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Probability Distributions of Optical Flow

Eero P. Simoncelli �y Edward H. Adelson �z David J. Heeger x

Abstract

Gradient methods are widely used in the com-
putation of optical ow. We discuss extensions
of these methods which compute probability dis-
tributions of optical ow. The use of distribu-
tions allows representation of the uncertainties
inherent in the optical ow computation, facil-
itating the combination with information from
other sources. We compute distributed optical
ow for a synthetic image sequence and demon-
strate that the probabilistic model accounts for
the errors in the ow estimates. We also compute
distributed optical ow for a real image sequence.

1 Introduction

The recovery of motion information from visual input is
an important task for both natural and arti�cial vision sys-
tems. Most models for the analysis of visual motion begin
by extracting two-dimensional motion information. In par-
ticular, computer vision techniques typically compute two-
dimensional optical ow vectors which describe the motion
of each portion of the image in the image plane. Methods
for the recovery of optical ow are often classi�ed into two
groups: those that match features between successive tem-
porally discretized frames, and those that perform compu-
tations on the spatio-temporal gradient of image intensity.
In this paper, we describe a probabilistic formulation of

the gradient approach to the optical ow problem. We de-
scribe the uncertainty inherent in the computation of op-
tical ow through use of a simple Gaussian noise model,
and we compute a maximum likelihood estimate solution.
The resulting solution is an extension of the standard gra-
dient solution. We test this model on both a synthetic and
real image sequence, analyzing the errors for the synthetic
sequence.

2 Gradient Methods

We write the image intensity signal as a function of po-
sition and time: f(x; y; t). Then the standard gradient for-
mulation of the optical ow problem is based on the as-
sumption that the total derivative of the image intensity
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function must be zero at each position in the image and at
every time:

~fs � ~v+ ft = 0; (1)

where

~fs =
�
fx
fy

�
;

and fx, fy, and ft are the spatial and temporal derivatives
of the image f , and ~v is the optical ow (at the position and
time that the derivatives have been computed). We have
left out the the spatial and temporal location parameters in
order to simplify notation. This formulation assumes that
changes in the image intensity are due only to translation of
the local image intensity and not to changes in lighting, re-
ectance, etc. Furthermore, by formulating the constraint
only in terms of �rst derivatives, we are implicitly approx-
imating the image intensity as a planar function.
Typically, one would write a squared error function based

on this total derivative constraint as follows:

E(~v) =
�
~fs � ~v+ ft

�2
: (2)

To compute a Linear Least-Squares Estimate (LLSE) of ~v

as a function of ~fs and ft, we set the gradient (with respect
to ~v) of this quadratic expression equal to the zero vector:

rE(~v) =M � ~v+~b = ~0; (3)

where

M = ~fs ~f
T
s =

�
f2x fxfy
fxfy f2y

�
; ~b =

�
fxft
fyft

�
: (4)

One immediate observation is that the matrix M is al-
ways singular (i.e., its determinant is always zero). Intu-
itively, this is to be expected since the solution is based on
a planar approximation to the image surface at a point, and
therefore su�ers from the aperture problem. Equation (1)
only places a constraint on the velocity vector in the direc-

tion of ~fs; that is on the component of ow normal to the
spatial image orientation.
In order to eliminate the singularity problem, researchers

have typically incorporated additional constraints in the er-
ror function. Horn and Schunk [1] applied a global smooth-
ness constraint to the ow �eld in order to regularize the
problem. One can also combine information locally using
an \intersection of constraints" rule: Since we have a con-
straint on the normal component of velocity at each point,
we can choose the velocity which is most consistent with all
of the normal constraints in some small region. Implicitly,
this is also a type of smoothness constraint, since we are
assuming that the velocity vector is constant in the region.
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We do this by writing an error function based on the nor-
mal constraints from each point within a patch, indexed by
a subscript i 2 f1; 2; : : : ng:

E(~v) =
X
i

�
~fs(xi; yi; t) � ~v + ft(xi; yi; t)

�2
: (5)

Computing the gradient of this expression with respect
to ~v gives:

rvE(~v) =
X
i

�
Mi � ~v +~bi

�
;

with solution

~v = �

 X
i

Mi

!�1 X
i

~bi

!
; (6)

where we de�ne Mi = M(xi; yi; t) and ~bi = ~b(xi; yi; t) as
in equation (4). In practice, we can also include a weight-
ing function, wi, in the summation in order to emphasize
the information closer to the center of the averaging region.
Thus, the velocity is computed from blurred quadratic func-
tions of the spatial and temporal derivatives. We should
note here that the matrix in the above equation may still
be singular (despite the blurring). We will address this
problem in section 3.
The solution given in equation (6) may also be derived as

a Taylor series approximation to the solution of a matching
problem. We de�ne an error function which is the mean
squared error of the di�erence between two image patches
at di�erent times and positions:

E =
X
i

[f(xi + vx; yi + vy; t+ 1)� f(xi; yi; t)]
2

�
X
i

[vxfx(xi; yi; t) + vyfy(xi; yi; t) + ft(xi; yi; t)]
2

=
X
i

�
~fs(xi; yi; t) � ~v+ ft(xi; yi; t)

�2
;

where we have expanded f(xi+vx; yi+vy; t+1) as a �rst or-
der Taylor series. This is the approach taken by Lucas and
Kanade [2] in the context of stereo vision. The resulting
error function is identical to that of equation (2).

3 Distributed Representations of
Optical Flow

In this section, we discuss optical ow extraction as an
estimation problem. There are many advantages to viewing
the problem probabilistically. Optical ow �elds are inher-
ently uncertain because of image noise, lighting changes,
low contrast regions, the aperture problem, and multi-
ple motions in a single localized region. A probabilistic
framework allows these uncertainties to be represented in
the computations, and passed along to the next stage of
computation. We should emphasize here that we do not
just wish to provide a scalar \con�dence" measure, but a
two-dimensional probability distribution, capable of rep-
resenting inhomogeneous directional uncertainties. Anan-
dan [3] computed two-dimensional con�dences based on a
block-matching histogram, and Heeger [4] estimated two-
dimensional covariances. Szeliski [5] has discussed the use
of Bayesian techniques for a variety of problems in low-level
vision.

The goal, then, is to compute an expression for the prob-
ability of the image velocity conditional on the image se-
quence. For the purposes of this paper, we will more specif-
ically be concerned with a conditional probability based on
the image gradient, rf :

P(~v j rf):

Consider the total derivative constraint in equation (1). In
practice, there will be errors in the derivative computations
due to camera and quantization noise, aliasing, imprecision
in the derivative �lters, etc. As mentioned earlier, even if
the derivative measurements are error-free, the constraint
in equation (1) may fail to be satis�ed because of changes
in lighting or reectance, or the presence of multiple mo-
tions. We would like to account for both of these types
of error. As is common in estimation theory, we will de-
scribe each of these types of uncertainty with independent
additive gaussian noise terms variable n1 and n2:

~fs � (~v� ~n1) + ft = n2; ni � N(0;�i):

or
~fs � ~v + ft = ~fs � ~n1 + n2: (7)

The noise term n2 describes the errors in the temporal
derivative measurements. The other noise term (~n1), de-
scribes errors resulting from a failure of the planarity as-
sumptions.
Equation (7) describes the conditional probability,

P(ft j ~v; ~fs). In order to write down the desired conditional
probability, we can use Bayes' rule to switch the order of
the arguments:

P(~v j ~fs; ft) =
P(ft j ~v; ~fs) �P(~v)

P(ft)
:

For the prior distribution P(~v), we choose a zero-mean
gaussian with covariance �p. The resulting distribution
is gaussian, and the covariance and mean may be derived
using standard techniques (i.e., completing the square in
the exponent):

�~v =
�
~fs(~f

T
s �1

~fs + �2)
�1 ~f

T
s + ��1

p

��1

�~v = ��~v
~fs(~f

T
s �1

~fs +�2)
�1ft:

If we choose �1 to be a diagonal matrix, with diagonal
entry �1, and write the scalar variance of n2 as �2 � �2,
then we can write this as:

�~v =

"
M�

�1k~fsk2 + �2
� + ��1

p

#�1

(8)

�~v = ��~v �
~b�

�1k~fsk2 + �2
� :

The Maximum A Posteriori (MAP) estimate is simply
the mean, �~v, since the distribution is gaussian. This so-
lution is similar to that speci�ed by equation (3). This is
not really surprising, since computing the maximum of a
gaussian distribution is equivalent to computing the LLSE.
The di�erences are that 1) the prior variance �p ensures the
invertibility of the matrix, and 2) the quadratic derivative

terms in M and ~b are modi�ed by a compressive nonlin-
earity. That is, for regions with low contrast (i.e., small
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Figure 1: Plot of the nonlinearity which operates
on the quadratic energy measurements in the solu-
tion given in equation (8).

k~fsk
2), the �2 term dominates the divisor of M. For large

contrast regions, the �1k~fsk
2 term tends to normalize the

magnitude of the quadratic terms in M.
This seems intuitively reasonable: When the contrast

(SNR) of the signal is low, an increase in contrast should
increase our certainty of the velocity estimate. But as the
contrast increases above the noise level of the signal, the
certainty should asymptotically reach some maximum value
rather than continuing to rise quadratically. This matches
the description of the noise terms given earlier. The noise
term n2 accounts for errors in the derivative measurements.
At low contrasts, these will be the dominant source of error.
The term ~n1 accounts for failures of the constraint equation.
At high contrasts, these will be the dominant source of
error. The nonlinearity is illustrated in �gure 1, where we
have plotted the trace of the inverse covariance ��1

~v (i.e.,
the certainty of the estimate) as a function of contrast,

k~fsk
2.

If the solution is computed independently at each point
(as written above), the mean will be (approximately) the
normal ow vector, and the width of these distributions in
the direction perpendicular to the normal direction will be
determined by �p. The variance in the normal direction
will be determined by both �p and the trace of M (i.e., the
sum of the squared magnitudes of the spatial derivatives).
If normal ow (along with variance information) is insuf-
�cient input for the next stage of processing, then we can
combine information in small neighborhoods (analogous to
equation (5)). If we assume that the noise at each point in
the neighborhood is independent, then the resulting mean
and variance are:

�~v =

"X
i

wiMi�
�1k~fs(xi; yi; t)k2 + �2

� + ��1
p

#�1

�~v = ��~v �
X
i

wi
~bi�

�1k~fs(xi; yi; t)k2 + �2
� : (9)

Here, the e�ect of the nonlinearity on the combination of
information over the patch is to provide a sort of gain con-
trol mechanism. If we ignore �2, the solution above nor-
malizes the information, equalizing the contribution from
each point in the neighborhood by the magnitude of the

  

(a) (b)

Figure 2: (a) One frame of a drifting sin grat-
ing sequence. The normal direction of the motion
was down and to the left. The drift speed (in the
normal direction) was 0.83 pixel/frame. (b) The
response of the system computed over a patch near
the center of the image. The peak of the response
coincides with the actual normal velocity.

spatial gradient. Heeger [6] has found that the use of gain
control in spatio-temporal energy models often improves
the performance of the ow computation.

To illustrate the solution given in equation (9), we con-
sider the response to a drifting sinusoidal grating. One
frame of the input image is shown in �gure 2(a). The re-
sulting distribution, computed for a patch near the center
of the image is shown in �gure 2(b). Note that the ambigu-
ity of the motion, which arises because the signal is really a
one-dimensional signal, is captured by the elongated shape
of the distribution.

An adaptive version of this algorithm could proceed by
blurring over larger and larger regions until the magnitude
of the variance (determinant of the variance matrix) was
below some threshold. Since the variance matrix �~v de-
scribes a two-dimensional shape, this could even be done
directionally, averaging pixels which lie in the direction of
maximal variance until the variance in this direction was
below a threshold.

4 Examples

We computed optical ow on both synthetic and real im-
age sequences using the technique de�ned by equation (9)
combined with a multi-scale pyramid decomposition. The
multi-scale approach is necessary since the gradient tech-
nique will fail if there is too much spatio-temporal alias-
ing (i.e., if the displacements being measured are greater
than one half of a cycle of the highest spatial frequencies
present in the pre-�ltered image sequence). Similar multi-
scale \warping" approaches have been used by Quam [7]
and Anandan [3].

We �rst built a (spatial) \gaussian pyramid" [8] on each
frame of the image sequence: Each frame was recursively
blurred using a simple gaussian �lter and subsampled by a
factor of two in each spatial direction. This resulted in a set
of images (a \pyramid") of di�erent spatial resolution. We
then computed the optical ow on the sequence of top level
(lowest frequency) images using the computation speci�ed
by equation (9).

An upsampled and interpolated version of this coarse,
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Figure 3: A frame from the original \Yosemite"
y-through sequence. The sequence was syntheti-
cally generated by Lyn Quam at SRI.

low-resolution ow �eld was used to warp the sequence of
images in the next pyramid level. The warping operation
is de�ned as

fwarped(x; y) = foriginal (x� vx(x; y); y � vy(x; y)) ;

where we used bi-cubic spline interpolation to evaluate
foriginal at fractional-pixel locations. Equation (9) was used
to estimate the optical ow of the warped sequence, and
this \optical ow correction" was composed with the pre-
viously computed optical ow to give a new optical ow es-
timate. This correction process was repeated for each level
of the pyramid until the ow �elds were at the resolution
of the original image sequence.
In implementing equation (9), we used a set of sam-

pled analytic derivatives of gaussians as derivative �lters.
The kernels had spatio-temporal dimensions 7x7x6. The
noise parameters used were chosen empirically as follows:
�1 = 0:08; �2 = 1:0; �p = 2:0. The solution seemed
relatively insensitive to variations in these parameters.
The averaging step was performed by separably apply-
ing a one-dimensional (spatial) weighting kernel: wi =
(0:0625; 0:25; 0:375; 0:25; 0:0625).
We computed ow on a synthetic (texture-mapped) y-

through sequence of the Yosemite valley. Figure 3 shows a
frame of the original image sequence. Figure 4 shows the
corresponding frame of the actual ow �eld (computed us-
ing the three-dimensional motion parameters and the depth
map). Figure 5 shows the recovered ow �eld.
To analyze the appropriateness of the noise model, we

need to check that the covariance information adequately
describes the errors in the ow estimates. Since the co-
variance information is di�cult to display or analyze, we
computed a \deviation" value D at each point:

D = �

q
(~vactual � ~vest)

T ��1
~v (~vactual � ~vest);

where for simplicity we have omitted the positional argu-
ments, (x; y; t), which parameterize each of the quantities
in the equation. The normalized histogram of the values

 

Figure 4: The actual optical ow �eld correspond-
ing to the frame from the \Yosemite" sequence
shown in the previous �gure.

 

Figure 5: The recovered optical ow correspond-
ing to the frame from the \Yosemite" sequence
shown in the previous �gure.
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 Figure 6: Normalized histogram of the deviations
D of the optical ow vectors (see text).
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 Figure 7: Ideal distribution of deviations D for
the gaussian noise model (see text).

of D, is shown in �gure 6. If the ow �eld errors were ex-
actly modeled by the simple additive gaussian noise terms
of equation (7), then this histogram would be in the shape
of the function obtained by integrating a two-dimensional
univariate gaussian over its angular coordinate:

h(r) / jrj � e�r2=2
:

For comparison, this function is plotted in �gure 7. The
error histogram is seen to qualitatively match, suggesting
that the noise model is not unreasonable.

We also computed optical ow for a real sequence which
was �lmed from a helicopter ying above a valley. One
frame from the original is shown in �gure 8 and the cor-
responding frame of the recovered ow �eld is shown in
�gure 9.

 

Figure 8: A frame from the original \Nap-of-the-
earth" (NOE) y-through sequence. The sequence
was was provided by the NASA Ames Research
Center.

 

Figure 9: A frame of the recovered optical ow
for the NOE sequence.
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5 Conclusions

We have introduced probabilistic extensions of gradient
techniques which compute two-dimensional optical ow dis-
tributions. Viewing the problem probabilistically has three
advantages: (1) It produces useful extensions of the stan-
dard quadratic gradient techniques for computing optical
ow, including an automatic gain control mechanism, and
the incorporation of a prior bias on the ow, (2) It pro-
vides (two-dimensional) ow vector con�dence information,
allowing later stages of processing to weight their use of
the vectors accordingly, and (3) It provides a framework
for properly combining ow information with probabilistic
information from other sources. Future work will include
quantitative analysis of the errors in the recovered ow, and
extensions of the distributed approach to handle the multi-
modal ow distributions that arise near motion boundaries
and in situations of motion transparency.

References

[1] B K P Horn and B G Schunck. Determining optical
ow. Arti�cial Intelligence, 17:185{203, 1981.

[2] B D Lucas and T Kanade. An iterative image regis-
tration technique with an application to stereo vision.
In Proceedings of the 7th International Joint Confer-

ence on Arti�cial Intelligence, pages 674{679, Vancou-
ver, 1981.

[3] P Anandan. A computational framework and an algo-
rithm for the measurement of visual motion. Intl. J.

Comp. Vis., 2:283{310, 1989.

[4] David J. Heeger. Optical ow using spatiotemporal �l-
ters. Intl. J. Comp. Vis., pages 279{302, 1988.

[5] Richard Szeliski. Bayesian modeling of uncertainty in
low-level vision. International Journal of Computer Vi-
sion, 5(3):271{301, December 1990.

[6] David J. Heeger. Personal Communication, July 1990.

[7] Lyn Quam. Hierarchical warp stereo. In Proceedings of

the DARPA Image Understanding Workshop, Septem-
ber 1984.

[8] Peter J. Burt. Fast �lter transforms for image process-
ing. Computer Graphics and Image Processing, 16:20{
51, 1981.

315


