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Abstract: When a human observer moves, the eye continually �xates on targets in

the world. Although �xation is a common process in human vision, its role has not

yet been established for computational purposes. The main contribution of this paper

is to formalize the retinal ow for a �xating observer. A further contribution { a

potentially more practical one { is to explore the role of the periphery in predicting

collision. Utilizing �xation is expected to turn out to be especially fruitful in light of

recent advances in computer vision for constructing active head/eye systems [3].

In this work we make the following assumptions: (i) the observer moves with re-

spect to the world and �xates on a target; (ii) the world is rigid, with no independently

moving elements; and (iii) the possible rotation axes of the eye lie on a plane (compa-

rable to Listing's Plane). Assumptions (ii) and (iii) make the problem of determining

retinal ow tractable.

We �rst de�ne retinal ow for a 2D universe and then extend it to the full 3D case;

the ow in 2D turns out to form a component of the ow in 3D. The retinal ow in 3D

will be decomposed into longitudinal and latitudinal ow; the behavior of longitudinal

ow along the retinal periphery will be further analyzed for interesting properties.

Finally the results of a simulated experiment on retinal ow at the periphery will be

presented.

�The �rst author is extremely indebted to Prof. V. Aurich/University of D�usseldorf for triggering
this research by bringing to the author's attention interesting patterns on the retinal periphery. Thanks
to Dr. A. Vainikka who helped with the style and logic of presentation.
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1 Introduction

When a human observer moves, the eye continually �xates on targets in the world.

Although �xation is a common process in human vision, its role has not yet been

established for computational purposes. The main contribution of this paper is to

formalize the retinal ow for a �xating observer. A further contribution { a potentially

more practical one { is to explore the role of the periphery in predicting collision.

Utilizing �xation is expected to turn out to be especially fruitful in light of recent

advances in computer vision for constructing active head/eye systems [3].

In this work we make the following assumptions: (i) the observer moves with re-

spect to the world and �xates on a target; (ii) the world is rigid, with no independently

moving elements; and (iii) the possible rotation axes of the eye lie on a plane (compa-

rable to Listing's Plane). Assumptions (ii) and (iii) make the problem of determining

retinal ow tractable.

We �rst de�ne retinal ow for a 2D universe and then extend it to the full 3D case;

the ow in 2D turns out to form a component of the ow in 3D. The retinal ow in 3D

will be decomposed into longitudinal and latitudinal ow; the behavior of longitudinal

ow along the retinal periphery will be further analyzed for interesting properties.

Finally the results of a simulated experiment on retinal ow at the periphery will be

presented.

2 Retinal Flow in a Rigid 2D Universe

For ease of exposition, we �rst consider a reduced case of a 2D universe in which

we de�ne the ow on the retina for any given point in the universe; as the observer

moves the ow determines how each point projected on the retina moves. The crucial

di�erence between the present work and traditional optical ow ([2]; cf. [5] for review)

is the introduction of a �xating observer.
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2.1 Calculating Retinal Flow

In a 2D universe consisting of a 2D plane, the eye of the observer corresponds to a

circle (E in Fig. 1), and the retina corresponds to a semicircle (R).1 As the observer

moves, the center of the eye (O in Fig. 1) translates on the 2D plane. In addition, the

eye may also rotate about its center (O). A combination of these two types of motion

is su�cient to capture all possible movements of the eye in this 2D universe.

When the observer �xates on a target point (such as a corner of an object) this

point { by de�nition { remains projected at the center of the retina, i.e., on the fovea

(F in Fig. 1). In order to maintain �xation while moving, the observer has to rotate

the eye about its center (O). Although the target point that the observer �xates on (T

in Fig. 1) is stationary at the fovea, the retinal image of the rest of the points (e.g. P

in Fig. 1) in the world can be expected to change; this change will be precisely de�ned

below.

The instantaneous change in the retinal image will be referred to as retinal ow,

and it will be de�ned in the present formalization in terms of angular coordinates. The

retinal ow of a point P is an angular velocity, i.e., the change over time of an angle

formed by the following two rays: (i) the direction of gaze (ray OT in Fig. 1) and (ii)

the ray from the point in the world to the center of the eye (OP in Fig. 1).

The retinal ow may be decomposed into two components: one due to observer

translation and the other due to the �xating rotation. The �rst component, due to

observer translation, is:

!1 =
j~v� ~pj

j~pj2
(1)

where ~v is the translational velocity of the center of the eye, and ~p is the vector from

the center of the eye to the point P.

The second component, arising due to �xation and corresponding to the rotation

1The eye and the retina considered in this paper will only correspond to the human eye in terms
of optics and not in terms of the actual physical structure.
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Figure 1: Model of the eye in a 2D universe.
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about the center of the eye, is:

!2 = �
j~v�~tj

j~tj2
(2)

where ~t is the vector from the center of the eye to the target point (T in Fig. 1); the

direction of ~t is also called the direction of gaze, or optical axis. The negative sign

signi�es the fact that when the eye rotates { in order to �xate { the points on the

retina move in the opposite direction.

Finally, the resultant retinal angular velocity of a point is the sum of the two angular

velocities, i.e.

! = !1 + !2

=
j~v� ~pj

j~pj2
�

j~v�~tj

j~tj2
(3)

Given the observer velocity ~v, the vector representing gaze ~t, and the vector from

the eye to any point in the world ~p, Equation 3 de�nes the retinal ow of that point

in a 2D universe.

2.2 Level Sets of Retinal Flow

In this section we will consider the points in the 2D universe that give rise to the same

value of retinal ow. Let us �rst isolate those points in the 2D universe that correspond

to zero retinal ow. The projections of such points on the retina come to rest (for an

instant) while the observer moves and �xates. This is true when ! in Equation 3 equals

zero:

j~v� ~pj

j~pj2
�

j~v�~tj

j~tj2
= 0 (4)

Factoring the magnitude of ~v from both terms results in:

jv̂� ~pj

j~pj2
�

jv̂�~tj

j~tj2
= 0 (5)
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where v̂ is the unit vector in the direction of ~v.

Although the points in the 2D universe satisfying the above equation lie on a simple

curve, reducing the solution to a recognizable form requires further vector algebraic

manipulations. To this e�ect, let us introduce a unit vector û perpendicular to v̂; then

jv̂�~tj = û �~t. We can now rewrite equation 5 in terms of û, removing v̂.

û � ~p

~p � ~p
�

û �~t

~t �~t
= 0 (6)

This can be rewritten as:

~p � ~p � û � ~p

 
~t �~t

û �~t

!
= 0 (7)

and further (by completing the square) as:

"
~p�

1

2

 
~t �~t

û �~t

!
û

#2
=

"
1

2

 
~t �~t

û �~t

!#2
(8)

For r =
1
2

�
~t�~t

û�

~t

�
and ~c = r û, we obtain the familiar equation of a circle:

(~p�~c)2 = r2 (9)

The above equation de�nes a set of points P in the 2D universe that lie on a circle.

~c de�nes the center of this circle with respect to the center of the eye. Recall that û is

a vector perpendicular to the velocity of the observer ~v; this means that the center of

the circle lies in a direction perpendicular to the direction of movement. This circle,

corresponding to zero ow in the retina, is depicted by the solid line in Fig. 2. The

circle passes through the target point of �xation and through the center of the eye. All

points on the circle, including these two points, behave in the same way: momentarily,

they are stationary. Furthermore, the points within this circle all move in the same
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Figure 2: The level sets of retinal ow in a 2D universe. This scene depicts a tra�c
intersection, where the observer is moving along the road with velocity ~v, and �xates
on a corner of a building T. O is the center of the eye of the observer, and P is an
example point in the universe, the retinal velocity of which is being calculated. The
points with zero retinal ow lie on the solid circle with center C.
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direction on the retina, whereas the points outside of this circle move in the opposite

direction.2

A similar analysis can be performed for any other value of retinal ow besides

the zero ow. For any such value, the result corresponds to a circle of points in the

2D universe; the radius of the circle varies depending on the particular value chosen.

Sample circles which correspond to points with the equal retinal ow are shown as

dotted curves in Fig. 2. Note that the centers of all such circles lie on a straight line.

An interesting boundary case involves �xating straight ahead. In this case the

direction of �xation coincides with the direction of observer movement. The resulting

circle of zero ow has a radius tending to in�nity, as depicted in Fig. 3. The circle of

points corresponding to zero retinal ow opens up to a half plane; points within this

half plane move in one direction, while points on the remaining half plane move in the

opposite direction. This result �ts intuition in the sense that when looking and moving

straight ahead, points on the left half of the visual �eld move left, and points on the

right half move right.

3 Retinal Flow in a Rigid 3D Universe

The case of moving and �xating in a 3D universe is clearly more complicated than

the 2D case. However, the 3D case can be elegantly decomposed into two modules:

one involving the retinal ow just as in the 2D case, and the other involving a new

component.

3.1 Calculating Retinal Flow

In a 3D universe, the eye corresponds to a sphere (rather than a circle) with a center O

(in Fig. 4) and the retina involves a hemisphere (rather than a semicircle). Recall that

2The retinal ow associated with each point in the world forms a vector �eld or dynamical system
[1] with a separatice corresponding to the circle of zero ow which separates the two regions of opposite
ow. This points to a possible interesting connection between the present analysis and the dynamics
of well known systems.
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Figure 3: The special case of moving and �xating in the same direction; cf. Fig. 2 for
explanation of symbols.
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the center of the eye translates on a plane in the 2D universe, whereas in a 3D universe

the center of the eye translates in any direction. As in the 2D case, the eye may also

rotate in order to �xate on a target. However, in 3D the rotation that accomplishes

�xation is not unique, since the eye can be rotated about various axes to correct for

retinal movement of the target.3

In order to make the problem manageable, we constrain the way in which the eye

can rotate in order to �xate. The constraint we impose is that the axis about which the

eye rotates is always perpendicular to the direction of gaze; i.e., the possible rotation

axes lie on a plane. Although this is an arbitrary constraint, the physiology of the eye

suggests that a similar constraint operates in humans (involving the so{called Listing's

Plane [6]). Furthermore, this particular formulation of the constraint allows us to

decompose the retinal ow into two components.

In the 2D case the retinal ow consisted of a single measure, which expressed how

fast the projections of points moved along the semicircular retina. In the 3D case, a new

dimension is added, which gives rise to an additional measure. The two components

of the 3D case can be thought of as encoding the velocity of points along the x and y

axes of a coordinate system imposed on a attened retina. In the 2D case the velocity

along the equivalent of just the x{axis was de�ned.

In order to represent the two components of retinal ow in a 3D universe we impose

a grid of longitudes and latitudes on the hemispherical retina. These longitudes and

latitudes are comparable to the standard grid used to specify coordinates on the earth.

In the present analysis, we wish to �x this grid on the retina in a such a way that the

equatorial latitude the center of the eye, the target point (that is being �xated on),

and the direction of movement all fall on the plane of the equator. This plane will be

referred to as the critical plane (cf. Fig. 4). The other latitudes are semicircles on the

3For any �xating rotation an additional rotation about the optical axis can be added without loss
of �xation. The family of such �xation rotation axes are obtained by varying the amount of this
additional rotation.
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Figure 4: Model of the eye in a 3D universe. The critical plane contains the center
of the eye, the target point and the velocity direction. The eye rotates about an axis
passing through the North and South Poles in order �xate.
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retina lying on planes parallel to the critical plane. The longitudes are semicircles4 on

the retina starting at the North Pole and ending at the South Pole. As is standard,

the North Pole, center of the globe (eye) and the South Pole lie on a straight line

perpendicular to the equatorial (critical) plane. Note that this line is the axis about

which the eye rotates in order to �xate.

The retinal ow of points lying on the critical plane is identical to the retinal ow

of points in the 2D universe, and was given by Equation 3. The points lying on the

critical plane are special in the sense that their retinal ow consists of latitudinal ow

(i.e. retinal ow along the latitude). In general, the retinal ow of points has two

components: latitudinal ow and longitudinal ow (ow along the longitude).

Equation 10 de�nes the complete retinal ow of any point P in a 3D universe when

the observer moves with velocity ~v and �xates on a target T:5

~! =
~v� ~p

j~pj2
�

~v�~t

j~tj2
(10)

In order to obtain the latitudinal and longitudinal ows from Equation 10, let us

decompose the observer's velocity into two components: (i) ~v0, which is the projection

of ~v onto a plane containing P, the North Pole and the center of the eye (this plane

will be referred to the longitudinal plane) and (ii) ~v00 perpendicular to the longitudinal

plane, such that:

~v = ~v0 + ~v00 (11)

Substituting for ~v in Equation 10 gives rise to three terms, two of which correspond

to vectors that lie on the longitudinal plane and which give rise to only latitudinal

ow. The third term is a vector that is perpendicular to the longitudinal plane and

thus gives rise to purely longitudinal ow. After substituting for ~v (Equation 11) in

4These semicircles are half of the so{called great circles.
5Equation 3 was a special case of Equation 10 in that ~omega always pointed in one direction.
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Equation 10 the latitudinal ow of a point P is given by:

~!x =
~v00 � ~p

j~pj2
�

~v�~t

j~tj2
(12)

The longitudinal ow of a point P consisting of the remaining term in Equation 10

is:

~!y =
~v0 � ~p

j~pj2
(13)

As Equation 13 shows, the amount of longitudinal ow of a point P depends only

on the movement of the observer. The rotation of �xating eye does not produce any

longitudinal ow; rather the rotation only a�ects the latitudinal ow. The direct

relationship between the observer motion and longitudinal ow will be exploited below

in Section 4; this relationship is a result of the particular choice of the latitudes and

longitudes in this formalization.

3.2 Points with Zero Longitudinal Flow in the 3D Universe

The points with zero ow are interesting boundary cases that enhance an intuitive

understanding of how ow is related to positions in the world. The points that are

momentarily stationary on the retina are those that have neither latitudinal nor lon-

gitudinal ow. However, in general, the points of zero latitudinal ow are di�cult

to isolate. For points on the critical plane, the latitudinal ow is zero along a circle

de�ned as in the 2D case (cf. Equation 9). For other points, zero latitudinal ow is a

subject of future study.

In the case of longitudinal ow, all points with zero ow lie on either of two planes

(cf. Figure 5). One such plane is the critical plane. All points on the critical plane

project onto a single latitude, the equator. Any movement along or rotation perpendic-

ular to the critical plane will not induce the points to change latitudes; i.e. the points
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remain on the equator regardless of observer motion or �xation. Since the points re-

main on the same latitude, they have no longitudinal ow.6 The second plane with

zero longitudinal ow is perpendicular to the direction of the observer's velocity ~v and

passes through the center of the eye. For points on this plane, the modi�ed velocity

(~v0 in Equation 13) is zero, resulting in no longitudinal ow.

4 A Systematic Pattern at the Periphery

When a target is �xated on by rotating as we have de�ned earlier, the retinal periphery

has a unique invariant property: it is the only longitude that is a constant across all

possible rotations of the eye. This makes the retinal periphery an interesting location

to look at for certain visual tasks.

Let us consider a situation where the moving observer has to decide whether he is

heading towards the �xated target or not. In the former case, the observer will hit the

target if he continues in the current direction of motion, whereas in the latter case the

observer willmiss the �xated target.7 Such an ability to predict hit and miss situations

(assuming that the current direction of movement is maintained, and assuming that

the target does not move) should turn out to be useful in navigation.

An analysis of the retinal ow at the periphery of our model eye indicates that the

characteristics of the longitudinal ow distinguish hit frommiss situations (in the sense

described above). The magnitude of the longitudinal ow on the periphery (from a

point P in the world) depends on how far the point is from the eye as well as how fast

the observer moves. On the other hand, the direction { or sign { of the longitudinal

ow within a quadrant of the retina only depends on whether the observer is heading

towards the target or not. The quadrants are de�ned by the location of the North and

South Poles on the periphery.

6For points on the critical plane note that ~v0 and ~p are in the same direction, leading to a zero
cross{product term in equation 13.

7This holds for an idealized case where the observer is a point. For a practical situation where the
observer has �nite dimensions, determining a hit situation is more involved.
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Figure 5: Points with zero longitudinal ow lie on two planes.
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In the miss situation, the sign of the longitudinal ow (sign of ~!y in Equation

13) switches exactly four times as one traces along the periphery (i.e., once for each

quadrant). Figure 6(a) indicates the sign of the longitudinal ow along the periphery

as well as across the entire retina for the most extreme miss situation. Even in less

extreme cases the sign changes four times.

As we continuously move from a miss situation towards a hit situation, the velocity

directions gets closer to the direction of gaze. When the velocity direction and the

direction of gaze coincide, one of the planes with zero longitudinal ow (in Fig. 5)

ends up containing the entire periphery. Thus the longitudinal ow of all the points

on the periphery is zero in the hit situation. However, the zero ow holds only for

an in�nitely thin periphery. Immediately adjacent to this in�nitely thin periphery,

a di�erent picture emerges. As one traces the longitudinal ow along the immediate

neighbor of the periphery, the sign of the longitudinal ow changes exactly twice. Figure

6(b) shows the sign of the longitudinal ow across the entire retina in the hit situation.

Thus, in theory, the in�nitely thin line of the periphery will contain the four{

way change for the miss situation and zero ow for the hit situation. However, in

practice, the observable di�erence at a periphery with �nite thickness involves a four{

way change in the miss situation and a two{way change in the hit situation. The

practically observable situation is illustrated in Fig. 7.

5 A Simulated Experiment

In a simulated experiment we attempted to obtain the sign of the longitudinal ow on

the retina as in Fig. 6. The number of times the sign changes along the periphery (two

vs. four times) allows us to distinguish between the hit and the miss situations.

In the simulation we created a rigid world consisting of 1024 points. The points

were uniformly and randomly distributed in all directions around the initial position

of the eye. There were more points closer to the eye than farther away8 which gave

8The distance (d) of the points from the eye varied randomly between 2ft and in�nity, such that
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rise to a natural situation where further away points tend to be occluded. Due to the

hemispheric nature of the retina only those points in front of the eye were projected

on the retina; the visual �eld was 180� along any diameter of the retina.

Three images of the retina were generated while viewing the retina from the direc-

tion of the target T. The images contained the projections of points in the world onto

the retina. The target on which the eye �xated was located 3ft directly ahead of the

initial position of the eye. The three images were: (i) an image from the initial position

of the eye, (ii) an image after a sideways movement of 0:25ft (miss situation) and (iii)

an image after a movement of 0:25ft towards the target (hit situation) from the initial

position. The two image sequences (each consisting of the �rst image and either of the

second or third image) are shown in Fig. 8. These image sequences were the result of

the generation stage of the simulation.

In order to test the sign of the longitudinal ow on the retina, the optical ow in

both image sequences was �rst obtained, using a standard algorithm of Simoncelli [4].

The longitudinal ow was then extracted from the total optical ow. 9

Fig. 9 shows the sign of the longitudinal ow across the entire retina for the two

sequences. The longitudinal ow in one direction is shown in white, and in the opposite

direction in black. For the hit situation these regions approximately divide the retina

into two halves { shown on the left in Fig. 9 { while in the miss situation the retina is

divided into quarters, shown on the right. Each row corresponds to a di�erent range

of values of longitudinal ow that was ignored (shown grey in �gure).

Although the overall pattern of the sign of the longitudinal ow on the simulated

retina is in agreement with the theoretical prediction (cf. Fig. 6), there are certain

regions on the retina that have an unexpected sign. Whether this is due to imperfect

optical ow, low resolution of images or other factors remains to be determined.

1

d
was uniformly distributed in the range [0; 0:5].
9The optical ow contained both the latitudinal and longitudinal ow. For the purposes of this

demonstration only the longitudinal ow was needed. Simoncelli's optical ow algorithm could be
modi�ed to obtain just the longitudinal ow.
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Figure 8: Image sequences depicting the retina for the hit situation (left column) and
the miss situation (right column). The �rst image is common to both sequences.
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Figure 9: Simulated Experiment: Sign of the Longitudinal Flow for hit (left) and miss

(right) situations. In the �rst row the points with less that 0.125 pixels of longitudinal
ow were ignored. The comparable �gure for the second row was 0.25 pixels and for
the third row was 0.5 pixels.
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6 Conclusion

In this paper we have considered the e�ect of �xation on optical ow on a hemispherical

retina. The exact relationship between retinal ow, the movement of the observer and

the geometry of the physical world has been captured in a systematic way, both for a

2D universe and for a 3D universe.

The theoretical analysis and a simulated experiment reveal that the information

along the periphery of the retina appears to be su�cient for determining whether the

observer will eventually hit a target if he continues moving in his current direction

(assuming the target will not move). This is possible precisely because the observer

actively �xates on the target while moving.
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