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Abstract

We describe a new form of representation of image velocities, which does not
rely on vector �elds. For each local spatio-temporal region of the input image,
we desire a function over the space of velocities describing the presence of a given
velocity in that region. This function may be interpreted as a probability distri-
bution over velocity, although it is not necessary to do so. A primary advantage of
this representation is that it is capable of representing more than one velocity at
a given image location. A multi-modal distribution indicates the presence of mul-
tiple motions. Such situations occur frequently in natural scenes near occlusion
boundaries, and in situations of transparency.

We develop an example of this type of representation through a series of mod-
i�cations of current di�erential approaches to motion estimation. We de�ne an
angular version of the standard gradient constraint equation, and then extend this
to represent multiple motions. The derivation is �rst done for one-dimensional
signals and then extended to two dimensions.

We implement an e�cient version of this distributed representation, in which
the entire distribution may be interpolated from a sparse set of samples. We then
demonstrate its use on simple synthetic examples containing occlusion boundaries
and transparent surfaces.

Keywords: motion, optical ow, representation, distributions, sampling, interpola-
tion, occlusion, transparency, multiple motions.



1 Introduction

Visual motion provides a rich source of information about the environment for both

natural and machine visual systems. In both cases, it is generally assumed that the �rst

stage of motion processing is the computation of the image velocity �eld: that is, the

projection of the motion of points in the three-dimensional world onto the image plane.

As an approximation to this, computer vision techniques typically compute an estimate

of the motion �eld from the spatial and temporal variations of image brightness. This

�eld of approximate velocities is known as the \optical ow".

Despite the fact that an enormous amount of research e�ort has been devoted to

the problem of optical ow estimation, current techniques are notoriously error-prone.

In particular, several commonly occurring conditions seem to cause trouble for most

algorithms:

1. Velocities cannot be uniquely determined for regions containing no structure, or

one-dimensional structure. The presence of noise causes many algorithms to be

unstable in these regions.

2. Many approaches rely on an assumption of intensity conservation. This is fre-

quently violated in real image sequences, due to changes in lighting or non-trivial

reectance functions.

3. Almost all approaches assume that a single velocity vector is su�cient to describe

the motion at each point in space and time. This assumption is often violated

in natural scenes. For example, in regions that are rotating or expanding (i.e.,

regions of high divergence or curl), at occlusion boundaries, and in the presence of

transparent surfaces or highlights.

In light of the �rst problem, many authors have suggested that optical ow compu-

tations should be augmented by the computation of \con�dence" measures [1, 18, 9, 2].

More recently, some authors have developed estimation-theoretic approaches that com-

pute covariance matrices [25, 24, 26], which serve as a two-dimensional con�dence mea-

sure.

In this paper, we will re-examine the measurement and representation of motion in
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the image plane. We argue that it is the vector-�eld representation that is the source

of the di�culty. Given that scene motion at a point is often not adequately described

by a single motion, the vector representation is a violation of what Marr referred to

as the \principle of least commitment" [17]. As an alternative, we advocate distributed

representations of motion, in which the encoding of image plane velocity is implicit. The

reader should have in mind the computation of a probability distribution (over the space

of velocities) for each patch of the image, although this interpretation is not necessary.

In previous work, we derived Gaussian probability distributions of optical ow based

on the standard gradient constraint and a simple model of measurement and state

noise [24]. These distributions are unimodal, and thus have a fundamental assumption

of unique velocity description. In this paper, we will develop distributed representations

that are no longer restricted to unimodality, thus allowing us to robustly represent multi-

ple motions that occur near occlusion boundaries, in regions of strong divergence or curl,

and in transparently moving imagery. This work is an extension of [23], in which we pro-

posed a mechanism for computing multimodal velocity distributions for one-dimensional

imagery. This generalized computational algorithm operates by �rst applying a set of

spatio-temporally oriented linear �lters, and squaring their outputs. These responses

correspond to a sampled representation of local image spatio-temporal energy. These

outputs are then linearly combined to produce a sampled distribution over the space of

velocities. These two stages are illustrated in �gure 1. We will demonstrate the use of

this representation on a set of simple synthetic images.

2 Di�erential Measurements and Regression

We begin with a description of �rst order di�erential motion estimation. Since velocity

is a di�erential quantity, it is not surprising that one approach to its computation is

through derivative measurements. Many authors have used this approach or variants of

this approach [15, 5, 8, 13, 16, 27]. For simplicity we will introduce the problem using

one-dimensional signals, extending to two dimensions in the next section.
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Figure 1: Two-stage algorithm for computing a distributed representation of motion.

Depicted on the left is the original temporal sequence of images. In the center is a

distribution over spatio-temporal frequency, corresponding to a small spatial patch of

the input signal. On the right is a distribution over velocity. Each of these distributions

may be interpolated from a small number of samples: we show the full distributions

here.

Gradient Formulation

The standard gradient formulation of the optical ow problem is based on an assumption

of intensity conservation over time. That is, changes in the image intensity are due only

to translation of the local image intensity and not to changes in lighting, reectance,

etc. According to this assumption, the total derivative of the image intensity function

should be zero at each position in the image and at every time. We write the image

intensity signal as a continuous function of position and time: f(x; t). Setting the total

derivative of intensity with respect to time equal to zero gives the gradient constraint:

fx(x; t)v(x; t) + ft(x; t) = 0; (1)

where fx and ft are the spatial and temporal partial derivatives of the image f , and v is

the instantaneous optical ow (at the position and time that the derivatives have been

computed).

Equation (1) can only be solved for v at positions where the spatial derivative, fx, is

non-zero. Following the solution of Lucas and Kanade [16], we can avoid these singular-

ities by writing a least-squares error function based on the combination of constraints
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from a small spatial patch:

E(v) =
X
i

wi

h
~fs(xi; t)v + ft(xi; t)

i2
: (2)

In practice, the signal f(x; t) is typically discretized, and thus the computation of

derivatives involves (at least implicitly) an intermediate interpolation step with a contin-

uous function c(~r). The derivative of the interpolated function must then be re-sampled

at the points of the original sampling lattice. The sequence of operations may be written

for a one-dimensional signal as follows:

df

dx
(n) �

"
d

dx

 X
m

f(m)c(x�m)

!#
(n)

=

"X
m

f(m)
dC

dx
(n�m)

#

= f(n) � gx(n);
where we assume unit sample spacing in the discrete variables n and m for simplicity.

Thus, the derivative operation may be computed in a single step as convolution with

a �lter, gx(n), which is the sampled spatial derivative of the continuous interpolation

function c(~r). Furthermore, the interpolation function need not be a lowpass �lter, but

could act as a subband \pre�lter", emphasizing some spatio-temporal frequencies at the

expense of others.

Frequency Domain Regression

Additional insights about the estimation of motion may be gained by considering the

problem in the Fourier domain. We represent a one-dimensional signal over time as a

\space-time" intensity image, in which the intensity of each pixel corresponds to the value

of the signal at a particular location and time. A uniformly translating one dimensional

signal has the appearance of a striped pattern, where the stripes are oriented at an angle

of � = arctan v. Clearly, the Fourier decomposition of this signal is a set of sinusoids of

this same orientation, and varying wavenumber (spatial frequency magnitude). Thus,

the Fourier transform will have power only on a line through the origin at angle �+ �
2 .

This is illustrated in �gure 2.

This example suggests an alternative approach to the measurement of optical ow:

to search for the line that best �ts the power spectrum of the spatio-temporal signal. In
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Figure 2: The Fourier spectrum of a translating pattern lies on a line in the frequency

domain. On the left is a space-time intensity image of a translating fractal noise signal.

On the right, its power spectrum, plotted over the ranges !x; !t 2 [��; �].

practice, the entire image is seldom translating. One is therefore interested in a measure

of the local power spectrum. This concept was used by Heeger [12] to develop a regression

algorithm for the computation optical ow. He made local measurements of the power

spectrum using a set of Gabor functions tuned for di�erent spatio-temporal frequencies,

and then computed a least-squares regression estimate to �nd the best-�tting plane to

account for the measurements. Watson and Ahumada [28], Fleet and Jepson [9], and

Gryzwacz and Yuille [11] have also used spatiotemporal �lters to compute optical ow

velocities.

A fundamental problem with each of these previous �ltering approaches is that the

velocity estimates depend on the local spatial content of the signal. In particular, each

of these techniques gives the wrong velocity for moving sinusoidal gratings that are not

matched to the optimal spatial frequency of the �lters. This problem is a result of the

choice of �lters: a proper choice of �lters allows an estimate of velocity that is unbiased

by the spatial frequency of the signal.

Speci�cally, a set of �lters that produce an unbiased estimate are the derivative �lters

discussed previously. In previous work, we have shown that the gradient approach may

be viewed as a spatio-temporal regression analysis much like that described above [23,

22]. Consider the energy function given in equation (2) with the summation occurring
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over the entire image:

E(~v) =
X
~x

jvgx � f + gt � f j2

=
X
~!

jvG(~!)F (~!)!x +G(~!)F (~!)!tj2

=
X
~!

[v!x + !t]
2 � jG(~!)F (~!)j2 (3)

where the sum on the �rst line is over all image pixels and the sums on the latter two

lines are over all spatio-temporal frequencies, ~! (we have used Parseval's rule to switch

to the frequency domain). We have also used the fact that the Fourier transform of

a directional derivative operator is a unit slope ramp function in the direction of the

derivative.

The term in square brackets is the squared !t-distance between the point ~! and

the line de�ned by v!x = �!t. This equation is a least-squares linear regression error

function in v, weighted by the pre�ltered image power spectrum, jG(~!)F (~!)j2. It is

easy to see that the error function will be zero at v = !t=!x for a sinusoidal input with

spatial and temporal frequencies (!x; !t). In addition to giving the correct solution for

sinusoidal input patterns, the gradient �lters have the added advantage that the solution

is analytic. Previous spatio-temporal �ltering solutions required numerical optimization.

Angular Regression

The regression equation (3) given above measures errors in the !t direction. Thus, all

orientations in space-time are not treated equally. In order to extract the essential aspect

of the constraint equation, we will be more interested in measuring angular errors.1

To this end, we will rewrite the gradient constraint in the frequency domain with the

angular and radial portions separated. First, we extract the angular portion of the

velocity dependence:

E(~v) =
�p

v2 + 1
�2X

~!

[v̂ � ~!]2 jG(~!)F (~!)j2 (4)

=
�
v2 + 1

�X
~!

[Dv̂(~!)]
2 jG(~!)F (~!)j2; (5)

1Other regression error measures are also possible. For example, Shizawa and Mase [20] use the

perpendicular distance to the line.

6



where v̂ is the normalized angular velocity vector de�ned by v̂ = (v; 1)T=
p
v2 + 1, and

Dv̂(~!) = v̂ �~! is (the Fourier transform of) the directional derivative in the v̂ direction. v̂

is sometimes called a \steering" vector. The �rst parenthesized expression containing v

does not depend on ~!, and so has been removed from the sum. This expression provides

a weighting on the space of v, giving preference to those v with small magnitude.

Now, we also separate the radial portion of the dependence on ~!:

E(~v) =
�
v2 + 1

�X
~!

[v̂ � !̂]2 jG0(~!)F (~!)j2 (6)

=
�
v2 + 1

�X
~!

[Cv̂(~!)]2 jG0(~!)F (~!)j2; (7)

where !̂ = ~!=j~!j, G0(~!) = j~!jG(~!), and Cv̂(~!) = Dv̂(~!)=j~!j is a directional cosine

function: the cosine of the angle between the normalized vectors v̂ and !̂. The point of

writing this is to separate the computation into three components:

1. jG0(~!)j2, a spatio-temporal pre�lter (i.e., a weighting factor on the signal spec-

trum),

2.
P

~! [Cv̂(~!)]2, a purely angular component, and

3. (v2 + 1), a weighting factor in the velocity domain.

In the expression of equation (7), the second (angular) component provides the con-

straint that links the velocity to the derivative measurements. This constraint is at the

heart of most di�erential algorithms. We will use this constraint as the basis for our

distributed representation. To emphasize this, we de�ne an angular regression function

A(v̂) by removing the velocity and spectral weighting factors:

A(v̂) =
X
~!

[Cv̂(~!)]2 jF (~!)j2: (8)

3 Distributed Representation of Motion

In this section, we develop the concept of distributed velocity representation. The angu-

lar regression function in equation (8) is in fact a distributed representation of motion:
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for each candidate v, it computes an error measure which tells us whether the velocity

is consistent with a given set of directional derivative measurements.

The value of the function will be low for velocities that are well-supported. This is

because the gradient algorithm operates by �nding a directional derivative with minimal

response. In the frequency domain, recall that the power spectrum of a translating

pattern lies on a line. The directional derivative perpendicular to this line will have a

zero response. Thus, the standard gradient algorithm may be termed a \null-steering"

algorithm.

We wish to write the distribution such that it has a maximum at the correct velocity.

In order to accomplish this, we note that the sum of the squared directional cosine in

direction v̂ and the squared directional cosine in the perpendicular direction is unity:

[Cv̂(~!)]2 + [C�v(~!)]2 = cos2(�) + sin2(�) = 1;

where �v is the unit vector perpendicular to v̂, and � is the angle between v̂ and !̂. Thus,

minimization of [Cv̂(~!)]2 is equivalent to maximization of [C�v(~!)]2. Using this fact, we

can write a \max-steering" angular error function as:

A+(v̂) =
X
~!

[C�v(~!)]2 jF (~!)j2:

This function will respond to the presence of the line rather than the absence. 2

Finally, we would like to convert back to a distribution on the space of velocities, v.

If we are interested in using the distributions as probability density functions (i.e., if we

will be integrating functions against them), then we must include a Jacobian weighting

factor in the conversion:

P(v) =

�����@�v@v
�����A(�v)

=
1

v2 + 1

X
~!

[C�v(~!)]2 jF (~!)j2:

Note that in order to interpret these as probability distributions, we must also include

a normalization factor of
P

~! jF (~!)j2.
2There are other ways to accomplish this. For example, one could negate and exponentiate the

expression to produce a Gaussian distribution as in [24].
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Distribution Sampling and Interpolation

The previous equation gives a functional form for the distributed representation of ve-

locity. In practice, one does not wish to compute and store the value of this function for

at a large number of v values and for each point in space-time. In this section, we show

that in fact, the distribution may be interpolated from the values taken at a few sample

points.

Consider the directional cosine measurements:

C�v(~!)F (~!) = �v � !̂F (~!)
= �vx

!x
j~!jF (~!) + �vt

!t
j~!jF (~!):

This expression is a sum of two directional cosines:

C�v(~!)F (~!) = �vxCêxF (~!) + �vtCêtF (~!) (9)

where êx and êt are the unit vectors along the !x and !t axes. In other words, the

directional cosine in any direction may be computed as a linear combination of the di-

rectional cosines along the axes. Also, for a �xed set of directional cosine measurements,

the distribution P(v) has the form of a squared cosine function. It is therefore always

unimodal. This is illustrated in �gure 3.

Freeman and Adelson have developed a theory of such functions, which they call

\steerable" [10]. They describe a sampling theorem in orientation and derive the in-

terpolation functions that are used to synthesize the response of a �lter at a desired

orientation from the responses at some �xed set of orientations. Others have also worked

on the analysis of orientation using rotationally-invariant operators (eg., [14, 19]).

We can take the interpolation in equation (9) one step further, and compute the value

of the distribution P(v) at any v from three precomputed measurements. Consider the

square of the directional cosine:

X
~!

[C�v(~!)F (~!)]2 =
X
~!

j(�vx!x + �vt!t)F (~!)j2

= �v2x
X
~!

h
!2
xjF (~!)j2

i
+ 2�vx�vt

X
~!

h
!x!tjF (~!)j2

i
+ �v2t

X
~!

h
!2
t jF (~!)j2

i
:(10)

Thus P(v) may be computed as a linear combination of the three quadratic measure-

ments corresponding to the three summations in the equation.
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We can write this as a linear combination of samples of P(v) by solving three simul-

taneous linear equations: 0
BB@
P(v1)
P(v2)
P(v3)

1
CCA = M � ~Q

where the ~vi are three arbitrary but �xed choices of v, and

M =

0
BB@
�v21x 2�v1x�v1t �v21t

�v22x 2�v2x�v1t �v22t

�v23x 2�v3x�v1t �v23t

1
CCA

and ~Q is a vector of the three quadratic measurements from equation (10). Assuming

the ~vis are suitably chosen, we can invert the matrix M , and use it to solve for P(v):

P(v) =

0
BB@

�v2x

2�vx�vt

�v2t

1
CCA
T

�M�1 �

0
BB@
P(v1)
P(v2)
P(v3)

1
CCA

That is, P(v) may be written as a linear combination of the three values of P(vi). This
sparse sampling of the v provides a complete representation of the function P(v).

Not only does this allow more e�cient storage and computation of the distributions,

it has a natural interpretation in terms of biological visual systems. One can postulate

three tuned \units" that compute the values of the the three P(vi). Later stages of the
computation may access the value of P(v) for any v by simply computing a weighted

sum of these three values.

Multi-modality: Higher Order Distributions

Nearly all previous techniques for analyzing motion attempt to compute a single motion

at each point in space and time. But in naturally occurring scenes, there are often

regions that are not adequately described in this way. The most common example is

that of occlusion boundaries. In the neighborhood of such a boundary, there are two

motions. Another common example is that of transparent surfaces. Since the operators

used to compute velocity are of some �nite size, the problem will arise whenever there

are changes in the motion �eld that are abrupt compared to the size of the operators.

Biological systems also provide inspiration for addressing this problem: humans can
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Figure 3: Illustration of the computation of the distribution over velocity space. On

the top is a space-time translating one-dimensional noise signal, and its power spectrum,

plotted over the range [��; �]. Below is the power spectrum of a directional derivative

�lter at an arbitrary angle. On the right is the resulting distribution over � = arctan(v).

Conceptually, the distribution is computed by rotating the derivative �lter through all

angles �, and computing the inner product of the its power spectrum with that of the

signal.
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clearly \see" multiple motions at a point, and have no trouble distinguishing the motion

of transparently moving sheets.

Some authors have tried to handle this by using higher-order expansions of the motion

�eld (e.g., a�ne models [4, 7]). Shizawa and Mase [20, 21], and Bergen et. al. [3] have

described algorithms for explicitly computing two motion vectors at each point in the

scene.

We take a di�erent approach here. In the previous section, we described the com-

putation of a unimodal distribution function over the space of all velocities, v, for each

point in space and time. We showed that the unimodality of the solution was a property

of the use of �rst derivative (or directional cosine) �lters: the space spanned by these

particular linear operators is only capable of representing a single velocity.

In order to represent multiple motions, we need a set of �lters that are more nar-

rowly tuned in orientation. To this end, we can make use of higher order directional

derivatives (or powers of directional cosines). In the frequency domain, we simply raise

the directional cosine function to the Nth power:

PN (v) =
1

v2 + 1

X
~!

h
CN�v (~!)

i2 jF (~!)j2

=
1

v2 + 1

X
~!

[�v � !̂]2N jF (~!)j2

=
1

v2 + 1

X
~!

�����F (~!)
NX
n=0

�
N !

n!(N�n)!

�
(v̂x)

n(v̂t)
N�n(!̂x)

n(!̂t)
N�n

�����
2

:

We have written the last expanded equation to emphasize two points. First, the distri-

bution is computed from a set of linear directional cosine measurements. That is, the

Nth directional cosine is computed through a linear combination of measurements. Each

term in the sum corresponds to a measurement of a mixed x and t Nth-order derivative.

Second, although the distribution is no longer quadratic in the components of v̂, it is

still quadratic in these linear measurements.

Many authors have argued that the use of higher-order derivatives for estimating

motion leads to increased noise sensitivity. An Nth order x-derivative �lter, for example,

has a Fourier transform of !N
x and thus will strongly emphasize the high-frequency

content of the signal, which is likely to be dominated by noise. But we have eliminated

this e�ect by replacing directional derivative �lters with directional cosine �lters. The
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Figure 4: Illustration of the computation of the distribution over velocity space. The

signal being analyzed is the same as the one in �gure 3. On the left is the power

spectrum of an example third directional derivative �lter. Four such �lters are used to

analyze the image. On the right is the resulting distribution over � = arctan(v).

spectrum of these �lters is at with respect to frequency magnitude: the importance of

using higher-order �lters is the narrower orientation tuning of the operators.

We must decide how high a derivative order to use. As is often the case in such ques-

tions, there is a tradeo� here. Lower order �lters are more broadly tuned in orientation,

but can generally be made smaller in space. For the examples given in the next section,

we will use third derivatives. Figure 4 illustrates the application of a set of third order

�lters to the example shown previously in �gure 3. Note that the resulting distribution

is narrower than in the �rst derivative example. As an aside, we also mention here the

importance of the conversion to a max-steering algorithm taken earlier in this section. A

null-steering algorithm based on higher order derivatives would perform poorly, because

the minimum is very broad.

Extensions to Two Dimensions: \Donut" Mechanisms

Extending the distributed representation to two dimensions is relatively simple. The

Fourier spectrum of a translating two-dimensional pattern lies in a plane through the

origin in the spatio-temporal frequency domain. Analogous to the one-dimensional case,

the gradient constraint equation may be viewed as a planar regression function:

E(~v) =
X
~v

[vx!x + vy!y + !t]
2 � jG(~!)F (~!)j2 :
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As in one dimension, we can \angularize" this equation:

A(v̂) =
X
~!

[Cv̂(~!)]2 jF (~!)j2;

where the steering vector is now de�ned as v̂ = (vx; vy; 1)T=
q
jvj2 + 1.

This is again a null-steering function: it has a minimum when the directional cosine

function nulls the plane containing the spectrum of the moving image. To convert this

expression into a max-steering expression, we must search for the presence of the spectral

plane. As in the one-dimensional case, the sum of squares of the directional cosines along

a set of three orthogonal axes is unity:

[Cv̂(~!)]2 + [C�v(~!)]2 + [C��v(~!)]2 = 1;

where we de�ne (without loss of generality) �v = v̂ � êx, and ��v = v̂ � �v. Thus the

squared directional cosine in the direction of v̂ is just one minus the sum of the squared

directional cosines in the �v and ��v directions. Analogous to the one-dimensional case, we

de�ne a max-steering function as follows:

A+(v̂) =
X
~!

jC�v(~!)F (~!)j2 +
X
~!

jC��v(~!)F (~!)j2

That is, the value is computed as a sum of squared responses of two directional cosines

lying in the plane perpendicular to the normalized candidate velocity vector. We em-

phasize that this does not imply that we must measure all possible directional cosines.

These may be interpolated from a small set of �xed measurements. This sum of the two

�lters in the plane will form a smooth ring or \donut", bisected by the plane; thus we

call it a \donut mechanism". This construction is illustrated in �gure 5.

The maximal-steering version of the gradient algorithm may now be extended to

higher order derivatives by raising the directional cosines to the Nth power. One com-

plication arises in the two-dimensional case: if we simply raise our two directional cosines

to the Nth power, they will no longer cover the plane evenly. In fact, we require a set of

(N +1) Nth derivatives to cover the plane uniformly. We de�ne a set of equally-spaced

directions as:

v̂i = cos
�

2�i

N + 1

�
�v + sin

�
2�i

N + 1

�
��v:
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Figure 5: Illustration of the gradient algorithm as a \max-steering" solution. The

\velocity energy" surface is computed by adding up the power response of two direc-

tional derivatives lying in the spatio-temporal frequency plane corresponding to a given

velocity. Illustrated is an instance of such a plane, and idealized level surfaces of the

power spectra of two such derivative �lters. Note that the level surfaces of the sum of

the two will form a smooth ring or \donut", bisected by the plane.
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Figure 6: Illustration of the \donut" mechanism, based on third derivatives. A ring

of third derivatives lying on the plane corresponding to a particular velocity are used

to measure evidence for the presence of that velocity. These directional derivatives are

computed e�ciently via interpolation from a �xed set of derivatives. Note also that a

level surface of the sum of power spectra of these �lters produces a smooth torus: they

are depicted here as spherical to indicate their locations.

The generalized error function now looks like:

PN(~v) =

�����@�v@~v
�����
X
~!

NX
i=0

[C�vi]2 jF (~!)j2

=
1q

j~vj2 + 1
3

X
~!

jF (~!)j2
NX
i=0

[C�vi]2 ; (11)

where we have included the Jacobian weighting factor. This is a sum of squares of Nth

directional cosines lying in the plane corresponding to the vector ~v. This construction

is illustrated in �gure 6, for a set of third derivative �lters.

4 Examples

We implemented a set of third derivative �lters, based on a Gaussian pre�lter. The

advantage of Gaussians is that they are both circularly symmetric and separable. Thus,

they don't introduce angular biases, and the convolution operations may be performed
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e�ciently. The �lters were applied to a set of synthetic imagery and the outputs used to

construct distributed representations of motion. Third directional derivative measure-

ments (or directional cosines raised to the third power) may be interpolated from the

set of ten separable third derivative measurements. The squares of these may thus be

interpolated from a set of the 55 possible quadratic combination terms.

Figure 7 illustrates the behavior of the distributed mechanism in three prototypical

singularity situations. The input signal is a moving square (white on a black back-

ground). Near the corners, there is su�cient local information to completely constrain

the two-dimensional velocity. The response of the mechanism is a fairly localized peak

of activity in ~v space. The mean of the distribution is at the location of the correct

velocity, but this is not generally true of the peak of the distribution. Note that if we

were to leave out the Jacobian factor in equation (11), then the peak would be at the

correct velocity.

On the sides of the square, there is a one-dimensional singularity: the motion along

the boundary cannot be determined using purely local measurements (this is known as

\the aperture problem"). Thus, the resulting velocity distribution is elongated in the

direction of the edge. In the center of the square, there is no intensity variation and so

there is a full two-dimensional singularity. Here, the distribution is at.

Figure 8 illustrates the behavior of the mechanism near an occlusion boundary. The

input signal consists of two sheets of white noise, drifting in opposite directions, with the

left one occluding the right one. The occlusion boundary is in the center of the image.

The velocity distribution near the occlusion boundary is bimodal.

Figure 9 shows the behavior of the mechanism in the presence of additively trans-

parent surfaces. Two fractal noise patterns moving in di�erent directions are additively

superposed. Again the velocity distribution is bimodal.

Finally, we show the response of the mechanism to transparently moving random

dots in �gure 10. Again, the response is bimodal.
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Figure 7: Response of the mechanism in several regions of a moving square sequence.

In the corner, the velocity is well de�ned, and the distributed response is a well-localized

\lump". On the side, the velocity is only constrained in the direction normal to the

edge, and the distributed response is a ridge. In the center, the velocity is completely

unconstrained, and the distributed response is at.
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Figure 8: Response of the mechanism near an occlusion boundary. On the left is

an illustration of the synthetic image sequence. The sequence consists of two white

noise patterns, displayed on the right and left sides of the image, such that the left

one occludes the right one. The patterns move in opposite directions at a speed of one

pixel/frame. The white line separating the two patterns is for �gure clarity and is not

part of the image sequence. On the right is the bimodal response of the distributed

third derivative mechanism located at the occlusion boundary.

vx

vy

Figure 9: Response of the mechanism in the presence of additive transparency. On the

left is an illustration of the synthetic image sequence, which consists of two additively

combined fractal noise patterns moving in di�erent directions (one upward, the other

down and to the right). The white line separating the two patterns is for �gure clarity

and is not part of the image sequence. On the right is the bimodal response of the

distributed third derivative mechanism located in the center of the image.
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Figure 10: Response of the mechanism to interspersed moving dot patterns. trans-

parency. On the left is an illustration of the synthetic image sequence, which consists

of two random dot patterns that have been combined using a logical \or" operation.

The white line separating the two patterns is for �gure clarity and is not part of the

image sequence. On the right is the bimodal response of the distributed third derivative

mechanism located in the center of the image.

5 Discussion

We have developed a distributed representation of image motion that is capable of lo-

cally analyzing regions of a scene containing multiple velocities. We derived a general

mechanism for computing these distributions based on the angular portion of the gradi-

ent constraint equation. The computation is based on a set of higher-order directional

cosine measurements. The mechanism may be implemented e�ciently by interpolation

from a sparse set of samples: these interpolation functions are computed analytically.

The derivations in this paper are based on an angular version of the di�erential

motion constraint equation. This angular formulation lends itself more easily to the

multi-modal extensions proposed, and simpli�es the discussion of interpolation. We do

not claim that the angular error function is actually preferable to the standard temporal-

frequency error function, although it may prove to be so. Regardless, the methods

presented in this paper may be applied (although not as easily) to the standard velocity

constraint equation. This work will be described in future publications.

The concepts presented in this paper suggest many interesting directions for research.
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There are numerous variants of the general distributed representation framework pre-

sented here. Di�erent choices of the pre�lter and of the velocity weighting terms in

equation (7) will produce distributions with di�erent characteristics. The choice of pre-

�lter should be based partly on the noise properties of the measurements and knowledge

of the input signal spectrum (eg., the pre�lter could be chosen as a Wiener �lter). The

velocity weighting may be interpreted as a sort of \prior" probability, giving preference

to some velocities that are considered to be more likely (eg., smaller speeds).

More importantly, these distributed representations may be incorporated into prac-

tical problems in image processing and computer vision. One simple example is that

of frame interpolation (or prediction): if we interpret the distributions as probability

distributions, we can use these to generate an estimate of the expected content of an

intermediate frame, given the surrounding frames. Simple ow-based algorithms would

perform poorly at this task in the presence of multiple motions. We expect that the

distributed representation should also prove useful for segmenting or grouping scenes

according to coherency of motion [6].
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