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Abstract

This thesis describes some new approaches to the representation and analysis of visual motion,
as perceived by a biological or machine visual system. We begin by discussing the computation
of image motion �elds, the projection of motion in the three-dimensional world onto the two-
dimensional image plane. This computation is notoriously di�cult, and there are a wide
variety of approaches that have been developed for use in image processing, machine vision,
and biological modeling. We show that a large number of the basic techniques are quite similar
in nature, di�ering primarily in conceptual motivation, and that they each fail to handle a set
of situations that occur commonly in natural scenery.

The central theme of the thesis is that the failure of these algorithms is due primarily to
the use of vector �elds as a representation for visual motion. We argue that the translational
vector �eld representation is inherently impoverished and error-prone. Furthermore, there is
evidence that a direct optical ow representation scheme is not used by biological systems
for motion analysis. Instead, we advocate distributed representations of motion, in which the
encoding of image plane velocity is implicit.

As a simple example of this idea, and in consideration of the errors in the ow vectors, we
re-cast the traditional optical ow problem as a probabilistic one, modeling the measurement
and constraint errors as random variables. The resulting framework produces probability dis-
tributions of optical ow, allowing proper handling of the uncertainties inherent in the optical
ow computation, and facilitating the combination with information from other sources. We
demonstrate the advantages of this probabilistic approach on a set of examples. In order to
overcome the temporal aliasing commonly found in time-sampled imagery (eg, video), we de-
velop a probabilistic \coarse-to-�ne" algorithm that functions much like a Kalman �lter over
scale. We implement an e�cient version of this algorithm and show its success in computing
Gaussian distributions of optical ow for both synthetic and real image sequences.

We then extend the notion of distributed representation to a generalized framework that
is capable of representing multiple motions at a point. We develop an example representation
through a series of modi�cations of the di�erential approach to optical ow estimation. We
show that this example is capable of representing multiple motions at a single image loca-
tion and we demonstrate its use near occlusion boundaries and on simple synthetic examples
containing transparent objects.
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Finally, we show that these distributed representation are e�ective as models for biologi-
cal motion representation. We show qualitative comparisons of stages of the algorithm with
neurons found in mammalian visual systems, suggesting experiments to test the validity of the
model. We demonstrate that such a model can account quantitatively for a set of psychophys-
ical data on the perception of moving sinusoidal plaid patterns.

Thesis Supervisor: Edward H. Adelson
Title: Associate Professor, MIT Media Laboratory
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Chapter 1

Introduction

Vision is arguably the most important of our senses. Visual images and the dynamic evolution

of those images provide enormous amounts of information about our surrounding environment.

By observing changes in a scene over time, we can discover the three-dimensional structure

of the scene, make predictions about collisions, and infer material properties of objects, such

as their sti�ness and transparency. Much of this information is revealed by the motion of

the di�erent parts of the scene. In this thesis, we will explore the problem of extracting,

representing and analyzing the motion in visual scenes.

Why should we be interested in the study of visual motion? Aside from basic scienti�c

curiosity, there are two primary motivating forces. Because of the richness of motion as an

information source, analysis of visual motion is essential for many practical applications. These

range from image-processing problems such as e�cient coding or enhancement of motion pic-

tures, to passive machine vision problems such as determining the shape of a moving object or

recovering the motion of the camera relative to the scene, to active perception applications in

which an autonomous agent (i.e., a robot) must explore its environment.

As a second motivation, we would like to understand the motion processing performed by

biological visual systems. Most biological organisms inhabit an ever-changing environment.

Sensing, processing and acting upon these changes is often essential for survival. There is an

abundance of evidence that biological visual systems { even primitive ones { devote considerable

resources to the processing of motion. Although the processing constraints in a biological

system are somewhat di�erent than those in an arti�cial vision system, each must extract

motion information from the same type of intensity signals.

The past few decades have seen an increase in the conceptual overlap and collaboration

between the biological and the machine vision communities. I believe there is a potential

for even greater symbiosis between these �elds. Computational approaches to vision can be

13
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Figure 1-1: Illustration of the projection of motion in the three-dimensional world onto a
two-dimensional sensor (or array of sensors).

inspired by our knowledge of biological systems, and in return can provide potential models

for those same systems. I will try to show that although machine and biological solutions for

motion analysis may be based on very di�erent implementations, they may share the same

basic representations and computational algorithms.

1.1 Visual Motion

What do we mean by the phrase \visual motion"? Images are formed as projections of the

three-dimensional world onto a two-dimensional light-sensing surface. This surface could be, for

example, a piece of �lm, an array of light sensors in a television camera, or the photoreceptors

in the back of a human eye. The brightness of the image at each point indicates how much light

fell on the surface at that spatial position at a particular time (or over some interval of time).

When an object in the world moves relative to this projection surface, the two-dimensional

projection of that object moves within the image. The movement of the projection of each

point in the world is referred to as the image velocity or the motion �eld. This is illustrated

in �gure 1-1

For machine vision tasks, the sensing device is usually a motion picture or video camera.

The output of these devices is a series of images. Each of these images, also known as \frames",

is computed by integrating the light hitting the sensor sheet over a small interval of time. The

resulting sequence of images forms what we commonly think of as a \movie", as shown in

�gure 1-2.

The estimation of the image motion �eld, is generally assumed to be the �rst goal of motion

processing in machine vision systems. There is also evidence that this sort of computation is

performed by biological systems. As an approximation to this, computer vision techniques

14
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(2)

 

(3)

 

(4)

Figure 1-2: Four frames from the \I Love Lucy" show. During this particular sequence, Lucy
moves to the left, raising her arms, Ethel moves to the right, and the entire background moves
slowly to the right (the camera is panning). Each small patch of the scene has its own motion.
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typically compute an estimate of the motion �eld known as the \optical ow". The idea is to

measure the apparent motion of local regions of the image brightness pattern from one frame

to the next. In doing this, one is assuming that these intensity patterns are preserved from

frame to frame. As many authors have shown, the optical ow is not always the same as the

motion �eld (eg, [46, 97]).

What do we mean by the phrase \small pieces of image intensity pattern"? We cannot

ask about the motion of an isolated point from one frame to the next without considering the

context surrounding it. That is, we can only recognize the motion of patterns of intensity. On

the other hand, if we ask about the motion of the entire image, we also can not answer the

question, because in general the entire image does not move as a single entity. In the example

in �gure 1-2, the motion of each of the characters (in fact, each of the limbs of each of the

characters) is di�erent, and the background moves (relative to the camera) in yet another way.

The reader may then wonder why we do not try to extract the motion of each object

separately. Many authors have worked on this problem and related problems, but it is a very

di�cult computational task to divide the scene into its component objects. The computational

de�nition of an \object" is the source of the problem. We are interested in solutions that do

not rely on a symbolic interpretation of the scene. Furthermore, such an algorithm will not be

able to handle non-rigid types of motion. For the purposes of this thesis, we will concentrate

on the basic problem of describing the motion of small patches. We view this as a building

block, leading in a bottom-up fashion to more complex analyses of motion.

1.2 Basic Observations

Despite the fact that an enormous amount of research e�ort has been spent on the problem,

estimates of image velocity �elds are notoriously error-prone. In particular, several situations

that occur commonly in natural scenes cause trouble for most optical ow algorithms. We

will give an intuitive explanation of some of these problems here; in later chapters we will give

more precise mathematical descriptions.

Underconstrained Regions

Often there is not enough information in a region to determine the optical ow. For example,

if we are looking at an untextured at surface, we cannot determine how (or even whether) it is

moving. Regardless of the motion of the surface, the image remains constant over time. Since

we are considering techniques that only estimate the motion of small regions, this problem will

occur whenever the image brightness pattern is uniform in the region being considered. We

will refer to this as the \blank wall" problem.
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Figure 1-3: Conceptual illustration of motion situations producing the two type of singularities

and the non-singular situation. At the corners of a moving square, a unique velocity describes
the observed changes in intensity. On the sides, the intensity changes are consistent with a
one-dimensional set of velocities: we can determine the motion perpendicular to the edge, but

not the motion along the edge. This set of consistent velocities corresponds to the dashed line.
In the center of the square, the motion is completely unconstrained.

Similarly, if we are looking at a pattern composed of stripes, then we cannot determine

how fast (or whether) it is moving along the direction of the stripes. If the pattern slides along

the direction of the stripes, the image intensity pattern will not change. Again the pattern

need only be striped within the region being considered. This problem is typically known in

the literature as the \aperture" problem [57]. The \blank wall" and \aperture" singularities

are illustrated in �gure 1-3. We will address these problems in chapter 3.

Non-motion Brightness Changes

As we mentioned above, most algorithms for estimating image motion �elds actually compute

optical ow. The use of optical ow as a substitute for image velocities relies on an assumption

that changes in the intensities in the images are due only to motion. That is, as a point in

the world moves, the image brightness corresponding to that point remains constant. This

assumption is frequently violated in real images. For example, if the lighting is decreasing over

time (eg, the sun goes behind a cloud), then all of the intensities in the image will decrease. 1

More complicated situations arise when the orientation of the surfaces in the world change

1This particular global variation in image brightness has been addressed by some authors (eg. [65]).
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Figure 1-4: Illustration of the \picket fence" (or temporal aliasing) problem. Two frames of a
movie are shown, the �rst below the second. If the motion from one frame to the next is larger
than half the distance between pickets, we see the fence moving in the opposite direction.

relative to the camera and thereby alter the amount of light they reect toward the camera. A

motion estimation system that operates under the assumption of image brightness conservation

will give incorrect answers in these situations. This problem will also be discussed in chapter 3.

Temporal Aliasing

When the input to a motion estimation system is sampled in time (eg, a sequence of movie

frames like the one shown in �gure 1-2), large motions may be di�cult to estimate. Imagine

a �lm of a picket fence moving to the left. If the fence moves slowly relative to the time

between frames, then each picket will move only a small amount from one from to the next,

and a local motion algorithm will be able to correctly recognize this. If the fence moves faster,

however, we will start to see the pickets moving backward. This situation is illustrated in

�gure 1-4, and is known as \temporal aliasing". In the computer vision literature, the related

problem of matching portions of an image or features occuring in two frames is known as the

\correspondence problem" [56]. We will discuss this in detail in section 3.2.

Non-translational Motions

One last but very important problem arises from the assumption that motion of each patch

of image is translational. Almost all approaches to motion �eld estimation assume that a

single velocity vector is su�cient to describe the motion in each local region of space and time.

This assumption is frequently violated in natural scenes: �gure 1-5 illustrates three typical

examples.

Small violations are due to rotating, expanding, or contracting motions, or the motion
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Figure 1-5: Space-time illustrations of three commonly occurring types of non-translational

motion. Each circular window shows a local patch of a one-dimensional binary image over
time (horizontal axis is space and vertical axis is time). Left: a diverging image. Center: an
occlusion boundary, in which two patterns move toward each other, with the right occluding

the left. Right: rightward and leftward moving transparently combined patterns.

of non-rigid objects such as uids or deforming elastic materials (an expanding pattern is

illustrated in the left example of �gure 1-5). In these instances, the problem is the size of

the motion estimation patches. If the regions over which motion is being computed are small

compared to the deviations from translational motion, the motion estimation errors will be

small.

More severe violations occur at occlusion boundaries, and in the presence of transparent

surfaces or highlights (both illustrated in �gure 1-5). For example, consider a small patch

centered on Lucy's nose in the �rst frame of �gure 1-2. Half of the patch will cover a portion

of Lucy's face, and half will cover a portion of the background scenery. Thus the motion of

this patch is complicated, and not properly described by a single displacement, even with very

small patch sizes. In these situations, there is more than one motion occurring within the local

region. In chapter 4, we will explore the representation of multiple motions.

1.3 Thesis Overview

In this thesis, we will re-examine both the measurement and representation of visual motion.

Our goal is to develop a new framework for the representation of motion information that is

mathematically elegant, serves as a basis for biological modeling, and is e�cient and robust

for use in machine vision applications. We will emphasize the representational aspect of the

problem and consider the choice of representation as a fundamental aspect of the computational

theory.
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In chapter 2, we discuss the fundamental issues in motion estimation by describing a set

of standard algorithms for computing optical ow. In particular, we formalize the relationship

between the standard least-squares gradient-based techniques, least-squares matching tech-

niques, the spatio-temporal �ltering models, and the frequency-domain approaches. Each of

these approaches provides some unique insights into the problem of motion �eld estimation.

Remarkably, we show that these algorithms are very similar, and that the primary di�er-

ences lie in the particular choice of initial linear operators. During the course of our compar-

isons, we develop a generalized motion algorithm that lies in the intersection of all of these

techniques. This generalized algorithm performs better than any of the techniques from which

it inherits. Nevertheless, it still su�er from all of the problem sources mentioned in the previous

section.

We argue that it is the displacement vector representation of motion that is the source of

the di�culty. Given that image motion at a point is often not adequately described by a single

translation, the vector representation is a violation of what Marr referred to as the \principle

of least commitment" [56]. For example, in a region of the scene su�ering from the brick-wall

or aperture problem, describing the motion of the region with a single vector is necessarily

arbitrary and misleading, since the motion is not uniquely constrained. On the other hand, in

a region containing multiple motions, no single vector can adequately describe the motion of

the region.

As an alternative, we advocate distributed representations of motion, in which the encoding

of image velocity is implicit. For each small spatial region in the image (and for each time), we

de�ne a \velocity energy" function: Ev(vx; vy; x; y; t), where x; y; t are the spatial and temporal

coordinates of the center of the region, and vx; vy correspond to the two components of a can-

didate velocity. The functional value is large if the candidate velocity is present in that region,

and small if not. The reader should have in mind the computation of a probability distribution

(over the space of velocities) for each patch of the image, although this interpretation is not

necessary.

The computation of this function is achieved in two stages, as illustrated in �gure 1-6.

The �rst stage is based on a set of linear �lters whose outputs are squared and normalized

to produce an estimate of the local spatiotemporal frequency content of the input imagery.

The output of this stage is also a distributed representation that we call \spatio-temporal

energy", E!(!x; !y; !t; x; y; t). In the second stage, these spectral estimates are combined to

form the velocity energy function. In both stages, we show that the entire distribution may be

interpolated from a set of values computed at a small number of sample points.

We will describe two related implementations of distributed motion. In chapter 3, we

extend the basic algorithm of chapter 2 by introducing a model for the measurement noise

and \state" noise in the system. We describe the uncertainty inherent in the computation of
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Figure 1-6: Two-stage algorithm for computing a distributed representation of motion. De-

picted on the left is the original temporal sequence of images. In the center is a distribution over
three-dimensional spatio-temporal frequency, E!(!x; !y; !t;x; y; t), computed in a local patch of
the input signal centered at (x; y; t). On the right is a distribution over velocity, Ev(vx; vyx; y; t),

corresponding to the same local patch. Each of these distributions may be represented by a small
number of samples: we illustrate the full interpolated distribution here.

optical ow through use of a simple Gaussian noise model, and we compute a Bayesian least

squares estimate solution. The output of the algorithm is a set of probability distributions

describing the motion in each patch of the image.

In order to apply this algorithm to temporally sampled imagery, we develop a probabilistic

coarse-to-�ne algorithm that has the form of a Kalman �lter over scale. We show that the

resulting algorithm is useful for traditional optical ow estimation, demonstrating its success

on both synthetic and real image sequences. We also show that the noise model, although

simple, does a reasonable job of accounting for many of the errors in velocity estimation. The

main exception to this is the last of the problems mentioned in section 1.2: non-translational

motions.

In chapter 4, we extend the basic algorithm of chapter 2 further to develop a model that

is capable of representing multiple motions at a given position and time in the image. The

resulting distributions are no longer restricted to unimodality as in the Gaussian noise case of

chapter 3, thus allowing us to represent multiple motions that occur near occlusion boundaries,

in regions of strong divergence or curl, and in transparently moving imagery. We demonstrate

the use of this model on a set of simple synthetic images.

In the �nal chapter (chapter 5), we show that the distributed representations of chapters 3

and 4 provide e�ective models of biological motion perception. We show that the stages

of computation can be qualitatively mapped onto the known physiological behavior of cells

in the mammalian visual system. We also use them to quantitatively account for a set of
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psychophysical data on the human perception of motion. Finally we suggest a number of

physiological and psychophysical experiments that could be used to test the biological relevance

of these types of models.
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Chapter 2

Local Mechanisms for Measuring

Image Motion

Researchers have studied image velocity for nearly 20 years. Although much of the earliest

work is due to television engineers [53, 18] and those working on biological modeling [35, 73],

the �eld today is populated by a wide variety of researchers in Computer Vision and Robotics,

Arti�cial Intelligence, Signal and Image Processing, Communications Engineering, Estimation

and Decision Theory, and many other �elds. Each of these �elds brings a new point of view

and a new set of tools to bear on the problem.

Despite this wide variety of approaches, algorithms for computing optical ow are usually

divided into three categories:

� Matching Techniques. These operate by matching small regions of image intensity

or speci�c \features" from one frame to the next. The matching criterion is usually a

least squares (often called Sum-of-Squared-Di�erence or SSD) or normalized correlation

measure.

� Di�erential Techniques. Also known as \gradient" techniques, these estimate optical

ow vectors from the derivatives of image intensity over space and time. These are

typically derived directly by considering the total temporal derivative of a conserved

quantity.

� Frequency-based or Filter-based Techniques. These approaches are based on

spatio-temporally oriented (i.e., velocity-sensitive) �lters, and are typically motivated

and are derived by considering the motion problem in the Fourier domain. They fall

into two categories { energy-based and phase-based { both of which will be discussed in

section 2.3.
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In this chapter, we will describe some of these approaches to motion analysis. In doing this,

we will have two goals in mind. The �rst is to introduce a set of representative solutions to

the image velocity problem and to formalize the relationships between them. We will consider

approaches that are derived from di�erent motivations in order to understand a set of basic

properties that are desirable in a velocity estimation system. In our discussion, we will not

attempt to give a complete survey of the literature. In particular, we will not devote much dis-

cussion to approaches based explicitly on matching (although these constitute a sizable portion

of the velocity estimation literature) because they tend to be implausible as biological models,

and are usually computationally intensive. Neither will we attempt a thorough experimental

comparison of the techniques we consider. It is very di�cult to generate comparisons that are

both fair and conclusive, although comparative reviews have begun to appear in the literature

(eg, [5, 10]).

Our second goal in this section is to sequentially construct a simple yet powerful general

algorithm for extracting motion information from spatio-temporal imagery. In the course of

considering various approaches to velocity estimation, we will �nd that many of the solutions

are remarkably similar. In particular, we will �nd that many of the standard approaches in the

literature may be written as three simple stages: 1) a linear �ltering (convolution) stage, 2)

a quadratic combination of the linear �lter outputs, and 3) a combination of these quadratic

values to compute a velocity energy surface, and �nd the peak or mean. Perhaps it is not

surprising that many of the approaches turn out to be based on quadratic combinations of

linear measurements since the underlying error analysis is often a least-squares formulation.

Poggio and Reichardt [68] have shown the equivalence of the time-averaged output of all two-

input second-order motion detectors. Brockett [16] has shown that several motion extraction

algorithms (although not those discussed here) may be described in a common least-squares

framework based on Gramians. Some of the work presented in this section has been described

previously in [80, 79, 81, 77].

2.1 Di�erential Techniques

Since velocity is a di�erential quantity, it is natural to consider its estimation through the use

of derivative measurements. In many ways, this is both the simplest and the most elegant

approach to motion estimation. Many authors have used di�erential formulations for motion

analysis, with some of the earliest examples being found in [53, 18, 26, 47, 54].

The prototypical gradient formulation of the optical ow problem is based on an assumption

of intensity conservation over time [46]. That is, changes in the image intensity are due only

to translation of the local image intensity and not to changes in lighting, reectance, etc.

According to this assumption, the total derivative with respect to time of the image intensity

function should be zero at each position in the image and at every time. We write the image
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intensity signal as a continuous function of position and time: f(x; y; t). Setting the total

derivative of intensity with respect to time equal to zero gives the gradient constraint equation:

0 =
df

dt

=
@f

@x
vx +

@f

@y
vy +

@f

@t

= ~fs � ~v + ft (2.1)

where the spatial gradient is written as a vector:

~fs =

 
fx

fy

!
;

fx, fy , and ft are the spatial and temporal partial derivatives of the image f , ~v is the instanta-

neous optical ow vector (at the position and time that the derivatives have been computed),

and the (�) operator indicates an inner product. Note that the constraint is written for a �xed

point in space and time. We have left out the spatial and temporal location parameters in

order to simplify the notation.

Measurement Singularities

The gradient constraint given in equation (2.1) de�nes the relationship between the image

intensities and the optical ow, and is fundamental to the development of the rest of this

chapter. One immediate property of this equation is that it is insu�cient for computing

optical ow, since it provides only a single linear constraint for the two unknown components

of velocity at each point. To state this more intuitively: by formulating the constraint in terms

of �rst derivatives, we are implicitly modeling the signal as locally linear. A one-dimensional

illustration of this is given in �gure 2-1.

In two dimensions, the equation implicitly models the image locally as a plane:

f(~s) � f(~s0) + ~fs � (~s� ~s0); for ~s near ~s0;

where

~s =

 
x

y

!
;

and ~s0 is the location at which the derivatives are measured. Since a plane exhibits only one-

dimensional intensity variation, the velocity solution will su�er from the aperture problem, as

described in the introduction. It is easy to verify that the locus of solutions to equation (2.1)

constitutes a line in the two-dimensional space of all velocities, with de�ning equation

~v =
�ft ~fs
j~fsj2

+ �~f?s ; (2:2)
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Figure 2-1: Illustration of the gradient constraint on image velocity, in one dimensions. Shown

is a one-dimensional intensity signal, and a copy of the signal one time unit later, translated to
the right. The spatial derivative de�nes the slope of a line tangent to the signal at the given
point x0. The temporal derivative measures the change in the signal intensity over time. The

velocity corresponds to the distance the signal has moved.

where we de�ne

~f?s =
1

j~fsj

 �fy
fx

!
; (2:3)

and � is the free variable parameterizing the line. This is illustrated in �gure 2-2.

The �rst term of equation (2.2) is known as the normal velocity, since it is perpendicular to

the local orientation of the signal (as measured by the spatial gradient). The important point

here is that the aperture problem is not due to the content of the image, f , but is inherent in

the gradient measurements. We will therefore refer to this as a \measurement singularity".

We mention one other issue regarding symmetry. The measurement singularity described

above is a one-dimensional singularity. That is, the velocity is only undetermined in one

dimension of the full two-dimensional velocity space. If the spatial gradient of the signal is

zero, however, then the singularity will be two-dimensional. This situation occurs when the

image is locally constant (the \blank-wall" problem, as described in the introduction), or when

the image is locally even-symmetric.

Local Constraint Combination

Researchers have dealt with the singularity problem by incorporating additional constraints

or regularization terms in an energy function to produce a unique solution. Typically, these

operate by combining information spatially. Many of these regularization solutions operate

by combining the local constraint given by equation (2.1) globally. For example, Horn and

Schunck [47] used a constraint of global smoothness of the velocity �eld. Hildreth [45] used

a constraint of smoothness along contours. Nagel [63, 62] used a global oriented smoothness
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Figure 2-2: The set of velocities that satisfy the gradient constraint in equation (2.1) constitutes
a line (illustrated with dashes) in the two-dimensional space of all velocities

constraint, in which less smoothing is done in the direction of the gradient 1. These solutions

perform quite well when their assumptions are met, but problems arise when they are applied

to natural images which often do not have smooth velocity �elds. Another common objection

to these approaches is that they are computationally expensive, although several authors have

developed more e�cient versions (eg, [92, 74, 55]).

For the purposes of this thesis we are interested in local combination of constraints. Since

we have a constraint on the normal component of velocity at each point, we can choose the

velocity that is most consistent with a set of the normal constraints in a small region around

the point of interest. Implicitly, this is also a type of smoothness constraint, since we are

assuming that the image velocity in the region is constant, but the estimate remains local (i.e.,

it only depends on the measurements within the region).

We accomplish this by writing a weighted sum-of-squares error function based on the normal

constraints from each point within a small region, where the points are indexed by a subscript

i 2 f1; 2; : : :ng:

E(~v) =
X
i

wi

h
~fs(xi; yi; t) � ~v + ft(xi; yi; t)

i2
; (2.4)

where wi is a set of positive weights. Note that since the signal is considered to be continuous,

we should write this as an integral over the region, but in anticipation of the application to

sampled imagery, we use a sum instead.

To compute a Linear Least-Squares Estimate (LLSE) of ~v as a function of measurements

1Note, however, that examination of the Horn and Schunck algorithm reveals that it already does this
implicitly.
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~fs and ft, we write the gradient (with respect to ~v) of this quadratic expression:

*r~v E(~v) = 2
X

~fs
h
~fTs � ~v + ft

i
(2.5)

= 2
h
M~v +~b

i

where

M =
X

~fs ~f
T
s =

 P
f2x

P
fxfyP

fxfy
P
f2y

!
; ~b =

 P
fxftP
fyft

!
: (2:6)

and all of the summations are over the patch, weighted by the weight function wi as in equa-

tion (2.4).

Setting the gradient expression in equation (2.6) equal to the zero vector gives the least-

squares velocity estimate:

v̂ = �M�1~b; (2:7)

assuming that the matrix M is invertible. Notice that matrix M and the vector ~b are both

composed of blurred quadratic combinations of the spatial and temporal derivatives.

Despite the combination of information over the patch, it is important to recognize that the

matrix M may still be singular. As described intuitively in the introduction, we cannot solve

for the velocity at locations in the image where the intensity varies only one-dimensionally

(corresponding to the \aperture problem") or zero-dimensionally (the \blank wall" problem).

More precisely, we can show the following:

Proposition 1 The matrix M de�ned in equation (2.6) is singular if and only if there exists

a unit vector û and a set of coe�cients f�i > 0 : i = 1; 2; : : :ng such that

~fs(xi; yi; t) = �iû for each i � n:

Proof: The proof in the forward direction is simple. Assume the condition holds. Then

M =
X
i

wi�
2
i ûû

T ; (2:8)

and the determinant of M is:

jMj =
X
i

wi�
2
i jûûT j:

Since the expression in the sum, jûûT j, is the determinant of an outer product of two two-

vectors, it will be zero (i.e., this matrix only spans a one-dimensional subspace).

The converse proof is also fairly straightforward. SinceM is a square matrix, we diagonalize

it using its orthonormal eigenvector matrix, E:

ETME =

 
�1 0

0 �2

!
:
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If we assume M is singular, then at least one of the eigenvalues must be zero. Without loss of

generality, assume �2 = 0. Then using the de�nition of M in equation (2.8):

X
i

wi�
2
i

�
ET fs;i

� �
fTs;iE

�
=

 
�1 0

0 0

!
: (2:9)

where we are using the shorthand fs;i = ~fs(xi; yi; t).

Now, de�ne ai and bi such that  
ai

bi

!
= ET fs;i:

Substituting into equation (2.9) and extracting the lower right component of the matrix gives

X
wi�

2
i b

2
i = 0

which means (recall that wi is positive) that bi = 0 for all i. Thus,

fs;i = E

 
ai

bi

!

= aiê1;

where ê1 is the eigenvector associated with the non-zero eigenvalue, �1.

Since the statement that all of the spatial gradient vectors point in the same direction is

equivalent to saying that the image varies one-dimensionally, this proposition directly connects

the matrix singularity with the aperture problem discussed in the introduction. The blank-wall

condition is just the subcase of this situation in which all of the gradient vectors are zero.

The solution given in equation (2.7) above may also be derived as a Taylor series approx-

imation to the solution of a matching problem. We de�ne an error function which is the

weighted mean squared error of the di�erence between two image patches at di�erent times

and positions:

E(~v) =
X
i

wi [f(xi + vx; yi + vy ; t+ 1)� f(xi; yi; t)]
2

�
X
i

wi [f(xi; yi; t) + vxfx(xi; yi; t) + vyfy(xi; yi; t) + ft(xi; yi; t)� f(xi; yi; t)]
2

=
X
i

wi [vxfx(xi; yi; t) + vyfy(xi; yi; t) + ft(xi; yi; t)]
2

=
X
i

wi

h
~fs(xi; yi; t) � ~v + ft(xi; yi; t)

i2
;

where we have expanded f(xi + vx; yi + vy ; t+ 1) in a Taylor series to �rst order. This is the

derivation used by Lucas and Kanade [54], in the context of stereo vision. The resulting error

function is identical to that of equation (2.4).
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Higher-order Derivatives

The gradient constraint is based on an assumption of image intensity conservation. Some

authors have suggested the use of an intensity derivative conservation assumption, in which

one applies the gradient constraint equation (2.1) to the x�, y� and/or t� �rst derivative

sequences.2 This leads to optical ow calculations that are based on second derivative mea-

surements [38, 63, 94, 95, 69]. If one includes all three partial derivatives (as in [38]), the

resulting constraint equations are written as:0
B@
fxx fxy

fxy fyy

fxt fyt

1
CA � ~v +

0
B@
fxt

fyt

ftt

1
CA = 0: (2:10)

As in equation (2.1), this is a pointwise constraint. We have left out the spatial and temporal

location parameters in order to simplify notation.

Note that there are now three constraints for the two unknown components of velocity.

Thus, unlike equation (2.1), the formulation is no longer inherently underconstrained, but

overconstrained. Note also that this idea can be taken further to make use of any order of

derivative (for example, in [44], we implement a set of third derivative measurements).

It also reasonable to combine constraints arising from di�erent order derivative operators,

as suggested. For example, we can combine the second order constraint given above with the

�rst derivative constraint (as was done in [38]):0
BBBB@

fx fy

fxx fxy

fxy fyy

fxt fyt

1
CCCCA � ~v +

0
BBBB@
ft

fxt

fyt

ftt

1
CCCCA = 0: (2:11)

As before, we can compute a least-squares solution, averaged over a small patch. Note that

the local averaging may no longer be necessary since the system is now overconstrained, but

we include it for generality. The solution looks the same as that given in equation (2.7), except

that the de�nitions of M and ~b in equation (2.6) are replaced by the following:

M =

 P
(f2x + f2xx + f2xy + f2xt)

P
(fxfy + fxxfxy + fxyfyy + fxtfyt)P

(fxfy + fxxfxy + fxyfyy + fxtfyt)
P
(f2y + f2yy + f2xyf

2
yt)

!

~b =

 P
(fxft + fxxfxt + fxyfyt + fxtftt)P
(fyft + fyyfyt + fxyfxt + fytftt)

!
; (2.12)

and the estimator (as before) is:

v̂ = �M�1~b:

2More generally, applying any localized constant-phase �lter to an image sequence will not alter its velocity
�eld. Thus, we can apply the gradient constraint equation to a set of images pre�ltered with di�erent localized
�lters (see, for example [88, 87]). We will discuss the issues of pre�lter design in section 3.3.
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Note that without the summation, the solution is just the standard least-squares pseudo-inverse

solution of the linear system in equation (2.11). At this point, this combination of constraints

seems a bit arbitrary. In the next two sections, we will give stronger justi�cations for this

\mixed-order" solution.

2.2 Spatio-temporal Filtering Techniques

The previous section discussed di�erential approaches to estimating image velocity. Another

view of motion analysis is based on the use of spatio-temporal �lters [68, 24, 30, 96, 99, 1, 40].

Much of this work comes from the computational biology community and is physiologically mo-

tivated. These approaches are usually considered to be completely distinct from the di�erential

approaches discussed in the previous section.

In this section, we will discuss a particular set of �lter-based models that has received

much attention from the computational biology community. These models are are based on

the squared outputs of spatio-temporally oriented �lters. We will refer to these as Spatio-

Temporal Energy Models (STEM) [1, 40, 37]. We will show that the mixed-order di�erential

solution discussed in the previous section may be interpreted as a spatio-temporal energy

model. The importance of this observation is that it emphasizes the view of derivatives as

�ltering operations. The design of derivative �lters has been somewhat neglected in the optical

ow literature, an issue that we address in section 3.3.

Spatio-temporal Energy Models (STEM)

The basic motivation for the spatio-temporal energy models is that motion corresponds to

orientation in space-time. Consider a translating one-dimensional box signal. If we view

this signal in two dimensions of time and space, as illustrated in �gure 2-3, then it is clear

that translation corresponds to an oblique bar in this space. The inverse slope of the bar

corresponds to the speed of the one-dimensional signal. Thus, in a matched-�lter fashion, one

might imagine applying a set of oriented linear operators, each responding best to signals that

are matched to their orientation. The idealized impulse-response lobes of a spatio-temporally

oriented �lter (matched to the motion of the box) are depicted in �gure 2-3.

Note that the linear �lter response by itself does not constitute a velocity estimator. In

addition to being dependent on the velocity of the underlying signal, the response of the �lter

is also dependent on the symmetry and the contrast of the signal. Thus, in the example in

�gure 2-3, the �lter would have no response if it were symmetrically centered on the bar.

Similarly, a reversal of the contrast would negate the �lter output. In two-dimensional imagery

there is one further unwanted dependency: the response of a spatio-temporally localized �lter

will vary as we change the spatial orientation of the underlying signal. Any mechanism that
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Figure 2-3: Motion corresponds to orientation in space-time. Illustrated is leftward moving

one-dimensional signal. It traces out a diagonal path in the two-dimensional space-time diagram.
The inverse slope of the lines corresponds to the speed of motion. Also illustrated are positive and
negative coe�cient lobes of an idealized linear operator (i.e., a �lter kernel) with an orientation

matched to the orientation of the underlying signal.

computes velocity must eliminate (or at least substantially reduced) these dependencies.

We will describe the basic one-dimensional STEM outlined by Adelson and Bergen here [1].

In order to eliminate the symmetry and contrast dependencies of the �lter responses, they

proposed the computation of \motion energy" measures from the sum of the square of even-

and odd-symmetric �lters tuned for the same orientation. They suggested that these energy

outputs should be combined in \opponent" fashion, subtracting the output of a mechanism

tuned for leftward motion from one tuned for rightward motion. They showed that their

opponent STEM approach was closely related to the modi�ed Reichardt correlation model of

van Santen and Sperling [73, 96].

Adelson and Bergen also proposed a mechanism for computing a signal monotonically

related to speed from these energies [2]:

v̂ �
P
(R2

o + R2
e)�

P
(L2

o + L2
e)P

(S2
o + S2

e )
; (2:13)

where R indicates the output of a linear �lter sensitive to rightward motion (space-time ori-

entation), L leftward motion, and S static (zero motion), and the subscripts e and o refer to

even- and odd-symmetry of the �lters. They showed that this one-dimensional computation

was closely related to the basic one-dimensional Lucas and Kanade gradient solution, which is

written as:

v̂ =

P
(fxft)P
(f2x)

: (2:14)

We elaborate on this connection in the following sections, extending the argument to two

dimensions, and including the use of the even- and odd-symmetric operators of our mixed-

order di�erential solution from the previous section.
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Derivatives As Spatio-temporal Filters

In section 2.1, we described di�erential solutions of the optical ow problem, but we did not dis-

cuss the implementation of these solutions. The derivative operator is a linear shift-invariant

operator, and we may therefore view its application to a signal as a convolution operation.

Derivatives are de�ned for continuous signals, and in this case, the convolution kernel corre-

sponds to a doublet (or pair of opposite-sign Dirac delta functions). In both machine and

biological visual systems, the input imagery is sampled at discrete spatial locations. Since

derivatives are only de�ned on continuous functions, the computation on a discrete function

requires (at least implicitly) an intermediate interpolation step with a continuous function

C(x). The derivative of the interpolated function must then be re-sampled at the points of the

original sampling lattice.

The sequence of operations may be written for a one-dimensional signal as follows:

df

dx
(n) �

"
d

dx

 X
m

f(m)C(x�m)

!#
n

=

"X
m

f(m)
dC

dx
(n�m)

#
;

where we assume unit sample spacing in the discrete variables n and m for simplicity. Thus,

the derivative operation is de�ned as convolution with a �lter which is the sampled derivative of

some continuous interpolation function C(~r). One could use an \ideal" lowpass (sinc) function,

or a gentler function such as a gaussian. An optimal choice would depend on a model for the

original continuous signal (e.g., bandlimited at the Nyquist limit, with 1=! power spectrum)

and a model of the sensor noise.

Furthermore, one could imagine pre�ltering the image with a spatially localized �lter to

extract some spatio-temporal subband and computing the derivatives on this subband (see,

for example [59, 88, 87]). Since both operations are linear convolutions, the pre�ltering op-

eration can be combined associatively with the derivative operation. The resulting simpli�ed

operations is equivalent to convolving with the derivative of the pre�ltering function.

Since we have in mind that the output of these �lters will be used in the context of the

gradient constraint, it is important that each of the derivatives (x�, y�, and t�) be based

on the same pre�lter. Thus, if we were to compute these derivatives with, for example, a

purely one-dimensional derivative operator, it is likely that they would produce poor motion

estimates, since each applies (perhaps implicitly) a pre�lter in the direction of its di�erentiation,

but not in the other directions. Furthermore, in order to ensure that image content is treated

homogeneously with respect to orientation, this pre�lter should be circularly symmetric in

spatial frequency.

We should also mention here that the symmetry of the gradient �lter kernels will depend
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Figure 2-4: Images of two-dimensional derivative kernels at four di�erent orientations, based

on a circularly-symmetric pre�lter. The top row are �rst-derivative �lters. Note that these
are odd-symmetric, since the pre�lter is even-symmetric. The bottom row are even-symmetric
second-derivatives.

on the symmetry of the underlying pre�lter, and on the order of the derivative. Assuming

an even-symmetric pre�lter, our �rst derivatives will be odd-symmetric and second derivatives

will be even-symmetric. Some example derivative �lters, based on a two-dimensional Gaussian

pre�lter, are illustrated in �gure 2-4.

We will discuss the details of �lter design in section 3.3. For now, we note only that

derivatives of discretely sampled signals are typically computed as di�erences of neighboring

sample values (that is, with the �lter kernel [�1; 1]), with a two-point average in the non-

derivative directions (that is, a �lter kernel of [0:5; 0:5]). But unless the imagery is bandlimited

well below the Nyquist rate, these �lters are not very good derivative approximations. For

example, Kearney et. al. [50] noted that gradient approaches often perform poorly in highly

\textured" regions of an image. We believe that this is due only to the poor choice of pre�lter.

Examples shown in section 3.4 demonstrate that di�erential solutions perform very well on

textured imagery.

Another point often made in the optical ow literature is that the use of higher-order

derivatives (such as the second-order �lters illustrated in �gure 2-4) is inadvisable, because

they are more sensitive to image noise. This argument follows from two facts: 1) image power

spectra tend to decrease with increasing frequency and therefore, their high frequency content

typically has a low signal-to-noise ratio (SNR), and 2) each additional derivative operation

increases the inuence of the higher frequencies, since the Fourier transform of the derivative

34



operator, for example in the !x direction, is �j!x. We claim that this is not a fundamental

problem in the context of optical ow computation, as it can be overcome through use of a

pre�lter that counteracts the derivative emphasis on higher frequencies. The real drawback to

increasing the order of the derivatives is that the �lter kernels become larger (thereby decreasing

the localization of the measurements) and that there are more of them (thereby increasing the

computation time and storage requirements). On the other hand, we will show in chapter 4

that the narrower orientation bandwidth of the higher-order �lters can be advantageous.

The Gradient Solution as a STEM

We have explained that derivative operators are oriented linear �lters. But the di�erential

solutions developed in the previous section are based on products of derivatives in di�erent

directions, as can be seen from the de�nitions of M and ~b in equation (2.12). To view this as

a spatio-temporal energy model, we must express it in terms of squares of oriented �lters.

We �rst show that the simple di�erential solution of equation (2.7) may be interpreted as a

spatio-temporal energy model, in the sense that it is computed from opponent combinations of

squared oriented �lter responses. We assume a circularly symmetric pre�lter, such as a Gaus-

sian. Then the directional derivatives of this pre�lter are oriented �lters, as shown in �gure 2-4.

Furthermore, given the three directional derivatives along the x-, y-, and t- axes (as computed

above), we can compute derivatives in other orientations by taking linear combinations of the

axis-oriented derivatives.

For example, the spatial derivative of f in a direction oriented at �=4 (relative to the

x�axis) is computed as

fp =
1p
2
(fx + fy);

where ~p is the unit vector lying in the derivative direction:

~p =

 
1p
2
1p
2

!
:

More generally, the spatio-temporal derivative in a direction speci�ed by unit vector û, may

be written as

fu =
h
û� *r

i
f (2.15)

= û �
0
B@
fx

fy

ft

1
CA ;

where the operator
*r is the spatio-temporal gradient operator:

*r=
0
B@

@
@x
@
@y
@
@t

1
CA
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This ability to interpolate �lter responses at arbitrary orientations from a set of �lter responses

at �xed orientations is an extremely important property of derivatives, and we will discuss it

in more detail in chapter 4. For now, we note that this property is not limited to the family

of derivative functions. A general theory of such �lters, known as \steerable" �lters, has been

developed by Freeman and Adelson [31].

Given the relationship of equation (2.16), we can start to make a connection between

the gradient constraint equation and the oriented �ltering concept of the STEM. We rewrite

equation (2.1) as follows:

df

dt
=

0
B@
~vx

~vy

1

1
CA �

0
B@
fx

fy

ft

1
CA

=
q
j~vj2 + 1

h
û(v)� *r

i
f;

where û(v) = (~vx; ~vy; 1)T=
pj~vj2 + 1. Apart from the initial factor of

pj~vj2 + 1, this expression

is identical to the directional derivative expression of equation (2.16). When viewed as a func-

tion of velocity, it computes a directional derivative for each candidate velocity ~v. This �ts with

the intuition developed by Adelson and Bergen, except that the constraint of equation (2.1) is

a nulling constraint: it seeks a velocity (orientation) such that the response of the operator is

zero. The Adelson and Bergen approach is motivated in terms of the orientation of maximal

response. We will return to this issue in chapter 4.

Despite the fact that the gradient constraint operates via nulling, we can show that the

least-squares solution developed in equation (2.7) may be written in terms of opponent STEM

computations. Using the relationship of equation (2.16), we can write the mixed-derivative

entries of M and ~b as de�ned in equation (2.6) in terms of squared directional derivatives:

M =

 P
f2x

P 1
2(f

2
p � f2q )P 1

2(f
2
p � f2q )

P
f2y

!
; ~b =

 P 1
2(f

2
l � f2r )P 1

2(f
2
d � f2u)

!
:

where we de�ne

fq = 1p
2
(fx � fy); fl =

1p
2
(fx + ft);

fr = 1p
2
(fx � ft); fd =

1p
2
(fy + ft);

fu = 1p
2
(fy � ft): (2.16)

The letters are meant to be mnemonic (l = leftward, r = rightward, d = downward, u =

upward). Note that each component of M and ~b is a local average of squares of a directional

�lter, or the di�erence of two such squares. The components ofM and ~b are pure or opponent

energy computations, just as those in Adelson and Bergen's opponent motion computation

of equation (2.13). Of course, the expression for velocity is more complicated than the one-

dimensional version described by Adelson and Bergen: in place of scalar division, we now have

multiplication by the inverse of a matrix.
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This formulation in terms of directional derivatives provides an elegant interpretation of

the standard gradient solution in terms of oriented �ltering. In chapter 5 we will show that

it is also useful for biological modeling. We note, however, that the implementation of the

gradient solution on a standard digital computer is most e�ciently accomplished with separable

derivative �lters. Furthermore, it is important to realize that the set of directions chosen in

equation (2.16) is not unique. There are many such choices that would allow us to compute

the elements of M and ~b. 3

The Mixed-order Solution as a STEM

Now we consider the mixed-order solution of equation (2.12). As in the �rst derivative case,

we can make use of an interpolation formula for computing directional second derivatives from

separable second derivatives:

fuu =
@2f

@û2

=
h
û� *r

i2
f

= u2xfxx + 2uxuyfxy + u2yfyy + uxutfxt + uyutfyt + u2t ftt: (2.17)

That is, a directional second derivative may be written as a linear combination of the set of

all mixed (i.e., including cross-derivatives) second derivatives.

First consider the upper-left component of M:

m11 =
Xh

f2x + (f2xx + f2xy + f2xt)
i

(2.18)

=
Xh

f2x +
1
2

�
f2xx +

1
2ff2xx + 4f2xy + f2yyg+ 1

2ff2xx + 4f2xt + f2ttg � 1
2f

2
yy � 1

2f
2
tt

�i
=

Xh
f2x +

1
2

�
f2xx + f2pp + f2qq + f2rr + f2ll � 1

2f
2
yy � 1

2f
2
tt

�i
(2.19)

The �rst equation contains squares of cross-derivative terms, so we have used equation (2.17)

to rewrite it as a combination of squares of directional second derivatives. The direction vectors

are de�ned in equations (2.16). Now compare with the Adelson and Bergen formulation given

in equation (2.13). The �rst term in the brackets, f2x , is the square of an odd-symmetric

�lter response, as in the Adelson and Bergen version. The terms in parentheses are squared

even-symmetric �lter responses. But unlike the Adelson and Bergen formulation which uses a

single even-symmetric �lter (the Hilbert transform of the odd-symmetric �lter), the solution

of equation (2.19) combines seven squared directional �lter outputs to get the even-symmetric

portion of the energy expression. In section 2.3, we will see that there is an important reason

for this particular combination.

3The space of rotations of the directional derivative �lter forms a linear subspace. There are many possible
choices of linear basis that span this subspace (cf. [31]).
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We can also show that the non-squared components ofM and~bmay be written as opponent

combinations of expressions identical to the expression in equation (2.18). In particular, using

the interpolation formula of equation (2.16) and a little algebra we can show that:

m12 =
X 1

2

nh
f2p + f2pp + f2pq + f2pt

i
�
h
f2q + f2qq + f2pq + f2qt

io
;

b1 =
X 1

2

nh
f2r + f2rr + f2rl + f2ry

i
�
h
f2l + f2ll + f2rl + f2ly

io
;

b2 =
X 1

2

nh
f2u + f2uu + f2ud + f2ux

i
�
h
f2d + f2dd + f2ud + f2dx

io
: (2.20)

Each of these expressions is a di�erence (i.e., an opponent combination) of two rotated versions

of the expression given in equation (2.18). Each could also be written, as in equation (2.19) as

a combination of squared directional second derivatives. Altogether, the solution requires the

use of 12 directional second-derivatives.

The point of all of this manipulation is that the mixed-order solution of equation (2.12)

may be rewritten in terms of opponent spatio-temporal energy mechanisms in which the spatio-

temporal �lters are �rst and second-order directional derivatives. Considering the solution in

this fashion provides an elegant interpretation of the algorithm in terms of oriented �ltering,

and leads to useful biological models. In the next section, we will consider the basic and

mixed-order solutions from yet another vantage point: the Fourier transform domain.

2.3 Frequency-domain Description

Many important insights about the estimation of motion may be explained most directly by

considering the problem in the Fourier domain. This is easily appreciated by considering the

motion of a one-dimensional signal. We can represent such a signal as an intensity image, in

which the intensity of each pixel corresponds to the value of the signal at a particular location

and time. A translating one-dimensional signal has the appearance of a striped pattern, where

the stripes are oriented at an angle of � = arctan(1=v). Clearly, the Fourier decomposition

of this signal is a set of sinusoids of this same orientation, and varying wavenumber (spatial

frequency magnitude). Thus, the Fourier transform will have power only on a line through the

origin at angle �. This is illustrated in �gure 2-5.

The situation in two dimensions, while more di�cult to illustrate, is analogous. A translat-

ing two-dimensional pattern has the appearance of oriented \bundles of �bers" in space-time

(x; y; t). Watson and Ahumada [98] and others have noted that the Fourier transform spec-

trum of an image undergoing rigid translation lies in a plane in the spatio-temporal frequency

domain.
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Figure 2-5: The Fourier spectrum of a translating one-dimensional pattern lies on a line in
the frequency domain. On the left is a translating fractal noise signal. On the right, its power
spectrum, plotted with !x and !t ranges from �� to �. Deviations from the line are due to the
use of a �nite-size Fourier transform.

Frequency-domain Regression

These examples suggest an alternative approach to the measurement of optical ow: to search

for the plane that best �ts the power spectrum of the spatio-temporal signal. In practice, we are

interested in local estimates of image velocity, and thus we need to use a local estimate of the

power spectrum. We note that this type of approach for estimating orientation has been used

in the array-processing literature for the problem of \direction-of-arrival" estimation [49, 25].

This concept was used by Heeger [39] to develop an algorithm for the computation of optical

ow. He made local measurements of the power spectrum using a set of twelve Gabor �lters 4

tuned for di�erent spatio-temporal frequencies. The arrangement of the spectra of these �lters

is illustrated in �gure 2-6. He then used a numerical optimization procedure to �nd the plane

that best accounted for the measurements (the error criterion was least-squares regression on

the �lter energies). Grzywacz and Yuille [37] also constructed velocity estimators based on

energies computed from Gabor �lters. They developed both a least-squares solution similar to

Heeger's, in addition to a correlational (or template-matching) solution.

A fundamental problem with these approaches is that the resulting velocity estimates de-

pend on the local spatial content of the signal. In particular, each of these techniques gives

the wrong velocity for any moving sinusoidal grating whose spatial frequency is not matched

to the center response of the �lters 5. The problem is illustrated in �gure 2-7, and is due to

4A Gabor function is a sinusoid multiplied by a Gaussian window [32].
5Grzywacz and Yuille state that their solution avoids this problem, but this is only true in the limit as the

spatial bandwidth of the �lters approaches zero, or as the number of �lters grows toward in�nity.
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Figure 2-6: Arrangement of the twelve Gabor �lters used in the regression solution of [39].
Shown are level surfaces of the power spectra of the �lters in the three-dimensional (!x; !y; !t)
frequency domain. The !t axis is along the cylindrical axis of symmetry of the �lter locations.

Surfaces are rendered assuming a �xed point light source and a Lambertian reectance function.

the somewhat arbitrary choice of �lters. Gabor �lters are chosen because they minimize a

joint space-frequency localization criterion [32], and because they have been suggested for use

in biological modeling [22]. But this joint-localization constraint is not of primary importance

in the velocity estimation problem, and many other choices of oriented bandpass �lter serve

equally well for purposes of physiological modeling.

Consider the basic gradient algorithm in the Fourier domain. Recalling equation (2.16),

the solution may be rewritten as a computation based on squares of spatio-temporally oriented

�lters, just as the solutions discussed above. There are eight of these directional derivative

�lters. An example set, based on a Gaussian pre�lter, are illustrated in �gure 2-8. Note that

the shape and position of these �lters is di�erent than the Gabor �lters of �gure 2-6. They

are spherically polar-separable, and the basic geometry of their arrangement is spherical rather

than cylindrical 6.

We can now show that the velocity estimate computed from these directional derivative

�lters will be invariant to simple scaling of the spatial frequency of a sinusoidal input signal.

The response of each of the �lters has the form �j[ûi � ~!0]G(~!0) where ~!0 is the spatio-

temporal frequency of the sinusoidal input, ûi is a unit vector in the direction of the ith �lter

derivative, and G(~!) is the pre�lter. Now if the input signal undergoes the transformation

F (~!) �! F (�~!), then the �lter responses will become �[ûi � ~!0]G(�~!0). That is, the result of
the transformation is that each �lter response will be multiplied by a factor of �G(�~!0)=G(~!0).

Since the velocity solution of equation (2.7) only depends on the ratios of linear combinations

6This is partially due to the choice of a spherically symmetric pre�lter { a spatially bandpass and temporally
lowpass pre�lter would lead to a cylindrical geometry.

40



ωx

ωt

ωx

ωt

L

L

S S

R

R L

L

S S

R

R

Figure 2-7: One-dimensional illustration of the systematic errors in velocity estimates com-
puted from Gabor �lters. The level surfaces of the �lter power spectra are elliptical (circular

here), and are represented by the overlapping circles. Assume the signal power spectrum lies
on the line shown (that is, the signal is moving at a speed corresponding to the slope of this
line). If the spectral distribution is concentrated at higher spatial frequencies (illustrated by the

bulge in the line of the plot on the left), the \leftward" �lter response will increase relative to
that of the other two �lters. Since the velocity estimator relies on the relative responses of the
�lters, it will over-estimate the speed of the signal. Similarly, if the spectral content is at lower
frequencies (shown on the right), a regression estimator will underestimate the speed.

 

Figure 2-8: Illustration of the spatio-temporal frequency spectra of the directional derivative
�lters used to compute the basic gradient solution. Shown are level surfaces of the spectra for a
set of eight �lters. Each �lter appears as two attened balls, symmetrically arranged about the
origin. These should be compared to those in �gure 2-6.

41



of the squared �lter responses, it will be unchanged.

Furthermore, we can show that the basic gradient approach may be viewed directly as a

planar regression analysis in spatio-temporal frequency. Consider the energy function given in

equation (2.4) with the summation occurring over the entire image:

E(~v) =
X
~x

jvxfx + vyfy + ftj2

=
X
~!

jvxF (~!)!x + vyF (~!)!y + F (~!)!tj2

=
X
~!

[vx!x + vy!y + !t]
2 � jF (~!)j2 (2.21)

where the sum on the �rst line is over all image pixels and the sums on the latter two lines are

over all frequencies, ~!. We have used Parseval's rule to switch to the frequency domain, and

the fact that the Fourier transform of the derivative operator in, for example, the x� direction

is j!x. The term in square brackets is the squared !t-distance between the point ~! and the

plane de�ned by vx!x + vy!y = �!t. This equation is exactly in the form of a least-squares

planar regression error function, weighted by the image power spectrum, jF (~!)j2! This means

that if the input signal spectrum lies on a plane (and does not lie on a line), the solution will

always be correct, regardless of the spectral distribution on the plane.

More generally, we can combine the di�erential constraints derived from a set of di�er-

ent pre�lters, gn(x) and the result may still be viewed as a regression solution. We rewrite

equation (2.21) as:

E(~v) =
X
n

X
~x

jvxfn;x + vyfn;y + fn;tj2

=
X
n

X
~!

jvxF (~!)Gn(~!)!x + vyF (~!)Gn(~!)!y + F (~!)Gn(~!)!tj2

=
X
~!

[vx!x + vy!y + !t]
2 �
X
n

jGn(~!)j2 � jF (~!)j2 (2.22)

This is still a regression solution, but now the power spectrum of the image is weighted by the

sum of the spectra of the pre�lters,
P

n jGn(~!)j2.
We have shown that the global form of the basic gradient algorithm operates as a regression

algorithm, seeking the plane that best accounts for the derivative measurements. In doing this,

we assumed that the summations in equation (2.6) were performed over all space and time.

In practice, we compute a local approximation to this by averaging over a small patch. An

alternative method for estimating local power spectra is to use quadrature pairs of �lters that

are Hilbert transforms of each other. We will discuss this concept next, and show that the

mixed derivative solution performs an operation very similar to this.

42



Local Estimates of Phase and Spectral Energy

Phase and spectral energy are usually de�ned in the context of the Fourier basis set. The

phase of a sinusoid is its position (in units of the sinusoid period, modulo 2�) relative to an

arbitrary but �xed origin. The space of all translations of a sinusoid at a given frequency is

spanned by two sinusoids, di�ering in phase by �=2: sin(!x) and sin(!x + �=2) = cos(!x).

The phase response of the Fourier spectrum is computed from the projection of the signal onto

these two sinusoids:

�(!) = arctan

�P
x f(x) sin(x)P
x f(x) cos(x)

�

The spectral energy is just the sum of squares of these two projections. An important property

is that the spectral energy of a signal is invariant to translations of the signal.

There are also de�nitions of phase and energy for transforms based on localized bandpass

basis functions. Typically, the basis set is constructed in one of two ways:

1. For each basis function, G(!), one can compute a Hilbert transform, �jsgn(!)G(!).
Each pair of basis functions comprised of a basis function and its Hilbert transform is

known as a quadrature pair. In multiple dimensions, the Hilbert transform is directional,

and is computed as �jsgn(û �~!)G(~!), where û is the direction. Typically, the quadrature

pair is designed so that one kernel is purely odd-symmetric and the other even-symmetric.

2. One can also de�ne a windowed Fourier transform, based on some lowpass windowing

function. That is, the basis functions are formed as a product of cos(!x) and sin(!x)

with the window function. An example that has been used often in the image processing

literature is the Gabor basis set [32] which is composed of pairs of Gaussian-windowed

sinusoids and cosinusoids.

In both of these cases, local phase is de�ned as the arctangent of the ratio of responses of the

pairs of �lters, and local spectral energy is the squared sum of the these.

This de�nition of local phase and energy will give the correct phase and energy measures

for sinusoidal input signals (i.e., they will correspond to the phase and squared amplitude

of the input sinusoid). We wish to point out, however, that these de�nitions are lacking an

important property that is present in the Fourier de�nitions. A shift in local phase does not

correspond to a simple translation of the basis function. This is because the quadrature pair

of functions does not span the space of their own translations. The price we pay for using a

local estimate of these quantities is blindness to certain signals.

For example, consider an image composed of two sinusoids of nearby frequencies ~!1 = (�2 ;�)

and ~!2 = (�2 ;��):
f(~x) = cos(~!1 � ~x)� cos(~!2 � ~x):
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Now consider the response of a quadrature pair of Gabor kernels with center frequency ~!0 =

(�2 ; 0), centered at the origin. Clearly, the signal spectrum lies within the region of response

for the �lters. The inner product of the odd-phase Gabor kernel with the signal will be zero.

Let ge(~x) be an the even-phase Gabor kernel:

ge(~x) = e�j~xj
2=2 cos(~! � ~x):

Then its inner product with the signal will be:X
~x

f(~x)ge(~x) =
X
~!

F (~!)Ge(~!)

= Ge(~!1)� Ge(~!2)

= 0;

where we have used Parseval's rule to write the inner product in the frequency domain, and

the symmetry of Ge(~!) leads to the cancellation of the last line.

Thus, the local spectral energy measurement will be zero, even though these the input signal

clearly falls within the passband of the �lters. We refer to this as the \phase-cancellation"

problem. The number of signals (actually, the dimensionality of the space of signals) to which

the local energy measure will be blind is proportional to the size of the passband. Of course,

the energy will be non-zero for the Gabor pair at slightly di�erent locations. Therefore, if we

average the local energy over a small patch (as we did in the basic gradient solution), we can

overcome this singularity. In other words, we could use a sum of squared responses of more

than two basis functions as a local estimate of spectral energy.

In the motion literature, several authors previously mentioned [1, 40, 29] have used quadra-

ture pairs in the computation of motion. As we discussed in the previous section, this can be

justi�ed from a �ltering point of view in terms of symmetry. If the local signal is even-symmetric

about a particular location, an inner product with an odd-symmetric operator (such as a �rst

derivative) will return zero. An even-symmetric �lter, however, will respond. The situation is

reversed when the signal is odd-symmetric. Therefore, combining the two measurements will

eliminate these singularities.

The Mixed-order Solution as a Quadrature Energy

Now, we would like to interpret the mixed �rst and second derivative computation of equa-

tion (2.12) in terms of quadrature measurements. We have already noted that the �rst deriva-

tives are odd-symmetric, and the second derivatives are even-symmetric. But the second

derivative �lter cannot be equal to the Hilbert transform of a �rst derivative �lter. Consider

the Fourier transform of, for example, the �rst and second derivative �lters in the x direction:

F
�
@g1(x; y; t)

@x

�
= �j!xG1(r)
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= �jr!x
r
G1(r)

= �jr[ûx � !̂]G1(r) (2.23)

F
 
@2g2(x; y; t)

@x2

!
= �!x2G2(r)

= �r2!
2
x

r2
G2(r)

= �r2[ûx � !̂]2G2(r); (2.24)

where g1(x; y; t) and g2(x; y; t) are the circularly symmetric pre�lters, as described in a previous

section, r = j~!j is the radial frequency coordinate, ûx is the !x-axis unit vector, and !̂ = ~!=j~!j.
Note that the inner product (in square brackets) corresponds to the cosine of the angle

between the vector ~! and the !x-axis. The frequency-domain forms of the two �lters di�er

both in their angular and radial component. We may eliminate the radial di�erence by de�ning:

r2G2(r) = rG1(r) = G(r): (2:25)

Combining equations (2.23), (2.24), and (2.25) produces a two �lters that are products of a

common pre�lter, G(~!), and a directional cosine function or its square. Thus, the angular

portion of the two �lters cannot be made the same.

Nevertheless, we can show that the sums of quadratic terms in the solution of equa-

tion (2.12) may be viewed as quadrature energies. Consider the upper left component of

the matrix M. Using Parseval's rule to rewrite this component in the frequency domain gives:

m11 =
Xh

f2x + (f2xx + f2xy + f2xt)
i

=
X
~!

jF (~!)j2jG(~!)j2 �!xr �2 +X
~!

jF (~!)j2jG(~!)j2
��

!2x
r2

�2
+
�
!x!y
r2

�2
+
�
!x!t
r2

�2�

=
X
~!

jF (~!)j2jG(~!)j2
�
!2x
r2

�
+
X
~!

jF (~!)j2jG(~!)j2
�
!2x
r2

� �
!2x+!

2
y+!

2

t

r2

�
: (2.26)

But since r2 = !2
x + !2

y + !2
t , we see that the second summation is equivalent to the �rst

summation! That is, this combination of second derivative terms has the same power spectral

response as the �rst derivative term. This is illustrated in �gure 2-9. We have remarked,

however, that the �rst and second derivative operators will have opposite symmetry. Thus the

computation is very similar to a quadrature energy computation.

The same argument may be made to show that the other components of M and the com-

ponents of ~b may be viewed as quadrature energy expressions, or di�erences of quadrature

energies, using equation (2.20). Notice the role of G(~!) in the equation: it serves to weight

the signal spectrum before the regression is computed.

In summary, typical quadrature energy computations operate by summing the squares

of responses to an even-symmetric and an odd-symmetric �lter, where the two �lters are
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Figure 2-9: Illustration of the similarity of derivative �lters and quadrature pairs. On the left

is a lambertian-shaded rendering of a level surface of the power spectrum of a �rst derivative
�lter. On the right is a rendering of the level surfaces of three second derivative power spectra:
fxx, fxy , and fxt. The sum of these power spectra is exactly equal to the �rst derivative power

spectrum. Note that the pre�lters in the two cases di�er by a factor of r, as described in the
text.

Hilbert transforms of each other. The quadratic expressions in our mixed-order solution

(equation (2.12)) are computed from squares of even- and odd-symmetric �lters, but the even-

symmetric computation involves three di�erent �lters. Spectrally, however, the even-symmetric

operator is identical to the odd-symmetric one, and thus may be viewed as a quadrature energy

computation!

Given these similarities between the mixed-order derivative algorithm and the spatio-

temporal energy approaches described by Heeger and Grzwywacz & Yuille, we may ask: Is

there any advantage to using the mixed-order solution? Both algorithms are based on a set of

linear measurements, from which a velocity estimate is computed via least-squares regression.

The fundamental di�erence lies in the choice of spatio-temporal �lters. Perhaps the most im-

portant advantage of the mixed-order solution is that the choice of directional cosine �lters

allows the velocity estimate to be computed analytically, whereas the other approaches require

a numerical optimization procedure to solve for velocity. Another important advantage of the

mixed-order approach is that the choice of gradient �lters allows us to perform regression that

is invariant to changes in the spatial frequency content of the signal.

The Phase-derivative Approach

We discuss one more solution developed in the literature. Fleet and Jepson used quadrature

pairs of Gabor �lters to compute measures of local phase [29]. Rather than derive optical ow

from the conservation of intensities (or pre�ltered intensities), they choose to derive it from
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the conservation of this local phase measurement. They demonstrate that this approach is

less sensitive than the standard gradient algorithm to non-motion changes in intensity (eg, a

change of illumination), and non-translational motions, such as dilations. This is because, for

example, the local phase estimates for a pattern of intensities does not vary if the contrast of

the pattern is modi�ed. Some related work has been done by other authors [100, 87].

We give a shortened derivation of the Fleet and Jepson estimator here. The basic algorithm

is one-dimensional. Even- and odd-symmetric Gabor �lters tuned for a particular orientation

are applied to the image, producing responses fe and fo. The assumption is that the local

phase, de�ned as arctan(fo=fe), is conserved. The authors consider this to be a constraint only

on the velocity component normal to the orientation of the underlying Gabor �lters. Without

loss of generality, we assume that the �lters are oriented in the x direction. Then we write:

d arctan(fo=fe)

dt
=

fe
dfo
dt � fo

dfe
dt

f2e + f2o

=
(fefo;x � fe;xfo)

(f2e + f2o )
� v + (fefo;t � fe;tfo)

(f2e + f2o )
= 0;

where the secondary subscripts t and x indicate partial derivatives. Note that as in the basic

gradient case, these constraints could be combined in a least-squares fashion over some local

neighborhood.

Solving for v gives an estimator that is quadratic in the linear �lter measurements:

v̂x = � (fefo;t � fe;tfo)

(fefo;x � fe;xfo)
: (2:27)

Fleet and Jepson extended this to two dimensions by �tting an a�ne model of the velocity

�eld using a least squares combination of the one-dimensional normal constraints from di�erent

spatial orientations in a small region of space (a technique that was developed by Waxman

and Wohn [100]).

We can show that the solution of equation (2.27) corresponds spectrally to a quadrature

energy solution like the mixed-order solution we have developed. First, we can see that the

numerator (denominator) contains two terms. One is a product of the output of odd-symmetric

operators, and the other a product of outputs of even-symmetric operators. Now, we show that

given a particular choice of �lters, each of these terms is spectrally equivalent to the numerator

(denominator) of the one-dimensional gradient solution given in equation (2.14).

We de�ne the following even and odd �lters in the frequency domain:

Ge(~!) = G(~!)
q
j!xj

Go(~!) = �jsgn(!x)G(~!)
q
j!xj;
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where G(~!) is an arbitrary pre�lter and sgn(()�) is the \signum" operator that returns the

sign of its argument. Clearly, the two operators are related by the Hilbert transform operator

in the !x direction. Then, we can make the following spectral correspondences (using, once

again, Parseval's rule):

X
fefo;t =

X
jF (~!)j2Ge(~!)[�j!tGo(~!)]

�

=
X

jF (~!)j2jG(~!)j2!x!t
=

X
fxftX

�fofe;t =
X

jF (~!)j2Go(~!)[�j!tGe(~!)]
�

=
X

jF (~!)j2jG(~!)j2!x!t
=

X
fxft

where fx and ft correspond to derivatives computed with the pre�lter G(~!). Thus the two

numerator terms are spectrally equivalent to the numerator of the basic gradient solution.

Since the two terms are computed from operators of opposite symmetry, they act as quadrature

pairs. The denominator terms are of the same form, and will also correspond spectrally to the

denominator of equation (2.14), f2x . Thus, the Fleet and Jepson solution is spectrally equivalent

to a quadrature energy solution, and with this particular choice of �lters is spectrally equivalent

to the mixed-order derivative solution. As with the equivalences shown in previous section,

this only holds in the case of global summation. With local summations, the equivalence is

only approximate.

2.4 Summary

We have described a set of local approaches to motion estimation. In the process of doing

this we have accomplished two things: 1) we have shown that these approaches are very

closely related and may be made spectrally equivalent through a particular choice of linear

operators, and 2) we have developed an e�cient general algorithm based on a combination of

�rst and second-order directional cosine �lters. This particular choice of �lters is important,

as it produces a velocity estimate that is free of systematic errors due to spatial frequency

content.

Unfortunately, the algorithm developed in this chapter still su�ers from the problems men-

tioned in section 1.2. The next two chapters attempt to address these failures. In particular,

chapter 3 introduces a noise model and a prior probability distribution on velocities, to handle

the singularities and lighting changes mentioned in section 1.2. We will also develop a prob-

abilistic coarse-to-�ne algorithm to handle the temporal aliasing problem. The output of the

algorithm will be a Gaussian distribution over velocities for each position and time in the input

imagery.
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In chapter 4, we develop a computation that is capable of representing multiple motions in

a patch. We return to the concept of directional cosines, and construct an algorithm based on

higher-order �lters that is capable of representing multiple motions.
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Chapter 3

Estimation of Optical Flow

In the previous chapter, we discussed several standard local approaches to the problem of

computing optical ow. Although they are generally considered to be unrelated, we showed

that they are all quite similar, with the main di�erence being the choice of linear measurements

that are made. Unfortunately, all of the techniques su�er from the basic problems mentioned

in section 1.2: intensity singularities, non-motion brightness changes, temporal aliasing, and

multiple motions. In this chapter, we must set about the di�cult business of attacking these

problems.

Consider the �rst problem: the presence of ambiguous regions. When the images are

constant in the region being considered, how can we compute an optical ow vector? Since

there is no information in the intensities themselves, we must rely on some sort of prior

information about image velocities (remember, we are only considering local estimates here).

But computing a vector in such a region is misleading: later stages of computation will not be

able to discern which vectors are computed from the data and which are guessed from prior

knowledge.

Choosing a vector to describe the motion in a blank region constitutes an overcommitment

to a solution. Some researchers have advocated the use of \con�dence" or \reliability" mea-

sures to indicate which optical ow vectors are to be trusted [63, 8, 29]. These are typically

compared to a threshold value, and all ow vectors with con�dences below the threshold are

discarded. This approach does not take advantage of the full information present in the inten-

sity signal. For example, in a region su�ering from the aperture problem, the optical ow is

only constrained in the direction normal to the local orientation. Thus, we want to represent

the normal component of ow, and indicate uncertainty about the parallel component of ow.

Recently, some authors have developed approaches that compute two-dimensional covari-

ance matrices which serve as a two-dimensional con�dence measure. In particular, Heeger [40]

50



computed a Fischer information matrix by linearizing his regression model about the minimum.

Anandan and others [8, 91, 86] have �tted quadratic functions to sum-of-squared-di�erence

error surfaces to estimate con�dence, although Barron et. al. [10] note that these con�dence

measures are often not very reliable. Some authors have also considered autocorrelation or dis-

placement histograms and used these as a sort of distribution over velocity [8, 36]. Szeliski [91]

has discussed the use of Bayesian techniques for a variety of problems in low-level vision, in-

cluding optical ow estimation. Estimation-theoretic approaches to optical ow are beginning

to appear [74, 84, 82, 86].

The concepts of integrating prior information and providing directional uncertainty infor-

mation suggests a Bayesian analysis of the problem. In this chapter, we will extend the basic

and mixed-order algorithms of in the previous section to include uncertainty. Previous versions

of this work appear in [82].

In our view, this constitutes a fundamental shift in the representation of visual motion.

Whereas we previously computed vector-�eld estimates of the image velocity, we will now

compute probability distributions over the set of all possible image velocity vectors at a given

spatio-temporal location. That is, we will be computing a function Ev(vx; vy; x; y; t) that

represents the motion of the imagery.

Viewing the problem probabilistically has many advantages:

1. It produces useful extensions of the standard quadratic gradient techniques for computing

optical ow, including an automatic gain control mechanism, and the incorporation of a

prior distribution on the velocity �eld.

2. It provides (two-dimensional) con�dence information, allowing later stages of processing

to tailor their use of the velocity estimates according to the shape of the distribution.

For example, it enables the development of algorithms to combine information recur-

sively over time, or to combine information over space to estimate higher-order motion

parameters such as rigid body translations.

3. It provides a framework for \sensor fusion", in which image velocity estimates must be

combined with information derived from other uncertain sources.

4. As we will discuss in chapter 5, a distributed representation is appropriate for modeling

biological motion processing.

Once we have a probabilistic formulation of the problem, we introduce a coarse-to-�ne

mechanism to handle the problem of temporal aliasing. The remainder of the chapter dis-

cusses the implementation of the algorithms and provides examples of velocity �eld estimation

and error analysis on synthetic and real image sequences. These results demonstrate an im-
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provement in performance when compared to those of a recent comparison study of optical

ow techniques [10].

3.1 Probabilistic Modeling

Our goal is to compute an expression for the probability of the image velocity conditional on

measurements made from the image sequence. We develop this representation by introducing

an uncertainty model to characterize deviations from the standard gradient constraint equation.

Recall the original di�erential constraint on optical ow as given in equation (2.1):

~fs � ~v + ft = 0

Each of the quantities in this equation is an idealization. First, we do not have the actual spatial

or temporal derivatives, but measurements of these derivatives that are corrupted by errors

due to image noise, �lter inaccuracies, quantization, etc. Second, the equation is a constraint

on the optical ow, but we are interested in estimating the motion �eld. As explained in

the introduction, these two quantities often di�er because variations in image intensities can

be caused by overall changes in brightness, highlights, or changes in the three-dimensional

orientation of surfaces [46].

We can make these idealizations explicit by introducing a set of additive random variables.

We de�ne ~v as the optical ow, and ~v as the actual velocity �eld. Then we describe the

di�erence between these using a random variable, ~n1,

~v = ~v + ~n1

Similarly, let ~ft be the actual temporal derivative, and ft the measured derivative. Then, we

write

ft = ~ft + n2

with n2 a random variable characterizing the uncertainty in this measurement relative to the

true derivative. And similarly,

~fs = ~fs + ~n3

is the measured spatial derivative.

Now the gradient constraint applies to the actual measurements, and the optical ow vector,

and so we may write:

0 = ~fs � ~v + ~ft

= (~fs � ~n3) � (~v � ~n1) + ft � n2

) ~fs � ~v + ft = ~fs � ~n1 + ~v � ~n3 � ~n3~n1 + n2: (3.1)
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This equation gives us a probabilistic relationship between the image motion �eld and the mea-

surements of spatio-temporal gradient. It accounts for errors in our derivative measurements,

and for deviations of the velocity �eld from the optical ow. But it assumes that the under-

lying optical ow constraint is valid. In particular, we can expect that the multiple motions

problem mentioned in section 1.2 will still cause trouble.

In order to make use of this formulation, we must characterize the random variables ni

in these de�nitions. It is desirable to choose these probability distributions such that ~v may

be estimated analytically (as opposed to numerically). Thus, we will assume that reliable

estimates of the spatial derivatives are available: thus we may neglect the random variable

~n3. We will further assume that we may characterize the remaining random variables with

independent zero-mean Gaussian distributions. It would be most unlikely that the actual

uncertainties would have this form, but as with many models in the estimation literature, we

may be able to account for a large part of the uncertainty in this manner.

Given these assumptions of independent zero-mean Gaussian noise sources, the right side

of equation (3.1) is a zero-mean Gaussian random variable with variance equal to ~fTs �1
~fs +

�2, where �1 and �2 are a covariance matrix and a variance corresponding to ~n1 and n2,

respectively. We interpret the equation as providing a conditional probability expression:

P(ft j ~v; ~fs) = exp
n
�1

2(
~fs � ~v + ft)(~f

T
s �1

~fs + �2)
�1(~fs � ~v + ft)

o
In order to write down the desired conditional probability, we can use Bayes' rule to switch

the order of the arguments:

P(~v j ~fs; ft) = P(ft j ~v; ~fs) � P(~v)
P(ft) :

For the prior distribution P(~v), we choose a zero-mean Gaussian with covariance �p. The

denominator, P(ft), is only present for normalization purposes and doesn't a�ect the relative

probabilities. The resulting distribution is Gaussian:

P(~v j ~fs; ft) / exp
n
�1

2(
~fs � ~v + ft)

T (~fTs �1
~fs +�2)

�1(~fs � ~v + ft)
o
exp

n
�1

2~v
T��1

p ~v
o

= exp
n
�1

2~v
T
h
~fs(~f

T
s �1

~fs + �2)
�1 ~fTs +��1

p

i
~v (3.2)

� ft(~f
T
s �1

~fs +�2)
�1 ~fTs ~v (3.3)

�1
2ft(

~fTs �1
~fs +�2)ft

o
(3.4)

= exp
n
�1

2(�~v � ~v)T��1
~v (�~v � ~v)

o
: (3.5)

The covariance matrix, �~v, and mean vector, �~v may be derived using standard techniques

(i.e., completing the square in the exponent):

�~v =
h
~fs(~f

T
s �1

~fs + �2)
�1 ~fTs + ��1

p

i�1

�~v = ��~v
~fs(~f

T
s �1

~fs +�2)
�1ft:
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The advantage of the Gaussian form is that it is parameterized by these two quantities that

are computed in analytic form from the derivative measurements. 1

If we choose �1 to be a diagonal matrix, with diagonal entry �1, and write the scalar

variance of n2 as �2 � �2, then we can write this as:

�~v =

2
4 M�

�1k~fsk2 + �2
� + ��1

p

3
5
�1

(3.6)

�~v = ��~v �
~b�

�1k~fsk2 + �2
� :

where matrix M and vector ~b are de�ned as in equation (2.6), but without the summations.

Note that multiplying �p, �1 and �2 by a scale factor will not a�ect the mean, �~v of the

distribution (although it will scale the variance).

The maximum likelihood estimate (MLE) is simply the mean, �~v , since the distribution is

Gaussian. This solution is very similar to that speci�ed by equation (2.6). This is not really

surprising, since computing the MLE of a Gaussian distribution is equivalent to computing

the linear least-squares estimate (LLSE). The di�erences are that 1) the addition of the prior

variance �p ensures the invertibility of the matrix M, and 2) the quadratic derivative terms

in M and ~b are modi�ed by a compressive nonlinearity. That is, for regions with low contrast

(i.e., small k~fsk2), the �2 term dominates the divisor of M. For high-contrast regions, the

�1k~fsk2 term will normalize the magnitude of the quadratic terms in M.

This seems intuitively reasonable: When the contrast (SNR) of the signal is low, an increase

in contrast should increase our certainty of the velocity estimate. But as the contrast increases

above the noise level of the signal, the certainty should asymptotically reach some maximum

value rather than continuing to rise quadratically. The noise term n2 accounts for errors in

the derivative measurements. At low signal amplitudes, these will be the dominant source of

error. The term ~n1 accounts for failures of the constraint equation. At high contrasts, these

will be the dominant source of error. The nonlinearity is illustrated in �gure 3-1, where we

have plotted the trace of the inverse covariance ��1
~v (i.e., the certainty of the estimate) as a

function of contrast, k~fsk2.
The solution described thus far computes velocity for one point in isolation. As described

in section 2.1, there will be a measurement singularity and we may therefore only compute the

component of ow normal to the local orientation. In the solution above, the mean will be

(approximately) the normal ow vector, and the width of these distributions in the direction

perpendicular to the normal direction will be determined by �p. The variance in the normal

1If we incorporate the additional noise term ~n3 in equation (3.1), the noise model is more general, but the
solution is no longer Gaussian.
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Figure 3-1: Plot of the nonlinearity that operates on the quadratic energy measurements in
the solution given in equation (3.6).

direction will be determined by both �p and the trace of M (i.e., the sum of the squared

magnitudes of the spatial derivatives).

If normal ow (along with variance information) does not provide a satisfactory input for

the next stage of processing, then we can combine information in small neighborhoods (as in

equation (2.4)). We now need an uncertainty model for the entire neighborhood of points.

The simplest assumption is that the noise at each point in the neighborhood is independent.

In practice this will not be correct, since, for example, a portion of the uncertainty in the

derivative measurements is due to noise in the image intensities. In addition, the velocity �eld

uncertainty (characterized by ~n3) will also contain signi�cant correlation between neighboring

points.

Nevertheless, as a �rst approximation, if we treat the uncertainties as pointwise indepen-

dent, then the resulting mean and variance are:

�~v =

2
4X

i

wiMi�
�1k~fs(xi; yi; t)k2 + �2

� +��1
p

3
5
�1

(3.7)

�~v = ��~v �
X
i

wi
~bi�

�1k~fs(xi; yi; t)k2 + �2
� ; (3.8)

where, as before, wi is a weighting function over the patch, with the points in the patch indexed

by i. Here, the e�ect of the nonlinearity on the combination of information over the patch is to

provide a type of gain control mechanism. If we ignore �2, the solution above normalizes the

information, equalizing the contribution from each point in the neighborhood by the magnitude

of the spatial gradient. We will refer to this in later sections as the basic solution.

In the solution above, we are combining information over �xed size patches, using a �xed
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Figure 3-2: Probability distributions computed by the model in di�erent regions of a moving
square image. A small amount of noise was added to the image sequence.

weighting function. An adaptive version of this algorithm could proceed by blurring over larger

and larger regions until the magnitude of the variance (determinant of the variance matrix)

was below some threshold. Since the variance matrix �~v describes a two-dimensional shape,

this could even be done directionally, averaging pixels which lie in the direction of maximal

variance until the variance in this direction was below a threshold.

To illustrate the solution given in equation (3.8), we consider the response to a moving

square as we did in �gure 1-3. We have added a small amount of Gaussian-distributed white

noise. Figure 3-2 shows one frame of the input image, along with the resulting distributions

near the corner, on a side, and in the center. In the corner, the output is a fairly narrow

distribution centered near the correct velocity. The error in the mean is due to the noise in the

input. On the side, the ambiguity of the motion along the edge (i.e., the aperture problem) is

indicated by the elongated shape of the distribution. In the center, the motion is completely

ambiguous and the resulting distribution corresponds almost entirely to the prior. We also show

the response for a low-contrast moving square, with the same amount of Gaussian noise, in

�gure 3-3. Note that the velocity distribution corresponding to the corner is now substantially

broader, as is that of the edge.

We can also write a probabilistic version of the mixed-order solution of equation (2.12).
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Figure 3-3: Probability distributions computed by the model in di�erent regions of a low-
contrast moving square image. The noise added to the sequence was of the same amplitude as

that in �gure 3-2.
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We rewrite that equation with uncertainty terms as:

~d(f) +C(f) � ~v = C(f) � ~n1 + ~n2;

where

C(f) =

0
BBBB@

fx fy

fxx fxy

fxy fyy

fxt fyt

1
CCCCA ; ~d(f) =

0
BBBB@

ft

fxt

fyt

ftt

1
CCCCA :

As with the single derivative solution of equation (3.6), the solution is Gaussian, with covariance

and mean speci�ed by

�~v =

�
CT (f)

�
C(f)�1C

T (f) + �2

��1
C(f) + ��1

p

��1

(3.9)

�~v = ��~vC
T (f)

h
C(f)�1C

T (f) + �2

i�1
~d(f): (3.10)

We assume that �1 and �2 are multiples of the identity matrix (2x2 and 4x4, respectively).

The solution is nevertheless much less e�cient to compute than that of equation (3.6), since

it requires the inversion of the 4x4 matrix:h
�1C(f)C

T (f) + �2I
i

The only way around this is to assume that the diagonal terms dominate the matrixC(f)CT(f),

in which case the solution becomes

�~v =

"
CT (f)C(f)

�1trace (C(f)CT (f)) + �2
+��1

p

#�1

�~v = ��~v
CT (f)~d(f)

�1trace (C(f)CT (f)) + �2
: (3.11)

We will refer to this as the mixed-order solution.

Note that

trace
�
C(f)CT(f)

�
= f2x + f2xx + f2xy + f2xt + f2y + f2xy + f2yy + f2yt

and

CT (f)C(f) =

 P
(f2x + f2xx + f2xy + f2xt)

P
(fxfy + fxxfxy + fxyfyy + fxtfyt)P

(fxfy + fxxfxy + fxyfyy + fxtfyt)
P
(f2y + f2yy + f2xyf

2
yt)

!

CT (f)~d(f) =

 P
(fxft + fxxfxt + fxyfyt + fxtftt)P
(fyft + fyyfyt + fxyfxt + fytftt)

!
;

which are identical to the de�nitions of M and ~b in equation (2.12). Thus, as with the basic

gradient solution, the uncertainty model modi�es the mixed-order solution by incorporating a

non-linear gain-control mechanism.
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Figure 3-4: Illustration of the temporal aliasing problem. On the left is an idealized depiction

of the power spectrum of a one-dimensional pattern translating at speed v. The power spectrum
is distributed along the heavy line, which has a slope of v. Temporally sampling the signal causes
a replication of its power spectrum in the frequency domain at temporal frequency intervals of

2�=T . When the velocity of the signal is high, the replicas of the spectrum will interfere with
the �lter (gradient) measurements.

3.2 Temporal Aliasing

In section 1.2 of the introduction, we mentioned temporal aliasing as a typical problem in

computing the optical ow of real image sequences. Humans can easily see temporal aliasing.

The classic example is the wheel of a covered wagon in a Western movie: when the wheel

rotates at the right speed, its direction of rotation appears to reverse. This phenomenon is

not a property of the eye, but of the sparseness of the temporal sampling introduced by the

camera.

Temporal aliasing can cause problems for any type of motion algorithm. In the case of

algorithms based on matching, it is manifested as the problem of \false matches", as was

illustrated in �gure 1-4. For �ltering algorithms, the e�ect is easiest to see in the frequency

domain. Consider a one-dimensional signal that is moving at a constant velocity. As discussed

in section 2, the power spectrum of this signal lies on a line through the origin. We assume

that the spatial sampling is dense enough to avoid aliasing (i.e., the imagery is spatially band-

limited, and the sampling frequency is above the Nyquist limit). The temporal sampling of the

imagery causes a replication of the signal spectrum at temporal frequency intervals of 2�=T

radians, where T is the time between frames. This is illustrated in �gure 3-4. It is easy to see

that these replicated spectra could confuse a motion estimation algorithm.
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Eliminating Temporal Aliasing: Tracking and Warping

An important observation concerning this type of temporal aliasing is that it a�ects the higher

spatial frequencies of an image. In particular, for a �xed global velocity, those spatial fre-

quencies moving more than half of their period per frame will be aliased, but lower spatial

frequencies will not.

This suggests a simple, but e�ective approach for avoiding the problem of temporal aliasing.

We can estimate the velocity using a low-frequency (or coarse-scale) pre�lter that ignores the

(potentially aliased) higher frequency content. Note that this pre�lter will tend to be quite

large in spatial extent, in inverse proportion to its small spatial-frequency extent. Thus these

velocity estimates will correspond to the average velocity over a large region of the image.

Given imagery that contains only a single global motion, or a motion �eld that varies slowly,

we could stop our computation at this point. But in typical scenes, slowly varying motion �elds

are rare. Although a single velocity may account for much of the motion in a large region, it

is likely that subportions are moving at least slightly di�erently. The low-frequency subband

estimates will be unable to capture these local variations.

In order to get better estimates of local velocity, higher-frequency bands must be used,

with spatially smaller �lters. What we would like to do is to use the coarse motion estimate

to \undo" the motion, roughly stabilizing the position of the image over time. Then higher

frequency �lters can be used to extract local perturbations to this large-scale motion. That is,

we can use higher frequency �lters to estimate optical ow on the warped sequence, and this

\optical ow correction" may then be composed with the previously computed optical ow to

give a new optical ow estimate. This correction process may be repeated for �ner and �ner

scales.

There are two mechanisms that one could imagine using to stabilize the image. In an

interactive setting (i.e., a biological or robot visual system), the sensors can be moved so as to

track a given point or object in the scene. This action reduces the image velocity of the object

to zero. It is well-known that human beings do this when observing moving imagery.

Alternatively, in image-processing situations, where the image-gathering has already oc-

curred, we can \warp" a spatially and temporally localized region of the image content in a

direction opposite to the computed motion. For our purposes, we compute the warped image

sequence:

Wff; vg(x; y; t+ �t) = f(x� vx�t; y � vy�t; t+�t);

where (vx; vy) is the warp vector �eld corresponding to the velocity estimated from the coarser

scale measurements. Note that the warping only need be done over a range of �t that covers

the temporal extent of the derivative �lters that will be applied.

We will concentrate on the warping approach here, although many of the observations
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Figure 3-5: Illustration of the coarse-to-�ne approach for eliminating temporal aliasing. On

the left is an idealized illustration of the (aliased) power spectrum of the signal. A low frequency
subband is used to estimate the motion of this signal. These estimates are then used to \undo"
the motion, leaving a smaller, unaliased residual motion (shown on the right { note that the

spectrum lies on a line of smaller slope). This motion may then be estimated using higher
frequency �lters.

apply to the tracking case as well. The warping procedure may be applied recursively to

higher frequency subbands. This \coarse-to-�ne" estimation process is illustrated in �gure 3.2.

This type of multi-scale \warping" approach has been suggested and used by a number of

authors [54, 71, 23, 8, 12].

Coarse-to-Fine Algorithms

As described above, in order to generate estimates at di�erent scales, we can apply the di�eren-

tial algorithm to lowpass pre�lters of di�erent bandwidth. To illustrate the e�ectiveness of this

technique, consider a simple test pattern containing a disk containing high-frequency texture

moving at a fairly high velocity. This is illustrated in �gure 3.2. A local operator attempting

to compute motion in the center of the disk would fail. But the multi-scale algorithm succeeds

since the coarse scale motion of the disc allows the algorithm to \lock onto" the correct motion.

As we have described, a \coarse-to-�ne" algorithm can be used to handle problems of tem-

poral aliasing. We noted that it also may be viewed as a technique for combining information

from di�erent spatial scales. It is also a technique for imposing a prior smoothness constraint

(see, for example, [91, 20]). This basic technique does, however, have a serious drawback. If

the coarse-scale estimates are incorrect, then the �ne-scale estimates will have no chance of

correcting the errors.

To �x this, we must have knowledge of the error in the coarse-scale estimates. Since we
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Figure 3-6: Top image is the stimulus, a rapidly moving disc with �ne-scale texture on it.

Bottom/left: Optical ow computed, direct gradient algorithm. Bottom/right: Optical ow
computed using coarse-to-�ne gradient algorithm. The single dots correspond to optical ow
vectors of length zero.
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are working in a probabilistic framework, and we have information describing the uncertainty

of our measurements, we may use this information to properly combine the information from

scale to scale. We de�ne a state evolution equation with respect to scale:

~v(l+ 1) = E(l)~v(l) + ~n0(l); ~n0(l) � N(0;�0)

where l is an index for scale (larger values of l correspond to �ner scale), E(l) is the linear

interpolation operator used to extend a coarse scale ow �eld to �ner resolution, and ~n0 is a

random variable corresponding to the certainty of the prediction of the �ne-scale motion from

the coarse-scale motion. We assume that the ~n0(l) are independent, zero-mean, and normally

distributed. Implicitly, we are imposing a sort of fractal model on the velocity �eld. This type

of scale-to-scale Markov relationship has been explored in an estimation context in [20, 11].

We also de�ne the measurement equation:

�ft(l) = ~fs(l) � ~v(l) + (n2 + ~fs(l) � ~n1)

as in section 3.1. We will assume, as before, that the random variables are zero-mean, indepen-

dent and normally distributed. Remember that this equation is initially derived from the total

derivative constraint for optical ow. This equation is a bit di�erent than the measurement

equation used in most estimation contexts. Here, the linear operator relating the quantity to

be estimated to the measurement ft is also a measurement.

Given these two equations, we may write down the optimal estimator for ~v(l + 1), the

velocity at the �ne scale, given an estimate for the velocity at the previous coarse scale, �~v(l),

and a set of �ne scale (gradient) measurements. The solution is in the form of a standard

Kalman �lter [33], but with the time variable replaced by the scale, l:

�~v(l + 1) = E(l)�~v(l) +K(l+ 1)�(l+ 1)

�(l+ 1) = �0(l+ 1)�K(l+ 1)~fTs (l + 1)�0(l+ 1)

K(l+ 1) = �0(l+ 1)~fs(l+ 1) �
h
~fTs (l+ 1)

�
�0(l+ 1) + �1

� ~fs(l+ 1) + �2

i�1

�(l + 1) = �ft(l + 1)� ~fTs (l+ 1)E(l)�~v(l)

�0(l + 1) = E(l)�(l)E(l)T +�0

Here, �(l) corresponds to an innovations process. The innovations process represents the new

information contributed by the measurements at level l.

The problem with the equations given above is that we cannot compute the derivative

measurements at scale l without making use of the velocity estimate at scale l � 1, due to

the temporal aliasing problem. In order to avoid this problem, we must write �(l) in terms of

derivatives of the warped sequence. That is, expanding around a time t0, we write:

�(l + 1) = �ft(l+ 1)� ~fs(l+ 1) �E(l)�~v(l)
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= � @

@t
f (~x+ (t0 + t)E(l)�~v(l); t0+ t)

� � @

@t
Wff(l+ 1); E(l)�~v(l)g(x; y; t0)

Thus, the innovations process is computed as the temporal derivative of the the image at scale

l + 1, after it has been warped with the interpolated ow �eld from scale l. In order to make

the solution computationally feasible, we ignore the o�-diagonal elements in �0(l+1) (i.e., the

correlations between adjacent interpolated ow vectors).

Now the Kalman solution may be put into the alternative \update" form by use of the

following matrix identity [33]:h
B �BCT (CBCT +A)�1CB

i�1
= B�1 + CTA�1C:

The left side corresponds to the inverse of the updated covariance matrix given in the Kalman

equations above:

�(l+ 1) =
h
�0(l+ 1)�1 + ~fs(~f

T
s �1

~fs + �2)
�1 ~fTs

i�1

=

2
4�0(l + 1)�1 +

M�
�1k~fsk2 + �2

�
3
5
�1

; (3.12)

Similarly, we may rewrite the updated mean vector as:

�~v(l+ 1) = E(l)�~v(l) + �(l+ 1)~fs(~f
T
s �1 + �2)

�1�(l+ 1)

= E(l)�~v(l) + �(l+ 1)
~b0�

�1k~fsk2 + �2
� ; (3.13)

where the vector ~b0 is de�ned by
~b0 = ~fs�(l + 1):

These mean and covariance expressions are the same as those of equation (3.6) except that: 1)

the prior covariance �p has been replaced by �0(l+1), 2) the vector ~b has been replaced by ~b0,
which is computed in the same manner but using the warped temporal derivative measurements,

and 3) the mean �~v(l+ 1) is augmented by the interpolated estimate from the previous scale.

Figure 3.2 illustrates the e�ectiveness of this \Kalman �lter over scale". The stimulus is a

slowly moving textured disk, with noise added. The ordinary coarse-to-�ne gradient algorithm

gives terrible results, because the noise leads to large errors in the coarse-scale velocity esti-

mates that cannot be corrected at �ner scales. The covariance-propagating version de�ned by

equations (3.12) and (3.13) produces better estimates (i.e., the mean vectors are closer to the

actual ow), and the covariance information accurately indicates the more uncertain vectors.

Given that the derivative measurements will fail when the image velocity is too high, a

more sophisticated version of this algorithm could \prune" the tree during the coarse-to-�ne

operation. That is, we can terminate the recursion at a given location (x; y; t) and level l if

the interpolated covariance estimate from the previous scale, �0(l) is too large.
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Figure 3-7: Example using the covariance-propagating coarse-to-�ne algorithm. (a) the stim-
ulus, a slowly moving disc with �ne-scale texture on it and with added Gaussian white noise.

(b) Optical ow computed using standard coarse-to-�ne gradient algorithm. (c) Optical ow
computed using Kalman-like coarse-to-�ne gradient algorithm with covariance propagation. (d)
the determinant of the terminal covariance matrix, indicating uncertainty of the estimate.
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3.3 Implementation Issues

In this section we will discuss some important issues that arise when implementing the algo-

rithms discussed thus far.

Derivative Filter Design

The design of �lters for performing the derivative operation is a di�cult problem, and yet

many authors do not even describe the �lters that they use. The most common choice in

the literature is a �rst-order di�erence. First we show that simple �rst order di�erences are

likely to produce poor results for the optical ow problem when applied directly to the input

imagery, especially in highly textured regions (i.e., regions with much high-frequency content).

Figure 3-8 shows the graph of the Fourier magnitude of the two-point derivative operator

g0(n) = [�1; 1]. On the same plot is shown the Fourier transform of the derivative of the

two-point averaging operator g(n) = [0:5; 0:5], which is computed by multiplying its Fourier

magnitude by the function j!j.
Although the two curves coincide reasonably well for the lowest frequencies, they are clearly

far apart at mid or high frequencies. For signals with signi�cant content in this range of frequen-

cies, the derivative will be overestimated. In the context of motion analysis, this could result

in an overestimation or an underestimation of velocity. For example, a high spatial-frequency

signal moving slowly would result in an overestimated spatial derivative, thus producing an

underestimate of velocity. Because of this, these two �lters make a poor derivative/pre�lter

pair, unless the input signal is severely band-limited. We will demonstrate this explicitly in

section 3.4.

Some authors have used higher-order di�erence �lters or binomial expansions. These are

often combined with lowpass pre�lters. We note that it is easier to design the derivative of

the pre�lter than to design a pre�lter and a separate derivative �lter. If we assume ideal

(sinc-function) interpolation, the true derivative operator is global in extent, so any small FIR

�lter will be a fairly crude approximation. Rather than choosing a low cuto� frequency for the

pre�lter in order to render the derivative accurate, we design the pre�lter and its derivative

simultaneously.

We choose to work in the frequency domain. Let G(~!) be the Fourier transform of the

pre�lter, and G0(~!) the Fourier transform of the derivative �lter. Then our design method

must attempt to meet the following requirements:

1. The derivative �lters must be very good approximations to the derivative of the pre�lter.

That is we would like j!xG(~!)j � jG0(~!)j.

2. The pre�lter should be a constant-phase �lter, preferably even- or odd-symmetric (i.e.,
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Figure 3-8: Illustration of the two point derivative operator in the frequency domain. Shown

are the magnitude of the Fourier transforms over the range �� < !� of a) the derivative
operator [�1; 1] (dashed line), and b) the frequency-domain derivative of the two-point averaging
operator [0:5; 0:5] (that is, its Fourier magnitude multiplied by j!j). If these were a perfect

derivative/pre�lter pair, the curves would coincide.

phase of zero or �=2 ).

3. Temporally, the pre�lter should be a lowpass �lter, to allow sensitivity to low or zero

speeds.

4. Spatially, the pre�lter can be either bandpass or lowpass, but it should not vary with

spatial orientation. That is, it should be rotationally symmetric.

5. For computational e�ciency and ease of design, it is preferable that the pre�lter be

separable. In this case, the derivatives will also be separable, and the design problem

will be reduced to one-dimension.

The requirements on the temporal and spatial aspects of the pre�lter restrict us to two possible

types of symmetry: spherical (or elliptical) and cylindrical.

If we insist on the separability of the �lters (item 5), then our search is narrowed consider-

ably. In particular, there is only one choice: a Gaussian. The main drawback of this choice is

that we cannot create a set of mixed-order �lters that will act exactly as quadrature pairs, as

described in section 2.3. According to equation (2.25), the quadrature pair constraint requires

that

rG2(r) = G1(r):

It is easy to see that there is no solution to this equation if G1(r) and G2(r) are Gaussians.

Nevertheless, by choosing these Gaussians with di�erent variances for our �rst and second

derivatives, we can design reasonable approximations.
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We have designed two �rst derivative �lters (with their pre�lters) and a second derivative

�lter (with associated �rst derivative and pre�lter). The design criterion was weighted least

squares in the frequency domain. The weighting function was intended to mimic the expected

frequency content of natural images: W (!) = 1=j!j. With this simple error measure, we can

compute solutions analytically and avoid complex optimizations with local minima.

We �rst �xed the size of the �lter, N . Let GN(!) be the Fourier transform of the desired

N -tap pre�lter, and G0
N (!) the Fourier transform of the desired N -tap derivative �lter. Then

we minimize the following function over �:

E(�;N) = min
G0

N
(!)

(
W (!)jG0

N(!)j �W (!)j!j arg min
GN (!)

h
W (!)jGN(!)j �W (!)e�!

2=2�2
i2)2

In words, the solution is found as follows. For a Gaussian of standard deviation �, we analyt-

ically compute samples of the Fourier transform at 64 points, from 0 to 2�. Given this ideal

�lter shape, we found the best (in a weighted least squares sense) pre�lter of N taps. We

computed the 64 point FFT of this pre�lter, multiplied by �j!, and then found the �lter of N

taps best approximating this Fourier transform (this is the derivative �lter). The parameter �

was chosen so as to minimize the weighted least square error between the pre�lter derivative

and the derivative �lter. The resulting �lter kernels and plots of their Fourier transforms are

given in �gures 3-9 and 3-10. Notice that the three-tap �lter is substantially more accurate

than the two-tap �lter of �gure 3-8, and the �ve-tap �lter is substantially better than the

three-tap.

Blurring Filters

The algorithm also requires averaging over a patch, which is equivalent to applying a lowpass

�lter. The purpose of the blurring is to eliminate phase cancellations, or to improve the

estimates of local spectral power (recall that all of our frequency-domain arguments of chapter 2

are based on integration over the entire image).

We desire this lowpass �lter to have all positive weights, since it will be used combine a

set of squared constraints and should produce a positive value. There is a tradeo� in choosing

the spatial extent of the �lter. A large �lter will produce better power spectral estimates by

combining information over a larger region. But it is also more likely to combine inconsistent

motions. The question can only be properly settled given a knowledge of the statistics of the

motion of the imagery to be analyzed. We experimented with binomial blurring �lters and

found that separable application of the kernel [0:25; 0:5; 0:25] with the mixed-order algorithm

produced reliable results without over-blurring. The basic algorithm generally required a larger

blurring �lter: [0:0625; 0:25; 0:375; 0:25; 0:0625].
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 �lter n = �1 n = 0 n = 1

pre�lt 0.230366 0.539269 0.230366

deriv -0.441419 0.00000 0.441419

Figure 3-9: Illustration of the 3-tap derivative/pre�lter pair. See caption of �gure 3-8 for

explanation. The table contains tap values for the two �lters.
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 �lter n = �2 n = �1 n = 0 n = 1 n = 2

pre�lt 4.504187e-2 0.243908 0.422100 0.243908 4.504187e-2

deriv -0.108144 -0.269869 0.00000 0.269869 0.108144

Figure 3-10: Illustration of the 5-tap derivative/pre�lter pair. See caption of �gure 3-9
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 �lter n = �2 n = �1 n = 0 n = 1 n = 2

pre�lt 3.342604e-2 0.241125 0.450898 0.241125 3.342604e-2

deriv1 -9.186104e-2 -0.307610 0.00000 0.307610 9.186104e-2

deriv2 0.202183 9.181186e-2 -0.587989 9.181186e-2 0.202183

Figure 3-11: Illustration of Fourier magnitudes of a 5-tap pre�lter with both its �rst and
second derivatives. Shown are the second derivative �lter (dash-dot pattern), the �rst derivative
multiplied by j!j (dash pattern), and the pre�lter multiplied by j!j2 (solid line). This set of

�lters was used as a quadrature pair to the 3-tap �lters of �gure 3-9
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Multi-scale Warping

In section 3.2, we discussed the implementation of coarse-to-�ne algorithms for defeating tem-

poral aliasing. Conceptually, this approach operates by using pre�lters of varying bandwidths.

A more e�cient technique for generating multi-scale representations is to construct an

image pyramid [17], by recursively applying lowpass �ltering and subsampling operations.

In this case, the images at di�erent scales are also represented at di�erent sampling rates.

Assuming the lowpass �lter prevents aliasing, the e�ect of the subsampling in the frequency

domain is to stretch the spectrum out. This allows us to use the same derivative �lters at each

scale, rather than designing a whole family of derivative �lters at di�erent scales.

The algorithm begins by building a multi-scale pyramid on each frame of the input sequence,

and computing the optical ow on the sequence of top level (lowest frequency) images using the

computation speci�ed by equation (3.8). An upsampled and interpolated version of this coarse,

low-resolution ow �eld must then be used to warp the sequence of images in the next pyramid

level. We used a simple bilinear interpolator in this case, since the optical ow is somewhat

smooth due to the blurring operation. Optical ow is then computed on this warped sequence,

and this \optical ow correction" was composed with the previously computed optical ow

to give a new optical ow estimate. This correction process is repeated for each level of the

pyramid until the ow �elds are at the resolution of the original image sequence.

The warping equation is fairly unambiguous in the continuous case. But there are many

ways in which one can implement a warping algorithm on discretely sampled image data.

Consider the task of warping a frame at time t1 back to time t0. The primary issues are:

Indexing Should we use the velocity estimate at t0 or t1 (or a velocity estimate between the

frames) as the warp �eld? Assuming the velocity vectors are in units of pixels/frame,

does the velocity estimate at position (x; y; t) correspond to the displacement of intensity

at (x� vx; y � vy ; t� 1) to (x; y; t), or from (x; y; t) to (x+ vx; y + vy; t� 1)?

Order If our �lters are several frames long and thus require warping of several frames, should

we use the velocity estimates at each of these frames, or just the velocity estimate of the

central frame?

Interpolation Given that velocity vector components are typically not multiples of the pixel

spacing, how should we interpolate the intensities of the warped images?

We compared several di�erent variants and chose a simple and e�cient warping scheme.

We assume an odd-length temporal derivative �lter of length Nt, and we use a velocity �eld

estimate associated with the center frame. Let tc = (Nt � 1)=2 be the number of this center

frame. Since our derivative �lters are separable, we apply the spatial portion to Nt frames
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centered at frame tc. Let f
0(x; y; t); 0� t < Nt be the set of spatially �ltered frames. We then

combine the temporal portion of the derivative with the warping operation as follows:

f 0t(x; y; 0) =
Nt�1X
t=0

gt(t)I
�
f 0 (x+ (t� tc)v̂x(x; y; tc); y + (t� tc)v̂y(x; y; tc); t)

	
where v̂ is the previous estimate of optical ow, and If�g is a bi-cubic spline interpolator used
to evaluate f 0 at fractional-pixel locations.

Boundary Handling

Convolutions are used to compute the derivative �lter responses, and to blur the energies.

They are also used in coarse-to-�ne schemes to construct the multi-resolution image pyramid.

Traditionally, convolution boundaries are handled by computing circular convolution. That

is, the image is treated as one period of a periodic signal. This often produces poor results

because it associates the the image content near one boundary with that near the opposite

boundary.

There are many alternatives for handling edges. Let f(n) be a one-dimensional signal,

indexed by the discrete variable n, with n = 0 corresponding to the leftmost sample. Then we

de�ne an edge-handling mechanism (for the left edge) by assigning a value for the function f

at negative values of n. Several example methods that we have experimented with are:

1. Reect the image about its edge pixel (or just beyond the edge pixel): f(�n) = f(n) (or

f(�n) = f(n � 1) ).

2. Imbed the image in a \sea of zeros": f(�n) = 0, for each n > 0.

3. Repeat the edge pixel: f(�n) = f(0)

4. Reect and invert (so as to preserve zeroth and �rst-order continuity): f(�n) = 2f(0)�
f(n).

5. Return zero for the convolution inner product whenever the �lter kernel overhangs an

edge of the image.

For the blurring and pyramid �ltering operations we have found that reection (item 1) is

preferable. For the derivative operations, we choose to repeat the edge pixel (item 3).

3.4 Examples

We computed velocity �eld estimates for a set of synthetic and real image sequences in order

to examine the behavior of the basic (�rst derivative) solution of equation (3.8) and the mixed-

order solution given in equation (3.11).
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Performance Measures

In cases where we the velocity �eld is known, we can analyze the errors in our estimates.

There are a number of ways to do this. The simplest measure is the squared magnitude of the

di�erence between the correct and estimated ow:

Emag2 = jv̂ � ~vj2:

where ~v is the actual velocity, and v̂ is the estimate. Viewing an image containing these values

at each spatial location often provides useful information about the spatial structure of the

errors. Errors in optical ow are sometimes reported as a ratio of the error magnitude to

magnitude of the actual ow, but this is problematic when the actual ow vectors are small.

Fleet and Jepson [29] used an error criterion based on the unit vector normal to the velocity

plane in spatio-temporal frequency:

Eangular = arccos [û(v̂) � û(~v)] ;

where û(�) is a function producing a three-dimensional unit vector:

û(~v) =
1pj~vj2 + 1

0
B@
~vx

~vy

1

1
CA ;

and the resulting angular error is reported in units of degrees.

We also de�ne a measure of bias in order to quantify characteristic over- or under- estima-

tion of velocity magnitudes:

Ebias =
~v � (~v � v̂)

j~vj :

Positive values of this measure, for example, indicate that the algorithm is overestimating the

velocity magnitude.

Mean values of all three of the error measures de�ned above, collected over single or multiple

frames, produce useful statistics for characterizing performance. In addition, one can compute

the variance of these quantities.

In situations where we have estimated velocity �eld covariances, �~v, as well as means,

�~v , we can check that the covariance information adequately describes the errors in the ow

estimates. The appropriate technique here is to normalize each of the errors according to the

covariance information:

Enormalized =
q
(~vactual � ~vest)

T ��1
~v (~vactual � ~vest):

If the ow �eld errors are exactly modeled by the additive Gaussian noise model, then a

histogram of the values of the Enormalized values should be distributed as a two-dimensional
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 Figure 3-12: One frame of a sinusoidal image sequence, and its computed velocity �eld.

univariate Gaussian integrated over its angular coordinate:

h(x) / xe�x
2=2; x > 0:

Translating Synthetic Sequences

We generated a series of very simple synthetic test sequences to study the error behavior of

the algorithm. These stimuli involve only translation of the image patterns, and therefore

fully obey (modulo intensity quantization noise) the total derivative equation (2.1) for optical

ow. Furthermore, since the entire image translates with a single velocity, the combination

of information in a neighborhood is fully justi�ed. Thus, these examples are primarily a

test of the �lters used to measure the derivatives, and the prior probability constraint used

to determine a solution when there is an aperture or blank-wall problem. For this section,

we used only the single-scale basic gradient algorithm, and we set the noise parameters as

�1 = 0; �2 = 1; �p = 1e� 5.

The �rst example is a translating sinusoidal grating:

f(x; y; t) = sin(k cos(�)x+ k sin(�)y + vkt);

where k is the spatial frequency (or wavenumber), v the speed in the direction normal to the

grating, and � determines the orientation. An example, with k = 2�=6, v = 0:6 pixels/frame,

and � = �=6 is shown in �gure 3-12, along with the estimated motion �eld. Note that the

algorithm computes the normal ow because of the prior distribution, which gives a preference

for zero velocities in the case of intensity singularities.

We examined the e�ects of varying the parameters v, k, and � on the magnitude of the

velocity estimate, for the two-tap, three-tap and �ve-tap derivative �lters. The default pa-
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 Figure 3-13: Magnitude of the velocity estimate at one point as a function of the speed v

of the sinusoid. v varies from 0 to 3 pixels/frame. The three plots are for three di�erent
derivative/pre�lter pairs: 2-tap on the left, 3-tap in the center, and 5-tap on the right. The
straight line indicates the correct speed.
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Figure 3-14: Magnitude of the velocity estimate at one point as a function of the normal

direction � of the sinusoid. The three plots are for three di�erent derivative/pre�lter pairs: 2-
tap on the left, 3-tap in the center, and 5-tap on the right. � varies from 0 to �=2. The straight
line indicates the correct speed of 0.6 pixels/frame.

rameter values (i.e., the values used for the parameters that are not varied) were as follows:

v = 0:6; � = 0; k = �=3. These are plotted in �gures 3-13, 3-14, and 3-15.

Figure 3-13 shows plots of the estimated speed as a function of the actual speed, v. As

the speed of the sinusoid increases above one pixel/frame, the two-tap �lter is seen to wildly

overestimate the velocity magnitude. The three-tap �lter also overestimates these speeds, but

not as drastically. The �ve-tap �lter produces reliable estimates out to two pixels/frame, and

then falls o� gracefully.

Figure 3-14 shows plots of the estimated speed as a function of the orientation, �, of the

sinusoid. This is a test of the circular symmetry of the �lters. As the orientation varies,

the magnitude of the velocity estimate made with the two-tap �lter is seen to vary markedly.

Furthermore, it is always underestimated. The three-tap �lter also varies substantially, but is

not as far from the correct speed. The �ve-tap �lter is noticeably better than the other two.

Figure 3-15 shows plots of the estimated speed as a function of spatial frequency, k. All

three �lters produce deviations from the correct value (0.6 pixels/frame) at high frequencies.

The �ve-tap �lter produces relatively accurate estimates out to k = 3�=4.
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Figure 3-15: Magnitude of the velocity estimate at one point as a function of the spatial

frequency k of the sinusoid. The three plots are for three di�erent derivative/pre�lter pairs:
2-tap on the left, 3-tap in the center, and �ve-tap on the right. k varies from �=8 to �. The
straight line indicates the correct speed of 0.6 pixels/frame.
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 Figure 3-16: Magnitude of the velocity estimate at one point as a function of the percentage

increase of amplitude applied at each time step. Contrast increase per frame varies from 0%
(contrast is constant) to 100% (contrast doubles at each time step). The three plots are for three
di�erent derivative/pre�lter pairs: 3-tap on the left, and 5-tap in the center, and the mixed �rst

and second order derivative solution on the right.

In order to test the quality of the mixed-order derivatives as quadrature pairs, we exam-

ined a moving sinusoid in which the intensity amplitude increases geometrically with time.

We looked at the estimated speed as a function of the percentage increase of amplitude per

frame. These results are plotted in �gure 3-16 for the three-tap, �ve-tap, and mixed-derivative

estimators. Behavior in these examples depends very much on the size of the blurring �lter

used to combine the local information. The examples were computed with a three-tap blurring

kernel: [0:25; 0:5; 0:25]. The mixed derivative solution appears to be substantially more robust

to non-motion changes in intensity, as suggested by Fleet and Jepson [29]. We note, however,

that the behavior of the basic derivative solution improves when a larger blurring �lter is used.

To illustrate the spatial behavior of the algorithm, we estimated the velocity �eld of an

impulse image moving at one pixel per frame. The ow �eld is shown in �gure 3-17. The esti-

mated velocity is correct in the center of the image (at the location of the impulse). The �nite

size of the derivative �lters (�ve-tap kernels were used for this example) and the blurring of

the energies leads to the situation shown, in which the impulse \drags" part of the background

along. The velocity surrounding the impulse is consistent with the image intensities: since the
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Figure 3-17: Velocity �eld estimated for a spatial impulse moving rightward at one pixel/frame.

Dots correspond to zero velocity vectors.

image is zero everywhere except at the impulse, the motion is completely indeterminate.

Next, we examined a sinusoidal plaid pattern, taken from Barron et. al. [10]. Two sinusoidal

gratings with spatial frequency 6 pixels/cycle are additively combined. Their normal orienta-

tions are at 54� and �27� with speeds of 1.63 pixels/frame and 1.02 pixels/frame, respectively.
The ow is computed using the multi-scale mixed-order algorithm. We built a one-level Gaus-

sian pyramid on each frame, using the following �ve-tap kernel: [0:0625; 0:25; 0:375; 0:25; 0:0625].

Derivative �lters used are the �ve-tap �rst and second derivative kernels given in �gures 3-10

and 3-11. The covariance parameters were set as follows: �1 = 0; �2 = 1; �p = 1e�5; �0 = 0:15.

One frame of the sequence, the estimated ow, and the error magnitude image are shown in

�gure 3-18.

Also shown is a table of error statistics. The errors compare quite favorably with the mean

angular errors reported by Barron et. al. [10]. Our mean angular error is an order of magnitude

less than all the methods examined, except for that of Fleet and Jepson for which the value

was 0:03�. Barron et. al. state that the Fleet and Jepson results are computed with �lters

that are tuned for the sinusoids in the stimulus and that for a stimulus composed of di�erent

sinusoids, the algorithm would exhibit the biases.

We also note also that our mixed-order algorithm is signi�cantlymore e�cient than most of

the algorithms in [10]. For example, the Fleet and Jepson algorithm is implemented with a set

of 46 kernels. These are implemented separably as 75 convolutions with one-dimensional 21-tap

kernels. The mixed-order algorithm requires 8 convolutions (with one-dimensional kernels) for

the �rst derivative measurements, and 15 convolutions (also with one-dimensional kernels) for

the second derivatives. In addition, the one-dimensional kernels are only three or �ve taps in

length.
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mean Emag2 1:597e� 4

mean Eangular 0:2746�

st. dev. Eangular 0:300�

mean Ebias 0:004378

Figure 3-18: Velocity �eld estimates for sinusoidal plaid sequence. On the left is a frame from
the sequence. In the center is the estimated velocity �eld. On the right is the error magnitude
image. Note that the error is concentrated at the boundaries, where derivative measurement is
di�cult. Error statistics for this computation are given in the table (see text for de�nitions).

Realistic Synthetic Sequences

We also estimated image velocity �elds for the \Translating Tree" and \Diverging Tree" se-

quences used in [10]. These sequences were generated by warping an image of a tree to simulate

translational camera motion with respect to the image plane. One frame from the sequence is

shown in �gure 3-19. All parameters of the algorithm were the same as those used in the plaid

sequence.

Figure 3-20 shows a frame of the estimated image velocity �eld and the error image for the

\Translating Tree" sequence. Also given is a table of the error statistics. Figure 3-21 shows

the same data for the \Diverging Tree" sequence. These results compare favorably to those

reported in [10]. In particular, the best reported result in [10] for the translating sequence is

the Fleet and Jepson algorithm which produced a mean angular error of 0:23 degrees. Note,

however, that this result was for a ow �eld of 50% density (i.e., half of the velocity vectors

were discarded as unreliable). The best result at full density is one using the Uras et al.

algorithm, which produces a mean angular error of 0:71 degrees, which is comparable to our

result of 0:817. The best result reported for the diverging sequence at 100% density is 5:11

degrees (again, using the algorithm of Uras et al.), as compared with our mean angular error

of 1:952 degrees.

Moving one step closer to real imagery, we estimated velocity �elds for a \texture-mapped"
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Figure 3-19: An example frame from the \Translating Tree" and \Diverging Tree" sequences.

 

 

mean Emag2 0:0625

mean Eangular 0:817�

st. dev. Eangular 2:93�

mean Ebias �0:0244

Figure 3-20: Estimated velocity for the \Translating Tree" sequence. On the left is the velocity
�eld. On the right is the error magnitude image. The table contains error statistics.
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mean Emag2 0:00337

mean Eangular 1:95�

st. dev. Eangular 1:66�

mean Ebias �0:00364

Figure 3-21: Estimated velocity for the \Diverging Tree" sequence. On the left is the velocity
�eld. On the right is the error magnitude image. Also given is a table of statistics.

y-through sequence of the Yosemite valley 2. Starting with an aerial photograph and a range

(height) map of the Yosemite valley, a sequence of images was rendered for a series of camera

positions. Photometric e�ects are not included in this rendering process: the image pixel values

are interpolated directly from the intensities of the original photograph. Thus, the sequence

contains all of the problem sources except for lighting e�ects (i.e., singular regions, temporal

aliasing, and multiple motions at occlusions). Note that we have the camera motion and the

depth of each point in the image, we can compute the actual image motion �elds.

Again, we computed velocity �elds using the multi-scale mixed-order solution. This time,

we build a three-level Gaussian pyramid. Parameter settings were as follows: �1 = 2e�5; �2 =
0:004; �p = 0:5; �0 = 0:15. The results are illustrated in �gure 3-22. We show a frame from

the original sequence, the correct velocity �eld, the estimated velocity �eld, and the error

magnitude image. Also given is a table of statistics. The statistics do not include the points

closer than 10 pixels to the border.

The results are quite accurate, with most errors occurring (as expected) at occlusion bound-

aries, and at the borders of the image (which may be viewed as a type of occlusion boundary).

But qualitative comparisons with the results of the Heeger or Fleet and Jepson algorithm

indicate that the errors near these boundaries are contained within smaller regions near the

2This sequence was generated by Lyn Quam at SRI International.
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mean Emag2 0:031747

mean Eangular 3:8105�

st. dev. Eangular 7:09378�

mean Ebias �0:01083

Figure 3-22: Results of applying the algorithm to the synthetic \Yosemite" sequence. Upper

left: a frame from the original sequence. Upper right: the correct ow �eld. Lower right:
estimated velocity �eld. Lower left: error magnitude image. Note that errors are concentrated
near occlusion boundaries.

81



boundaries, since the support of the �lters is much smaller.

Furthermore, the error statistics compare quite favorably to those reported in [10]. In

particular, the best result reported is that of Lucas and Kanade, with a mean angular error

of 3:55� and standard deviation of 7:09�. This is almost identical to our result, but the ow

vector density is only 8.8%. The best result reported at 100% is that of Uras, which had a

mean angular error of 10:44�, and standard deviation of 15:00�. The values given in �gure 3-22

are signi�cantly lower.

To analyze the appropriateness of the noise model, we computed a Enormalized at each

point. We show this image in �gure 3-23, along with the histogram of values. If the ow �eld

errors were exactly modeled by the simple additive gaussian noise terms, then this histogram

would be in the form of the distribution plotted in �gure 3-24. The error histogram is seen to

qualitatively match, suggesting that the noise model is not unreasonable.

Video Imagery

Finally, we examined the qualitative behavior of the algorithm on two real video sequences:

the \Rubik Cube" sequence (created by R. Szeliski at DEC Cambridge Research Labs), and

the \Garden" sequence.

We used the same parameter settings as for the Yosemite sequence. In order to test the

quality of the velocity �elds, we used them to interpolate an estimate of frame i by warping

frame i� 1 forward and warping frame i+ 1 backward and averaging the two. Note that this

is not a true test of velocity �eld quality. A vector �eld very di�erent from the velocity �eld

might do an excellent job of matching pixel intensities from one frame to the next.

Figure 3-25 shows one frame from the \Garden" sequence, one frame of the computed

velocity �eld, and the squared error of the interpolated frame. The SNR of an interpolated

frame for this sequence (not shown) was 22:92 dB. As in the synthetic sequences, note that

errors are concentrated at occlusion boundaries.

Figure 3-26 shows one frame from the \Rubik" cube sequence, and one frame of the com-

puted velocity �eld. The SNR of an interpolated frame for this sequence (not shown) was 35:09

dB.

3.5 Summary

In this chapter, we used a Gaussian noise model and a Bayesian estimator to introduce the

concept of distributed representation of motion. The uncertainty model chosen produces a

Gaussian distribution over velocity space as output. The mean of the distribution is a gain-

controlled modi�cation of the basic di�erential energy solution developed in chapter 2. The
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Figure 3-23: Image of Enormalized for the Yosemite sequence velocity estimates. Also shown is
the histogram of values.
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Figure 3-24: Ideal distribution h(x) for the histogram shown above (see text).
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Figure 3-25: Velocity results for the \Garden" sequence. At the top is a frame of the original
sequence. In the center is a frame of the estimated motion �eld. On the bottom is the squared

error image of the interpolated frame (see text). The SNR of the interpolated frame is 22:92
dB.
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Figure 3-26: Velocity results for the \Rubik Cube" sequence. On the top is a frame of the
original sequence. In the center is a frame of the estimated motion �eld. On the bottom is the

squared error image of the interpolated frame (see text). The SNR of the interpolated frame is
35:09 dB.
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covariance matrix captures directional uncertainties, allowing proper combination of the output

with other sources of information.

We developed a coarse-to-�ne estimation algorithm for handling the problem of temporal

aliasing. Here we are able to take advantage of the uncertainty information provided by the

covariance estimates, propagating this information using an algorithm resembling a Kalman

�lter over scale.

We discussed the details of algorithm implementation, especially the issue of derivative

�lter design. Most algorithms developed in the literature rely on very poor two-point deriva-

tive estimates. We design a set of pre�lters and derivatives that are separable, and optimal

according to a simple weighted least-squares criterion in the frequency domain. These �lters

are extremely compact (3 or 5 taps), especially when compared with other �lter-based ow

algorithms in the literature.

We showed a large set of diagnostic examples, designed to demonstrate the various strengths

and weaknesses of the algorithm we have developed. We demonstrated the reliability of the

three-tap and �ve-tap derivative �lters, and showed that the mixed-order solution performs

well in the presence of non-motion changes in intensity.

We generated velocity �eld estimates for a number of synthetic sequences and compared

the results to those reported by Barron et al. The probabilistic mixed-order solution was

found to outperform all reported algorithms on the the examples tested. We also estimated

velocity �elds for real sequences, evaluating the quality of the results by interpolating a frame

by warping and averaging its two neighboring frames.

Given the estimates of means and covariances, how can we make use of the probabilistic

information? The probabilistic coarse-to-�ne algorithm is an example of this. Future work

could include the prediction of the motion �eld over time, the estimation of depth from motion,

and the estimation of rigid-body motion parameters (i.e., three-dimensional rotations and

translations) from image velocities.

The fundamental problem with the algorithm is its failure in regions of multiple motions.

Examples were shown at an occlusion boundaries. Not only are the estimates blurred over the

boundaries, but the covariance estimates typically indicate high con�dence at these locations.

This is particularly frustrating, since intuitively the motion at occlusion boundaries seems to

be quite rich in information (i.e., motion discontinuities at occlusion boundaries inform us of

discontinuities in depth).

The problem is that we are combining information over a patch using a sum-of-squares

rule. This assumes that the information under the patch corresponds to a single velocity. One

possible route to a solution is through use of robust estimation techniques: we should only

combine measurements that correspond to the same motion, discarding the others as \outliers".
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For example, given the set of mixed-order derivative measurements within a patch, we could

compute a consistency measure to determine whether it is reasonable to combine them. An

example of such a robust estimator was implemented by Black [15].

Some authors [61, 14] have proposed Markov Random Field models that represent dis-

continuities with \line processes" [34]. As with the \edge detection" problem, this approach

tends to be very sensitive to threshold parameters that determine whether a change in the

estimate corresponds to a discontinuity or just a rapid variation. They also run into di�culties

in producing extended contours by linking together \chains" of discontinuity segments.

Furthermore, these robust mechanisms will only be helpful for multiple motions at occlusion

boundaries. In the case of transparency, all of the local motion measurements within a patch

will contain information about both motions. Thus it is probable that none of the pointwise

estimates will produce a motion estimate corresponding to either of the motions. This thought

leads us to the topic of the next chapter: the local representation of multiple motions.
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Chapter 4

Representing Multiple Motions

Nearly all previous techniques for analyzing motion attempt to compute a single motion at each

point in space and time. But as we mentioned in section 1.2, in naturally occurring scenes

there are often regions that are not adequately described in this way. The most common

example is that of occlusion boundaries. In the neighborhood of such a boundary, there can be

two distinct motions: one on each side of the boundary. Since the operators used to compute

velocity are of some �nite size, they will incorporate information from both velocities into the

estimate. This problem will arise whenever there are changes in the motion �eld that are

abrupt compared to the size of the operators.

Another common example is that of transparent surfaces. A scene viewed through a piece

of dirty glass will exhibit two motions at each location: that of the glass, and that of the scene

behind it. These multiple-motion situations are prevalent, and cause problems for motion

algorithms. Biological systems provide inspiration here: humans have no trouble distinguishing

the motion of transparently moving sheets.

Several authors have discussed the problem of multiple motions [26, 4, 29, 13]. Some

authors have tried to handle the problem by using higher-order expansions of the motion

�eld (eg, a�ne). Here we will instead consider representing more than one motion at each

point. Shizawa and Mase [75, 76] have described algorithms for explicitly computing two

motion vectors at each point in the scene. Bergen et. al. [13] have developed an algorithm for

separating two transparently combined images moving according to an a�ne velocity �eld.

We take a di�erent approach here. In the previous section, we generated a quadratic error

function over the space of all velocities ~v for each point in space and time. We wish to develop

distributed representations that are no longer restricted to unimodality, thus allowing us to

robustly represent multiple motions that occur near occlusion boundaries, in regions of strong

divergence or curl, and in transparently moving imagery.
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We will build up a representation gradually, through a series of modi�cations of the dif-

ferential approaches developed in chapter 2. We de�ne an angular regression version of the

standard gradient constraint equation, and then extend this to represent multiple motions.

This generalized computational algorithm operates by �rst applying a set of spatio-temporally

oriented linear �lters, and squaring their outputs. These responses correspond to a sampled

representation of local image spatio-temporal energy. These outputs are then linearly combined

to produce a sampled distribution over the space of velocities, as was illustrated in �gure 1-6.

We implement an e�cient version of this distributed representation, in which the entire

distribution may be interpolated from a sparse set of samples. Note that this parameterization

of the distribution is quite di�erent from that of the previous chapter in which we represent

the mean and covariance. A sampled representation is also more likely to be appropriate for

biological modeling. We demonstrate the use of this sampled representation on simple synthetic

examples containing occlusion boundaries and transparent surfaces. Preliminary versions of

this work have appeared in [80, 78].

4.1 One-Dimensional Case

In this section, we develop the concept of distributed velocity representation. We will start by

analyzing the one-dimensional gradient approach in the frequency domain.

Angular Regression

In chapter 2, we showed that the basic gradient algorithm could be viewed as a regression

operation in the spatio-temporal frequency domain. But there are di�erent forms of regression,

in addition to the standard !t-weighted regression we described previously. In particular, since

the spectrum of a moving one-dimensional pattern lies on a line through the origin, with the

line orientation corresponding to the arctangent of the speed, it would seem natural to consider

optical ow computation as an angular estimation problem. Recall the least-squares regression

formulation of the basic gradient constraint, as given in equation (2.21):

E(~v) =
X
~!

[v!xG1(~!) + !tG1(~!)]
2 � jF (~!)j2

=
X
~!

�
(v; 1)T � ~!j~!j

�2
� jG(~!)F (~!)j2

= (v2 + 1)
X
~!

[û(v) � !̂]2 � jG(~!)F (~!)j2 (4.1)
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where we are writing G1(~!) as our �rst derivative pre�lter and de�ning G(~!) = j~!jG1(~!),

!̂ = ~!=j~!j. The angular velocity vector, û(v), is

û(v) =
1

(v2 + 1)

 
v

1

!
;

which we will refer to as a \steering" vector.

We have written the expression in this fashion to emphasize that the computation is com-

posed of three operations:

1. The image spectrum jF (~!)j2 is weighted by the spectrum of a spatio-temporal pre�lter,

jG(~!)j2.

2. This spectral measure is then connected to the velocity through multiplication by a

squared inner product of two unit vectors: (û(v) � !̂)2. Note that the inner product is

equal to the cosine of the angle between the two vectors.

3. After summing over frequencies, the resulting function of v is multiplied by a weighting

factor in the velocity domain,
�
v2 + 1

�
. This weighting imposes a preference for lower

speeds.

In the expression of equation (4.1), the inner product component provides the constraint

that links the velocity to the derivative measurements. This constraint is at the heart of most

di�erential algorithms. Note that it does not depend on the magnitude of the frequency, ~!,

but only on the angular component. We will use this constraint as the basis for our distributed

representation. To emphasize this, we de�ne an angular regression function A(v̂) by removing

the velocity weighting factor:

A(v) =
X
~!

[û(v) � !̂]2 jG(~!)F (~!)j2: (4:2)

That is, this is a least squares regression �t to a line of slope v, where the errors are measured

as the cosine of the angle between a point ~! and the line in the direction û(~v). Similar

\beamforming" functions are used in the direction-of-arrival estimation problem, in which one

attempts to estimate the location of electromagnetic waves impinging upon an array of sensors.

Note that there are other forms of regression. For example, we could use the distance

perpendicular to the line, as has been suggested by Shizawa and Mase [75, 76]. But this places

undue emphasis on high frequency spectral content, and our preliminary tests indicate that it

may perform poorly for optical ow estimation.

Nulling versus Maximizing

The value of the regression functions of the previous section will be minimized at the true

velocity. This is because the gradient algorithm operates by �nding a directional derivative with
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Figure 4-1: Illustration of the gradient as a \nulling" operator. On the upper left is a moving
one-dimensional pattern. Below this is the kernel of a directional derivative �lter with a null
response to this pattern. The corresponding frequency domain picture appears on the right.

In the upper right is the power spectrum of the signal, which lies on a line. Below this is the
Fourier spectrum of the �lter, which is zero along this line.

minimal response. In the frequency domain, recall that the power spectrum of a translating

pattern lies on a line. The directional derivative perpendicular to this line will have a zero

response. This is illustrated in �gure 4-1. Thus, the standard gradient algorithm may be

termed a \null-steering" algorithm.

This is counterintuitive in light of the intuition expressed by Adelson and Bergen [1], and

by other authors of spatio-temporal energy models. In these approaches, one searches for the

oriented �lter of maximal response. In the case of �rst derivatives, we can easily rewrite the

solution as a maximization. In order to accomplish this, we note that the sum of the squared

directional cosine in direction û(v) and the squared directional cosine in the perpendicular

direction, û?(v) is unity:

[û(v) � !̂]2 + [û?(v) � !̂]2 = j!̂j2 = 1;
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since the squared terms just correspond to the projection of !̂ onto two orthogonal vectors.

Using this fact, we can write the angular function as

A(v) =
X
~!

h
1� (û?(v) � !̂)2

i
jG(~!)F (~!)j2: (4:3)

Since the �rst term in the brackets does not depend on v, minimizing this function is equivalent

to maximizing the second term. Thus we write an angular \velocity-energy" function as:

P1(v) =
X
~!

[û?(v) � !̂]2 jG(~!)F (~!)j2: (4:4)

This function will respond maximally at the correct velocity. We illustrate this function in

�gure 4-2.

Note that if we wish to consider this distribution probabilistically, it must be normalized

by its integral over v. Note also that despite our manipulations, this expression is still based on

�rst derivative measurements. We can transform it back into the spatial domain (once again,

using Parseval's rule):

P1(v) =
X
~!

����û?(v) � ~!G(~!)j~!j F (~!)
����
2

=
X
~x

h
û?(v) �

�*r g1(~x) � f(~x)
�i2

;

where g1(~x) is a pre�lter with Fourier transform G1(~!) = G(~!)=j~!j.

Representing Multiple Motions

The function illustrated in �gure 4-2 is always unimodal. In order to represent multiple mo-

tions, we need a set of �lters that are more narrowly tuned in orientation. To this end, we can

make use of higher-order directional derivatives: We simply replace the directional �rst deriva-

tive with a directional Nth derivative. In the frequency domain, we can write the distributed

representation in terms of Nth order derivatives by raising the directional cosine function to

the Nth power:

PN (v) =
X
~!

h
(û?(v) � ~!)NGN(~!)F (~!)

i2

=
X
~!

h
(û?(v) � !̂)NG(~!)

i2 jF (~!)j2 (4.5)

=
X
~!

"
G(~!)

NX
n=0

�
N !

n!(N�n)!
�
(û?x(v))

n(û?t(v))
N�n(!̂x)n(!̂t)N�n

#2
jF (~!)j2;

where, analogous to the previous case, we de�ne G(~!) = j~!jNGN(~!). We have written the last

expanded equation to emphasize two points. First, the Nth directional cosine is computed as
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 Figure 4-2: Illustration of the computation of the distribution P1(v). On the top is a space-time

translating one-dimensional noise signal moving at velocity v̂. On the right is its power spectrum,
plotted over the range [��; �]. Below/left is the power spectrum of a directional derivative �lter,
(û?(tan(�)) � !̂)2jG(~!)j2, for an arbitrary angle �. Conceptually, the distribution is computed
by rotating the derivative �lter through all angles �, and computing the inner product of the its

power spectrum with that of the signal. On the right is the resulting distribution, P1(v), plotted
as a function of � = arctan(v), which is in the form of a squared cosine (this is, of course, not
true if we plot it as a function of v). The peak of the distribution is at �̂ = arctan v̂.
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Figure 4-3: Illustration of the computation of the distribution over velocity space. The signal
being analyzed is the same as the one in �gure 4-2. On the left is the power spectrum of a
directional third derivative �lter. Four such �lters are used to analyze the image. On the right
is the resulting distribution over � = arctan(v).

a linear combination of linear measurements. Each term in the sum over n corresponds (in

the spatial domain) to a measurement of an Nth-order derivative. Note that some of them are

cross-derivatives. Second, although the distribution is no longer quadratic in the components

of v, it is still quadratic in these linear measurements.

Figure 4-3 illustrates the application of a set of third-order �lters to the example shown

previously in �gure 4-2. Note that the resulting distribution is narrower than in the �rst

derivative example. In a signal containing two motions, the distribution will typically exhibit

two modes. 1 As an aside, we also mention here the importance of the conversion to a max-

steering algorithm taken earlier in this section. A null-steering algorithm based on these

higher-order derivative measurements would perform poorly, because the minimum is very

broad.

Many authors have argued that the use of higher-order derivatives for estimating motion

leads to increased noise sensitivity. An Nth-order x-derivative operator, for example, has a

Fourier magnitude of j!xjN and thus will strongly emphasize the high-frequency content of

the signal, which is likely to be dominated by noise. But we have eliminated this e�ect by

replacing directional derivative �lters with directional cosine �lters: the factors of j!xj are
absorbed into the de�nition of the pre�lter G(~!). The spectrum of these �lters is at with

respect to frequency magnitude: the importance of using higher-order �lters is the narrower

orientation tuning of the operators.

We must decide how high a derivative order to use. As is often the case in such questions,

there is a tradeo� here. Lower order �lters are more broadly tuned in orientation, but can

1We note, however, that the peaks of these two modes will not necessarily align with the arctangents of the
two velocities.
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Figure 4-4: Computation of P3(v) for a moving one-dimensional pattern. At the top is the
pattern, displayed as a space-time image. Consider moving from left to right across a horizontal

scanline centered in the image. On the left side, the motion is of two transparently combined
bandpassed noise signals. Past the transparent region, the motion is leftward. After this the
motion gradually varies (there is a dilation) until it becomes rightward. Then we reach an

occlusion boundary, at which point the motion becomes abruptly leftward again. On the bottom
is the response of the operator, plotted as a function of space and � = arctan(v). The operator
response is seen to match the motion of the pattern. On the left, the operator indicates two

motions via a multimodal distribution over �. The dilating central region appears as a diagonal
band. The operator response changes fairly abruptly at the occlusion boundary, although it is
bimodal at the boundary.

generally be made smaller in their spatial extent. For the examples given in the next section,

we will use third derivatives.

To demonstrate that this algorithm is capable of representing multiple motions, we applied

it to a one-dimensional moving image sequence. The input image is illustrated (as an x � t

image) in �gure 4-4. The image contains several translating regions, a region of additive

transparency, a dilating region, and an occlusion boundary. Also shown in the �gure is the

response of the operator, P3(v), plotted as a function of x and � = arctan(v). The response is

seen to match the signal motion.

95



Distribution Sampling and Interpolation

Equation (4.6) gives a functional form for the distributed representation of velocity. In practice,

one does not wish to compute and store the value of this function at a large number of v values

and for each point in space-time. In this section, we show that in fact, the distribution may

be interpolated from the values taken at a sparse set of sample points.

First, we note that the directional linear measurements may be interpolated from a �xed

set of directional measurements. Expanding the Nth-order directional derivative gives

(û?(v) � !̂)NG(~!)F (~!) =
NX
n=0

�
N !

n!(N�n)!
�
(û?x(v))

n(û?t(v))
N�n[!̂nx !̂

N�n
t G(~!)F (~!)]

= ~a(v) � ~m(~!);

where we have rewritten the expression from equation (4.6) as an inner product of vectors ~a(v)

and ~m(~!) de�ned by:

an(v) =
�

N !
n!(N�n)!

�
(û?x(v))

n(û?t(v))
N�n

and

mn(~!) = [!̂nx !̂
N�n
t G(~!)F (~!)]

as in equation (4.6). Note that the subscripts x and t indicate the spatial and temporal

components of ûi, respectively. This is just the frequency domain version of the interpolation

formula of equation (2.17), for arbitrary N .

Now, we can write down a set of these expansions for N + 1 distinct velocities, vi:

(ûi � !̂)NG(~!)F (~!) = ~a(vi) � ~m(~!)

This is a set of linear equations for the N + 1 directional measurements, as a function of the

N + 1 separable measurements given by the bracketed expression. We rewrite this in matrix

notation as:

~d(~!) = A~m(~!)

where

A =

0
BBBB@
~a(v0)

~a(v1)
...

~a(vN)

1
CCCCA

Now, assuming A is invertible, we may write the general directional measurement as a linear

combination of the vector of �xed directional measurements, ~d(~!):

(û?(v) � !̂)NG(~!)F (~!) = ~a(v)A�1~d(~!): (4:6)
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The important point here is that our linear operators span the space of their own rotations.

Freeman and Adelson have elucidated an elegant theory of such functions, which they call

\steerable" [31]. They describe a sampling theorem in orientation and derive the interpolation

functions that are used to synthesize the response of a �lter at a desired orientation from

the responses at some �xed set of orientations. Similar concepts have been studied by other

authors [51, 67].

We can take the interpolation in equation (4.6) one step further, and compute the value

of the distribution P(v) at any v from its value at a set of �xed velocities. For simplicity, we

demonstrate this result for the �rst derivative case. The higher derivative case is analogous.

We rewrite the expression in equation (4.4) as follows:

P1(v) = [(û?(v) � !̂)G(~!)F (~!)]2 (4.7)

= j(û?x(v)!x + û?t(v)!t)G(~!)F (~!)j2

= û?2
x(v)

h
!2
xjG(~!)F (~!)j2

i
(4.8)

+ 2û?x(v)û?t(v)
h
!x!tjG(~!)F (~!)j2

i
(4.9)

+ û?2
t (v)

h
!2
t jG(~!)F (~!)j2

i
: (4.10)

Thus P(v) may be computed as a linear combination of the three quadratic measurements

corresponding to the three bracketed terms on the right hand side.

Now we can use the same trick as in the linear case to write this as a linear combination

of samples of P(v) by solving three simultaneous linear equations:0
B@
P(v1)
P(v2)
P(v3)

1
CA = B � ~Q

where the ~vi are three arbitrary but �xed choices of v, and

B =

0
B@
û?2

x(v1) 2û?x(v1)û?t(v1) û?2
t (v1)

û?2
x(v2) 2û?x(v1)û?t(v2) û?2

t (v2)

û?2
x(v3) 2û?x(v1)û?t(v3) û?2

t (v3)

1
CA

and ~Q is a vector of the three quadratic measurements from equation (4.10):

~Q =

0
B@
P

~!

�
!2
xjG(~!)F (~!)j2

�
P

~!

�
!x!tjG(~!)F (~!)j2

�
P

~!

�
!2
t jG(~!)F (~!)j2

�
1
CA :

Assuming the ~vi are suitably chosen (in practice, this is not a problem), we can invert the

matrix B, and use it to solve for P(v):

P(v) =
0
B@

û?2
x(v)

2û?xû?t(v)

û?2
t (v)

1
CA
T

�B�1 �
0
B@
P(v1)
P(v2)
P(v3)

1
CA
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Figure 4-5: Frequency-domain illustration of the \nulling" aspect of the gradient constraint.

The gradient solution operates by �nding the direction in which a derivative operator has no
response. Shown is a plane corresponding to a particular velocity, and a level surface of the
power spectrum of a directional derivative �lter that does not respond to energy on this plane.

That is, P(v) may be written as a linear combination of the three values P(vi). This sparse
sampling of the v provides a complete representation of the function P(v).

Not only does this allow more e�cient storage and computation of the distributions, it has

a natural interpretation in terms of biological visual systems. One can postulate three tuned

\units" that compute the values of the the three P(vi). Later stages of the computation may

access the value of P(v) for any v by simply computing a weighted sum of these three values.

4.2 Two-Dimensional Case

Now we will extend the analysis of the previous section to two dimensions. The situation

becomes a bit more complicated. As in one dimension, we can \angularize" the gradient

constraint equation:

A(~v) =
X
~!

[û(~v) � !̂]2 jF (~!)j2;

where the steering vector is now de�ned as û(~v) = (vx; vy; 1)
T=
pjvj2 + 1. The dot product in

the brackets now corresponds to the cosine of the angle between two three-dimensional vectors.

This expression is again a null-steering function. Recall that the power spectrum of a

two-dimensional translating image lies on a plane in the Fourier domain. Then the expression

above is minimized when the steering vector û(~v) is perpendicular to the spectral plane. This

is illustrated in �gure 4-5. To convert this expression into a max-steering expression, we must

search for the presence of the spectral plane.

As in the one-dimensional case, we note that the sum of squares of the directional cosines
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Figure 4-6: Illustration of the gradient algorithm as a \max-steering" solution. The \velocity

energy" surface is computed by summing the power responses of two directional derivatives
lying in the spatio-temporal frequency plane corresponding to a given velocity. Illustrated is an
instance of such a plane, and idealized level surfaces of the power spectra of two such derivative

�lters. Note that the level surfaces of the sum of the two will form a smooth \donut", bisected
by the plane.

along a set of three orthogonal axes is unity. Thus we can write a sum of the squared directional

cosine in direction û(~v) and cosines in two perpendicular directions:

[û(~v) � !̂]2 + [ûa(~v) � !̂]2 + [ûb(~v) � !̂]2 = 1;

where we de�ne (assuming that û(v) 6= êx):

ûa(~v) = û(v)� êx

ûb(~v) = û(v)� ûa(~v)

where êx is a unit vector in the direction of the x-axis. Thus the squared directional cosine in

the direction of û(~v) is just one minus the sum of the squared directional cosines in the ûa(~v)

and ûb(~v) directions.

Analogous to the one-dimensional case, we de�ne a max-steering function as follows:

P(~v) =
X
~!

j(ûa(~v) � !̂)G(~!)F (~!)j2 +
X
~!

j(ûb(~v) � !̂)G(~!)F (~!)j2

That is, the value is computed as a sum of squared responses of two directional cosines lying

in the plane perpendicular to the normalized candidate velocity vector. This sum of the two

�lters in the plane will form a smooth ring-shaped weighting function or \donut", bisected by

the plane; thus we call this computation a \donut mechanism". This construction is illustrated

in �gure 4-6. The reader may wonder why we do not extract the ring-shaped frequency band

directly, with a single �lter. The answer is that a large ring �lter would be very susceptible to

phase cancellations, as discussed in section 2.3.

The maximal-steering version of the gradient algorithm may now be extended to higher

order derivatives by raising the directional cosines to the Nth power. One complication arises
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Figure 4-7: Illustration of the \donut" mechanism, based on third derivatives of a Gaussian

pre�lter. A ring of four third derivatives lying on the plane corresponding to a particular velocity
are used to measure evidence for the presence of that velocity. These directional derivatives are
computed e�ciently via interpolation from a �xed set of derivatives. Note also that a level

surface of the sum of power spectra of these �lters produces a smooth \donut", illustrated on
the right.

in the two-dimensional case: if we simply raise our two directional cosines to the Nth power,

they will no longer cover the plane evenly.

In fact, we require a set of at least (N + 1) Nth derivatives to cover the plane uniformly.

We de�ne a set of equally-spaced directions as:

ûi(~v) = cos

�
2�i

N + 1

�
ûa(~v) + sin

�
2�i

N + 1

�
ûb(~v) 0 � i � N:

The generalized error function now looks like:

PN(~v) =
X
~!

�����
NX
i=0

[ûi(~v) � !̂]N G(~!)F (~!)

�����
2

=
X
~!

NX
i=0

[ûi(~v) � !̂]2N jF (~!)j2 : (4.11)

This is a sum of squares of Nth directional cosines lying in the plane corresponding to the

vector ~v. This construction is illustrated in �gure 4-7, for a set of third derivative �lters.
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4.3 Examples

We implemented a set of third derivative �lters, based on a Gaussian pre�lter. The advantage

of Gaussians is that they are both circularly symmetric and separable. Thus, they don't

introduce angular biases, and the convolution operations may be performed e�ciently. The

�lters were applied to a set of synthetic imagery and the outputs used to construct distributed

representations of motion. Third directional derivative measurements (or directional cosines

raised to the third power) may be interpolated from the set of ten separable third derivative

measurements. The squares of these may thus be interpolated from a set of the 55 possible

quadratic combination terms.

Figure 4-8 illustrates the behavior of the distributed mechanism in three prototypical sin-

gularity situations. As before, the input signal is a moving square (white on a black back-

ground). Near the corners, there is su�cient local information to completely constrain the

two-dimensional velocity. The response of the mechanism is a fairly localized peak of activity

in ~v space. The mean of the distribution is at the location of the correct velocity, but this is

not generally true of the peak of the distribution.

On the sides of the square, there is a one-dimensional singularity: the motion along the

boundary cannot be determined using purely local measurements (this is known as \the aper-

ture problem"). Thus, as with the probabilistic velocity distribution of the previous chapter,

the resulting velocity distribution is elongated in the direction of the edge. In the center of the

square, there is no intensity variation and so there is a full two-dimensional singularity. Here,

the distribution is at.

Figure 4-9 illustrates the behavior of the mechanism near an occlusion boundary. The

input signal consists of two sheets of white noise, drifting in opposite directions, with the

left one occluding the right one. The occlusion boundary is in the center of the image. The

velocity distribution near the occlusion boundary has two modes, indicating the presence of

two velocities.

Figure 4-10 shows the behavior of the mechanism in the presence of additively transparent

surfaces. Two fractal noise patterns moving in di�erent directions are additively superposed.

Again the velocity distribution is bimodal.

Finally, we show the response of the mechanism to transparently moving random dots in

�gure 4-11. Again, the response is bimodal.

We note that we have not solved for the velocities (as stated earlier, these typically do

not correspond to the peaks of the distribution). We also have not solved the \assignment"

problem of determining which content of the image is moving with which velocity.
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Figure 4-8: Response of the mechanism in several regions of a moving square sequence. In

the corner, the velocity is well de�ned, and the distributed response is a well-localized \lump".
On the side, the velocity is only constrained in the direction normal to the edge, and the
distributed response is a ridge. In the center, the velocity is completely unconstrained, and

the distributed response is at. These distributions are similar to those for the probabilistic
algorithm, illustrated in �gure 3-2.
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Figure 4-9: Response of the mechanism near an occlusion boundary. On the left is an illus-
tration of the synthetic image sequence. The sequence consists of two white noise patterns,

displayed on the right and left sides of the image, such that the left one occludes the right one.
The patterns move in opposite directions at a speed of one pixel/frame. The white line sepa-
rating the two patterns is for �gure clarity and is not part of the image sequence. On the right

is the bimodal response of the distributed third derivative mechanism located at the occlusion
boundary.

vx

vy

Figure 4-10: Response of the mechanism in the presence of additive transparency. On the
left is an illustration of the synthetic image sequence, which consists of two additively combined
fractal noise patterns moving in di�erent directions (one upward, the other down and to the

right). The white line separating the two patterns is for �gure clarity and is not part of the image
sequence. On the right is the bimodal response of the distributed third derivative mechanism
located in the center of the image.
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Figure 4-11: Response of the mechanism to interspersed moving dot patterns. transparency.

On the left is an illustration of the synthetic image sequence, which consists of two random dot
patterns that have been combined using a logical \or" operation. The white line separating
the two patterns is for �gure clarity and is not part of the image sequence. On the right is

the bimodal response of the distributed third derivative mechanism located in the center of the
image.

4.4 Summary

We have developed a distributed representation of image motion that is capable of locally

analyzing regions of a scene containing multiple velocities. We derived a general mechanism for

computing these distributions based on an angular regression version of the gradient constraint

equation. The computation is based on a set of higher-order directional cosine measurements.

The mechanism may be implemented e�ciently by interpolation from a sparse set of samples:

these interpolation functions are computed analytically.

The derivations in this chapter are based on an angular version of the di�erential motion

constraint equation. This angular formulation lends itself more easily to the multi-modal

extensions proposed, and simpli�es the discussion of interpolation. We do not claim that

the angular error function is actually preferable to the standard temporal-frequency weighted

regression error function, although it may prove to be so. Regardless, the methods presented

in this chapter may be applied (although not as easily) to the standard velocity constraint

equation.

The concepts presented in this chapter suggest many interesting directions for research.

There are numerous variants of the general distributed representation framework presented

here. Di�erent choices of the pre�lter and of the velocity weighting terms will produce dis-

tributions with di�erent characteristics. The choice of pre�lter should be based partly on the

noise properties of the measurements and knowledge of the input signal spectrum (eg., the
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pre�lter could be chosen as a Wiener �lter). The velocity weighting may be interpreted as a

sort of prior probability, giving preference to some velocities that are considered to be more

likely (eg., smaller speeds).

More importantly, these distributed representations may be incorporated into practical

problems in image processing and computer vision. One simple example is that of frame

interpolation (or prediction): if we interpret the distributions as probability distributions, we

can use these to generate an estimate of the expected content of an intermediate frame, given

the surrounding frames. Simple ow-based algorithms would perform poorly at this task in

the presence of multiple motions. We expect that the distributed representation should also

prove useful for segmenting or grouping scenes according to coherency of motion [21].
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Chapter 5

Biological Modeling

In this section, we discuss the relevance of the models developed in previous sections to bio-

logical vision. As discussed in the introduction, mammalian visual systems devote signi�cant

resources to the processing of visual motion. We will focus on experimental knowledge of these

visual systems gathered from the �elds of physiology and psychophysics.

We �rst discuss psychophysics of human motion perception. A large literature exists on the

topic of motion psychophysics, starting at least as far back as the beginning of this century. A

review of this topic may be found in [64]. We will demonstrate the use of a distributed model

for quantitative prediction of psychophysical data on the perception of sinusoidal plaids.

Then we will discuss mammalian physiology. We will give a brief synopsis of the physiology

of the visual system, provide a qualitative correspondence of this physiology with the model

of the previous section, and suggest some experiments that could be used to test the validity

of such a model. Some of this work has been published previously in [85, 43, 44, 83].

5.1 Psychophysics

Much of the recent work in motion psychophysics has been based on simple sinusoidal stimuli.

As discussed earlier, the motion of a one-dimensional signal is ambiguous: there is no informa-

tion present in the signal to indicate the speed of movement parallel to the stimulus orientation.

Thus the velocity of the stimulus is constrained to lie on a line in the two-dimensional space of

velocities, as de�ned by equation (2.2). Nevertheless, when a human observer is presented with

a moving one-dimensional pattern (and there are no other directional queues such as boundary

shape), the viewer can assign a direction and speed of motion to the stimulus. The direction
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reported is that normal to the stimulus orientation. 1 For high-contrast gratings, the perceived

speed is the actual translation speed of the grating, although experiments by Thompson and

Stone indicate that the perceived speed does vary with contrast [93, 89].

When two such gratings are superimposed, the perception becomes more complicated. We

�rst note that more than one physical explanation can account for the stimulus. For example,

the visual pattern could be formed from 1) two additively transparent gratings sliding over

one another (each moving at some velocity consistent with its constraint line), or 2) a rigid

\plaid" pattern translating at a single velocity.

A series of experiments have revealed that the parameters of such a two-grating stimulus

stimulus may be adjusted to give either of these perceptions [3, 60, 52]. The general rule seems

to be that when the gratings are \similar" (i.e., similar contrast, color, spatial-frequency,

orientation, speed), they are perceived as a coherent plaid. Patterns in which the gratings are

very di�erent in one or more of these parameters tend to generate perceptions of transparency.

Preliminary studies indicate that the full \donut-mechanism" model described in chapter 4

can account for these perceptions of transparency. If we consider the distribution produced

by various stimuli, and we assume that a bimodal distribution corresponds to a perception

of transparency, we can make predictions about these perceptions. Currently, all statements

are qualitative, as the model has too many free parameters to make reasonable quantitative

predictions. But it seems clear that the model has an increased tendency to produce bimodal

distributions when the superposed gratings are: 1) of very di�erent spatial frequencies, 2) of

high temporal frequency, 3) at very di�erent orientations.

In the case of the coherent plaid interpretation, the unique physically consistent velocity

for the pattern is the one satisfying the constraints of both gratings. This is easily depicted

via a geometrical construction known as the \intersection-of-constraints" (IOC), as illustrated

in �gure 5-1. Note that in the case of gratings moving in opposite directions, the IOC solution

does not exist, as the constraint lines from the two gratings do not intersect. In this case,

the perception is of a ickering stationary sinusoidal pattern (this stimulus is known as a

\counterphase" grating).

The original descriptions of plaid perception by Adelson and Movshon [3, 60] suggested

that IOC might explain the perceived motion of coherent plaids, but later work [27, 90] clearly

indicates that a strict interpretation of IOC as a model for human perception fails in many

situations. Some authors have proposed models that compute a sort of average of the IOC

solution and a vector sum (i.e., the sum of the grating normal velocity vectors) [27]. It is,

however, unnecessary to invoke a second calculation such as vector sum in order to explain the

deviations of perceived velocity from the IOC velocity. In the next section, we use the basic

1This perceived direction can, however, be altered by changing the shape of the aperture through which the
stimulus is viewed.
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Figure 5-1: Illustration of the \intersection-of-constraints" determination of velocity. (a) A

snapshot of a moving sinusoidal grating pattern. (b) Velocity-space description of the motion
of the grating. The stimulus is consistent with a set of velocities lying on the dashed constraint
line, which is parallel to the grating orientation with distance to the origin equal to the grating

normal velocity (indicated by the arrow). (c) Snapshot of a moving plaid (sum of two moving
sinusoids). (d) Velocity-space description of the motion of the plaid. The dashed constraint
lines for the two individual gratings are shown. These two lines intersect at a single point which
corresponds to the motion of the coherent plaid pattern.
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distributed model of chapter 3 to explain these deviations.

Modeling the Perception of Coherently Moving Plaids

We propose that the human visual system represents velocities in distributed fashion, as in

the model presented in chapter 4. In order to model the perception of coherent plaid veloci-

ties, we assume that the perceived velocity of these patterns corresponds to the mean of the

representation distribution.

In particular, we use the basic probabilistic model de�ned by equation (3.6). Since we are

only interested in the mean of the distribution, we re-parameterize the solution in terms of two

values, �e and �p: 2

�~v = �
2
4 M�
k~fsk2 + �e

� + ��1
p

3
5
�1

�
~b�

k~fsk2 + �e
� :

where M and ~b are de�ned as in equation (2.6), but without the summations. The parameter

�e is a semi-saturation constant for the energy normalization, and �p is the prior probability

variance. These were �tted to the data as described below. The pre�lter used with the

derivatives was a Gaussian.

We consider an experiment by Stone et. al. [90]. The authors examined the e�ects of

contrast ratio on the perception of coherent plaid motion direction. In general, they found

that the perceived direction of motion of a plaid was biased away from the IOC solution

toward the normal velocity of the higher contrast grating.

The stimulus in the experiment was a superposition of moving sinusoidal gratings whose

orientations were symmetrically in opposite directions from vertical. Under normal grating

conditions (equal contrast, equal temporal frequency), the motion of this pattern is perceived

as upward, as predicted by the IOC rule. If the relative contrast or the relative temporal

frequency of the two gratings is varied, however, the perceived direction of motion changes.

For a given contrast ratio, Stone et. al. used a staircase procedure to vary the relative temporal

frequencies of the two gratings until the subject perceived the pattern motion to be vertical.

The authors repeated this experiment for a variety of total contrasts (de�ned as the sum of

the two grating contrasts), plaid angles (the magnitude of the grating orientation relative to

vertical), spatial frequencies, and mean temporal frequencies.

The model was made to perform the same task as the human subjects: for a given contrast

ratio, we adjusted the relative temporal frequency of the two gratings until the estimated

velocity was vertical. In �gure 5-2, we present a comparison of the Stone et. al. data with

2We have eliminated one degree of freedom that served only to modify the magnitude of the covariance
matrix.
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Figure 5-2: Comparison of human subject data (replotted from [90]) and the basic model

described in section 3.1. The four curves correspond to di�erent values of total contrast.

data computed from the model. Four curves are plotted, for di�erent levels of total stimulus

contrast. Plotted is the angular deviation of the IOC velocity (as determined by the relative

temporal frequency of the two gratings) from vertical. The parameters �e and �p in the model

were determined using a least-squares criteria to a subset of the data points from the four

curves. Resulting values were �e = 0:0209 and �p = 0:0021.

The plots are seen to be quite similar in form. The model does show a slightly more

pronounced bias at the highest total contrast of 40%. For small contrast ratios at this contrast,

the subjects actually saw a motion bias toward the lower contrast grating. This somewhat

counterintuitive result is not predicted by the model.

We also simulated other experiments from the same paper in which the authors varied the

plaid angle and the spatial and mean temporal frequency of the gratings. These are shown

in �gures 5-3,5-4 and 5-5. Again, the behavior of the model is quite similar to the human

observers. Figure 5-5 does, however, contain another curve with substantial bias toward the

lower contrast grating. We were unable to duplicate this behavior in any of our simulations.

We have also modeled data by Ferrara and Wilson [27] on the perceived direction of coherent

plaids. Perceived directions were measured by comparison with a one-dimensional grating.

Measurements were only made for three types of plaid. Type I-S is a symmetric plaid: each

grating has the same spatial and temporal frequency. Type I-A is an asymmetric plaid: the

two gratings have di�erent temporal frequencies, but the angle of the IOC velocity vector is

between those of the two grating normal velocities. Type II is an asymmetric plaid in which

the IOC velocity vector lies outside the angular region between the two component normal

velocities. In �gure 5-6, we show a bar plot of the direction bias for subjects and for our

model.

Finally, we modeled data from another Ferrara and Wilson paper [28], in which they mea-
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Figure 5-3: Comparison of human subject data (replotted from [90]) and the model. The

three curves correspond to di�erent values of plaid angle.

Figure 5-4: Comparison of human subject data (replotted from [90]) and the model. The two

curves correspond to di�erent values of average temporal frequency.

Figure 5-5: Comparison of human subject data (replotted from [90]) and the model. The three
curves correspond to di�erent values of grating spatial frequency.
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Figure 5-6: Comparison of human subject data (replotted from [27]) and the basic model
described in section 3.1. Shown is perceived direction bias for three di�erent types of sinusoidal
plaid pattern (see text).

sure the perceived speed of coherent plaids as a function of plaid angle. The subject's task

was to compare the speed of a plaid to a �xed reference grating (both were moving upward).

At each plaid angle, the temporal frequency of the plaid components was adjusted to �nd the

point at which the plaid speed matched the reference. As a measure of the plaid speed relative

to the IOC prediction, They plot the perceived plaid speed (i.e., the reference speed) relative

to the IOC speed of the plaid. In �gure 5-7, we replot their data and compare it with our

model. To match the data of this experiment, we had to modify the parameter values of the

model. In particular, we chose values of �e = 0:334 and �p = 0:008. The plots in �gure 5-7

are seen to be in good agreement with the subject data.

5.2 Physiology

Researchers have studied the processing of visual information in single neurons since the late

30s. One of the most striking features of the mammalian visual system is its organization

into functionally and anatomically de�ned stages. A large volume of literature describes the

successive set of stages of processing that take place when light enters the eye. Photoreceptors

in the retina act as transducers, converting visible light into graded electrical signals. These

are processed by a sequence of cell layers within the retina whose output is sent through the

optic nerve, eventually reaching the cell layers of the cerebral cortex.

The classic physiological paradigm for investigating the functionality of the system is to

measure, through electrode recordings, the response properties of individual cells in di�erent

parts of the system as the animal is exposed to speci�c stimuli. This sort of data poses

di�culties for computational modeling. The models for motion analysis presented earlier are
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Figure 5-7: Comparison of human subject data (replotted from [27]) and the model. Plotted
is perceived speed bias as a function of plaid angle. The dashed line corresponds to the speed
perceived by a mechanism that simply matches temporal frequencies of the constituent gratings

to that of the reference grating.

derived to produce a particular distribution of responses to stimuli, and the detailed \tuning"

of the individual mechanisms is not uniquely determined. For example, we showed that the

general �ltering model for computing optical ow can be equally well implemented in terms of

separable or oriented �lters, and that the choice of pre�lter is somewhat arbitrary. Even worse,

we do not require the use of the same pre�lter at every spatial location. What is required is a

particular relationship between �lters at the same location.

A Two-Stage Model

For the purposes of this thesis, we will propose a correspondence of the behavior of certain

classes of cell with computational portions of the models presented in previous chapters, and

we will discuss some of the fundamental implications of such a correspondence. In particular,

we will only be concerned with the relationship between the parameters of an input stimulus

to the visual system, and the output (measured as average �ring rate) of a given cell. We

will not model any details of the single-cell computation. Furthermore, we will model only the

steady-state behavior of the system.

A number of researchers have begun to converge on a two-stage model for the computation

of motion information in visual cortex [3, 1, 39, 101, 37, 102, 44, 85]. As in the computer

vision literature, these models all seem to have a similar avor. Linear �lters are used to

extract particular subbands of spatio-temporal information. These outputs are quadratically

combined to produce local Fourier energy estimates. These are then combined to represent

velocity. Physiologically, these two stages are typically assigned to areas V1 and V5 (also

known as \MT") in the visual cortex, although the existence of populations of velocity-tuned
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cells is somewhat hypothetical.

There is a very large literature on the behavior of so-called \simple cells" and \complex

cells" in layer V1 of the visual cortex. The standard view of simple cells is that they behave

like oriented linear �lters [48, 19]. There are two noticeable departures from linearity. The �rst

is that the cell responses are recti�ed: cell �ring rates are by de�nition positive, and simple

cells have a fairly low background �ring rate. The second is that the outputs of the cells do not

continue to grow linearly with input contrast. Rather, the response saturates at high contrasts.

Several researchers have suggested that this saturation may be achieved by normalizing the

responses with respect to stimulus contrast.

Heeger [42, 41] has modeled an extensive amount of physiological data with a model based

on squaring the cell outputs and dividing by the sum of the squares of a population of cells

and a semi-saturation constant. This computation is identical to that of equation (3.8), in

which directional linear measurements are squared and divided by a sum of squared directional

measurements plus the constant �2. A similar model has been proposed by Albrecht and

Geisler [6].

The \complex cells" in area V1 have similar behavior to simple cells, except that they are

not sensitive to the phase (or symmetry) of the stimulus. These cells have been modeled as a

quadrature combination of simple cell responses, corresponding to equation (3.11) [70, 1, 72].

More recently, authors have studied the behavior of cells in the cortical area known as V5

or \MT". There is growing evidence that some of the cells are tuned for speed and direction

of motion [60, 66, 58, 7].

We propose a two-stage model based on the \donut mechanisms" developed in the pre-

vious chapter. The model computes a distributed representation of motion in two stages, as

illustrated in �gure 1-6. The �rst stage is computed via a set of spatio-temporally oriented

linear operators, whose outputs are squared and normalized. The second stage is computed as

a linear combination of the �rst stage outputs, which are again squared and normalized.

The parameters of the model are as follows:

1. The linear �lters. We assume these are directional cosines raised to a power in the

frequency domain, and multiplied by the pre�lter transfer function. We also assume that

the pre�lter has \cylindrical" symmetry in the spatio-temporal frequency domain (i.e.,

it is bandpass spatially, and lowpass temporally).

2. The gain control parameters for the �rst stage: �e, and �p.

3. We assume that the linear weighting of the second stage is as described in section 4.2.

4. Gain control parameter, �v for the second stage.
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Figure 5-8: A two-stage model for motion representation. The �rst stage computes spatio-

temporal energy via linear spatio-temporally oriented operators. The linear outputs are squared
and normalized by their own sum, augmented by a semi-saturation constant �e. The second
stage computes \velocity" energy. Again a set of linear weights are used to combine the inputs

(i.e., the spatio-temporal energies of the previous stage), and again these are normalized. An
additional squaring non-linearity may also be included.

5. A prior function on velocity, �(v), which we set to unity for the purposes of this paper.

We view this as the basic model: one can easily extend it by including additional nonlinearities

on the output stages of each of the layers. An example is the exponential used in the proba-

bilistic model of section 3.1. Furthermore, the velocity-tuned second stage can be modi�ed to

be sensitive to other types of motion such as divergence or rotation.

Stimuli

How can we tell, by examining the response of a cell to parameterized stimuli, what the cell is

doing? Our working hypothesis is that a typical cell is tuned simultaneously for many di�erent

parameters. For some of these parameters, a given cell may be narrowly tuned, and for others

it may be responsive over the entire range of the parameter. Our principle example would

be a cell tuned narrowly for velocity. One might expect such a cell to be fairly insensitive to
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changes in stimulus color, local spatial frequency content, orientation, and even contrast.

Researchers have used a variety of stimuli to probe the behavior of cortical cells. Typically,

experiments are conducted with one-dimensional parametric variations. That is, one parameter

is varied while all others are held �xed, usually at values that are optimal for the cell. Early

experiments by Hubel and Wiesel used oriented bars as stimuli, mapping the response of cells as

a function of the orientation of the bars. More recent experiments, inuenced by linear systems

theory, map the response of simple cells with drifting sinusoids. Sinusoid plaids and �elds of

random dots have also been used. In a particularly inuential set of experiments, Movshon et.

al. [60] used gratings and plaids as stimuli for testing complex and MT cells. They found two

populations of cells: one that responded to the motion of the individual gratings of the plaid,

and the other that responded to the motion of the overall pattern.

We conduct a small thought experiment to characterize the di�erence in response between

an idealized spatio-temporal energy operator and an idealized velocity operator, and to illus-

trate the two \spaces" of interest: the spatio-temporal frequency domain, and the plane of

two-dimensional velocities. Imagine an operator that is well-tuned to patterns moving at a

particular velocity. In the frequency domain, the operator responds to energy lying an a plane.

Imagine that we show this operator drifting sinusoids of a �xed spatial frequency, but varying

orientation and temporal frequency. In the Fourier domain, these sinusoids live on a cylinder.

The intersection of the cylinder with the plane, an oblique ellipse, corresponds to the set of

sinusoids that might cause the operator to respond. This is illustrated in �gure 5-9.

The set of consistent sinusoids may also be plotted in two-dimensional velocity space, as

shown on the right side of the �gure. Here, the dark circle indicates the normal velocities of the

consistent sinusoids. In this ideal setting, the velocity operator responds to a one-dimensional

set of sinusoids. On the other hand, its tuning for a moving pattern that is spectrally broad,

such as a �eld of random dots, would be a point.

Similarly, we can plot the set of velocities that are consistent with a given spatio-temporal

energy operator. This is shown in �gure 5-10. The spatio-temporal energy operator responds

to energy at two points in the spatio-temporal frequency domain, on opposite sides of the

origin. An in�nite set of velocity planes go through these points, as illustrated in the �gure.

Thus, a narrowly-tuned spatio-temporal energy operator would respond only to a particular

sinusoidal stimulus, but to an entire one-dimensional set of broad-spectrum velocity patterns.

This set of consistent velocities can also be plotted in two-dimensional velocity space, where it

corresponds to a line, as illustrated in �gure 5-10.
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Figure 5-9: Illustration of the set of sinusoids of a �xed spatial frequency that are consistent
with a given velocity-tuned unit. On the left is a plot of spatio-temporal frequency space.

The cylindrical surface corresponds to all sinusoids of a given spatial frequency magnitude
(wavenumber). The oblique ellipse (dark line) indicates the set of sinusoids consistent with the
velocity speci�ed by the plane. On the right is a plot of two-dimensional velocity space. The

dark circle corresponds to the normal velocities of a set of sinusoids consistent with the velocity
speci�ed by the point on the circle furthest from the origin.
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Figure 5-10: Illustration of the set of velocities planes that are consistent with a given spatio-
temporal energy operator. On the left is a plot of spatio-temporal frequency space. The dark
balls correspond to the tuning of the operator. There is an in�nite set of planes passing through

these two points, each corresponding to a velocity. On the right is a plot of two-dimensional
velocity space. The dark line corresponds to the set of velocities that are consistent with the
spatio-temporal operator.
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Figure 5-11: Tuning of a single spatio-temporal energy unit to a drifting sinusoid, a sinusoidal
plaid, and a �eld of random dots. Image intensity corresponds to the strength of response.

   

Figure 5-12: Tuning of a single \velocity energy" unit to a drifting sinusoid, a sinusoidal plaid,
and a �eld of random dots.

Model Behavior

We now plot the response of the two stages of our \donut" model of chapter 4 to three types

of stimuli: sinusoids, 90-degree plaids, and random dot patterns. For each model stage and

stimulus, we show both the response of a single unit, and the response of a population of these

units. Each of the stimuli are parameterized according to their speed and direction of motion

(DOM). Thus the data are represented in a set of 12 two-dimensional images.

Figure 5-11 shows the response of a prototypical spatio-temporal energy mechanism (i.e., a

model complex cell) to three di�erent types of stimuli: a sine grating, a 90-degree plaid, and a

�eld of random dots. The coordinates correspond to the speed and DOM of the pattern (for the

grating, the DOM is the normal direction). Figure 5-12 shows the response of a prototypical

velocity energy mechanism to the three di�erent types of stimuli.

Figure 5-13 shows the population response of a set of spatio-temporal energy mechanisms

that span the space of orientation and temporal frequency tunings.
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Figure 5-13: Population response of a set of spatio-temporal energy units to a drifting sinusoid,
a sinusoidal plaid, and a �eld of random dots.

Figure 5-14: Population response of a set of \velocity energy" units to a drifting sinusoid, a
sinusoidal plaid, and a �eld of random dots.
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Figure 5-15: Comparison of the spatio-temporal energy stage of the model to simple cell

orientation tuning data (replotted from Movshon et. al. [60]. The stimulus is a sinusoidal
grating. Response of the cell is shown on the left in a polar plot as a function of stimulus
orientation. Response of the model is shown on the right (note that this is simply a circular

slice through the leftmost plot in 5-11).

We can see some similarity with the idealized responses of �gures 5-9 and 5-10, but it is

apparent that the actual operators are not nearly as distinctive as the idealization.

Nevertheless, di�erences in tuning between the STE and velocity cells are apparent. For

example, the STE unit has a distinctive bimodal response to a plaid stimulus, whereas the

velocity unit has a more unimodal response. The velocity unit has a more narrowly tuned

response to dot stimuli, and the STE unit has a more narrowly tuned response to sinusoidal

stimuli. Furthermore, the plots predict that as the speed of a random dot stimulus increases,

a plot of STE response vs. DOM should go from unimodal to bimodal. Similarly, as the speed

of a grating increases, a plot of velocity unit response vs. DOM should start out bimodal and

become unimodal. These predictions can easily be tested in single cell recording experiments.

In �gures 5-15 through 5-18, we show comparisons of the two stages of the model with

data from Movshon et. al. [60]. Depicted are polar plots of the response as a function of

the stimulus DOM. Figure 5-19 shows a comparison of the �nal stage of the model with data

recorded in MT by Maunsell and van Essen [58]. Depicted is a plot of response versus the log

of the stimulus speed, relative to the speed that produces maximal response. The agreement

between the cells and the model is excellent for all of these plots.

5.3 Summary

We have discussed the distributed models of chapters 3 and 4 in the context of biological

visual systems. The simple probabilistic model of chapter 3 has been successfully used to

quantitatively mimic psychophysical experiments on moving plaid perception. We have also

shown qualitative consistency of the \donut mechanisms" with physiological data.
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  Figure 5-16: Comparison of the spatio-temporal energy stage of the model to complex cell
data (replotted from Movshon et. al. [60]. The stimulus is a ninety degree sinusoidal plaid.
Response of the cell is on the left, response of the model is shown on the right.

  Figure 5-17: Comparison of the velocity energy stage of the model to MT pattern cell orien-
tation tuning data (replotted from Movshon et. al. [60]. The stimulus is a sinusoidal grating.

Response of the cell is on the left, response of the model is shown on the right.

  Figure 5-18: Comparison of the velocity energy stage of the model to MT pattern cell data
(replotted from Movshon et. al. [60]. The stimulus is a ninety degree sinusoidal plaid. Response

of the cell is on the left, response of the model is shown on the right.
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Figure 5-19: Comparison of the response of the velocity energy stage of the model to MT
pattern cell data (replotted from Maunsell and Van Essen [58]). The stimulus is an oriented
slit of light, moving in the cell's preferred direction. Plotted is the response as a function of log

speed, relative to the optimal speed. The cell response is shown on the left, the model on the
right.
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Conclusions

This thesis has explored the topic of visual motion analysis and representation. We have

uni�ed a large number of standard algorithms for motion computation, and developed a set

of measurement techniques based on directional cosine �lters. These �lters have a number of

advantageous properties when applied to motion analysis:

� They are derived from the gradient approach, and therefore o�er an analytic solution

when applied to the velocity �eld estimation problem.

� They may be viewed as performing a planar regression in spatio-temporal frequency.

They do not introduce systematic biases depending on the spatial frequency content of

the signal.

� They are e�cient to implement. With the proper choice of pre�lter, separable imple-

mentations are possible.

� They may be used in place of quadrature energy computations.

� They are steerable.

We developed a weighted least-squares design strategy in the frequency domain and demon-

strated that the resulting �lters produced stable and accurate velocity estimates.

In chapter 3, we developed a family of probabilistic algorithms for computing optical ow.

The algorithms are based on three independent Gaussian random variables. The resulting

probability distribution over velocity is also Gaussian, and may thus be parameterized by a

mean and covariance that are computed analytically. The computation is e�cient relative to

typical optical ow algorithms (due to assumptions of independence).

We develop a probabilistic coarse-to-�ne strategy { a Kalman �lter over scale { for defeating

temporal aliasing, and demonstrate the behavior of the algorithm on a number of synthetic

and real image sequences. The results are shown to be superior to those published in a recent

comparison of optical ow techniques [10]. We also demonstrate that the estimated covariance
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matrices provide useful information about the quality of the velocity estimates. The most

noticeable failure of the algorithm occurs at occlusion boundaries, as is to be expected. Future

implementations could include consistency measures, as described at the end of chapter 3,

although this will probably be computationally expensive.

We also develop a distributed representation of motion based on angular frequency re-

gression. This algorithm operates by combining a set of directional derivative energies with

directions lying on a plane. Spectrally, this corresponds to weighting the input signal with a

smooth ring: thus we have called this computation a \donut" mechanism. We demonstrate

that these mechanisms are capable of representing multiple motions in a local region. In future

work, we would like to make use of this representation to extrapolate frames and to segment

moving imagery, even in the presence of transparency.

In the last chapter, we discussed the use of these models for biological modeling. The

distributed models of chapters 3 and 4 are readily mapped onto physiology and are able to

account for psychophysical perception of plaid patterns. Future work will focus on a more

detailed physiological model that accounts for a larger set of data.
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