premultiplier process x(s) from node to node. Here we investigate the e�ect of varying the nonlinearity h, as well as
the system matrices. In particular, we simulate a one-dimensional cascade (i.e., the wavelet representation of a 1-D
process) with the scaling D(s) = 2�m(s) with  = 1:5; the nonlinearity h(x) = (x+)�; and system matrices A = �

and B =
p
1� �2 where the choices of the parameter �, and the scale-to-scale dependence � were varied.

Figure 2 shows simulated random cascades for four combinations of the parameters (�; �) using the `Daub4'
wavelet. The �rst three rows in each sub�gure correspond to three scales of the wavelet pyramid, ranging from
coarse to �ne. The fourth row in each sub�gure corresponds to the synthesized GSM process. First consider the
e�ect of varying the parameter �. Note that the wavelet coe�cients in cascades with � = 2 (panels (c) and (d))
exhibit sparse behavior, in that a few outlying values tend to dominate. The wavelet coe�cients of images also
exhibit such sparsity, in that coe�cients corresponding to edges and other discontinuities will tend to dominate. Of
course, for both natural images and simulated cascades, this sparsity is a reection of heavy tails in the marginal
distributions. In contrast, wavelet coe�cients in the cascades corresponding to � = 0:2 (panels (a) and (b)) are
distributed much more densely. In fact, histograms of these coe�cients, as well as the behavior of the synthesized
processes, are both quite close to Gaussian.

Varying the scale-to-scale dependence via the parameter � also has a dramatic e�ect, particularly for the cascades
with � = 2. With � = 0:05 (panels (a) and (c)), coe�cients from scale to scale are close to independent, so that
high valued coe�cients do not tend to form patterns through scale. In contrast, the high scale-to-scale dependence
for the cascades with � = 0:95 generates trails of large magnitude coe�cients through scale. One such trail is
especially apparent in panel (d). These trails through the scale space of wavelet coe�cients lead to a localized area
of discontinuity and sharp variations in the synthesized process. In this respect, our GSM tree models constitute
a precise analytical model for the cascade behavior exploited by successful image coders such as embedded zero-
trees [e.g., 23].

3.2. Relation to previous work on image modeling

In this section, we discuss relations between GSM cascades on wavelet trees, and other approaches to image modeling.
Simoncelli and colleagues [16,3,17] modeled the dependency between wavelet coe�cients with a conditionally Gaussian
model, where the variance of one wavelet coe�cient depends on the absolute value or square of its neighbors. This type
of model has proven useful in a variety of applications, including image coding, denoising, and texture synthesis. Our
GSM cascades capture these same dependencies, but using an auxiliary multiplier variable that controls dependencies
between coe�cients. The multiplier variables are de�ned on a tree structure, thereby inducing a global probability
distribution on the space of images, in contrast to the local model of Simoncelli et al.

Mumford and colleagues [e.g., 1,14] have de�ned and examined a number of properties of natural images, including
(approximate) scale invariance, in�nite divisibility of statistics, and highly kurtotic marginal distributions. As
discussed previously, our GSM tree models satisfy an approximate form of scale invariance. Moreover, the marginal
distributions of GSMs are highly kurtotic for many choices of multiplier variables, and particular choices ensure that
the statistics will be in�nitely-divisible (e.g., symmetrized gamma, �-stable.) As shown in previous work [4], our
GSM tree models generate a range of behaviors in the joint contours of pairs of wavelet coe�cients. Thus, our GSM
cascades capture many of the properties emphasized by Mumford et al. in a parsimonious manner.

Our work is also related to the framework for non-Gaussian signal processing developed by Baraniuk and col-
leagues [24], and applied to image denoising in [10]. Their framework uses a hidden discrete-state process de�ned on
a tree to capture dependencies between wavelet coe�cients, which themselves are modeled as �nite scale mixtures of
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1 4 8 12 16 20 24 28 32

1 8 16 24 32 40 48 56 64

1 16 32 48 64 80 96 112 128

1 32 64 96 128 160 192 224 256
Spatial position

1 4 8 12 16 20 24 28 32

1 8 16 24 32 40 48 56 64

1 16 32 48 64 80 96 112 128

1 32 64 96 128 160 192 224 256
Spatial position

(a) � = 0:2; � = 0:05 (b) � = 0:2; � = 0:95

1 4 8 12 16 20 24 28 32

1 8 16 24 32 40 48 56 64

1 16 32 48 64 80 96 112 128

1 32 64 96 128 160 192 224 256
Spatial position

1 4 8 12 16 20 24 28 32

1 8 16 24 32 40 48 56 64

1 16 32 48 64 80 96 112 128

1 32 64 96 128 160 192 224 256
Spatial position

(c) � = 2; � = 0:05 (d) � = 2; � = 0:95

Figure 2. Simulated random cascades for various choices of the parameters. The �rst three rows of each panel
correspond three scales of a wavelet transform, whereas the �nal row corresponds to the synthesized process. Heaviness
of tails (and hence impulsiveness of the process) increases with the parameter �, whereas the parameter � controls the
scale-to-scale dependence.

Gaussians. It is important to note that for any �nite mixture, the tails of wavelet marginal distributions will always
drop o� as exp(�c2) like a Gaussian. In principle, by letting the number of multiplier states increase, one can push
the Gaussian drop-o� out further into the tails, thereby obtaining increasingly better models of coe�cient marginal
distributions. However, a very large number of states may be required to accurately model the tail behavior, as well
as capture the high kurtosis around the origin. In terms of the parsimony of the model, there is a cost for increasing
the number of states: namely, the number of parameters required to specify the model will increase as �M2d, where
M is the number of multiplier states, and d is the dimension of the multiplier vector at each node. In contrast, we
have emphasized the use of in�nite mixtures, which accurately capture both the highly non-Gaussian tail behavior
and high kurtosis of wavelet marginal distributions with a small number of parameters.

4. ESTIMATION

We now turn to problems of estimation in GSM cascades on wavelet trees. Such problems involve using data or
observations to make inferences about either the state (i.e., x(s) and u(s)) of the GSM, or about unknown model
parameters. In [11], we describe an algorithm for estimating the system matrices A and B of a GSM cascade. Here
we limit ourselves to describing an algorithm for estimating the premultiplier x(s), which is an important problem
for a variety of applications in image processing (e.g., image coding and denoising). A signi�cant bene�t of the GSM
framework is that conditioned on knowledge of the premultiplier, a GSM model reduces to a linear-Gaussian system,
which can be analyzed by standard techniques.
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4.1. Estimating the premultiplier

Here we address the problem of estimating the premultiplier x(s) on the basis of noisy observations of the form

y(s) = h(x(s)) � u(s) + v(s) (5)

where v(s) � N (0; R(s)) is observation noise. An interesting feature of this problem is that unlike the case of
linear observations in additive noise (see Section 2.2), the task of estimating x(s) given noiseless observations (i.e.,
R(s) � 0) is not trivial. Indeed, even in the absence of v(s), the state u(s) e�ectively acts as a multiplicative form
of noise. With the noise v(s) present, we have an estimation problem that is nonlinear, and includes both additive
and multiplicative noise terms.

Given that we have a dynamical system de�ned on a tree, optimal estimation can, in principle, be performed
by a two-pass algorithm, sweeping up and down the tree. For the linear-Gaussian case described in Section 2.2,
computation of the optimal estimate (which is simultaneously the Bayes' least-squares (BLS) and maximum a
posteriori (MAP) estimate) is particularly simple, involving the passing of conditional means and covariances only.
In general, for nonlinear/non-Gaussian problems, however, not only are the BLS and MAP estimates di�erent, but
neither is easy to compute. However, the GSM models developed here have structure that can be exploited to
produce an e�cient and conceptually interesting algorithm for MAP estimation.

To set up the estimation problem, let x denote a vector formed by concatenating the state vectors x(s) at each
node, and de�ne the vector y similarly. Recall that the computation of the MAP estimate involves the solution of an
optimization problem bxMAP , argminx

� � log p(xjy)�. Herein we simply write bx to mean this MAP estimate. At

a global level, our algorithm is a Newton-type method applied to the objective function f(x) , � log p(xjy). That
is, it entails generating a sequence fxng via the recursion

xn+1 = xn + �nS�1(xn)rf(xn) (6)

where the matrix S(xn) is the Hessian of f , or some suitable approximation to it; and �n is a stepsize parameter.
This class of methods is attractive [see 25], because under suitable regularity conditions, not only is convergence to a
local optimum guaranteed, but in addition the convergence rate is guaranteed to be quadratic. The disadvantage of
such methods, in general, is that the computation of the descent direction dn , S�1(xn)rf(xn) may be extremely
costly. This concern is especially valid in image processing applications, where the dimension of the matrix S(xn)
will be of the order 105 or higher.

One of the most important features of our model set-up is that the computation required for each step of
equation (6) can indeed be performed e�ciently. More precisely, the computation of the descent direction is equivalent
to the solution of a linear MAR estimation problem, allowing the e�cient algorithm of [8] described in Section 2.2 to
be used for its computation. In order to demonstrate this equivalence, we begin by using Bayes' rule to express the
objective function as f(x) , � log p(xjy) = � log p(yjx) � log p(x) + C; where C is a constant that absorbs terms
not depending on x. The vector x is distributed as N (0; Px), where the large covariance matrix Px is de�ned by the
system matrices A and B in equation (4). As a result, we can write the second term as � log p(x) = 1

2x
TP�1

x
x+ C

where C again absorbs terms not dependent on x. Now observe that the data y(s) at each node is conditionally
independent of all other data given the state vector x. As a result, the �rst term can be expressed as a sum of data
terms over nodes so that we can write

f(x) = �
NX
s=1

log p(y(s)jx(s)) + 1

2
xTP�1

x
x+ C (7)

From the representation of f given in equation (7), it can be seen that the Hessian of f has the form r2f(x) =
P�1
x

+D(x) where D(x) is a block diagonal matrix, with each block corresponding to a node s. With this form of
the Hessian, the descent direction dn is given by

dn =
�
P�1
x

+D(xn)
��1rf(xn) (8)

We now compare the form of equation (8) to the form of a linear-Gaussian problem given in equation (1). It is clear
that the two problems are equivalent with appropriate identi�cation of data terms, observation matrix, and noise
covariance. Further details of these identi�cations can be found in [11]. Note that the overall structure of this MAP

7



estimation algorithm is of a hybrid form. The Newton-like component involves an approximation of the objective
function f that is performed globally on the entire graph at once. Local graphical structure is exploited within each
iteration where the descent direction is computed by extremely e�cient and direct algorithms for linear multiscale
tree problems [8].

Another important characteristic of the GSM framework is that conditioning on the premultiplier x(s) re-
duces the model to the linear-Gaussian case. If, indeed x(s) were known exactly, we would have that Pc(s) =
H [x(s)]Pu(s)H [x(s)] where Pu(s) = D(s)DT (s) is the covariance of u(s), and H [x(s)] , diag

�
h(x(s))

	
. This

suggests a suboptimal estimate in which we replace x(s) by bx(s) | namely:

bc(s) = bPc(s)� bPc(s) +R(s)
��1

y(s) (9)

where bPc(s) = H [bx(s)]Pu(s)H [bx(s)]. It is this form of wavelet estimator that we use in our application to image
denoising in Section 5.

4.2. Relation to other denoising techniques

There are a number of interesting links between the GSM tree estimator developed here, and previous approaches
to wavelet denoising. Here we briey summarize these links; a more detailed exposition can be found in [11]. First
of all, a large class of approaches to denoising are pointwise, so-called because they operate independently on each
wavelet coe�cient. The link to the GSM framework comes from the Bayesian perspective, in which many of these
methods can be shown to be equivalent to MAP or Bayes least-square (BLS) estimation under a particular kind
of GSM prior for the marginal distribution. For example, soft shrinkage [26], a widely studied form of pointwise
estimate, is equivalent to a MAP estimate with a certain GSM prior | namely, a Laplacian or generalized Gaussian
distribution with tail exponent � = 1 [see 27,21]. It is shown in [17] that by varying the tail parameter � of a
generalized Gaussian prior, it is possible to derive a full family of pointwise Bayes least-squares (BLS) estimators.

The GSM framework can also be related to the James-Stein estimator (JSE), a technique with an often controver-
sial history [28]. The JSE applies to the problem of estimating the �xed mean c of a multivariate normal distribution
from noisy observations y = c + v, where v � N (0; �2I). The empirical Bayesian [see, e.g. 29] viewpoint links the
JSE to our GSM framework. In the empirical Bayesian derivation of the JSE, the unknown mean c is decomposed
into two parts as c = �u where u � N (0; I), and � is an unknown but �xed quantity. Interestingly, this corresponds
to a particular type of Gaussian scale mixture. As with our GSM wavelet estimation scheme, the JSE proceeds by
estimating � , and then substituting this estimate into the usual linear-Gaussian formula. Further details of this link
between the GSM framework and the JSE can be found in [11].

Although not always explicitly stated, many other approaches to image denoising and image coding rely on a
GSM type decomposition. One approach is to model dependency between the variance of a subband coe�cient and
its neighbors directly, using a conditionally Gaussian model [16,3,17]. Other techniques involve modeling wavelet
coe�cients as a scale mixture of generalized Gaussians [e.g., 30{32], or scale mixture of Gaussians [e.g., 33,34].
Some models permit the variance parameter to assume only a discrete set of values [e.g., 32], whereas others allows a
continuum of values. The latter models e�ectively correspond to in�nite mixture models, similar to those emphasized
in the current paper. A step common to all these techniques, whether for denoising or coding, is to estimate the
multiplier or variance. Many approaches use an estimate motivated by maximum likelihood (ML), based on a local
neighborhood of coe�cients [31,32,17,34]. In such a ML framework, the variance parameter is viewed as an unknown
but �xed quantity, without a prior distribution. These forms of estimator are thus very close to the James-Stein
estimator discussed previously. Overall, the GSM tree framework presented in this paper represents an extension
from ML to MAP estimation, and from local to global prior models. Our models allow an arbitrary choice of the prior
on the multiplier, which is controlled by the nonlinearity h. The GSM tree algorithm computes the MAP estimate
based on a global prior model on the full multiresolution representation. This global model, which incorporates the
strong self-reinforcing properties among wavelet coe�cients, is induced by the multiscale tree structure.

In the context of the underlying tree, our GSM cascade models are closely related to the non-Gaussian modeling
framework of Baraniuk et al. [24,10]. In their models, a multiscale discrete-state multiplier process de�ned on a tree
controls the dependency among wavelet coe�cients, which are modeled as �nite scale mixtures of Gaussians. For �nite
mixtures in which multiplier variable takes on discrete values, there exist direct recursive algorithms for computing
the marginal distributions of the discrete multiplier states conditioned on the data. The BLS estimate of wavelet
coe�cients given noisy observations can be obtained by taking expectations over these marginal distributions [see
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24]. However, the computational complexity of computing marginal distributions scales exponentially as � Md,
where M is the number of multiplier states and d is the dimension of the multiplier. In practice, therefore, both the
number of states and dimension of the multiplier may be limited; for example, the denoising algorithm of [10] uses
a low and high variance state (M = 2), and a scalar multiplier at each node (d = 1). A small number of multiplier
states means that the models may not properly capture the non-Gaussian tail behavior and high kurtosis of wavelet
marginals (see Section 3.2), whereas a low multiplier dimension will restrict the modeling of dependencies between
orientations. In contrast, our GSM modeling framework emphasizes in�nite scale mixtures of Gaussians. As we have
illustrated, these in�nite mixtures accurately capture the non-Gaussian tail behavior and high kurtosis of wavelet
coe�cients. Regardless of the particular GSM used, the complexity of our algorithm scales as � d3, where d is the
dimension of multiplier vector at each node.

5. ILLUSTRATIVE RESULTS

Here we illustrate the application of the GSM-tree framework to denoising natural images, using an overcomplete
multiresolution decomposition described in [35] called the steerable pyramid. In all cases, we use a decomposition
with four orientations, which corresponds to a state dimension of d = 4. Therefore, lying at each node of a quadtree
are the two 4-vectors x(s) and u(s), which are used to model the 4-vector of wavelet coe�cients c(s). By the notation
cj(s), we mean the coe�cient at scale s and orientation j. We refer to a collection of all coe�cients at the same
scale and orientation (but di�erent spatial positions) as a subband. Noisy observations of the wavelet coe�cients are
given by equation (5), where R(s) = �2I .

Recall that the GSM-tree algorithm �rst computes the MAP estimate of the premultipliers x(s), which it then
uses to compute denoised wavelet coe�cients via equation (9). We have experimented with di�erent choices of the
nonlinearity h, including the families fexp(�x j� � 0g and f(x+)�j� � 0g. As a Newton-like method, convergence
of the algorithm tends to be rapid for su�ciently smooth (i.e., C2) choices of this nonlinearity. Given the denoised
multiresolution coe�cients c(s), the clean image is obtained by inverting the multiresolution decomposition.

We compare the denoising behavior of the GSM-tree algorithm to a number of other techniques. With the
exception of one algorithm (MATLAB's adaptive �ltering), all techniques are applied to the steerable pyramid
decomposition, and involve an estimate of the subband variance. This estimate is given by �2c = [var(y(s)) � �2n]

+

where �2n is the variance of the noise in the subband (which can be computed directly from �). All of the algorithms
compared here are semi-blind, in that we assume that the noise variance �2 is known. The techniques to which we
compare our algorithm here are:

(a) Wiener subband technique: for each subband, compute denoised coe�cients as bcj(s) = �2c
�
�2c + �2n

��1
yj(s)

where �2c is the variance of the subband, and �2n is the noise variance in that subband.

(b) Adaptive: MATLAB's adaptive �ltering routine called by wiener.m: it performs pixel-wise Wiener �ltering
with a variance computed from a local 5� 5 neighborhood.

(c) Soft thresholding: For each subband, perform soft thresholding [26], where the threshold t = ��2n=2 is de-
termined by the noise variance �2n and the scale parameter � of a Laplacian distribution �t to the subband
marginal.

We have applied these algorithms to a variety of natural images. In Figure 3, we depict representative results for
the 256 � 256 \Einstein" image, using the nonlinearity h(x) = (x+)5. Shown in Table 1 are the SNR in decibels
(dB) of the denoised images for all algorithms, based on original noisy images at four levels of SNR. For all levels
of SNR, the GSM tree algorithm is superior to other techniques. Figure 3 depicts cropped denoised images for the
\Einstein" image (a), on the basis of the noisy observations (SNR 4.80 dB) shown in (b). Panels (c), (d), (e) and
(f) show the results of the Wiener subband denoising, MATLAB adaptive �ltering, soft thresholding, and the GSM
tree algorithm respectively.

Note that the the GSM estimator suppresses noise in regions where the multiplier h(x(s)) is of low amplitude,
while simultaneously preserving peaks in high amplitude regions. In an average sense, it can be shown [11] to behave
similarly to a form of shrinkage or soft thresholding [e.g., 26,17], in that it preferentially shrinks smaller observation
values while modifying larger ones much less. Based on the discussion in Section 4.2, this is not surprising since many
forms of thresholding, when interpreted in a Bayesian framework, correspond to a simple pointwise GSM model. Of
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(a) (b) (c)

(d) (e) (f)

Figure 3. Cropped denoising results using a 4-orientation steerable pyramid. (a) Original image. (b) Noisy image
(SNR 4.80 dB). (c) Wiener subband denoising. (d) MATLAB adaptive. (e) Soft thresholding. (f) GSM-tree algorithm.

course, it is important to emphasize that the GSM tree estimator is similar to thresholding only in this average
sense. Thresholding is a deterministic operation applied pointwise to each coe�cient, whereas our estimate of each
coe�cient is based all data, using a global prior model that incorporates the strong cascade dependencies among
coe�cients.

Noisy Wiener subband wiener2.m Soft threshold GSM Tree
1.59 9.28 10.19 10.11 10.54
4.80 10.61 11.86 11.47 12.31
9.02 12.58 13.37 13.24 14.68
13.06 14.96 14.23 15.41 16.83

Table 1. Denoising results (SNR in dB) for 256 � 256 Einstein image using a 4-orientation steerable pyramid. The

original noisy SNR is given by 10 log10[var(I)=�
2], and the cleaned SNR is given by 10 log10[var(I)= var(

bI �I)], where

I and bI denote the original and denoised images respectively.

6. CONCLUSION

In this paper, we have developed a semi-parametric class of non-Gaussian multiscale stochastic processes de�ned
by random cascades on trees of multiresolution coe�cients. This model class is rich enough to accurately capture
the remarkably regular and non-Gaussian features of natural images. As we have pointed out, our methodology has
strong intellectual ties to a variety of di�erent image models and methods for image analysis, but our formalism
di�ers in fundamental and, we believe, very important ways.

In particular, a �rst signi�cant feature of our modeling framework is its parsimony: only a very small set of
parameters are needed to specify a GSM wavelet cascade. This suggests that �tting such models from data is a far
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better-posed problem than other approaches which require many more degrees of freedom to be speci�ed. Secondly,
the multiplicative structure of our models naturally and simply captures both the correlation structure of wavelet
coe�cients from natural images, as well as their dramatic non-Gaussian behavior. Our GSM framework makes
explicit the structure exploited by previous approaches to image coding [e.g., 23,30,16]. Moreover, it allows pointwise
estimators, such as shrinkage, to be extended to a statistically optimal joint estimator of wavelet coe�cients based
on a global prior model. In particular, the structure of GSM tree models leads to a method that uses fast linear
algorithms as an engine for intermediate computations. The per iteration complexity of this algorithm is linear in
the number of nodes, and cubic in the dimension of the wavelet vector at each node. Since convergence is typically
rapid, the total complexity of the algorithm compares very favorably to other optimal estimation methods.

The work outlined in this paper represents a �rst step at developing a powerful statistical framework for modeling
and analysis of natural images. While the characteristics outlined in the previous paragraphs suggest the promise of
this framework, further work is required to realize this promise fully. First, previous empirical work [4] shows that
a small set of multipliers is su�cient to describe a local neighborhood of wavelet coe�cients. In contrast, models
described in this paper use a number of multipliers equal to the number of wavelet coe�cients. Estimating the order
of the underlying multiplier process, though a challenging problem, is an important one in order to develop models of
even more power. Second, in the current application to denoising, we have considered only �xed types of nonlinearity
(e.g. h(x) = (x+)� for � > 0). It is also possible to use a nonparametric form of this nonlinearity, which would allow
the model to further adapt to the image under consideration, with no loss of e�ciency. Finally, although tree models
are very successful at capturing longer range dependencies, it is well-known that they may improperly model the
dependency between nodes that correspond to nearby spatial positions in the original image but are widely separated
in terms of tree distance. There are several ways to address the problem of these boundary artifacts. One approach
is the so-called overlapping tree framework of [36], which retains the tree structure but uses nodes that overlap
spatially. Another is to relax the requirement of a tree structure by introducing graphical connections between
wavelet coe�cients that are spatially close. Such graphical models with cycles raise other interesting algorithmic
challenges in estimation, which we are currently addressing [37].
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