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Abstract

We present a framework for interactive lighting design based on linear re-rendering.

The rendering operation is linear with respect to light sources, assuming a �xed scene

and camera geometry. This linearity means that a scene may be interactively re-

rendered via linear combination of a set of basis images, each rendered under a partic-

ular basis light. We focus on choosing and designing a suitable set of basis lights. We

provide examples of bases that allow 1) interactive adjustment of a spotlight direction,

2) interactive adjustment of the position of an area light, and 3) a combination in

which light sources are adjusted in both position and direction. We discuss a method

for reducing the size of the basis using principal components analysis in the image

domain.



1 Introduction

Lighting design plays a major role in theatrical production planning, interior design, and

computer graphics animation. This paper describes a system for interactive lighting design.

Speci�cally, the system allows interactive speci�cation of both the positions and radiance

distributions of the lights, for a �xed scene geometry and viewing direction.

Numerous advances in graphical rendering techniques have enabled e�cient generation of

photo-realistic images frommodel scenes. Recently, several incremental techniques have been

proposed that can e�ciently re-render a model scene when some aspect of its description is

modi�ed [1, 2, 4, 10, 19, 21]. Nevertheless, accurate model scenes are often tremendously

complicated, and in such cases these techniques are not fast enough to permit the interactive

modi�cation of lighting speci�cations.

A recently developed alternative approach is to \re-render" the images as linear combi-

nations of a �xed set of previously rendered basis images [8, 17, 6, 7]. The validity of this

approach rests on a fundamental property of graphical rendering: linearity with respect to

light source intensities [3, 12]. Speci�cally, rendering obeys the principle of superposition:

(1) multiplying the intensity of the light source by an arbitrary factor scales the intensities

in the rendered image by the same factor, and (2) an image rendered under two light sources

is the sum of the two images rendered under each light source independently1.

The linearity of the rendering operation leads to an e�cient method for re-rendering

scenes. Given two images of a scene rendered under two di�erent light sources, one need

not run a time-consuming rendering program to view the scene with both lights turned on.

Instead, one can simply add the two images! More generally, the image of a scene illuminated

by a weighted linear combination of basis lights may be computed via a linear combination of

basis images, where each basis image is a rendering of the scene under a corresponding basis

light. The creation of the basis images requires a full rendering operation, and is typically

quite time-consuming. After this work is done, however, the linear re-rendering procedure

is highly e�cient, thus allowing interactive manipulation of lighting.

This simple approach to lighting design has several advantages. First, the method de-

pends only on the linearity of the rendering operation and thus is quite general. Linearity

holds for scenes with arbitrarily complex geometry and bi-directional surface reectances, in-

cluding those containing shadows and complex inter-reections. Second, the computational

1We typically assume incoherent light sources, although the statement also holds for coherent lights

sources if one retains both phase and amplitude information.
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and storage requirements depend only on the number of basis images and the size (number

of pixels) of each image. In particular, the method does not require computation or storage

of visibility or other auxiliary information. Third, linear systems theory can be applied in

various ways, as we shall show, to design convenient sets of basis lights and to reduce the

number of basis images.

The usefulness and exibility of a lighting design system based on linear re-rendering

depends on both the number and the radiance distributions of the light sources. The com-

putational cost of the re-rendering (and pre-rendering) operations is directly proportional

to the number of basis light sources. It is thus important that this number be kept as low

as possible. The choice of basis lights will determine the lighting design workspace. The

re-rendering operation can only produce images corresponding to light lying in the linear

subspace spanned by the basis lights. In previous work, basis lights have been chosen to

span a rotation-invariant subspace of light sources. In particular, Nimero� et al. [17] use

a set of \steerable" area lights on a hemisphere, designed to approximate the illumination

e�ects of daylight. The steerability property allows the representation of a continuum of

sun positions. Dobashi et al. [6] use basis lights spanning the space of directional spot light

sources, each positioned at the same location but aimed in di�erent directions. A spherical

harmonic decomposition was used to ensure rotation-invariance.

In this paper, we extend the re-rendering approach to lighting design. We elucidate

a design methodology for: (1) directional spot lights whose directions of foci and angular

radiance distributions can be continuously varied, (2) area and volumetric light sources whose

positions and spatial radiance distributions can be continuously varied, and (3) light sources

that are a combination of the �rst two types (i.e., directional area or volumetric lights whose

directions of foci and positions can all be changed). In each of these cases (particularly the

last), the size of the basis is a concern. If there are too many basis images, then the lighting

design can no longer be interactive. To ameliorate these di�culties, we describe a method

for reducing the number of basis images signi�cantly via principal components analysis.

2 Steerability of Light Sources

Any light source can be fully described by the spatial and angular distribution of its emitted

radiance. We write this function as L(x;!) where x speci�es the position and ! speci�es the

angular direction. For example, an isotropic point light source centered at location x0 would

be described by the distribution Lpoint(x;!) = �(x� x0) where �(x
0) = 1 when x0 = 0 and
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zero otherwise. Throughout this paper, the light sources are continuous functions of x and

!.

In lighting design, each light source is typically parameterized by a set of parameters

which the designer continuously adjusts to achieve the desired visual e�ect. For example,

these parameters could be the location of the light source or the direction of focus of a

directional light source. A family of parameterized light source distributions is denoted by

fL(x;!;p)g where p is a vector of parameters.

A parameterized light source is said to be steerable in its parameters p if its radiance

distribution can be written as a linear combination of a �nite set of basis lights, where the

weights involved in the linear combination are functions solely of the parameter vector p.

Mathematically, L(x;!;p) is steerable if

L(x;!;p) =
NX
i=1

�i(p)Li(x;!) (1)

where �i are called the weighting or steering functions and Li are the radiance distributions

of the basis lights.

Steerable �lters have been been developed primarily in the context of image processing

and computer vision [14, 15, 9, 22, 18, 16, 11]. The term \steerable" refers to the particular

case in which the basis lights each have the same shape (e.g., directional spot lights with

identical radiance distributions aimed in di�erent directions). But the more general de�nition

above is useful for the purposes of this paper.

Note that the choice of basis light sources is not unique. Any other set of basis lights

spanning the same space can also be used. Two such sets of basis lights are related by

an invertible linear transformation. In practice, however, there may be reasons for choos-

ing one set of basis lights over another. One useful choice of basis lights is obtained by

sampling L(x;!;p) with N values of p; that is, the basis consists of the light sources,

fL(x;!;p1); � � � ; L(x;!;pN )g. We will refer to this as a sampled basis set.

Let R denote the rendering operator for a �xed model scene from a given viewpoint.

This operator takes as input the radiance distribution of the light source L and produces an

image I = R(L(x;w)). As explained in the Introduction, this operator is linear. Combining

this notation with the steerability equation gives an expression describing the re-rendering
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process:

R(L(x;!;p)) = R

�P
N

i=1 �i(p)Li(x;!)
�

=
P

�i(p)R(Li(x;!))

=
P

�i(p)Ii;

(2)

where Li(x;!) are the basis lights, Ii are the basis images, and �i(p) are the weighting

functions. That is, an image of the model scene with the new light source L(x;!;p) may

be re-rendered by linearly combining the basis images.

3 Steerable Directional Spot Lights

A directional spot light is a point light source whose emitted angular radiance distribution is

anisotropic. Typically, spot lights are rotationally symmetric about their directions of foci;

thus, their radiance distributions can be described as:

Lspot(x;!;p) = �(x� x0) f(! � p) (3)

where p is a unit vector parameterizing the direction of focus of the spotlight, and x0 denotes

the origin of the spot light.

For example, let f be the linear polynomial: f(! �p) = 1+! �p. Writing the dot-product

explicitly gives

Lspot(x0;!;p) = 1 + px!x + py!y + pz!z

where the subscripts x; y; z refer to the corresponding components of the vectors !;p. This

parameterized light source is steerable, and can be written as a linear combination of four

basis light sources:

Lspot(x0;!;p) = L1 + pxL!x
+ pyL!y

+ pzL!z

where L!x
corresponds to a basis light whose radiance distribution is L!x

(x0;!) = !x,

etc. Because of the linearity of the rendering operation, the same relationship holds for the

images:

Ip = I1 + pxI!x + pyI!y + pzI!z ;

where Ip is the image rendered with Lspot(x0;!;p), I!x corresponds to the basis image

rendered using the basis light source L!x
, etc.

In the above example, the spot lights have rather broad radiance distributions. More
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generally, we construct a directional spot light of degree N as:

Lspot(x0;!;p) = (1 + ! � p)N : (4)

Expanding this polynomial gives:

Lspot(x0;!;p) =
NX
n=0

X

i+j+k=n;

i;j;k�0:

�n

i;j;k
(p) L

!
i
x!

j

y!
k
z

(5)

where the weighting coe�cients are:

�n

i;j;k
(p) =

N !

(N � n)!(i)!(j)!(k)!
pi
x
pj
y
pk
z
:

Equation 5 appears to indicate that the total number of basis light sources is
P

N

n=0

P
n

i=0

P
n�i

j=0 1 =

(N + 1)(N + 2)(N + 3)=6. Fortunately, the number of basis lights is much less, because the

basis light source distributions !i

x
!j

y
!k

z
are not linearly independent. The linear depen-

dence is evident when you consider that !x; !y; !z are components of a unit vector, i.e.,

!2
x
+ !2

y
+ !2

z
� 1. The actual number of basis functions required is only (N + 1)2, the

number of spherical harmonics up to degree N .

To take advantage of this, we need to choose a set of (N + 1)2 basis lights, and then

derive the weighting functions for the new, reduced-size basis set. One approach is to use

the spherical harmonic functions [6], but the weighting functions used to steer spherical

harmonics are cumbersome. We use the more straightforward approach described in [17].

Instead of using the monomial basis light sources L
!i
x
!
j

y!
k
z

, use a sampled basis set com-

prised of the desired spot light aimed in di�erent directions. In particular, choose a set of

unit vectors pi, for 1 � i � (N+1)2, distributed on the sphere. Construct the corresponding

set of basis lights: L(x0;!;pi) = (1 + ! � pi)
N . Each new (directional spot) basis light can

be expressed as a linear combination of the monomial basis lights, given by Equation 5. This

sampled basis set can be related to the original monomial basis set via a linear transform:

M =

2
6666664

� � ��n

i;j;k
(p1) � � �

� � ��n

i;j;k
(p2) � � �
...

� � ��n

i;j;k
(p(N+1)2) � � �

3
7777775
:
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There are (N + 1)2 rows corresponding to the number of new basis lights, and there are

(N + 1)(N + 2)(N + 3)=6 columns in M corresponding to the total number of monomial

basis lights.

To steer the new basis lights, we need to invert M . Since M is under-determined, we

compute its pseudo-inverse (MT
M )�1MT using the singular value decomposition. Then,

we write the weighting functions �0
i
(p) of the new, reduced-size, sampled set of basis lights:

(�01(p) � � ��
0

(N+1)2(p)) = [(� � ��n

i;j;k
(p) � � �) (MT

M )�1MT ]

Since the samples pi may be chosen arbitrarily, one must check that the matrix M is full

rank. This can be veri�ed when computing its pseudo-inverse. If the rank is less than

(N + 1)2, one can perturb the vectors pi and try again.

Figure 1 shows images of a model scene illuminated by spot lights of degree N = 5.

Note that the reection of the wall in the sphere is brighter when that wall is illuminated

by the spot light; linear re-rendering captures all ray interactions. Figure 2 shows a model

of a chemistry set illuminated by a spot light of degree N = 3. Note the illumination of the

test-tube rack that can be seen through the ask. Again, this would not be possible without

capturing all ray interactions.

Spot lights with narrower radiance distributions may be obtained by using larger N .

However, the higher the degree N , the more basis light sources are needed. Greater e�ciency

can be realized by using principal components analysis to reduce the number of basis images

(see below).

Aside from reducing the number of basis lights/images, there are several practical advan-

tages in using a sampled basis instead of the monomial basis. First, the radiance distributions

of some of the monomial basis lights are negative in some directions. Each of the sampled

basis lights, on the other hand, corresponds to an actual physical (non-negative) light source,

so standard ray-tracers or radiosity programs can be used without modi�cation. Second, for

any given direction of focus, the contribution of each monomial basis light is small and about

the same as that of the other basis lights. On the other hand, with the sampled basis set,

only a few basis lights (typically those aimed near the desired direction of focus) contribute

signi�cantly to the linear combination. Hence, the re-rendering operation can be made more

e�cient by neglecting basis images with insigni�cant contributions. For the same reasons,

a progressive re�nement algorithm (see below) produces a high quality image with only the

�rst few basis images.
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The previous example illustrates only one family of steerable directional spot lights.

There are several ways to generalize the results. The simplest extension is to allow for a

general N th degree polynomial; i.e., Lspot(x0;!;p) =
P

N

p=0 cp (! � p)
p where cp are arbitrary

coe�cients. Naively expanding the above polynomial will indicate that (N +1)(N +2)(N +

3)=6 basis light sources are needed. However, since ! is a unit vector, only (N + 1)2 basis

light sources are actually required and the above method of reducing the number of basis

light sources can again be used. If the polynomial is a strictly even or odd function, then

only (n+ 1)(n + 2)=2 basis light sources are required as shown in [9] for steerable �lters.

In addition, the approach can be generalized to include non-axis-symmetric radiance

distributions. Using the spherical harmonics as the basis set, any distribution on the sphere

can be steered following an arbitrary rotation of the coordinate axis of the sphere. Thus, in

addition to being able to change the direction of some given axis, one can also rotate the

distribution about that axis.

The techniques described in this section to steer directional spot lights can also be applied

directly to steer skylight distributions as in [17]. The function that is being steered is identical

in the two instances. The di�erence is that for directional spot lights, light energy emanates

from a �xed point while for skylight distributions, light energy from all directions converges,

with the same angular distribution, onto each point in the model scene.

Finally, an arbitrary desired angular radiance distribution can be approximated by a

steerable basis set, so that it can be steered. If the basis lights are orthogonal, then the

least-squares approximation can be computed by projecting the desired light onto the basis

lights. Determining the best approximation is more di�cult when the basis lights are not

orthogonal (like the sampled set of basis lights discussed above). Dobashi et al. [6] used

Legendre polynomials, which are orthogonal, in conjunction with spherical harmonics to

approximate a desired light source. Alternatively, one could sample the radiance distributions

of the desired light and the basis lights, then orthogonalize the basis lights numerically (e.g.,

using Gram-Schmidt) and compute the least-squares projection by matrix multiplication.

4 Steerable Area Lights

In the previous section, we presented techniques for steering the direction of spot lights. In

this section, we explain how to shift the position of spatially distributed light sources. We

concentrate on two-dimensional area light sources since the extension to three-dimensional

volumetric light sources is straightforward.
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The radiance distribution of an area light source is a four-dimensional function: two

dimensions specify the angular distribution and two dimensions specify the spatial distribu-

tion. For the purpose of steering over position, we assume that the function is separable in

its angular and spatial dimensions:

Larea(x;!;p) = fx(x� p) f!(!) (6)

where p is now a two-dimensional vector parameterizing the position of the light source.

For example, when the area light source is de�ned over a plane, x is the two-dimensional

coordinates on the plane, and p parameterizes the origin of the coordinate system. Since

the function f! is not involved in the steering, it can be arbitrarily complex. For simplicity

of presentation, we will assume that it is unity.

As with directional spot lights, only area light sources with certain spatial distributions

fx can be steered. Hel-Or et al. [11] identi�ed these functions to be the product of (possibly

complex) exponentials and polynomials; i.e., functions of the form fe�xu+�xvxi
u
xj
v
g where

0 � i � n; 0 � j � m and �; � are complex constants. The variables xu; xv are components

of the two-vector x. In particular, consider the case when n = m = 0 and �; � are purely

imaginary. For this case,

e�(xu�pu)+�(xv�pv) = e�(�pu+�pv)| {z }
weighting functions

e�xu+�xv| {z }
basis lights

:

or in its more familiar real form,

sin a(xu � pu) sin b(xv � pv) =0
BBBBBB@

cos apu cos bpv

� cos apu sin bpv

� sin apu cos bpv

sin apu sin bpv

1
CCCCCCA

T

| {z }
weighting functions

0
BBBBBB@

sin axu sin bxv

sin axu cos bxv

cos axu sin bxv

cos axu cos bxv

1
CCCCCCA

| {z }
basis lights

(7)

where � = ai and � = bi. Since sinusoids (and cosinusoids) do not have compact support, it

may seem that one would need to have in�nitely-extended light sources. Fortunately, since

sinusoids (and cosinusoids) are periodic, we can truncate them at integral periods and still

be able to steer them perfectly.

Therefore, a light source with an arbitrary spatial distribution (as in Equation 6) can

be steered by �rst approximating it with these sinusoids and then steering these sinusoids.
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Mathematically,

Larea(x;!;0) �
X
i;j

0
BBBBBB@

c0
i;j

c1
i;j

c2
i;j

c3
i;j

1
CCCCCCA

T
0
BBBBBB@

sin 2�i xu sin 2�j xv

sin 2�i xu cos 2�j xv

cos 2�i xu sin 2�j xv

cos 2�i xu cos 2�j xv

1
CCCCCCA

where ck
i;j

are the coe�cients derived from the approximation. Although the desired light

source is approximated, for model scenes that do not contain strongly specular surfaces,

the error in the re-rendered images is small. Intuitively, this is because the high frequency

errors introduced by the approximation are averaged over the hemisphere of incoming light

directions.

Since each of the sinusoids on the right of the above equation is steerable, the light source

distribution is steerable:

Larea(x;!;p) �
X
i;j

0
BBBBBB@

c0
i;j

c1
i;j

c2
i;j

c3
i;j

1
CCCCCCA

T

2
666666666664

A(p)| {z }
weighting functions

0
BBBBBB@

sin 2�i xu sin 2�j xv

sin 2�i xu cos 2�j xv

cos 2�i xu sin 2�j xv

cos 2�i xu cos 2�j xv

1
CCCCCCA

| {z }
basis lights

3
777777777775

where A is a 4�4 matrix with each row containing the weighting functions for each sinusoid,

as speci�ed in Equation 7.

Figure 3 shows a chess piece illuminated by an area light source with a raised-cosine

spatial radiance distribution (in each dimension). The raised cosine was �rst approximated

by a sum of sinusoids. Instead of using basis lights made up of sinusoids, however, we used

a sampled basis set in which the basis lights were shifted copies of one another.

Figure 5 shows an example of steering both in position and direction. We used lights that

were separable in their angular and spatial dimensions (Equation 6); the spatial distributions

were raised cosines, and the angular distributions were polynomials of degreeN = 3. Because

the light distribution is separable, we �rst steered the full set of angular distributions to the
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desired position. Then we steered them in direction. Note that the shadow is unchanged

when the direction of the light is steered (left and middle images), but the shadow does

change when the light's position is shifted (right image).

5 Reducing the Basis Set

The time required to re-render an image is proportional to the number of basis images. For

interactive lighting design, the number of basis images must be small. Unfortunately, light

sources with narrower angular or spatial distributions require a larger number of basis images.

We can partially remedy this problem by taking advantage of the fact that the images in

our basis set will have di�erent degrees of importance. In particular, principal component

analysis can be used to compute a reduced set of basis images best approximating the original

set. Speci�cally, the �rst k principal components are the best (in least-squares sense) k basis

images approximating the original basis set.

Due to the number of pixels in each basis image, it is infeasible to directly compute

the principal components using techniques like the singular-value decomposition (SVD).

Instead, we apply the SVD to a smaller matrix and then derive the principal components of

the original basis images from this intermediate result. This method was used, for example,

by Turk et al. [23] to compute \eigenfaces" for a face recognition system.

LetM be a matrix where each column corresponds to a single basis image that has been

collapsed into a single long vector, i.e., if each basis image contains m pixels and there are

a total of n basis images then M is an m� n matrix. If we could compute the SVD of M ,

it would give us three new matrices,M = USV T , where U and V are orthonormal and S

is m� n and diagonal. The columns of U are the desired principal components. Since we

can not compute the SVD of M directly, we instead work with with MT
M , a symmetric

n � n (small) matrix. The SVD of this matrix is: MT
M = V S

2
V

T . The singular values

S are determined by taking the square root of S2. Having obtained V and S, we compute

U = MVS
�1. The columns of U corresponding to small singular values in S are then

eliminated and the remaining k columns of U constitute the new reduced-size basis.

Determining how many principal components to use is an empirical question. In our

current implementation, k principal components are used such that the k largest singular

values sum to 90% of the total sum of all the singular values.

Figure 4 shows three renderings of the same image: the �rst rendered directly with a ray

tracer, the next re-rendered using all 81 basis images, and the last re-rendered with only 20
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principal components basis images. Only slight artifacts in the detail of the shadow and the

texturing of the bishop are visible.

In fact, most of the images in this paper were computed with reduced basis sets, and

the reduction in the number of basis images is signi�cant. The images in Figure 1 were re-

rendered with 12 principal component basis images, instead of the 36 original basis images.

The images in Figure 3 were re-rendered with 20 principal components, instead of the 81

original basis images. For Figure 5, there were 400 original basis images, but only 50 principal

components were used.

6 Progressive Re�nement

Although all the basis images need to be combined to re-render the new image perfectly,

some basis images contribute more than others. Hence, before re-rendering a new image, it is

wise to �rst sort the weighting coe�cients in descending order of magnitude, and sequentially

add the weighted basis images in that order. After each basis image is added, the partial

result can be displayed. It is important, however, to also consider the salience of each basis

image. For example, the weight associated with a particular basis image may be large, but

the basis image itself may contain only small intensity values. We currently use the average

absolute pixel value to quantify salience, and sort the basis images based on the product of

the weight times the salience of the basis image.

7 Discussion

One of the advantages of the linear re-rendering approach to lighting design is that it captures

all ray interactions (multiple bounces). On the other hand, if only the �rst bounce (light-

backwards from the eye) is needed, a deep-bu�er method may be more e�cient. A deep

bu�er stores auxilliary information for each pixel. For example, a model scene illuminated

by a directional spot light at a �xed point can be rendered for any angular distribution

if associated with each pixel is a bit indicating whether the light is visible to the surface

under that pixel. This information has to be available at sub-pixel resolution in order to

handle anti-aliasing properly. Although this method accurately accounts for only the �rst

bounce of light, its complexity is independent of the angular distribution of the spot light.

By contrast, re-rendering with steerable basis lights requires a large number of basis images

when the angular distribution of the light source is not smooth or narrow.
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This suggests a hybrid of the two schemes, in which the �rst bounce is computed via the

deep bu�er and the second and subsequent bounces are computed via steerable re-rendering.

These two contributions can subsequently be added to produce the �nal image to capture all

the ray interactions. If the radiance contribution of the second and subsequent ray bounces

vary slowly over space, then fewer steerable basis images will be required. Re-rendering with

steerable lights works best (i.e., fewer basis images are required) when the light distributions

are smooth and the surface reectances are di�use. These are exactly the situations in which

ray paths are expensive to compute.

Another hybrid scheme involves decomposing a desired light source distribution into the

sum of two components: a smooth, steerable component and a narrow, compactly supported

second component. Since re-rendering with steerable light sources is most e�cient when

the light source distribution is smooth, this method can be used only for the �rst (smooth)

component of the light. The contribution of the second (narrow, compact) component can be

ray-traced for each new light source position. Since it is compactly supported, only a small

number of rays are needed. This approach might be particularly useful for re-rendering model

scenes illuminated by skylight since the distribution of skylight comprises a widespread slowly

varying component and a strong, narrow component (the sun). In spirit, this hybrid scheme

is akin to Chen's multi-pass method for global illumination [5] where the most appropriate

method is used to render each type of ray path.

Finally, we note how to combine our re-rendering scheme with goal-based rendering

[13, 20]. The scheme in [20] automatically determines the intensity settings of a �xed set of

lights such that the image of the model scene is similar to one \painted" by the designer.

The scheme in [13] automatically adjusts the intensity and direction of foci of the lights, but

it involves incremental rendering. Re-rendering via linear combinations of steerable lights

allows one to change the geometry of the light sources. By using lights that are constrained

to be steerable, goal-based linear re-rendering can allow for intensity and geometry changes

in the light sources.
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Figure 1: Images of a scene illuminated by a directional spot light. The angular radiance

distribution of the light source is a �fth degree polynomial. Each of the images were re-

rendered by linearly combining a set of 12 basis images. The left and middle images show
the scene re-rendered with the spot light pointed in di�erent directions. The right image
shows the scene re-rendered with two spot lights in the same position, but pointing in di�erent

directions.

Figure 2: Image of a scene with transparent objects illuminated by a directional spot light.

The angular distribution of the light source is a third-degree polynomial. A total of 16 basis

images were used to re-render this scene.
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Figure 3: Images of a chess piece illuminated by an area light source. The left image shows
the scene re-rendered with the area light source positioned to the front and left of the object.
The middle image is a re-rendering of the scene with a broader area light source. The right
image shows the object illuminated by three primary colored lights. A total of 20 basis

images were used to re-render all three images.

Figure 4: Images of a chess piece illuminated by an area light source. The left image shows

the scene rendered using a ray tracer. The middle image is a re-rendering using the full set
of 81 basis images. The right image shows a re-rendering using a set of 20 basis images that

were chosen with the singular value decomposition.
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Figure 5: Images of a single polygon illuminated by an area light source that has an

anisotropic angular distribution. The left image shows a re-rendering with the light source
pointing downwards, and positioned to the rear and left of the object. The middle image
shows a re-rendering with the light source in the same position as before but pointing in
a di�erent direction. The right image is a re-rendering with the light source centered at a

di�erent position. A total of 50 basis images were used to re-render all three images. These

basis images were computed using the singular value decomposition; the actual number of
basis images required was 400.
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