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We propose a “signature” for rotation-invariant rep-

resentation of local image structure. The signature is

a complex-valued vector constructed analytically from

the projections of the image onto a set of oriented basis

kernels. The components of the signature form an over-

complete set of algebraic invariants, but are chosen to

avoid instabilities associated with previously developed

algebraic invariants. We demonstrate the use of this

signature for representing and classifying junctions in

grayscale imagery.

Local image symmetry provides important cues for vi-
sual interpretation. In particular, the local arrange-
ment of oriented contours is a powerful source of infor-
mation in applications ranging from optical character
recognition, to texture-based segmentation, to occlu-
sion boundaries detection. It is typically the relative

orientation of such contours that carries the important
information: the absolute orientation is often irrele-
vant. It is thus of interest to develop stable, unique,
rotation-invariant representations of such structures.

Many authors begin by projecting the image structure
onto a local rotation-invariant basis (e.g., [6, 3, 7, 4, 10,
2, 5, 8, 11]). Examples of such decompositions are vari-
ous types of local moment, derivative operators (which
are moments in the Fourier domain), or angular har-
monics. These decompositions are closely related, often
differing only by a linear transformation.

Consider the problem of matching an observed local
image intensity pattern against a set of candidate pat-
terns. A brute-force solution, in which one rotates the
image pattern through a set of discretized orientations
searching for an optimal match is inelegant, inefficient,
and highly susceptible to local minima. A number of
authors have taken the approach of first estimating a
“dominant” orientation from the projection onto low-
order basis functions (e.g., the gradient), and using
this estimate to align the two patterns for compari-
son (e.g., [7, 14, 15, 16, 5]). This type of approach,
while efficient, becomes unstable for patterns lacking a
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strongly dominant orientation.

More generally, one can use the theory of algebraic in-
variants to construct rotation-invariant representations
of image content [1, 12, 13, 14]. The theory allows one
to construct a complete set of such invariants. But the
set is non-unique, and depends on the initial choice of
basis. Many such invariants are highly noise-sensitive,
and thus unsuitable for applications. In the present
paper, we propose a simple, stable, unique, rotation-
invariant signature, consisting of a set of invariants of
the angular Fourier decomposition.

1. RELATIVE PHASE

Consider a local decomposition of image structure via
projections onto a set of angular Fourier basis kernels:

fn =

∫

dr

∫

dθ I(r, θ)g(r)e−inθ, 1 ≤ n ≤ N,

where g(r) is an arbitrary integrable radial function,
and I(r, θ) is a polar parameterization of the image
about an (arbitrary) origin point. The case N = 1 cor-
responds to a gradient operation, and the magnitude
|f1| provides a natural rotation-invariant quantity. But
complex local structures cannot be represented with a
single harmonic; thus we seek a rotation-invariant sig-
nature based on projections onto multiple harmonics.

The effect of rotating the image by angle α on each
angular Fourier component is well known. Each com-
ponent is phase shifted by an amount depending on its
harmonic number:

Rα(fn) = einαfn. (1)

The magnitude of each component is a rotation-invariant
quantity. But the set of magnitudes is incomplete: pat-
terns with vastly different spatial structure can have
identical angular Fourier magnitudes.

Intuitively, one senses that the missing invariant quan-
tities are the relative orientations of the Fourier com-
ponents. It is not straightforward to encode these by
comparing component phases, since the phase of the



nth harmonic component has an n-fold redundancy.
For example, if the phase of the third harmonic term
is φ3, the absolute orientation of this sinusoidal basis
function is either φ3, φ3 + 2π/3 or φ3 + 4π/3. Thus, a
direct attempt to encode relative orientation by phase
comparisons will fail.

One simple approach, closely related to that described
in [14], involves choosing the phase of the first Fourier
component as a pattern-dependent angular origin, and
encoding all other phases relative to this one. These
relative-phase invariants may be expressed as:

pn ≡ 6 {fnf∗n
1 }, ∀n > 1, (2)

where f∗n
1 indicates the complex conjugate of the nth

power of f1, and the function 6 {} is the branch of the
complex phase in the interval (−π, π].

Rotation-invariance in this situation is easily verified:
rotation by an amount α produces a relative phase for
the nth component as follows

6 {Rα(fn)Rα(f∗n
1 )} = 6

{

fneinαf∗n
1 e−inα

}

= pn.

The components of a signature vector that is both
rotation-invariant and contrast-invariant may be con-
structed by combining the relative-phase invariants pn

with the set of magnitudes, normalized by the first har-
monic magnitude:

sn =
|fn|

|f1|
eipn , 1 < n ≤ N.

This (complex) signature vector may be used to repre-
sent and classify patterns with significant first-harmonic
content. But, as mentioned in the introduction, the
calculation is singular for patterns with |f1| = 0. Even
without the magnitude normalization, the relative phase
encoding is unstable when the first harmonic is small.

The set of relative phases and magnitudes discussed
above is algebraically complete: all other invariants
based on the same Fourier expansion may be expressed
as functions of this set. But given their instability in
the presence of a small first harmonic component, we
choose to construct an overcomplete set of invariants
as described in the next section.

2. A STABLE OVERCOMPLETE SET OF

ROTATION INVARIANTS

Consider the following quantity, which is a natural ex-
tension of the phase invariants of the previous section:

pnm ≡ 6 {fm
n f∗n

m }, n < m.

This quantity corresponds to the relative phase of the
nth and mth Fourier components. It is rotation-invariant,
as can be verified by substitution of equation (1). The
subset for which m = 1 correspond to the phase invari-
ants given in equation (2).

When n and m have a common factor of, say, k, the
product fm

n f∗n
m will have a k-fold rotational symme-

try. This means that the invariant cannot distinguish
certain phase combinations. For example, let the sec-
ond and fourth-order components be of opposite phase:
f2 = 1 and f4 = eiπ. Then p24 = 6

{

ei2π
}

= 0. But
the value of p24 is also zero when the two components
are aligned in phase: for example, f2 = 1 and f4 = 1.
This multiplicity is due to the common sub-periodicity
in these two Fourier harmonics, and may be eliminated
by using a modified relative-phase invariant:

φnm ≡ 6

{

f (l(n,m)/n)
n f∗(l(n,m)/m)

m

}

, n < m, (3)

where l(n,m) is the “least common multiple” function.

In addition to the phase invariants, we have a set of
magnitude invariants. The two can be unified in a set
of complex signature components, each with the same
intensity dependence, as follows:

snm =
√

|fnfm|ei(φnm), n ≤ m. (4)

Note that the terms for which n and m are equal corre-
spond to the Fourier component magnitudes. If contrast-
invariance is also desired, the entire vector of signature
components, ~s, may be normalized.

The advantage of this signature over, for example, the
invariants presented in [14] is that it does not rely on
any specific Fourier component being nonzero. The
drawback is the increased dimensionality: there are
N(N + 1)/2 signature components.

3. ORIENTED ENERGY

In some contexts, one wishes to compute a signature for
junction geometry that is independent of whether this
geometry is formed from lines or edges [16]. A standard
technique for representing such line/edge-invariant con-
tours is to compute an oriented “energy” measure as
the sum of squared responses of a quadrature pair of
filters (e.g., [7, 15, 16, 5]).

As a substrate for this computation, we use a set of
asymmetric steerable “wedge” filters [18]. Filters in a
quadrature filter pair are typically symmetric or anti-
symmetric, and their oriented energy response is thus
constrained to be periodic with period π, independent
of image structure. The asymmetry of the wedge filters
relieves us of this constraint. An example of such filters,
for N = 8, is shown in figure 1.

The filters are polar-separable, with a somewhat ar-
bitrary radial portion. The angular portions consist
of N even-symmetric and N odd-symmetric functions
constructed from the first N terms of a Fourier series:

he(θ − αk) =
N

∑

n=1

wn cos(n(θ − αk)),
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orientation: α1 α2 α3 α4 α5 α6 α7 α8

even :

odd:

Figure 1. Example set of 15 × 15 steerable wedge functions for N = 8. From this basis set, a filter of either
symmetry (even or odd) may be synthesized at any orientation.

ho(θ − αk) =

N
∑

n=1

wn sin(n(θ − αk)),

for αk = 2π(k − 1)/N, k ∈ [1, 2, . . . , N ]. The weights
wn are chosen to maximize a measure of angular local-
ization.

This set of 2N functions span a rotation-invariant sub-
space, and any rotated copy of either function may be
written as a linear combination of the set:

he(θ − α) =

N
∑

k=1

[ak(α)he(θ − αk) + bk(α)ho(θ − αk)]

ho(θ − α) =

N
∑

k=1

[ck(α)he(θ − αk) + dk(α)ho(θ − αk)]

The interpolation coefficients ak(α), bk(α), ck(α) and
dk(α), are written in terms of trigonometric functions
of the rotation angle, α, and are given in [18].

Naturally, the inner products (or convolutions) of these
filters with an image will obey the same linear con-
straint. If the filter responses are denoted r∗, then:

re(α) =

N
∑

k=1

[ak(α)re(αk) + bk(α)ro(αk)].

The energy measure is simply the sum of squares of
the two responses: E(α) = r2

e(α) + r2
o(α). As such, it

may be written as a linear combination of the set of all
pairwise products of the filter responses drawn from the
set {re(αk), ro(αk)|k = 1, 2, . . . N}. Thus, the Fourier
expansion of the local orientation energy function may
be computed directly from (quadratic combinations of)
the filter outputs [19].

4. RESULTS

We calculated signature vectors for the set of prototype
junctions illustrated in figure 2. We computed inner

Figure 2. Set of six prototype junction images: 1

2
-

line, line, corner, T-junction, cross, and Ψ-junction.

products of each of the 16 wedge kernels with each junc-
tion image, computed quadratic combinations of these
responses, and computed the Fourier expansion of the
local orientation energy. Using only the first 6 Fourier
components of the orientation energy, we computed a
vector of 21 rotation-invariant signature components,
via equations (3) and (4).

In order to quantify the signature stability, we mea-
sured the average change in each signature vector re-
sulting from addition of uniform white noise to the im-
age. Changes in the signature vectors were measured
via Euclidean distance to the noise-free signature. Av-
erages were calculated over 25 trials. Figure 3 contains
plots of the signature signal-to-noise ratio (SNR) as a
function of image SNR for each junction. All signatures
behave stably: they are accurate at low noise levels,
and degrade gracefully as the noise levels increases.

Signatures were also computed for 4 locations in a real
image, shown in figure 4. These were compared with
the prototype signatures using a Euclidean metric1,
and the closest prototype chosen as a label for the lo-

1Euclidean distance is clearly non-optimal: a proper measure
of similarity should take into account the distribution of signa-
tures of the prototype junction set, as well as the statistics of
non-junction signatures. We reserve this for future work!
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Figure 3. Signature SNR in the presence of ad-
ditive white image noise. Each curve corresponds
to the signature for a prototype junction: 1

2
-line

(dashed); line (solid); corner (dots); T-junction (◦);
cross (+); Ψ-junction (∗).

cal image content. These preliminary tests indicate
that the signature is fairly robust, although extensive
testing is still necessary to quantify this.

We have described a rotation-invariant pattern signa-
ture that is unique, stable, and reasonably efficient.
The signature may be built on the Fourier components
up to any order, but does not rely on any of these com-
ponents being nonzero.
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