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Abstract

We explore the statistical properties of natural sound stimuli pre-
processed with a bank of linear filters. The responses of such filters ex-
hibit a striking form of statistical dependency, in which the response vari-
ance of each filter grows with the response amplitude of filters tuned for
nearby frequencies. These dependencies may be substantially reduced
using an operation known as divisive normalization, in which the re-
sponse of each filter is divided by a weighted sum of the rectified respons-
es of other filters. The weights may be chosen to maximize the indepen-
dence of the normalized responses for an ensemble of natural sounds.
We demonstrate that the resulting model accounts for non-linearities in
the response characteristics of the auditory nerve, by comparing model
simulations to electrophysiological recordings. In previous work (NIP-
S, 1998) we demonstrated that an analogous model derived from the s-
tatistics of natural images accounts for non-linear properties of neurons
in primary visual cortex. Thus, divisive normalization appears to be a
generic mechanism for eliminating a type of statistical dependency that
is prevalent in natural signals of different modalities.

Signals in the real world are highly structured. For example, natural sounds typically con-
tain both harmonic and rythmic structure. It is reasonable to assume that biological auditory
systems are designed to represent these structures in an efficient manner [e.g., 1, 2]. Specif-
ically, Barlow hypothesized that a role of early sensory processing is to remove redundancy
in the sensory input, resulting in a set of neural responses that are statistically independent.

Experimentally, one can test this hypothesis by examining the statistical properties of neural
responses under natural stimulation conditions [e.g., 3, 4], or the statistical dependency of
pairs (or groups) of neural responses. Due to their technical difficulty, such multi-cellular
experiments are only recently becoming possible, and the earliest reports in vision appear
consistent with the hypothesis [e.g., 5]. An alternative approach, which we follow here,
is to develop a neural model from the statistics of natural signals and show that response
properties of this model are similar to those of biological sensory neurons.

A number of researchers have derived linear filter models using statistical criterion. For vi-
sual images, this results in linear filters localized in frequency, orientation and phase [6, 7].



Similar work in audition has yielded filters localized in frequency and phase [8]. Although
these linear models provide an important starting point for neural modeling, sensory neu-
rons are highly nonlinear. In addition, the statistical properties of natural signals are too
complex to expect a linear transformation to result in an independent set of components.

Recent results indicate that nonlinear gain control plays an important role in neural pro-
cessing. Ruderman and Bialek [9] have shown that division by a local estimate of standard
deviation can increase the entropy of responses of center-surround filters to natural images.
Such a model is consistent with the properties of neurons in the retina and lateral genicu-
late nucleus. Heeger and colleagues have shown that the nonlinear behaviors of neurons
in primary visual cortex may be described using a form of gain control known as divisive
normalization [10], in which the response of a linear kernel is rectified and divided by the
sum of other rectified kernel responses and a constant. We have recently shown that the
responses of oriented linear filters exhibit nonlinear statistical dependencies that may be
substantially reduced using a variant of this model, in which the normalization signal is
computed from a weighted sum of other rectified kernel responses [11, 12]. The resulting
model, with weighting parameters determined from image statistics, accounts qualitatively
for physiological nonlinearities observed in primary visual cortex.

In this paper, we demonstrate that the responses of bandpass linear filters to natural sounds
exhibit striking statistical dependencies, analogous to those found in visual images. A
divisive normalization procedure can substantially remove these dependencies. We show
that this model, with parameters optimized for a collection of natural sounds, can account
for nonlinear behaviors of neurons at the level of the auditory nerve. Specifically, we show
that: 1) the shape of frequency tuning curves varies with sound pressure level, even though
the underlying linear filters are fixed; and 2) superposition of a non-optimal tone suppresses
the response of a linear filter in a divisive fashion, and the amount of suppression depends
on the distance between the frequency of the tone and the preferred frequency of the filter.

1 Empirical observations of natural sound statistics

The basic statistical properties of natural sounds, as observed through a linear filter, have
been previously documented by Attias [13]. In particular, he showed that, as with visual
images, the spectral energy falls roughly according to a power law, and that the histograms
of filter responses are more kurtotic than a Gaussian (i.e., they have a sharp peak at zero,
and very long tails).

Here we examine the joint statistical properties of a pair of linear filters tuned for near-
by temporal frequencies. We choose a fixed set of filters that have been widely used in
modeling the peripheral auditory system [14]. Figure 1 shows joint histograms of the
instantaneous responses of a particular pair of linear filters to five different types of natu-
ral sound, and white noise. First note that the responses are approximately decorrelated:
the expected value of the y-axis value is roughly zero for all values of the x-axis variable.
The responses are not, however, statistically independent: the width of the distribution of
responses of one filter increases with the response amplitude of the other filter. If the t-
wo responses were statistically independent, then the response of the first filter should not
provide any information about the distribution of responses of the other filter. We have
found that this type of variance dependency (sometimes accompanied by linear correla-
tion) occurs in a wide range of natural sounds, ranging from animal sounds to music. We
emphasize that this dependency is a property of natural sounds, and isnot due purely to
our choice of linear filters. For example, no such dependency is observed when the input
consists of white noise (see Fig. 1).

The strength of this dependency varies for different pairs of linear filters. In addition,
we see this type of dependency between instantaneous responses of a single filter at two
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Figure 1: Joint conditional histogram of instantaneous linear responses of two bandpass
filters with center frequencies 2000 and 2840 Hz. Pixel intensity corresponds to frequency
of occurrence of a given pair of values, except that each column has been independently
rescaled to fill the full intensity range. For the natural sounds, responses are not indepen-
dent: the standard deviation of the ordinate is roughly proportional to the magnitude of the
abscissa. Natural sounds were recorded from CDs and converted to sampling frequency of
22050 Hz.

nearby time instants. Since the dependency involves the variance of the responses, we can
substantially reduce it by dividing. In particular, the response of each filter is divided by a
weighted sum of responses of other rectified filters and an additive constant. Specifically:

Ri =
L2

iP
j wjiL

2

j + �2
(1)

whereLi is the instantaneous linear response of filter i,� is a constant andwji controls the
strength of suppression of filteri by filter j.

We would like to choose the parameters of the model (the weightswji, and the constant�)
to optimize the independence of the normalized response to an ensemble of natural sounds.
Such an optimization is quite computationally expensive. We instead assume a Gaussian
form for the underlying conditional distribution, as described in [15]:

P (LijLj ; j 2 Ni) � N (0;
X
j

wjiL
2

j + �2)

whereNi is the neighborhood of linear filters that may affect filteri. We then maximize
this expression over the sound data at each timet to obtain the parameters:
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We solve for the optimal parameters numerically, using conjugate gradient descent. Note
that the value of� depends on the somewhat arbitrary scaling of the input signal (i.e.,
doubling the input strength would lead to a doubling of�).
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Figure 2: Nonlinear whitening of a natural auditory signal with a divisive normalization
model. The histogram on the left shows the statistical dependency of the responses of two
linear bandpass filters. The joint histogram on the right shows the approximate indepen-
dence of the normalized coefficients.

Figure 2 depicts our statistically derived neural model. A natural sound is passed through
a bank of linear filters (only 2 depicted for readability). The responses of the filters to a
natural sound exhibit a strong statistical dependency. Normalization largely removes this
dependency, such that vertical cross sections through the joint conditional histogram are all
roughly the same.

For the simulations in the next section, we use a set of Gammatone filters as the linear front
end [14]. We choose a primary filter with center frequency 2000 Hz. We also choose a
neighborhood of filters for the normalization signal: 16 filters with center frequencies 205
to 4768 Hz, and replicas of all filters temporally shifted by 100, 200, and 300 samples.
We compute optimal values for� and the normalization weightswj using equation (2),
based on statistics of a natural sound ensemble containing 9 animal and speech sounds,
each approximately 6 seconds long.

2 Model simulations vs. physiology

We compare the normalized responses of the primary filter in our model (with all parameter
values held fixed at the optimal values described above) to data recorded electrophysiologi-
cally from auditory nerve. Figure 3 shows data from a “two-tone suppression” experiment,
in which the response to an optimal tone is suppressed by the presence of a second tone
of non-optimal frequency. Two-tone suppression is often demonstrated by showing that
the rate-level function of the optimal tone alone is shifted to the right in the presence of
a non-optimal tone. In both cell and model, we obtain a larger rightward shift when the
non-optimal tone is relatively close in frequency to the optimal tone, and almost no right-
ward shift when the non-optimal tone is more than two times the optimal frequency. In
the model, this behavior is due to the fact that the strength of statistical dependency (and
thus the strength of normalization weighting) falls with the frequency separation of a pair
of filters.
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Figure 3: Two tone suppression data. Each plot shows neural response as a function of SPL
for a single tone (circles), and for a tone in the presence of a secondary suppressive tone at
80 dB SPL (squares). The maximum mean response rate in the model is scaled to fit the
cell data. Cell data re-plotted from [16].
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Figure 4: Frequency tuning curves for cell and model for different sound pressure levels.
Cell data are re-plotted from [17].

5



Figure 4 shows frequency tuning for different sound pressure levels. As the sound pressure
level (SPL) increases, the frequency tuning becomes broader, developing a “shoulder” and
a secondary mode. Both cell and model show similar behavior, despite the fact that we are
not fitting the model to these data: all parameters in the model are chosen by optimizing the
independence of the responses to the ensemble of natural sound statistics. This result is
particularly interesting because the data have been in the literature for many years, and are
generally interpreted to mean that the frequency tuning properties of these cells varies with
SPL. Our model suggests an alternative interpretation: the fundamental frequency tuning
is determined by a fixed linear kernel, and is modulated by a divisive nonlinearity.

3 Discussion

We have developed a weighted divisive normalization model for early auditory processing.
Both the form and parameters of the model are determined from natural sound statistics.
We have shown that the model can account for some prominent nonlinearities occurring at
the level of the auditory nerve. A number of authors have suggested forms of divisive gain
control in auditory models. Wang et al. [18] suggest that gain control in early auditory
processing is consistent with psychophysical data and might be advantageous for applica-
tions of noise removal. Auditory gain control is also a central concept in the work of Lyon
(e.g., [19]). Our work may provide theoretical justification for such models of divisive gain
control in the auditory system.

Our model is limited in a number of important ways. The current model lacks a detailed
specification of a physiological implementation. In particular, normalization must be pre-
sumably implemented using lateral or feedback connections between neurons [e.g., 20].
The normalization signal of the model is computed and applied instantaneously, and thus
lacks temporal dynamical properties [e.g., 19]. In addition, we have not made any distinc-
tion between nonlinearities that arise mechanically in the cochlea, and nonlinearities that
arise at the neural level. It is likely that normalization occurs at least partially in outer hair
cells [21, 22].

On a more theoretical level, we have not addressed mechanisms by which the system op-
timizes itself. Our modeling uses parameters optimized for a fixed ensemble of natural
sounds. Biologically, this optimization would presumably occur on multiple time scales
through processes of evolution, development, learning, and adaptation. The ultimate ques-
tion regarding the independence hypothesis underlying our model is: how far can such a
bottom-up criterion go toward explaining neural processing? It seems likely that the model
can be extended to account for levels of processing beyond the auditory nerve. For ex-
ample, Nelken et al. [23] suggest that co-modulation masking release in auditory cortex
results from the statistical structure of natural sound. But ultimately, it seems likely that
one must also consider the auditory tasks, such as localization and recognition, that the
organism must perform.
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