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The recovery of motion information from visual input is an important task for both natural and artificial vision
systems. The standard approach to representing motion information is via the image velocity field: that is, the
projection of the motion of points in the three-dimensional world onto the image plane. As an approximation to
this, computer vision techniques typically compute an estimate of the motion field from the spatial and temporal
variations of image brightness. This field of approximate velocities is known as the “optical flow”.

One common source of difficulty in optical flow estimation systems is temporal aliasing. Motion picture and
video imagery is typically sampled below the Nyquist rate in time. Filter-based (including differential) algorithms
will typically give erroneous results in these situations. For optical flow algorithms based on matching, the errors
appear as “false matches”.

A number of authors have developed “coarse-to-fine” processing strategies for handling the temporal aliasing
problem in the context of motion estimation [7, 9, 5, 1]. These algorithms are typically efficiently implemented using
“image pyramids” [3]. The motivating concept in these approaches is that the aliasing only affects the high spatial
frequencies of the input sequence. Thus, one can accurately estimate image velocities of a spatially lowpass-filtered
copy of the input imagery. These estimates may then be used as initial guesses for estimating the motion at finer
scales. Alternatively, one can “undo” the motion in finer scale images by warping these images according to the
velocity estimated from a coarser scale. The velocity field of the warped images may then be computed and added
as a correction term to the current estimate. This process may be repeated recursively until one reaches the finest
scale of the input imagery. Multi-scale approaches also provide an efficient means of imposing regularization or
smoothness constraints in the optical flow problem [4, 8].

One shortcoming of the coarse-to-fine approaches mentioned above is that if the coarse scale estimate is incorrect
by a substantial amount, the finer scales will be unable to recover from these errors. To correct this, we must have
knowledge of the uncertainty in the coarse-scale estimates. We have developed a filter-based coarse-to-fine algorithm,
which includes an explicit model for the errors in the estimator. The details of the algorithm are described in [11].
We give the basic solution here.

We define a state evolution equation for the image velocity field, ~v, with respect to scale:

~v(l + 1) = E(l)~v(l) + ~n0(l); ~n0(l) � N (0;Λ0)

where l is an index for scale (larger values of l correspond to finer scales). Note that indices for spatial and
temporal position are implicit. E(l) is a linear interpolation operator used to extend a coarse scale flow field to finer
resolution. 1 ~n0 is a random variable that represents the uncertainty of the prediction of the fine-scale motion from
the coarse-scale motion. We assume that the ~n0(l) are pointwise independent, zero-mean, and normally distributed.

We also define a measurement equation, based on the standard brightness gradient constraint [6]:

�ft(l) = ~fs(l) � ~v(l) + (n2 + ~fs(l) � ~n1);

where ~fs(l) is the spatial gradient of the image and ft(l) is its temporal partial derivative. This constraint holds at
each point in space and time (again, spatial and temporal indices are implicit). The uncertainty model, described
in [10], incorporates both an additive and a multiplicative noise term. We again assume that the random variables
~n1 and n2 are zero-mean, independent and normally distributed.

Given these two equations, we may derive the optimal estimator for ~v(l+ 1), the velocity at the fine scale, given
an estimate for the velocity at the previous coarse scale, �~v(l), and a set of fine scale derivative measurements. The
solution is in the form of a standard Kalman filter, but with the time variable replaced by the scale, l:

�~v(l + 1) = E(l)�~v(l) +K(l + 1)�(l+ 1)
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1If the algorithm is implemented using a pyramid data structure, images at coarser scales will be represented at lower resolution.
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Λ0(l + 1) = E(l)Λ(l)E(l)T + Λ0;

where �(l) corresponds to an innovations process.

One important modification must be made to the standard form. We cannot compute the derivative measurements
at scale l without making use of the velocity estimate at scale l�1, due to the temporal aliasing problem. Therefore,
we must write �(l) in terms of derivatives of the warped sequence. We can view the definition of the innovations
process � as a temporal partial derivative of the warped sequence:

�(l + 1) = �ft(l + 1)� ~fTs (l + 1)E(l)�~v(l)
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Wff(l + 1); E(l)�~v(l)g;

where the operator Wfg “warps” the first argument (an image) according to the second argument (a vector field).
Thus, the innovations process is computed as the temporal derivative of the image at scale l + 1, after it has been
warped with the interpolated flow field estimate from scale l.

We have implemented this algorithm using a “Gaussian image pyramid” multi-scale data structure [3]. In
order to make the solution computationally feasible, we ignore the off-diagonal elements in Λ0(l + 1) (i.e., the
correlations between adjacent interpolated flow vectors). We have applied the algorithm to a number of synthetic
image sequences, including the realistic “Yosemite” sequence which was generated by texture-mapping an aerial
photograph onto a range map. The results are excellent, and compare quite favorably to those reported in a recent
experimental comparison of optical flow techniques [2].
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