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ABSTRACT

The statistics of photographic images, when decomposed in a multiscale wavelet basis, exhibit striking non-
Gaussian behaviors. The joint densities of clusters of wavelet coeÆcients (corresponding to basis functions
at nearby spatial positions, orientations and scales) are well-described as a Gaussian scale mixture: a jointly
Gaussian vector multiplied by a hidden scaling variable. We develop a maximum likelihood solution for
estimating the hidden variable from an observation of the cluster of coeÆcients contaminated by additive
Gaussian noise. The estimated hidden variable is then used to estimate the original noise-free coeÆcients.
We demonstrate the power of this model through numerical simulations of image denoising.

Keywords: natural image statistics, wavelet, multiresolution, Gaussian scale mixture, adaptive Wiener
�ltering, denoising

1. INTRODUCTION

Most applications in image processing can bene�t from a good statistical model (i.e., a prior) for the
relevant set of images. In recent years, multiscale wavelet decompositions have led to the development of a
new generation of statistical image models. Wavelet coeÆcients of images show remarkably regular but non-
Gaussian properties, both in their marginal1,2 and their joint3,4 statistics. In particular, the magnitudes

of nearby wavelet coeÆcients of photographic images are often strongly correlated, even when the raw
coeÆcients are decorrelated.4 Wavelet marginal models are the basis for shrinkage or coring methods
of denoising.5{7 A number of recent approaches to compression and denoising take advantage of joint
statistical relationships by adaptively estimating the variance of a coeÆcient from a local neighborhood
consisting of coeÆcients within a subband,8{11 or including coeÆcients from subbands adjacent in scale
and/or orientation.12{14 This kind of local variance estimation was originally developed in the context of
adaptive Wiener denoising in the pixel domain.15,16

Wainwright and Simoncelli have proposed a model to capture both the marginal and joint statistical
properties of local neighborhoods of coeÆcients, based on the semi-parametric class of random variable
known as a Gaussian scale mixture17 (GSM). In the GSM model, wavelet coeÆcients in a neighborhood
correspond to a product of a Gaussian random vector with a hidden multiplier variable. Closely related
models have been independently proposed by LoPresto et. al.8 and Crouse et. al..18 Wainwright et. al.

have extended the local GSM model to a global description using a coarse-to-�ne cascade on the wavelet
tree.19,20

In this paper, we forego the complexity of the global prior model, and develop maximum likelihood
estimators for the parameters of a local GSM model. We demonstrate the use of these estimators in
the problem of denoising an image that has been contaminated with additive Gaussian noise of known
covariance.

Author e-mail addresses: vstrela@mcs.drexel.edu, javier@cns.nyu.edu, eero.simoncelli@nyu.edu



−100 −50 0 50 100 −60 −40 −20 0 20 40 60

−100

−50

0

50

100

Figure 1. Example wavelet coeÆcient histograms of the \Boats" image. Left: Log marginal histogram of a
single vertical subband. Dashed line is a generalized Gaussian density, with parameters chosen to minimize
the relative entropy with the histogram.6,12 Right: conditional joint histogram of two vertical coeÆcients
at adjacent scales. Pixel brightness corresponds to the frequency of occurrence of the corresponding pair
of coeÆcient values, except that each column has been independently rescaled to �ll the full range of
intensities. Note the dependence between the two coeÆcients: the variance of the ordinate variable grows
with the magnitude of the abscissa variable.

2. LOCAL GAUSSIAN SCALE MIXTURE MODEL

Wavelet coeÆcients of photographic images exhibit strongly non-Gaussian heavy-tailed marginal distribu-
tions,1,2 and these have been modeled using Laplacian or generalized Laplacian densities.6,7 In addition,
the joint densities of wavelet coeÆcients exhibit striking non-Gaussian dependencies, in which the variance
of each coeÆcient is proportional to the squared magnitudes of coeÆcients at adjacent spatial positions,
orientations, and scales.4,21 Examples of both of these non-Gaussian behaviors are shown in �gure 1.

Wainwright and Simoncelli proposed the use of Gaussian scale mixtures as a model of these joint wavelet
coeÆcient distributions.17 A vector X is a GSM if it may be decomposed into a product of two random
variables, X =

p
zU , where z is a positive scalar random variable and U is a zero-mean Gaussian random

vector with covariance matrix Cu, independent of z.
22 The probability density of a GSM variable is :

Px(X) =

Z
1

(2�)N=2 jzCuj1=2
exp

 
�XTC�1

u X

2z

!
Pz(z) dz;

where N is the dimensionality of vectors U and X. Note that if the components of U are decorrelated, then
the components ofX will also be decorrelated. The GSM class includes a number of well-known heavy tailed
distributions such as generalized Gaussians, the �-stable family, and the Student t-variables.17 The key
advantage of these models is that the density of X is jointly Gaussian when conditioned on z. Speci�cally,
the normalized quantity X=

p
z is Gaussian distributed, with covariance Cu.

We assume a GSM model for local clusters of wavelet coeÆcients. Speci�cally, we assume that a vector
containing wavelet coeÆcients corresponding to basis functions at nearby positions, orientations and scales
is distributed as a GSM. For this paper, we have used clusters containing only spatial neighbors within the
same subband. For simplicity, we will assume that the multipliers associated with di�erent clusters are
independent, even though the clusters are overlapping (i.e., contain common coeÆcients).

In order to test the ability of the GSM model to account for the statistics of natural images, we estimate
multiplier z locally for each neighborhood in a wavelet subband. Let X be a vector containing a cluster of
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Figure 2. Histogram and normal probability plots of vertical detail subband of Lenna image before and
after normalization of each coeÆcient by the estimate of hidden multiplier

p
ẑ.

wavelet coeÆcients, with x the coeÆcient at the center of the cluster. The maximum likelihood estimator
for the multiplier is17,10:

ẑ(X) =
XTC�1

u X

N
:

Given the maximum likelihood estimate ẑ(X), we can form the normalized coeÆcient x0 � x=
p
ẑ(X).

Under reasonable regularity conditions, the distribution of x0 tends to a Gaussian distribution as the
estimate ẑ(X) improves. As a demonstration of the ability of the model to account for image data, �gure 2
shows the marginal histograms (in the log domain) and normal probability plots of x and x0. The histogram
of the normalized coeÆcients is nearly Gaussian, and its corresponding normal probability plot lies nearly
along a line. Additional examples may be found in previous publications.17

The power of the GSM model for the problem of denoising comes from the underlying Gaussian form.
Consider the problem of estimating a single GSM coeÆcient x =

p
zu that has been contaminated with

additive Gaussian noise, w. The observation is written y =
p
zu+w. If the value of z were known, then the

coeÆcient density would also be Gaussian distributed, and the optimal estimate would be the well-known
linear (Wiener) solution:

x̂ =
z�2u

z�2u + �2w
y:

To this end, we focus on computing an estimate of the hidden multiplier z associated with each coeÆcient,
from on observation of a surrounding cluster of coeÆcients contaminated by additive Gaussian noise.

3. ESTIMATION OF HIDDEN MULTIPLIERS

In order to use the GSM model for the application of image denoising, we need an estimator for the hidden
multiplier z, and the covariance of the underlying Gaussian vector, Cu, in the presence of noise. Assume
the wavelet coeÆcients are corrupted by additive noise:

Y = X +W;

where W is zero-mean Gaussian noise. Assuming that the noise is independent of the coeÆcients, X, the
covariance of the noisy coeÆcient vector is:

Cy = Cx +Cw

= zCu + Cw:
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Consider �rst the simple case where both U and W are decorrelated:

Cu = �2uI; Cw = �2wI;

with I the identity matrix. Without loss of generality, we can assume �u = 1, by absorbing the constant
into the multiplier z. The maximum likelihood estimator is easily found by di�erentiating the log likelihood
expression with respect to z and setting equal to zero:

ẑ(Y ) = argmax
z

(
�N log(z + �2w)�

Y TY

(z + �2w)

)

=
Y TY

N
� �2w: (1)

Thus, the variance of the coeÆcient at the center of the cluster is estimated from the average squared value
of the neighbors. This concept has been used in a number of previous denoising approaches.4,12,9,10

Although wavelet coeÆcients of most photographic images are only weakly correlated, some specialized
images do contain strong correlations11). In the case when the covariance matrix is not a multiple of
the identity, the maximum likelihood estimate of z may be found by diagonalizing Cu.

11 Let Q be
the orthogonal matrix containing the eigenvectors of Cu, and � be the diagonal matrix containing the
associated eigenvalues �n, such that:

Cu = Q�QT :

The maximum likelihood estimate of z is the solution of:

NX
n=1

�nv
2
n

(z�n + �2w)
2
� �n
z�n + �2w

= 0; (2)

where vn are the components of vector V = QY , and the �n are the eigenvalues (diagonal elements of
�).11

Finally, if the noise is correlated (for example, if the wavelet transform is not orthogonal), the maximum
likelihood may be found by whitening W and then diagonalizing Cu. Let matrix S be the square root of
Cw (i.e., the product of the eigenvector matrix and the square root of the diagonal eigenvalue matrix),
such that Cw = SST . Now let Q and � contain the eigenvectors and eigenvalues of S�1CuS

�T , where S�T

indicates the transposed inverse of matrix S. Finally, the maximum likelihood estimate of z is the solution
of:

NX
n=1

�nv
2
n

(z�n + 1)2
� �n
z�n + 1

= 0; (3)

where the vn are the components of vector V = QS�1Y .

In practice, we need also to estimate covariance Cu from a collection of noisy observations Yk. If the
number of observations K is large, the sample covariance may be approximated as

1

K

KX
k=1

YkY
T
k � Cy = Cw + �zCu;

where �z is the expected value of the multiplier variable z. Without loss of generality, this constant may
be absorbed into the covariance matrix Cu. In our experiments, we assume Cw is known, and use the
following estimate for Cu:

Ĉu =
1

K

KX
k=1

YkY
T
k � Cw: (4)
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4. DENOISING ALGORITHM

Given a method of estimating the hidden multiplier from the noisy data, we can now apply Gaussian scale
mixture model to image denoising. For each coeÆcient in each subband of a multiresolution decomposition
of a noisy image, we compute ẑ(Y ) from the vector of coeÆcients in the neighborhood, Y . Then the
coeÆcient estimate is computed using the classical linear (Wiener) solution. In summary:

1. Perform multiscale decomposition of image corrupted by Gaussian noise.

2. For each subband (except the lowpass residual):

a) Compute estimated covariance matrix Ĉu using equation (4).

b) For each coeÆcient y (with surrounding neighborhood Y ) in the subband:

{ Compute ẑ(Y ) numerically using equation (3).

{ Compute estimated variance of original coeÆcient x: �̂2x = ẑ(Y )�̂2u, with �̂
2
u the correspond-

ing diagonal element of Ĉu.

{ Replace noisy coeÆcient y by the linear estimate of the original coeÆcient x̂ = �̂x
2

�̂x
2+�2

w

y.

3. Invert the multiscale decomposition, reconstructing the denoised image from the estimated coeÆ-
cients.

Note again that the algorithm estimates each multiplier z, and each coeÆcient x independently, even
though the neighborhoods of adjacent coeÆcients are overlapping. The algorithm is currently somewhat
computationally expensive, due to the numerical solution of equation (3) for each multiplier. The algorithm
is closely related to that of Mih�cak et. al..10 The main di�erences are the choice of basis (we use a steerable
pyramid, as described in the next section), and the inclusion of signal and/or noise covariance matrices. The
algorithm is also closely related to our previously developed algorithm.11 In addition to the choice of basis,
the main di�erence is that the previous algorithm was applied to non-overlapping blocks of coeÆcients.

5. NUMERICAL EXPERIMENTS

We performed a series of denoising experiments in order to test our local GSM method. In particular, we
examined three di�erent types of multiresolution decomposition: 1) orthogonal least-asymmetric wavelet-
s,23 2) symmetric 9-tap QMF �lters,24 and 3) a four-orientation steerable pyramid.25 The last of these
is an overcomplete tight frame, in which the basis functions are polar separable in the Fourier domain.
The primary advantage of this decomposition for denoising is that the subbands are sampled below the
Nyquist rate, thus avoiding aliasing artifacts commonly seen with critically-sampled representations. We
found that the symmetric QMF �lters provided an improvement of 0.3-0.5 dB SNR over the asymmetric
set, and the steerable pyramid provided an additional improvement of 0.4-0.6 dB. All results for GSM
denoising reported below are computed using the steerable pyramid, with four orientations and four scales.

We also experimented with a number of di�erent size and shape neighborhoods. For orthogonal wavelets
and QMF �lters the optimal choice was a rectangular neighborhood: 7 by 9 in horizontal detail subband, 9
by 7 in vertical detail subband, and 9 by 9 in diagonal detail subband. This indirectly con�rms our intuition
that the correlation structure is de�ned by local edges. For the steerable pyramid we found that a 7 by
7 neighborhood was suÆcient for all subbands. Our previous work suggests that including coeÆcients of
other subbands (i.e., corresponding to basis functions of other orientations and scales) should improve the
estimates.4,13
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image thresholding wiener2 simple GSM covariance GSM

Lenna 27.96 28.13 30.57 30.60

Boats 27.06 27.26 29.19 29.32

Yogi 25.39 26.68 26.98 27.45

Barbara 24.06 24.28 25.49 25.21

Fingerprint 26.43 26.65 29.59 29.53

Einstein 28.61 28.98 30.90 31.37

Table 1. Comparison of denoising results. Values are peak-to-peak signal-to-noise ratio (PSNR)
(20 log10(255=�error)), with added Gaussian noise of variance �w = 25 (PSNR = 20.17). All images
are 512� 512 pixels, except for \Einstein" which is 256 � 256.

noisy thresholding wiener2 simple GSM covariance GSM

20.17 (�w = 25) 28.61 28.98 30.90 31.37

22.11 (�w = 20) 29.75 30.21 32.11 32.52

24.61 (�w = 15) 31.33 31.73 33.72 34.03

28.13 (�w = 10) 33.68 33.98 36.10 36.20

Table 2. Comparison of denoising results (PSNR, in dB) for the 256�256 \Einstein" image, with di�erent
amounts of additive Gaussian noise.

We compared our GSM method to two widely used denoising techniques. The �rst is the wiener2

function implemented in MatLab.15 The algorithm computes a pixel-wise adaptive Wiener estimate
based on the sample statistics of a local neighborhood of each pixel. In all experiments, we chose the
neighborhood to maximize SNR. The second technique is soft thresholding, as developed by Donoho.5

This method is based on an orthogonal wavelet decomposition using the Daubechies least-asymmetric 10-
coeÆcient �lters. In all experiments, the threshold is chosen for each subband to minimize mean squared
error. We also used two variants of the GSM method. Simple GSM assumes uncorrelated coeÆcients
(Cu / I), and uncorrelated noise of known variance (Cw = �2wI). Covariance GSM computes an estimate
of Cu using equation (4), and assumes a known Cw (non-diagonal, due to the overcompleteness of the
steerable pyramid).

Examples of denoising of the \Einstein" image are shown in Figure 3. The GSM approach appears
both sharper and less noisy than the other two algorithms. In addition, both wiener2 and thresholding

approaches produce signi�cant visual artifacts. A numerical comparison of the denoising results is given in
Tables 5{5. One can see that the GSM approach signi�cantly outperforms both wiener2 and thresholding.
In most examples, covariance GSM gives slightly better results than the simple GSM.

6. CONCLUSIONS

We have presented a denoising algorithm based on a Gaussian scale mixture model of local clusters of
wavelet coeÆcients of photographic images. Our approach is extremely simple, due to the fact that
individual wavelet coeÆcients, as well as their associated multipliers, are estimated independently. Despite
this gross simpli�cation, our denoising results are amongst the best reported in the literature.
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original image noisy image

thresholding wiener2

simple GSM covariance GSM

Figure 3. Results of denoising for the 256 � 256 \Einstein" image. Only a 128 � 128 cropped subregion
of each image is shown. Original noise level was �w = 25 (see top row of Table 2).
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noisy thresholding wiener2 simple GSM covariance GSM

20.17 (�w = 25) 27.96 28.13 30.57 30.60

22.11 (�w = 20) 29.08 29.31 31.63 31.64

24.61 (�w = 15) 30.57 30.84 32.98 32.96

28.13 (�w = 10) 32.76 33.03 34.87 34.82

Table 3. Comparison of denoising results (PSNR, in dB) for the 523� 523 \Lenna" image, with di�erent
amounts of additive Gaussian noise.

Our procedure is based on independent maximum likelihood estimates of the multiplier associated with
each coeÆcient. We believe that performance can be somewhat improved by including a marginal prior
on the multiplier variable z, as in the method of Mih�cak et. al..10 Furthermore, our decision to estimate
each multiplier independently greatly simpli�es the algorithm, but clearly limits the performance. A more
complete model should also consider the statistical relationship between adjacent multipliers, as in the
model of Wainwright et. al..19,20 As such, our current algorithm provides a lower-bound for performance
one can expect from a model with either a marginal or a global prior.
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