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ABSTRACT

Sensory neurons often exhibit striking nonlinear behaviors that are not ade-

quately described by a linear receptive field representation.

In the first part of the work, we suggest that these nonlinearities arise because

sensory systems are designed to efficiently represent environmental information. We

describe a form of nonlinear decomposition (specifically, divisive gain control) that

is well-suited for efficient encoding of natural signals. We show that this decompo-

sition, with parameters optimized for the statistics of a generic ensemble of natural

images or sounds, can account for some nonlinear response properties of ”typical”

neurons in both vision (area V1) and audition (auditory nerve). This work pro-

vides theoretical justification to neural models of gain control, and explains how one

might choose the parameters of the model based on efficient coding considerations.

In the second part of the work, we describe a methodology for characterizing

this class of nonlinear sensory models. The characterization is based on a white

noise analysis, in which a set of random stimuli are presented to a neuron and the

spike-triggered ensemble (specifically, the spike-triggered covariance) is analyzed.

We demonstrate the applicability of the technique to retinal ganglion cell data in

monkey and salamander.

The concept of gain control appears to be ubiquitous, occurring throughout the

nervous system. So the computational tools we develop here may potentially have

more widespread applicability.
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CHAPTER 1

INTRODUCTION

We interact with stimuli in the natural world through the senses. Locating

predator or prey in the jungle, or recognizing a face in a crowded subway–we are

constantly making sense of a complex environment. This puts to work a plethora

of neurons that process the information at various stages, resulting in perception,

and ultimately, in action and storage of memory. Within this very intricate system,

this thesis aims to understand: why do neurons form the particular representations

that they do? And how can we characterize sensory neural representations?

Specifically, we focus on neurons at relatively early stages of processing, includ-

ing the retina, the primary visual cortex (area V1), and the peripheral auditory

system. To answer these types of questions, we have studied neural behaviors at

the signal processing, phenomenological level. This approach typically does not

reveal a particular physiological mechanism; but will often initiate complementary

exploration of the processes of biochemistry, spike generation, synaptic mechanisms,

circuitry, and so on.

Images in the world are initially represented in a rather pixelated form, by the
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light intensities that impinge upon the photoreceptor array. We are interested in

the types of representations that neurons form of their input stimuli along the

sensory pathway. Perhaps the simplest representation we tend to think about, and

which physiologists often measure, are receptive fields (or filters) over localized

regions in space and time. For example, Hubel and Wiesel swept bars across the

receptive spatial regions of neurons in V1, and found that neurons were selective

(and responded with a higher firing rate) to particular orientations [67]. In this

way, one can map out a receptive field of a neuron, which represents, roughly, what

stimuli the neuron responds to best.

If a neuron were truly linear, then one could make a prediction about its re-

sponse to any given stimulus, just by knowing its receptive field. This would simply

be the projection of the stimulus onto the receptive field (of course, in practice, even

if one attempts to describe only the mean firing rate of the neuron, one must at

least include a rectifying nonlinearity). However, receptive field characterizations

are often not sufficient to describe the complexities of sensory neural behaviors.

For example, in primary visual cortex, the response of a neuron to the optimal

stimulus (e.g., that which is exactly equal to the receptive field) can be modulated

by superimposing a second stimulus that by itself elicits no response at all in the

neuron. This is a nonlinear behavior, suggesting that the representation is gov-

erned by other stimulus directions, and not just that given by the linear receptive

field. These and other observations have suggested that a model of linear neural

representation is too simplistic.

In this chapter we provide a literature review, that feeds on both theoretical

and experimental work in the field. We first describe neural models that have been

2



derived purely from theoretical principles. We show that such models have been

fruitful in explaining some basic aspects of sensory representation, particularly re-

garding linear receptive field properties measured physiologically. But examination

of physiological data reveal that sensory neurons are highly nonlinear. Indeed, phys-

iology driven neural models have been developed that can account for some of these

nonlinearities (specifically, gain control models). Finally, we describe how one can

characterize individual neurons, assuming a particular form of underlying model.

Specifically, spike-triggered approaches have been successful in characterizing some

response properties of sensory neurons, but have not proceeded to characterize gain

control models. This lays out the groundwork and motivation for the remaining

chapters of the thesis.

1.1 Theory Driven Sensory Neural Models

1.1.1 History and Outline

Many factors are likely to shape sensory processing, including: the particular tasks

an animal must perform; the capabilities and limitations of neurons; and the struc-

ture of the sensory stimuli that neurons receive. Here, we limit the discussion to

how the structure of sensory stimuli in the world effect neural processing. This is

an area that has been widely studied, and in which specific hypotheses about neural

processing have been formulated.

Stimuli in our sensory environment are highly structured and non random (Fig-

ure 1.1). Of all the possible could-be images and sounds, we are exposed to only a

small portion in our particular environment. Since some stimuli are more likely to
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Figure 1.1: Natural image and sound vs. random white noise
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occur than others, it seems reasonable that our sensory systems are most suited to

process those stimuli that occur most frequently.

Early notions about sensory stimuli and the mind may actually be traced back

to Greek philosophy. Aristotle held that the mind was a “tabula rasa” or clean

slate; and that this slate is only filled with knowledge after sense experience. More

modern versions of this idea were influenced by landmark scientific advances: with

the discovery of nerve cells; with evolution emerging in the mid nineteenth century;

and Shannon’s information theory in the mid twentieth century.

It has been widely assumed that neurons in sensory areas of the brain are

adapted, through processes of evolution and development, to the signals to which

they are exposed 1 [85, 106, 161, 39, 11, 16]. Information theory provided a quanti-

tative framework for converting these ideas into a more concrete hypothesis about

neural processing. Attneave and Barlow hypothesized that the brain develops in

response to the statistical properties of the natural stimuli it is exposed to – and

does so in a manner that is efficient (henceforth, will be referred to as efficient

coding hypothesis). We will define “efficient” shortly, from the point of view of

information theory.

In the past decade or so, the efficient coding hypothesis has spurred renewed

interest (see also review article [140]). This is due to recent computational advances

in the statistical analysis of natural images and sounds. In addition, advances in

experimental techniques are beginning to pave the way towards more direct routes

for testing this hypothesis.

1Adaptation over shorter time scales to environmental signals is also assumed to effect neural

processing, see [17, 165, 49].
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In the following sections, we first describe the computational building blocks

of information theory, and how they relate to forming an efficient representation.

We then explain how these ideas have led to the efficient coding hypothesis. Sub-

sequently, we describe an additional hypothesis that has emerged, sparse coding.

Finally, we describe computational and experimental work that have been aimed

at testing these hypotheses.

1.1.2 Information Theory

Information theory was developed to help engineers in the transmission of signals

over communication devices [132, 133]. The theory is deeply rooted mathematically,

and has been applied to numerous other areas that require efficient processing of

signals. Hence, the theory may potentially be relevant to neural computation. Here

we introduce only the most basic concepts necessary for our discussion (see [133, 38]

for a more complete and detailed description).

Consider an ensemble of signals that contain symbols, such as letters of the

English alphabet, light intensity values in images, sound pressure levels in sounds,

and so on. We assume that these input signals are passed through channels. The

outputs are typically constrained by the architecture of the channels. A goal of

information theory is that the output signals through the channels form a more

efficient representation of the input. To achieve this goal, Shannon introduced

(among other terms) redundancy, entropy, and mutual information.

Related ideas were later developed in the framework of minimum description

length, with the goal of creating a compact and efficient representation of observed

signals, from which the original observed signals can be regenerated [148, 118, 170].
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Additional work has also focused on efficient coding using rate-distortion criteria

(see [38]), and extraction of the most “relevant” information from a signal, while

forming an efficient representation [151]. These directions are beyond the scope of

this thesis.

Redundancy

Signals are considered inefficient in their representation, if they are redundant.

There are two forms of redundancy that can occur in signals: some symbols occur

more frequently than others (in the English language ’a’ occurs more often than

’q’); and, some symbols co-occur more frequently than others, i.e., they are not

independent (letters “sh” are more likely to appear together than “sd”). A more

efficient representation is formed by reducing the redundancies in the signal en-

semble. It is important to note that efficiency is only meaningful for a particular

stimulus ensemble, and what is efficient for one ensemble is not necessarily efficient

for another.

Entropy and Mutual Information

To quantify the notion of redundancy reduction, we define some basic terms from

information theory.

We denote X the set of input signals and Y the set of output signals (through

one or more channels).

The entropy of the output is given by:

H(Y ) =
∑

y

P (y) log2P (y) (1.1)

7



where P (·) is the probability distribution.

Entropy is a measure of how informative signals in the ensemble are on aver-

age. The information for each signal y is given by log2P (y) and multiplied by the

probability of occurrence of the signal. Entropy is always positive, and equal to

zero if and only if the outcome is certain; that is, P (y) is 0 for all but one of the

signals y which occurs with probability 1. The log2 indicates that information is

expressed in units of bits. Stated in coding terms, entropy is the average number

of bits needed to represent values drawn from a distribution.

We first assume that the output is deterministically determined from the input.

Then the representation is made less redundant and more efficient by maximizing

the entropy of the output signals. So in the resulting representation the output

is on average less predictable, and carries more information. But many systems,

including neurons, are not deterministic: if a neuron is stimulated repeatedly with

the same stimulus, the response is variable (we’ll denote this variability by the term

“noise”). We’d like to achieve maximal entropy of the output that’s only due to

the input.

To do so, we need a measure for the amount of information between the output

and the input. We take a small detour to achieve this goal. First, we define the

Kullback-Leibler (KL) divergence (also called relative entropy), which is a measure

of similarity between any two probability distributions, P and Q:

D(P ||Q) =
∑

k

P (k)log2
P (k)

Q(k)
(1.2)

KL is always positive and equal to zero if and only if Q and P are equal. This

measure can also be interpreted as the average number of bits lost encoding samples
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of P assuming Q as a model for the distribution.

We define the mutual information I(X,Y ) as a special case of KL, in which:

P = P (x, y) and Q = P (x)P (y):

I(X,Y ) = D(P (x, y) ||P (x)P (y)) =
∑

x,y

P (x, y) log2
P (x, y)

P (x)P (y)
(1.3)

The mutual information is equal to zero if and only if P (x, y) = P (x)P (y);

that is, by definition, if and only if the input and output are independent.

We now express the mutual information in terms of entropy. Using Bayes rule

in equation 1.3 we obtain:

I(X,Y ) =
∑

x,y

P (x, y) log2
P (x|y)

P (x)
(1.4)

This is equal to:

I(X,Y ) =
∑

x,y

P (x, y) log2P (y|x) −
∑

x,y

P (x, y) log2P (y) (1.5)

The second term in the expression summed over all x is just: −
∑

y P (y) log2P (y),

which is H(Y ). Using Bayes rule, the first term in the expression can be written as:

−
∑

x P (x)
∑

y P (y|x) log2(P (y|x)). But this is just the negative of the conditional

entropy of the output given the input:

H(Y |X) = −
∑

x

P (x)
∑

y

P (y|x) log2(P (y|x)) (1.6)

The inner sum indicates the entropy of the output for each input, and the outer

sum indicates that this is averaged over all possible inputs. H(Y |X) should be

interpreted as whatever entropy is left in the output that is not due to the input.

If the output is deterministically given by the input, then H(Y |X) is just 0.
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We now have (from the first and second terms of equation 1.5)

I(X,Y ) = −H(Y |X) + H(Y ) (1.7)

Thus the mutual information is the entropy of the output that is due only to the

input.

An efficient representation is formed by maximizing the mutual information

between the input and the output. Many studies have limited their analysis to

noiseless systems, and maximizing entropy, as a simplifying assumption. In general,

to maximize the entropy or the mutual information, certain constraints about the

system need to be imposed.

Marginal and Joint Entropies

For simplicity, we limit the discussion to entropy maximization. We’d like to for-

mulate entropy maximization in terms of the two types of redundancies described

earlier. Specifically, we differentiate between the joint and the marginal output en-

tropies. We denote Y = Y1, Y2, ..., Yn the set of output signals through n channels.

It can be proven that the following inequality holds between the joint and the

marginal entropies of Yi:

H(Y ) = H(Y1, Y2, ...Yn) <= H(Y1) + H(Y2) + ... + H(Yn) (1.8)

with equality achieved if and only if:

P (y1, ...yn) =
n

∏

1

P (yi) , (1.9)

That is, if and only if the Yi are independent.

10



Thus, maximal entropy is achieved when the Yi are independent, and each of

the marginal entropies H(Yi) are also maximal. In other words, different outputs

are representing independent parts of the information, and the output through each

channel transmits the maximal information possible.

Maximizing Marginal Entropy

Entropy can be increased by considering the output through a single channel (i.e.,

the marginal distribution). Intuitively, the output through a channel carries more

information if it is as random (and unpredictable) as possible. However, the optimal

distribution is also a function of the constraints on the channel, and is determined

by solving a constrained optimization problem. Consider a constraint of the form

E(f(x)) = c, where x is the response, f(·) is a constraint function, E(·) is the

expected value, and c is a constant. Then it can be shown that the Maximum

Entropy distribution is P (x) ∝ e−f(x)λ(c), where λ(c) is the Lagrange multiplier

[72, 38, 40] (note that solving for λ for a given c is often difficult). For example, if a

channel transmits data that have a constraint on the maximal value, the Maximal

Entropy distribution is uniform. If a channel has a constraint of fixed mean, the

Maximal Entropy distribution is exponential. If a channel has a constraint of fixed

variance, the Maximal Entropy distribution is Gaussian.

Maximizing Statistical Independence

Entropy can also be increased by considering the co-occurrence of outputs through

multiple channels (i.e., the joint distribution): these should be statistically inde-

pendent. This can be achieved by minimizing the KL divergence between the joint
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distribution and the product of marginal distributions of the output. However,

this is in general difficult to achieve computationally, because characterizing the

joint histogram of the output grows exponentially with the number of dimensions.

Therefore, independence has been typically restricted to a particular domain that

is easier to work with. A large body of research has restricted the output to be a

linear function of the input. In addition, one can further make restrictions on the

type of statistical dependency to be eliminated.

An algebraic method for eliminating second order correlations (i.e., decorrela-

tion) is known as Principle Components Analysis (PCA). Decorrelation is defined

as:

E(YiYj) = 0, i 6= j, (1.10)

where E(·) is expected value. Decorrelation is a weaker constraint than indepen-

dence: statistical independence implies statistical decorrelation, but the opposite

is not necessarily true.

Principal component axes can be recovered using an eigenvalue analysis (see

for example, [69, 140]). These axes always exists, though they need not be unique.

This is partly due to repeated eigenvalues, and partly due to the fact that whitening

transforms retain their properties under post-rotation. It can be shown that PCA

will recover independent components if the signals are drawn from a Gaussian

distribution and linearly mixed. However, in the general case, PCA does not recover

independent components.

Independent Components Analysis (ICA) was devised as a method for elim-

inating higher order statistical dependencies in a linear transformation (see for

example, [75, 32, 69, 37, 20]). Comon introduced a rigorous mathematical solution
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that uses up to fourth order statistics [37]. Other techniques have been developed

to incorporate higher order statistics. These typically are not quadratic and so

cannot be solved using linear algebra, but can be estimated with gradient ascent or

other methods (e.g., [20, 69]). In general, ICA techniques must make some assump-

tion about the probability density function(s) of the independent components, or

at least use a parameterized density that is estimated during the procedure. The

underlying density is not necessarily known apriori, and wrong assumptions could

lead to erroneous results. An efficient way to estimate both the parameters of the

linear transformation leading to independent components, and the parameters of

the underlying density, is using Estimation Maximization (EM) (e.g., [8, 40]).

We want to stress that even Independent Components Analysis does not guar-

antee the resulting components will in fact be independent. In particular, they will

only be as independent as possible assuming the linearity constraint.

1.1.3 The Efficient Coding Hypothesis

Attneave pointed out that if we consider perception as an information-handling

process, it becomes evident that much of the information received by an organism

about its environment (e.g., images and sounds) is redundant in both space and in

time [11]. For example, the intensity vales of two co-occurring neighboring spatial

regions (or pixels) of an image tend to be similar. To an observer with knowledge of

these structures, one spatial or temporal portion of a given signal may be predicted

from others. Redundancy in images can also be quantified perceptually, by asking

subjects to replace missing pixels in a digital image [77]. Thus, a goal of sensory

processing should be to encode information in a form less redundant and more

13



efficient than that in which it impinges upon the receptors [11].

Barlow suggested a neural version of this hypothesis: that a goal of sensory

processing should be to increase independence between neuronal responses, when

exposed to natural stimuli [16]. The responses of neurons are action potentials.

But in the discussion, we will often consider only the information given by the firing

rate. We will also specify several studies that have used a more detailed description

of the spike train (see [115, 40] for theoretical discussion).

1.1.4 Biological Relevancy of Efficient Coding

Efficient coding has been widely used in engineering, in numerous applications

that require less storage space, or achieving a smaller dynamic range during the

transmission of signals. Prominent examples today are the compression of sounds,

images, and movies.

But to consider efficient coding and its biological relevancy, requires an under-

standing of what it means to be biologically efficient. Barlow in his initial work

suggested that efficiency could be achieved by reducing the frequency of spikes

(and therefore, reducing metabolic energy) in neurons carrying the representation.

Additionally, single neurons have constraints in their representations; for example,

animals encounter a wide range of stimuli in the environment, but neurons typically

have a limited dynamic range, a limit to the range of inputs that they can respond

to differentially. In this sense, neurons are required to be efficient in their represen-

tations. Perceptually, it has been suggested that a more independent representation

may facilitate tasks such as recognition of novel patterns and associative learning

(for example, it is more computationally tractable to compute a joint distribution
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as the product of marginals) [6, 17]). Independent representations have also been

motivated by a generative view of signal formation: if signals in the world are

formed from independent sources, then ultimately, an independent representation

should be able to recover these sources.

A common vein of controversy regarding efficient coding and sensory neural

processing concerns the number of output channels. An important goal in signal

processing is often to reduce the data dimensionality, and recent techniques have

been promising in their ability to do so while preserving the signal structure (e.g.,

local linear embedding: [121, 149]). But in the sensory system, if there are

significantly more neurons available in the output than in the input, then space

is abundant for representing the information, and efficiency might not be an issue

at all. Indeed, forty years after stating his efficiency hypothesis, Barlow himself

argued that the increase in number of neurons from retina to cortex (from 2 ∗

106 retinal ganglion cells to 109 V1 cells) is counter to the notion of efficiency

[15]. However, since different neurons might serve different purposes and project

to different areas of the brain, it would be difficult to quantify efficiency purely

based on a neural count. Finally, redundancy reduction need not imply that the

redundant information is lost and cannot be re-created; it only implies that the

system uses a more efficient representation to work with.

The concept of efficient coding in the nervous system is appealing, yet contro-

versial. Ultimately, the hypothesis needs to be tested. Approaches for doing so are

described in subsequent sections.
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1.1.5 Alternative Coding hypothesis: Sparse Coding

An alternative coding hypothesis that has been suggested is sparse coding: that a

goal of sensory processing should be to produce a sparse representation of natural

scenes [51, 52, 171]. Field interpreted this to mean that each neuron has an equal

response probability across the class of images, but a low response probability for

any one input signal in the ensemble. This idea was motivated by the observation

that natural images are sparse: they contain regions without very much information,

interspersed with regions of occasional prominent information, such as edges.

Unlike statistical independence, there is no formal mathematical definition for

sparseness. But one of the most common measures used is kurtosis, in which higher

kurtosis is associated with a sparser distribution. Kurtosis of Yi (uncorrelated and

variance 1) is defined as E(Y 4
i )−3. The kurtosis of a Gaussian is 3; a superGaussian

will have kurtosis larger than 3, resulting in long tails and a large peak at 0. Field

observed that natural images through typical visual filters are highly kurtotic [52],

and Attias obtained similar results for natural sounds through typical auditory

filters [9] (but see Baddeley, who has argued that high kurtosis in and of itself does

not necessarily imply anything interesting about the input stimuli [12]).

Sparseness and redundancy reduction are sometimes used synonymously. How-

ever, it’s important to keep in mind that a sparse (or highly kurtotic) representation

is a description of the marginal distribution, corresponding to responses of a single

neuron. Information theoretic considerations of the optimal distribution through

a single channel would not necessarily lead to a sparse distribution and would de-

pend on the particular constraint (for example, for a fixed variance, the Gaussian

is preferable to a superGaussian distribution). Taken to its extreme, sparseness
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could be accomplished by so-called “grandmother cells”, that respond only to one

stimulus. But from the point of view of a single neuron, the entropy is extremely

low. A sparse distribution does not (on its own) imply anything about the joint

distribution of the population of neurons. It might seem that if every neuron has a

low probability for being active to a given stimulus, then neurons will on average

act independently; but this is not guaranteed. In particular, observing sparseness

in neurons experimentally, is not an indication of whether the neural responses are

independent.

Nevertheless, in the linear domain, maximizing independence and maximizing

sparseness in images (while minimizing the error between the original image and

its reconstruction from the components) have led to similar results [22, 103]. The

distinction is subtle, because ICA on natural images works best when assuming a

sparse prior for the marginal distributions; subGaussian priors do not work well

(for example, the estimated independent components do not match the probability

distributions of the prior). It turns out that Bell and Sejnowski’s formulation

(maximizing independence) and Olshausen and Field’s formulation (maximizing

sparseness) are very similar under a maximum likelihood framework [102]. There-

fore, for a linear transform and natural images, the most independent possible

components are sparse.

1.1.6 Testing the Statistical Hypotheses

Testing the Hypotheses Through Experiments

Experimentally, the efficient coding hypothesis can be tested by examining the

statistical properties of neural responses under natural stimulation conditions.
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A number of studies have examined the firing rates of single neurons. One of

the earlier studies, by Laughlin, demonstrated an interesting link between exper-

imental evidence and the contrasts of natural scenes in the fly environment [80].

He measured experimentally the function relating contrast to membrane potential,

and showed that this function approximately transforms the distribution of con-

trasts in natural scenes to a uniform distribution. This is consistent with entropy

maximization with a constraint on the maximal firing rate. Baddeley et al [13]

demonstrated that the firing rates of spiking neurons in primary visual cortex are

exponentially distributed when stimulated with natural scenes. This is consistent

with entropy maximization with a constraint on the mean firing rate Additionally,

this may be viewed as a “sparse” distribution. Vinje and Gallant claimed that the

responses of primary visual cortex neurons to natural scenes are sparse. They used

a non-parametric statistic of the neural activity fraction to a natural movie for each

individual neuron they recorded from [159]. They did not express a particular form

of marginal distribution, such as Gaussian or exponential.

Few studies have also looked at information maximization of spike trains (as

opposed to firing rates) through single neurons. Rieke et al. showed that the rate

of information transmission of spike trains in bullfrog primary auditory afferents is

higher for naturalistic sounds than for broadband Gaussian white noise [114]; and

similarly, Attias showed that the rate of information transmission of spike trains in

cat auditory midbrain neurons is higher for naturalistic than for non-naturalistic

stimuli [10].

Gawne et al. tried to measure the mutual information between responses of

neurons in inferior temporal cortex and primary visual cortex [57, 56]. They re-
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ported around 20 percent mutual information for complex cells in V1, and less

in inferior temporal cortex. But the stimuli were artificial and not constructed

to resemble natural images. Therefore, they do not provide a test of the efficient

coding hypothesis. Chechik et al. examined redundancy reduction in the auditory

system between groups of neurons using criteria of mutual information [55]. They

recorded from cat using bird vocalizations and demonstrated that redundancy is

reduced when proceeding from peripheral to more central areas. The analysis in

these studies was performed on multiple neurons, but the recordings were done

non-simultaneously (single neurons) using a fixed set of stimuli.

Ultimately, one would like to test for statistical independence to naturalistic

stimuli by recording simultaneously from pairs (or groups) of neural responses.

Since such multi-cellular experiments are now possible, it is our hope that future

experimental work will offer more concrete answers to the efficient coding hypoth-

esis.

Testing the Hypotheses Through Modeling

The ideas of efficient representation have led many researchers to look for a means of

“deriving” a model of sensory processing purely from a statistical characterization

of natural signals. The properties of the resulting model are then compared to

properties of biological sensory neurons.

A wealth of studies have focused on redundancy reduction via reducing statisti-

cal dependencies or optimizing for sparseness. In these studies, the decomposition of

natural signals have typically been restricted to the linear domain. The goal then is

to decompose natural signals into linear components, that are optimal under some
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statistical criteria: decorrelation, independence, or sparseness (Figure 1.2). The

resulting linear projection functions are then compared qualitatively to receptive

fields or filters in vision and audition. Interestingly, these directions have been

fruitful in explaining basic properties of early sensory neurons.

A number of researchers have attempted to use PCA concepts to derive linear

receptive fields similar to those determined from physiological measurements [101,

127]. The principal components decomposition is, however, not unique. Therefore,

these early attempts required additional constraints, such as spatial locality and/or

symmetry, in order to achieve functions approximating cortical receptive fields.

More recently, ICA and sparseness optimization techniques have yielded linear

receptive fields localized in orientation, spatial frequency and spatial position [102,

22]. These are matched to qualities of receptive fields of simple cells in primary

visual cortex [156], first discovered in the pioneering studies of Hubel and Wiesel

[67]. ICA has been applied to numerous other findings in vision. ICA produces

complex cell properties, by extending the procedure to operate on subspaces [68].

Additionally, ICA on a temporal sequences of image patches has yielded spatio-

temporal receptive fields similar to primary visual cortex direction selective cells

[156]. ICA on natural sounds has typically yielded localized bandpass filters

qualitatively similar to the peripheral auditory system [21, 82].

Other approaches have applied linear techniques, assuming a linear system with

additive Gaussian white noise. Atick and colleagues have shown that eliminating

second order statistics (decorrelation) in natural scenes using this model, results in

receptive fields with spatial frequency tuning similar to the retina [7, 6]. Specifically,

for high intensities, the linear kernel is bandpass; but for low intensities, in which
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Figure 1.2. Restriction of decomposition of natural signals into linear compo-

nents. Find projection functions (question marks) that maximize some statistical

criteria: decorrelation, independence, or sparseness. These projection functions

are often compared to linear filters or receptive fields of neurons. For simplicity,

we have only drawn two such projection functions. X1 and X2 are input samples

from a signal. For natural images, many patches of image are taken as input sam-

ples. Here we have drawn just one patch in an image. Here the number of pixels

in a patch determines the number of input signals, the number of projection func-

tions, the number of pixels in each projection function, and the number of output

signals. More generally, the number of outputs may differ from the number of in-

puts. For natural sounds, patches are replaced by portions of the one dimensional

signal.

21



the noise dominates, the linear kernel is low-pass. Similar approaches have been

applied to explain temporal processing in the LGN [48].

Linear models provide an important starting point for linking between statis-

tical regularities in natural signals and neuronal processing. However, we suspect

that the statistical properties of natural signals are too complex to expect a linear

transformation to result in an independent set of components. For example, even

if one assumes that the objects that constitute a visual scene are drawn indepen-

dently, the most common combination rule for image formation is occlusion, which

is nonlinear. In addition, sensory neurons exhibit highly nonlinear behaviors (see

section below).

Some studies have addressed nonlinear processing at the level of the retina. Rud-

erman and Bialek [122] discussed division by local contrast as a means of achieving

maximal information transmission (optimizing for a marginal Gaussian distribu-

tion). This is optimal under the assumption that the neural response has a fixed

variance. This methodology does not introduce criteria of statistical independence.

Balboa et al. have explained nonlinearities in the retina using a different type of

statistical criteria: probability of presence of an occlusion border as a function of

contrast [14]. Their statistical hypothesis is not based on redundancy reduction,

but rather on the notion of extracting signals that are presumed relevant for an

organism.

Additional statistical frameworks have been incorporated in sensory neural mod-

eling of cortex. Statistical models that infer the probable causes of sensory input in

a hierarchical fashion have been related to the function of bottom-up and top-down

neural processing in cortex [41]. Rao and Ballard have demonstrated a number of
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physiological nonlinear behaviors in primary visual cortex using a predictive feed-

back model trained on natural images [112].

1.1.7 Open Questions in Theory Driven Models

A considerable amount of progress has been made in linking the efficient coding

hypothesis to neural processing, and this link has become more quantitative over

the past decade. Redundancy reduction using statistical independence criteria is

appealing because it doesn’t require additional constraints on the response values

of a neuron. In addition, it has been argued that most of the redundancy in

natural signals results from statistical dependencies rather than marginal statistics

[6]. But models thus far of statistical independence have been restricted to a linear

transformation. It would be interesting to check if these models in fact achieve

independence, and if not, to explore nonlinear extensions. This route may help in

understanding the nonlinear behaviors of sensory neurons described below.

1.2 Physiology Driven Sensory Neural Models

We first describe physiological data that have led to the development of nonlinear

neural models in retina, primary visual cortex, and the peripheral auditory system.

A more complete discussion about these neural systems (including linear receptive

field characterizations) may be found in [90, 166, 67, 93, 92, 107, 123].

Here we particularly pay attention to three types of nonlinear behaviors: re-

sponse saturation, suppression by non-optimal masks, and changes in tuning curve

shape for different input levels. Neural responses in the experiments are given by
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the mean firing rate.

1.2.1 Physiological Nonlinearities in Sensory Neurons

Response Saturation

In a linear system, scaling the input level should scale the responses by the same

amount. We denote a “response curve” as the mean firing rate to a given stimulus,

computed for different intensity levels of the input. Sensory neurons typically do

not obey this form of linearity: their response curves saturate for high intensities

of the input. This is evident in the retina for high illumination [134]; in primary

visual cortex for high contrast [86, 3, 99, 25, 30]; and in the basilar membrane

and auditory nerve for high sound pressure level [59, 63, 107, 123]. The level of

saturation is often higher for an optimal stimulus than for a non-optimal stimulus

[30, 70].

Response Suppression

In a linear system the response of two inputs can be predicted as the sum of the

responses of each individual input. But in sensory neurons response to a stimulus

can often be suppressed by a non-optimal mask, that sometimes by itself does not

elicit any response.

In a classical experiment in retinal ganglion cells, a test spot is flashed on a back-

ground of changing luminance. When background luminance is high, the response

to the test flash is decreased. In particular, the response curve as a function of log

luminance shifts to the right [134]. Suppressive phenomenon are also documented

as a function of contrast. To demonstrate this effect, an optimal bar is chosen inside
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the classical receptive field (i.e., the region that elicits an excitatory response). The

response to the optimal stimulus may be suppressed by a peripheral sine grating

outside the classical receptive field that by itself does not elicit a response [134]).

In primary visual cortex, suppression by a non-optimal mask is abundant. The

stimulus is usually chosen optimal for the cell and inside the classical receptive

field. A widely documented phenomenon is known as cross-orientation suppres-

sion. When a mask stimulus of non-optimal orientation (and typically chosen as

orthogonal) is superimposed on the optimal stimulus (forming a plaid), the response

of a neuron is suppressed [24, 30]. Responses of a neuron are also suppressed by

non-optimal frequencies [30]. In addition, suppression has been widely observed

when a mask stimulus is placed in a region outside the classical receptive field of

the neuron [23, 83, 81, 43, 27, 79, 34, 33]. Hubel and Wiesel already realized that

extending a stimulus beyond its receptive field along its iso-oriented access may

elicit suppression [67]. They thought this was a quality of a special class of neurons

which they termed “hypercomplex”. Today we attribute suppressive effects even

to so-called “simple cells”. When extending an optimal stimulus in its iso-oriented

axis this suppression is often denoted “end inhibition” and in the orthogonal axis

“side inhibition”. More commonly today, the suppressive regions outside the clas-

sical receptive field are simply termed “surround” (not to be confused with the

surround that is part of the classical receptive field and subtractive!). In contrast,

the classical receptive field is often denoted “center”. Suppression typically shifts

the contrast response curve to the right on a log contrast scale [24, 30, 34, 33].

To further characterize these non-linearities, many studies have tested for sup-

pression as a function of orientation, frequency, and spatial position of a mask.
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When the mask is placed in the center, cells exhibit relatively broad tuning with

respect to the orientation and frequency of the mask [24, 44]. Some studies have

found less suppression at the preferred orientation or frequency [18, 155]. However,

it is difficult to determine the extent of suppression for masks of similar orientations

or frequencies as the stimulus, unless it is verified that the mask does not introduce

excitation in addition to suppression [97]. One way to override this problem is to

use a null-position mask, that is a phase that does not elicit any response at all

in the cell. In any case, it is well established that most cells can be suppressed

by a mask of orthogonal orientation or frequency greater than one octave away

[30]. This suggests that suppression inside the classical receptive field results from

a neuronal pool tuned to many frequencies and orientations.

In the surround, numerous studies have demonstrated that most suppression is

exhibited when the mask is at the preferred orientation [83, 81, 43, 27, 79, 34, 33],

or at the preferred direction of drift [81], or at the preferred frequency [81, 94].

Facilitation has also been reported [87, 83, 61, 81, 139]. Some of these facilitative

effects might be explained by the use of masking stimuli that inadvertently excite

the receptive field of the neuron. Facilitative effects might also be explained by dis-

inhibition, in which a third cell inhibits a second cell, thus releasing its inhibition

of the recorded cell.

Auditory nerve fibers exhibit two tone suppression, i.e., suppression by a tone of

non-optimal frequency (that sometimes itself does not elicit a response). Amount

of suppression is dependent on the frequency of the mask in relation to the pre-

ferred frequency of the fiber, with stronger suppression for masks that are closer in

frequency [71, 63, 59]. Suppression typically shifts the rate level curves to the right
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on a log (decibel) scale.

Changes in Tuning Curve Shape

We denote “tuning curve shape” as the mean response rate of a neuron as a function

of some parameter of the stimulus (e.g., frequency, orientation, or radius length).

In a linear system, the tuning curve shape should not change when computed for

stimuli with a low intensity, versus for stimuli with a high intensity. High intensity

stimuli induce a larger response, but the shape of the curves should remain constant.

This property sometimes holds in sensory neurons. In primary visual cortex,

tuning curve shape as a function of orientation or spatial frequency (for a stimulus

placed inside the classical receptive field) remains roughly constant when computed

for different stimulus contrasts [130, 145].

But there are a number of examples in which this property is not retained.

One example was recently discovered in primary visual cortex [128, 76, 33]. The

experimental stimulus is a grating of optimal orientation and spatial frequency for

the cell. The mean response rate is measured as a function of stimulus radius at

different contrasts. The shape of the resulting radius tuning curves are different for

low contrasts and for high contrasts: for higher contrasts the response peaks at a

smaller radius [128, 76, 33].

Examples are also found already at the retinal level. The temporal transfer

function shape of retinal ganglion cells changes as a function of contrast, and shifts

towards higher temporal frequencies at high contrasts [135, 136, 137, 35].

Basilar membrane and auditory nerve fiber frequency tuning curve shape varies

for different sound pressure levels. This has been known for years: it is narrow for
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low sound pressure levels and wide for high sound pressure levels [120, 107].

1.2.2 Nonlinear Models Stemming from Physiological Observations

Many successful neural models do not disregard the idea of linear processing as a

first stage; rather they build nonlinear behaviors on top of the linear model.

To motivate the type of models that have evolved to explain sensory nonlinear-

ities, we first consider a model in which the mean firing rate is determined by the

projection of a stimulus onto a linear filter followed by a static nonlinearity (such

as a squaring rectification). Suppose we want to fit response curves as a function of

stimulus intensity. Then the response to a given stimulus according to this model is

proportional to its intensity (squared). This type of model could potentially explain

response saturation at high intensity levels. However, it could not explain different

saturation levels for optimal and non-optimal stimulus response curves (unless a

different static nonlinearity is used for the optimal and non-optimal stimulus); nor

could it explain rightward shifts of contrast response curves in the presence of an

added mask stimulus.

To characterize these type of behaviors, it is useful to consider the Naka-Rushton

(or Michaelis-Menton) equation [95, 19]. This has often been used to fit response

curves as a function of intensity both in vision and audition (e.g., [169, 125, 126, 3,

47, 131]):

R =
RmaxK

2

K2 + σ2
(1.11)

where K corresponds to illumination, contrast, or sound pressure level; Rmax is the

maximal attainable response to a stimulus; and σ2 is the semi-saturation constant
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(e.g., the input level at which R reaches half its maximum value). Here the power

of K is set to 2. More generally, the power can be adjusted, and determines the

slope of the response curve.

Figure 1.3 plots the Naka-Rushton equation for different values of Rmax and σ.

From inspection of the figure, it is clear that experimentally observed rightward

shifts of response curves (due to masks) can be fit using different values of σ; and

changes in saturation level (for an optimal versus a non-optimal stimulus) can be

fit with different values of Rmax. Thus, for a single neuron, the parameters of the

equation can be fit separately for each stimulus in the experiment. But rather than

fitting each response curve separately, we’d like one generic model that can explain

the responses of a neuron to different experimental stimuli.

The Naka-Rushton equation can be modified to potentially explain the right-

ward shift of response curves observed physiologically for different masks, by in-

corporating a gain signal (dependent on the intensity of the input signal) in the

denominator. Thus, for example, a mask that alone elicits no response, may still

control the gain of the linear front end. The gain acts like σ, to shift the response

curve to the right. Incorporation of gain into the Naka-Rushton equation follows

the discussion in Shapley and Enroth-Cugell on the Retina [134]. They formulated

a gain signal that depends on the stimulus illumination over time G = G(t,K(t)),

and that modifies σ directly [134]. Victor [158] proposed a more specific contrast

gain control model of the retina in the temporal domain, in which the gain signal

consists of time-delayed copies of the linear receptive field kernel.

A unifying theme in many successful neural models of sensory nonlinearities is

gain control (e.g., [113, 134, 64, 84]). In general, these models assume that the linear
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Figure 1.3. Behavior of Naka-Rushton equation. Left, The Naka-Rushton equa-

tion for a constant Rmax = 1 and variable σ. Note that higher values of σ shift

the response curve to the right on a log axis. Right, The Naka-Rushton equation

for a constant σ = .1 and variable Rmax. Note that lower vales of Rmax reduce

the saturation level of the response curve.
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front end (often followed by a squaring or some other form of static nonlinearity)

is modulated by a gain function dependent on the stimuli. Details of the model

have varied, depending on the specific processing level and modality, and detail of

implementation.

Nonlinearities in primary visual cortex have been modeled using a specific in-

stantiation of a gain control mechanism, which Heeger denoted “divisive normaliza-

tion” [64, 65]. In addition to describing a specific gain function (and accounting for

rightward shifts), the model also accounts for different saturation levels for optimal

and non-optimal stimuli. Ideas about gain control in primary visual cortex also

originated from the work of [99, 100, 2, 24].

In divisive normalization, the gain is assumed to be set by a population of

neurons with different tuning properties:

Ri =
RmaxL

2
i

∑

j L2
j + σ2

(1.12)

where Li is the linear response of filter i, and Lj are the responses of a population of

filters (including filter i). The response of each filter contributes the same weighting

to the gain in the expression,
∑

j L2
j . It is also assumed that the filters in the

population tile the full orientation and spatial frequency space.

A mask stimulus will increase
∑

j L2
j , and cause a rightward shift of the contrast

response curve. Additionally, a non-optimal stimulus will reduce L2
i in the numera-

tor without changing the gain in the denominator (since the filters in the population

tile the full space, and their weighting is equal). As a result, the saturation level

for the non-optimal stimulus will be reduced.

One of the original motivations for the divisive normalization model was its
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preservation of tuning curve shape as a function of contrast, even in the face of

saturation. This is matched to the observation that inside the classical receptive

field orientation tuning curves stay roughly the same shape for different contrasts.

We consider this model for computing an orientation tuning curve at different

contrasts. The argument is essentially the same as above, for saturation level. The

gain signal does not depend on orientation (due to the tiling and equal weighting);

it depends only on contrast. So we write the divisive equation as proportional to

one part that only depends on the linear response of the chosen filter to a particular

orientation, and another part that only depends on contrast:

Ri = |Li(φ)|Rmax
K2

K2 + σ2
(1.13)

where K represents contrast, and φ an orientation. Thus, the shape of the orienta-

tion tuning curve does not change as a function of contrast.

The divisive normalization model has successfully accounted for nonlinearities

inside the classical receptive field [64, 30]. However, the model cannot explain

some data in the surround. We’ve seen that physiological tuning curve shapes

are not always preserved. In addition, the amount of rightward shift for masks

in the surround is dependent on properties of the mask (such as orientation). To

account for these data, we propose that a less constrained model is needed, in

which the divisive weighting of each filter response in the denominator need not

be equal. Cavanaugh et al. have also suggested this to explain their physiological

data collected with stimuli outside the classical receptive field [34, 33].

Gain control has also been central in explaining peripheral auditory processing

(e.g., [84, 59, 119]). Phenomenological auditory models have captured nonlin-
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earities using a parametric set of linear filters (corresponding to neurons), whose

parameters, such as bandwidth of filter, are modulated by the gain of the same

filter over time as well as other filters that respond to the stimulus [84, 119]. A

recent model captures frequency interactions, in a fashion that nearby frequency

bands reduce the gain more than far away frequency bands [119]. This may be

viewed as a weighted gain control model.

The physiological mechanisms underlying gain control is an active area of re-

search, and potential candidates include biochemistry (e.g., in the outer hair cells

[59, 173] or photoreceptors); spike generation; feedforward synaptic depression (e.g.,

[1]); and shunting inhibition generated by other neurons [29, 30].

1.2.3 Open Questions in Physiology Driven Models

Models stemming from physiology have made a large stride in our understanding

of sensory nonlinearities. However, the choice of how to set the parameters (or

weights) of the gain of different filters is often designed to fit the data. In primary

visual cortex, the choice of equal weighting can explain data inside the classical

receptive field, but cannot explain recent data outside the classical receptive field.

In addition, the purpose of these neural nonlinearities are still not well under-

stood. Gain control is often explained as a mechanism for neurons to deal with

their limited dynamic range. However, less clear is why this would occur more

along specific dimensions (orientation, frequency, and so on) as seen in the periph-

eral auditory system and in primary visual cortex.
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1.3 Spike-triggered (White Noise) Characterizations

White noise analysis has emerged as a powerful computational technique for char-

acterizing the response properties of spiking neurons. Stimuli are drawn randomly

from an ensemble and presented to a neuron in rapid succession, and one examines

the subset that elicit action potentials. This “spike-triggered” stimulus ensemble

provides information about the neuron’s response characteristics. The stimuli used

in these analyses are (as expected) typically white. However, extensions of this

analysis have been applied to a reduced linear subspace of input stimuli [117], and

to naturalistic stimuli [116, 150].

In the most widely used form of this analysis, one estimates a linear receptive

field from the spike-triggered average (STA); that is, the mean stimulus that elicited

a spike. In essence, this is similar to how Hubel and Wiesel characterized linear

receptive fields in V1. But rather than hand-selecting the stimuli, these techniques

explore a wider stimulus space; they are not prone to problems of neural adaptation

to the stimulus; and they can be formulated quantitatively, assuming an underlying

neural model.

DeBoer first used white noise analysis in the auditory domain to study the

temporal structure of filters in the auditory nerve [45]. Jones and Palmer used

white noise to recover spatial receptive fields in area V1 in the cat [74]. DeAngelis

et al. recovered spatio-temporal receptive fields in V1 [43].

We illustrate the concept of white noise analysis in Figure 1.4. For simplicity,

we assume that an experimenter wants to study the characteristics of a neuron as

a function of time only. At each time frame, a full-field stimulus is presented to
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a neuron. Its intensity is chosen from a Gaussian white noise distribution. The

spike-triggered matrix is constructed as follows: each time the neuron spikes, the

samples of stimuli preceding a spike (in a certain time window) are added as a

new row to the matrix. Thus, the dimensions of the spike-triggered matrix are the

length of the time window by the number of stimuli eliciting spikes. The average

of the columns of this matrix results in the STA; this is a temporal filter, with

dimensions equal to the length of the time window. More generally, to study the

full spatial temporal representation in neurons, at each time frame, length by width

spatial samples are chosen randomly, and the STA results in a full spatio-temporal

filter.

Spike-triggered averaging should be understood in the context of an underlying

neural model. Many models assume that spikes are generated using a Poisson

process, and that the mean firing rate is given by a linear projection onto a kernel

followed by a static nonlinearity:

P (spike|~s) = g(b ~K~Sc) (1.14)

with g a monotonic point nonlinearity, and ~K a linear kernel. It has been shown that

under these assumptions, the STA provides an unbiased estimate of the linear kernel

(a proof is provided in [36], and see also chapter 4). In addition, the monotonic

point nonlinearity can be retrieved [36, 98]. Under this model, computing the

STA for any stimulus intensity should retrieve the same kernel. But there are

physiological examples in which the STA shape changes as a function of the stimulus

intensity (e.g., [35, 128]). This suggests that a linear representation followed by

a point nonlinearity is not sufficient, and brings up the need to explore nonlinear
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neural representations using white noise analysis. In particular, it is interesting to

ask whether a neural model with gain control could produce the type of biases in

the STA observed physiologically.

It is also useful to analyze other statistics, in addition to the average. Some

authors have estimated the covariance matrix associated with the spike-triggered

stimulus ensemble. An eigenvector analysis of this matrix can determine the stim-

ulus directions that account for most of the variance. Thus, this method describes

a neural characterization that is not given by a single linear receptive field, but

rather by some combination of filters or stimulus axes. These ideas (known as

spike-triggered covariance, or STC) were first developed by de Ruyter and Bialek

[42].

An example of this technique is in the characterization of the stimulus axes that

make up a complex cell in V1 [152]. Complex cells have a spike-triggered average

that is roughly zero. Thus, the STA is uninformative. However, STC analysis

reveals two filters that are 90 degrees out of phase. Both filters have an excitatory

effect on the neural response; but the specific function that combines the two filters

into a neural response is not known from the analysis. In this simple case, it is easy

to “guess” (and then demonstrate) how they are combined, since the sum of the

squared responses of the filters produces a phase-invariant response, as expected

from complex cells. Spike-triggered covariance might offer a potential path for

expressing neural nonlinearities as combinations of several filters. But it has not

been demonstrated if and how this may be connected with the type of nonlinearities

typically observed in sensory neurons.

Another possibility for characterizing neural nonlinearities may be through the
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Wiener/Volterra expansion. These constitute an approximation of a function (in

this case, the neural response) as a sum of a power series [168, 160, 115]. Volterra

generalized the Taylor series into an expansion, where the inputs and outputs are

functionals (of time, space, etc.). As a result, each term in the expansion consists

of a kernel (or filter), and kernels of higher power are denoted higher order kernels.

The Wiener expansion is a reformulation of Volterra, with kernels that are easier

to compute. The first order Wiener kernel is the cross correlation of the stimulus

with the spike train; the second order kernel is the cross correlation of the stimulus

to the second power with the spike train; and so on.

If we (or a neuron) could calculate an infinite order of Wiener kernels, then in

principle any (reasonably smooth) nonlinear function could be estimated. However,

large amounts of data are needed to measure high order Wiener kernels (e.g., beyond

second or third order). Thus, Wiener analysis is only useful if the first few Wiener

kernels do a good job at approximating the nonlinearities observed in neurons. But

the type of divisive gain model discussed earlier is not well described by a low-order

power series expansion (see also discussion in [115]). Marmarelis has suggested ways

of describing a Wiener expansion with feedback, which could potentially explain

changes in the STA as a function of stimulus level [89]. In this approach, one

would need to determine the type of feedback model that is consistent with the

physiological data.

The spike-triggered covariance methodology should not be confused with a

second-order Wiener analysis. In such a Wiener analysis, the neural response is

modeled using a polynomial series truncated to second order. In our approach, STC

is used to estimate a subspace that contains the stimulus attributes that govern the
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neural response, but the actual response need not be polynomial. Specifically, in

chapter 4 we assume that a divisive gain control model governs the response of the

neuron.

1.3.1 Open Questions in Spike-triggered (White Noise) Characteriza-

tions

White noise analysis has been fruitful in characterizing response properties of sen-

sory neurons. But these techniques have not been used to characterize the type of

nonlinear gain control behaviors observed physiologically.

1.4 The Current Work

In the first part of the thesis (chapters 2 and 3), we suggest that sensory nonlin-

earities arise because sensory systems are designed to efficiently represent environ-

mental information. We describe a form of nonlinear decomposition (specifically,

divisive gain control) that is well-suited for efficient encoding of natural signals.

We show that this decomposition, with parameters optimized for the statistics of a

generic ensemble of natural images can account for some nonlinear response prop-

erties of ”typical” neurons in area V1 both inside and outside the classical receptive

field. We also show few examples in which parameters optimized for an ensemble

of natural sounds can account for nonlinearities observed in auditory nerve fibers.

In the second part of the thesis (chapter 4), we develop an experimental method-

ology for characterizing this class of nonlinear sensory models. The characterization

is based on a white noise analysis, in which a set of random stimuli are presented
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to a neuron and the spike-triggered ensemble (specifically, the spike-triggered co-

variance) is analyzed. We demonstrate the technique in simulation and on retinal

ganglion cell data. We believe this methodology will also offer more general appli-

cability for exploring nonlinearities in other neural regions and modalities.
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Figure 1.4. Illustration of spike-triggered analysis. Example input stimuli are

temporal white noise. The spike-triggered matrix is constructed, by taking for

each row the sequence of stimuli in a certain time window that preceded a spike.
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CHAPTER 2

NATURAL SIGNAL STATISTICS

What kind of representations do sensory neurons form and why? In chapters

2 and 3, we suggest that a specific form of neural representation arises because

sensory systems are designed to efficiently represent environmental information.

In this chapter we describe a form of statistical regularity that is prevalent in

typical natural signals (both images and sounds). The statistical observations set

up the basis for a phenomenological neural model. The model is then tested against

physiological data in Chapter 3.

Understanding the statistical properties of natural signals is of multi-disciplinary

interest. From the engineering perspective, this can lead to more effective methods

for compression, noise removal, and enhancement, of digital images and sounds.

From the point of view of Computational Neuroscience, understanding the statistics

of natural signals may provide a window into understanding the sensory brain. A

longstanding hypothesis states that sensory systems are matched to the statistical

properties of the signals to which they are exposed (e.g., [11, 16]). In particular,

Barlow has proposed that the role of early sensory systems is to remove redundancy
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in the sensory input, by generating a set of neural responses that are statistically

independent.

Here we explore the statistical properties of images and sounds pre-processed

with a bank of linear filters. The responses of such filters to typical natural signals

exhibit a striking form of statistical dependency, in which the width of distribution

of one filter grows with the response amplitude of another filter. We demonstrate

this dependency empirically through standard filters that have been commonly used

to model sensory receptive fields. We then show that this dependency is also present

when using a set of linear filters that are optimized for statistical independence in

the linear domain (i.e., ICA). We demonstrate empirically that the dependencies

may be substantially reduced using an operation known as divisive normalization,

in which the response of each filter is divided by a weighted sum of the squared

responses of other filters.

2.1 Methods

We choose a set of representative linear filters that are qualitatively similar to neural

filters derived physiologically.

The visual filters are computed using the steerable pyramid multi-scale oriented

decomposition [142]. Multi-scale linear transforms have become popular for image

representation. The steerable pyramid is a multi-scale representation that also in-

cludes representation of orientation. It is both rotation and translation invariant.

The steerable pyramid is constructed by recursively splitting an image into sub-

bands with directional derivative operators (4 orientations chosen here). Since the

42



basis functions are localized in spatial position, orientation, and spatial frequency

(scale), they qualitatively resemble simple cell receptive fields in area V1. Figure 2.1

(top) illustrates example visual filters. The filters are at the second recursion level

of the pyramid; they extend roughly 9 pixels along the aligned axis and 13 pixels

along the non-aligned axis.

The auditory filters are gammatone, which have been commonly used to model

the peripheral auditory system [73]. They are derived from Slaney’s Matlab Au-

ditory toolbox [146]. A gammatone filter is the product of a rising polynomial, a

decaying exponential function, and a cosine wave. Figure 2.1 (bottom) illustrates

example auditory filters in the frequency domain. Also shown is the time domain

representation of one of the filters with center frequency of 2000Hz.

Natural images are obtained from a database of standard images used in im-

age compression benchmarks (known as: boats, goldhill, einstein, baboon, etc);

and from the Van Hateren database of calibrated images of outdoor scenes [156].

The images from the standard database are squared to achieve a rough calibration;

typical digital images are corrected for a power-law monitor nonlinearity with an ex-

ponent of approximately 2. Most of the standard images are 512 by 512 pixels, and

the Van Hateren images are cropped to 1024 by 1024 pixels. Natural sounds (speech

and animal sounds) are obtained from commercial compact disks and converted to

sampling frequency of 22050 Hz. The sounds are of variable length, between 6 and

15 seconds.

In the chapter we go through example image and sound statistics. Unless other-

wise noted, image data are collected over the Einstein image and two Van Hateren

outdoor tree scenes (altogether 2,162,688 pixels), and sound data combines two
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speech sequences (altogether approximately 30 seconds, or 646,580 samples). We

also show additional examples of statistics for single images and sounds.

2.2 Natural Signal Statistics Through One Linear Filter

We begin by asking what others have asked: what do responses to typical natural

stimuli look like through just one linear filter? What is their distribution? This has

been documented in both vision [51] and in audition [9]. We observe responses of a

natural sound and natural image through their respective linear filters (figure 2.2).

The response of the filter (L) to the image is computed by taking the inner product

of the image with the filter at each possible location (i.e., a convolution). We thus

assume spatial stationarity. The instantaneous response of the auditory filter is

similarly computed by taking the inner product of the sound with the filter at each

possible time.

Note in the filter response to the image that there are many gray regions corre-

sponding to zero response, interspersed with regions of high positive (or negative)

activity. In particular, the distribution of responses of the image through the linear

filter is superGaussian (e.g., peaky with heavy tails) as demonstrated in figure 2.3.

This reflects the fact that the filter is responding to some prominent “features” in

the image, but that in most locations it does not respond very much at all. In

natural sounds, we obtain an analogous trend, and the distribution of responses

are also superGaussian. This has been demonstrated for numerous other typical

images and sounds.
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Figure 2.1. Representative linear visual and auditory filters. Top, Representa-

tive linear filters for modeling simple cell receptive fields in area V1. Filters are

computed using a steerable pyramid [142] (only one scale plotted here). Bottom,

Representative gammatone filters for modeling peripheral auditory processing in

the frequency domain [146, 73]. The width of the filters is roughly equal on a

logarithmic scale. We’ve also plotted the time representation of one of the filters.
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Figure 2.2. Responses of a linear filter to example image and sound. Top,

Responses of a linear filter to example image. The response of the filter (L) to

the image is computed by taking the inner product of the image with the filter at

each possible location. We thus assume spatial stationarity. Bottom, Responses

of a linear filter to example speech with sample frequency 22050 Hz (only 20

milliseconds of sound shown here). The instantaneous response of the filter (L) is

computed by taking the inner product of the sound with the filter at each possible

time.
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Figure 2.3. Distribution of responses of linear filter to example image and sound.

Top, Solid line indicates distribution of the response of a linear filter to an image.

Dashed line indicates Gaussian with same variance. Bottom, Solid line indicates

the distribution of the response of a linear filter to a speech sound. Dashed line

indicates Gaussian with same variance.
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2.3 Statistical Dependency Through a Pair of Linear Filters

Following the independence hypothesis, a natural question to ask is whether re-

sponses of typical natural signals through a set of linear sensory filters are sta-

tistically independent. Figure 2.4 (top) shows responses to an image of a pair of

oriented visual filters. The second filter is oriented 45 degrees away, and shifted

up by 4 pixels relative to the first filter. We now compute the response of each

of the filters to the image; we denote the responses through each filter L1 and L2

respectively. This can be thought of as dragging the image across both the filters

(such that they are displaced by 4 pixels) and computing each respective response.

This means that corresponding point in L1 and L2 are computed with the filters

displaced by 4 pixels upon the image. Note that both filters are likely to respond

simultaneously to prominent features in the image, such as around the eyes. The

arrow indicates an example location corresponding to a high contrast edge, in which

both filters are responding strongly (the first positive, and the second negative).

These features are interspersed with regions in which both filters respond with very

low activity.

Similarly, figure 2.4 (bottom) shows instantaneous responses of a pair of band-

pass filters typical of the peripheral auditory system. The filters have a temporal

frequency of 2000Hz and 2840Hz respectively, and their onset is at the same point

in time. As in the visual case, we observe the co-occurrence of large amplitude

features separated by low amplitude intervals.

These examples suggest that responses of typical sensory filters to natural signals

are not statistically independent. We examine this dependency more explicitly by
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Figure 2.4. Responses of pairs of linear filters to example image and sound. Top,

A natural image convolved with two filters selective for the same spatial frequency,

but different orientation and spatial position; the lower filter is oriented 45 degrees

away, and shifted up by 4 pixels. At a given location, when the first filter responds

weakly (gray areas) the second filter will also tend to respond weakly. But when

the first filter responds strongly (black or white), the second filter is more likely to

respond strongly. The arrows indicate a location corresponding to a high contrast

edge, in which both filters are responding strongly (the first positive, and the

second negative). Bottom, A natural sound convolved with two filters tuned for

different temporal frequencies (2000 and 2840 Hz center frequencies). The arrows

indicate a time at which both filters are responding strongly. Note also that when

the first filter responds weakly, the second also tends to respond weakly.
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constructing a conditional histogram (figure 2.5). As before, we examine a natural

signal through two linear filters with responses L1 and L2 respectively. If L1 and

L2 are statistically independent, then knowing L2 should provide no information

about the distribution of L1. Thus we can ask, when responses L2 are very low (a

bin centered at 0.15) what does the distribution of L1 look like? We obtain a one

dimensional conditional histogram, which is quite narrow. But when responses L2

are quite high (a bin centered at approximately 0.85) what does the distribution

of L1 look like? Now we obtain a different one dimensional conditional histogram,

which is quite wide. The conditional histograms are different, indicating that L1

and L2 are not statistically independent.

We can put together a more detailed image of the dependency by plotting a

two dimensional conditional histogram, where the one dimensional conditional his-

tograms represent vertical slices. The dependency has an interesting shape, it

looks somewhat like a bowtie. In particular, the width of distribution of responses

of one filter increases for larger response values (both positive and negative) of

the other filter. Note that though responses are not independent, they are nearly

decorrelated in the above examples: the expected value of L2 given the response of

L1 is approximately zero. Thus correlation should be distinguished from the type

of dependency we are describing, which depends on the width of distribution.

This form of dependency appears to be ubiquitous - it is evident in a wide variety

of typical natural images and sounds (figure 2.6). The strength of the dependency

may vary for individual signals. This dependency is a property of natural signals,

and is not due purely to properties of the particular set of linear filters we chose. For

example, no such dependency is observed when the input consists of white noise.
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Figure 2.5. Joint statistics of typical natural images and sounds as seen through

two linear filters. Top, a, One-dimensional histograms of the response of a vertical

filter (L2), conditioned on two different values of the response of a diagonal spa-

tially shifted filter (L1). Pairs of responses are gathered over all image positions.

Differing widths of these histograms clearly indicate that filter responses are not

statistically independent. b, Full two-dimensional conditional histogram. Pixel

intensity is proportional to the bin counts, except that each column is indepen-

dently re-scaled to fill the range of intensities. Note that L1 and L2 are roughly

decorrelated but not statistically independent. Bottom, Same for speech and two

auditory filters with center frequencies 2000 Hz and 2840 Hz respectively. Axes of

the joint conditional histograms are normalized between -1 and 1.
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Figure 2.6. Joint statistics of different images and sounds through two linear

filters. Although the strength of the dependency may vary, many natural signals

exhibit a bowtie dependency, but white noise is roughly independent. Top, Two

dimensional joint conditional histogram for different images and white noise. The

images are (left to right, and top to bottom): baboon, boats, flowers, and bridge

from the standard image database; Van Hateren outdoor scene of grass with ani-

mals; and white noise. The ordinate response is always computed with a vertical

filter, and the abscissa response is computed with a diagonal filter (shifted 4 pix-

els). Bottom, Two dimensional joint conditional histogram for different sounds

and white noise. The sounds are (left to right, and top to bottom): drums; cat;

nocturnal nature; birds; monkey; and white noise. The ordinate response is always

computed with a filter with center frequency 2000 Hz, and the abscissa response

is computed with a filter with center frequency 2840 Hz.
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Figure 2.7. Set of filters obtained from Bell and Sejnowski’s ICA procedure

[20, 21, 22]. Top, ICA analysis on image with 12 by 12 patches. This yields

144 basis functions (only 64 shown here). The starting positions of the patches

(20,000 altogether) were randomly selected. Bottom, ICA analysis on speech with

100-sample segments. This yields 100 basis functions (only 64 shown here). The

starting times of the segments (20,000 altogether) were randomly selected. Speech

signals are at 8KHz sampling frequency, to allow for a 12.5 millisecond time cov-

erage.
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Figure 2.8. Dependency for pair of filters retrieved from ICA analysis. The joint

conditional histograms of the filter responses follows the familiar bowtie shape.

Top, A pair of linear filters retrieved from ICA analysis on image. ICA analysis was

performed on 12 by 12 image patches. The starting positions of the patches (20,000

altogether) were randomly selected. Bottom, A pair of linear filters retrieved

from ICA analysis on a speech signal. ICA analysis was performed on 100-sample

segments of the signal. The starting times of the segments (20,000 altogether)

were randomly selected. Speech signals are at 8KHz sampling frequency, to allow

for a 12.5 millisecond time coverage.
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There is still a concern that the observed dependencies might be a result of

the particular linear filters we chose. Here we verify that this form of dependency

occurs even when the filters are chosen from a set that is optimized for statisti-

cal independence in the linear domain. We compute an independent components

analysis (ICA) on the example images and sounds, using a procedure developed by

Bell and Sejnowski [20, 22]. Figure 2.7 depicts the linear receptive fields obtained

from the images and sounds respectively. Consistent with what is reported in the

literature, image basis functions are localized in orientation, spatial position, and

spatial frequency [22, 103]; and speech basis functions are localized in phase and

temporal frequency, although some are less localized and several have a bimodal

shape (see [82] for a more detailed discussion on ICA for classes of natural sounds).

Figure 2.8 shows the conditional histogram constructed from the responses of two

ICA filters to the same signals: responses are not statistically independent, and a

similar bowtie dependency is observed.

2.4 Modeling the Statistical Dependency

The strength of the dependency varies according to the specific pair of filters chosen

(figure 2.9). For the visual filters, the strength of the dependency can vary as a

function of relative orientation, spatial position and spatial frequency of the filter

pair. For the auditory filters, the dependency is a function of the relative temporal

frequency, as well as the relative timing of the two filters.

Figure 2.10 illustrates additional examples of dependencies for different filter

pairs and different signals. For visual filters, a stronger dependency is often ob-
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4020Hz, 100 samples delay 1660Hz, 100 samples delay 933Hz, 100 samples delay

4 pixels up 8 pixels up

orthogonal orthogonal, 8 pixels up half the spatial frequency
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Figure 2.9. Image and sound statistics for different filter pairs. Top, two di-

mensional conditional histograms for different pairs of visual filters. The ordinate

response is always computed with a vertical filter, and the abscissa response is com-

puted with an aligned iso-orientation filter (4 pixels up); aligned iso-orientation

filter (8 pixels up); non-aligned iso-orientation filter (4 pixels right); orthogonal

filter (same position), orthogonal filter (8 pixels up); and iso-orientation filter at

half the spatial frequency (same position). Bottom, two dimensional conditional

histograms for different pairs of auditory filters. Temporal frequency of ordinate

filter is 2000 Hz. Temporal frequency of abscissa filter are 2000 Hz (shifted 9 msec

in time); 2000 Hz (shifted 13.5 msec in time), 2380 Hz (shifted 4.5 msec in time);

4020 Hz (shifted 4.5 msec in time); 1660 Hz (shifted 4.5 msec in time); and 933

Hz (shifted 4.5 msec in time);
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Figure 2.10. Image and sound statistics for different signals and filter pairs. Top,

Ordinate response is always computed with a vertical filter, and the abscissa re-

sponse is computed with an aligned iso-orientation filter (6 pixels up); non-aligned

iso-orientation filter (6 pixels right); orthogonal filter (6 pixels up), orthogonal

filter (6 pixels right). a, Van Hateren outdoor scene of straw. b, Baboon image.

c, Van Hateren outdoor scene of grass and animals. Bottom, Temporal frequency

of ordinate filter is 2000 Hz, and of abscissa filter is 2000 Hz (shifted 9 msec); 2000

Hz (shifted 22.5 msec), 4020 Hz (shifted 9 msec); 4020 Hz (shifted 22.5 msec). a,

Jungle sounds. b, Chimps. c, Puppies.
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served for a parallel aligned filter than for a parallel non-aligned filter. Addition-

ally, stronger dependency is typically observed for parallel filters than for orthogonal

filters. For auditory filters, a very striking dependency is typically seen when the

response of a given filter is time-shifted. The dependency is often reduced for filters

that are far away in temporal frequency.

More generally, the dependency appears to decrease for pairs that differ markedly

in one or more attributes. However, the dependency may be present even if the two

filters are non overlapping. In some cases, when there is no dependency, the joint

conditional histogram becomes horizontally flat (obtaining a similar shape to the

white noise examples in figure 2.6). There are also cases in which for low response

values, a rather flat histogram is observed (signifying relative independence), but

for higher response values (both positive and negative) the bowtie shape appears

(signifying dependence). These cases can be observed, for example, in the jungle

sounds in figure 2.10.

We would like to formalize a model of this dependency. Neurons undergo rec-

tification, so rather than looking at the width of distribution dependency between

the linear responses of two filters, we can look at standard deviation (for abso-

lute value of responses), variance (for squared value of responses), and so on. The

specific choice of power will not alter the statistical observations very much (see

discussion). We choose to capture this fundamental dependency using variance.

The choice of variance is rather ad-hoc, and based on the goal we have in mind of

modeling neural data; responses of neurons in area V1 and auditory nerve typically

undergo a point nonlinearity that is close to squaring [65, 124].

We formalize the conditional relationship between a given pair of linear filter
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responses {L1, L2} with a model in which the variance of L2 is proportional to

the squared value of L1 plus an additive constant (e.g., [28]). For a pair of filters

with strongly dependent responses, this proportion is larger; for a pair whose re-

sponses are independent, this proportion is zero and variance reduces to an additive

constant. Specifically, the variance of L1 given L2 is computed as:

var(L1|L2) = wL2
2 + σ2 (2.1)

where L1 and L2 are the linear responses of the two filters; the connection weight

between the two filters is given by w; and σ2 is an additive constant.

But we expect L1 to depend not only on L2, but also on other filter responses

within a neighborhood. Remember the dependencies for different pairs of filters

illustrated in figure 2.9. A visual filter response might be dependent on other visual

filter responses at different orientations, spatial positions, and spatial frequencies.

Similarly, an auditory filter response might depend on other filter responses at

different temporal frequencies, and on the responses of those filters (including its

own response) over time. Incorporating a neighborhood of filters is more realistic

for modeling a neural system, and computationally we expect it to provide a more

powerful estimate of the variance.

Thus we form a generalization of the conditional variance model. The response

of one filter (Li) is proportional to a weighted sum of the squared responses over

the neighborhood and an additive constant. We model the variance dependency

of the response of filter Li given the responses of a population of filters Lj in a

neighborhood Ni:

var(Li|{Lj, j ∈ Ni}) =
∑

j

wjiL
2
j + σ2 (2.2)
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The connection weight between the chosen filter i and filter j is given by wji.

The constant σ̂ can be thought of as the residual variance not predicted from the

neighbors. In choosing a particular neighborhood, we make a Markov assumption

that the conditional probability density of a filter response given the neighborhood

is independent of everything outside the neighborhood. In practice, we choose the

neighborhoods to span a reasonable range of relevant parameters, such as orienta-

tion, frequency, spatial position, and so on. In a real system, σ̂ could also result

from internal or external noise, which we do not account for here. Also note that

the value of the σ̂ depends on the somewhat arbitrary scaling of the input signal.

That is, doubling the input strength would lead to a doubling of σ̂.

We will later go back and check empirically that the model provides a good

description of the dependency. We first explain how to optimize the parameters,

and achieve more independent responses.

2.5 Reducing the Statistical Dependency: Divisive normal-

ization

If this model describes the dependency between filter responses, how can these

responses be made more independent? First, we note that this type of dependency

cannot be eliminated by performing another linear operation. A linear operation

can only rotate or scale the axes. Given that the dependency governs the variance,

the natural solution is to divide the squared response of each filter by its variance

(as predicted from the linear combination of its neighbors), to obtain something
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more univariate:

R2
i =

L2
i

∑

j wjiL2
j + σ2

(2.3)

We denote this operation divisive normalization (following the terminology in Heeger

et al. [64]).

We would like to choose the parameters of the model (the weights wji, and

the constant σ) to optimize the independence of the normalized response to an

ensemble of natural images and sounds. Such an optimization is computationally

prohibitive. In order to reduce the complexity of the problem, we assume an un-

derlying conditional distribution; we assume this form is Gaussian with zero mean:

P
(

Li

∣

∣

∣ {Lj, j ∈ Ni}
)

= (2.4)

1
√

2π
(

∑

j wjiL2
j + σ2

)

exp





−L2
i

2
(

∑

j wjiL2
j + σ2

)





We will later also need to go back and check the Gaussian assumption. If the

resulting divisively normalized response is close to Gaussian, this will mean that

the assumption was reasonable. This reasoning is similar to ICA procedures; there

an underlying prior is assumed on the marginal distributions, and following the

procedure one can check if in fact the ICA component distributions match the

assumption.

We then maximize the product of such distributions over the image/sound data

at all positions/times x.

ŵji, σ̂ = arg max
wji,σ

∏

x

P
(

Li(x)
∣

∣

∣{Lj(x), j ∈ Ni}
)

(2.5)
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We solve for the optimal parameters numerically, using gradient descent. Specif-

ically, we use matlab’s fminu function and minimize the negative of equation 2.5

(by taking the derivative of the log of the expression). The weights and σ are

initialized to uniform values. The weights are constrained to be positive, to avoid

instability in optimization convergence and in simulations of chapter 3. We force

the weights positive by squaring them within the optimization function. In chapter

3 we will discuss in detail how the resulting optimal model behaves as a function of

particular parameters, such as orientation, frequency, spatial position, and so on.

For now we continue to focus on the statistical story.

2.6 Testing the Model Empirically

First, we optimize the weights and the constant σ for just one linear filter, over the

natural images or sounds respectively. According to the model, the weighted sum

of squared responses of neighboring filters (with the optimal parameters) should

be a good predictor of the conditional variance of the response of the filter (equa-

tion 2.2). For readability, we continue to plot the histograms in the linear (rather

than the squared) domain. Then the square root of the weighted sum of squared

responses should be a good predictor of the conditional standard deviation of the

response of the filter. Figure 2.11 shows the original filter response L1, conditioned

on the square root of the weighted sum of squared neighboring responses R1 (fig-

ure 2.11). Since R1 has only positive values (but L1 is both positive and negative)

we observe half a bowtie. Also shown is a line indicating the conditional standard

deviation of L1. If the model is correct, this should be roughly a straight unit slope
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Figure 2.11. Two dimensional joint conditional histogram of filter response versus

its model prediction. Top, Two dimensional joint conditional histogram of L1

versus the square root of the variance prediction (labeled “prediction” in graphs).

Variance prediction is given by the the sum of squares of weighted neighboring

responses, with the optimal parameters retrieved from the Maximum Likelihood

procedure. Line indicates one time the conditional standard deviation, and is

roughly proportional to the value of the abscissa. L1 is computed for a vertical

filter. The pool of filters in the optimization procedure consists of 4 orientations

and 24 spatial positions (displaced vertically, horizontally, and diagonally) for each

orientation, and 2 spatial frequencies. Bottom, Same with L1 computed for speech

through auditory filter with center frequency 2000 Hz. The pool of filters in the

optimization procedure consists of 15 temporal frequencies, and 3 time shifts.
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line, except perhaps in the low intensity regime, in which σ might dominate. In

practice, σ is very small and cannot be distinguished in the plots. The conditional

standard deviation is close to a unit slope line, as expected.

Now our goal is to apply this procedure to each of the two filters that exhib-

ited the variance dependency (Figure 2.5), and then demonstrate empirically that

the resulting dependency (between the two normalized filter responses) is reduced.

That is, for each of the two filters, the variance is estimated from the sum of

weighted squared responses of its neighbors. The squared response of the filter is

then divided by the variance estimate (equation 2.3). When we actually do this

for each of the linear filters in figure 2.5, we observe that responses to the nat-

ural signals are more independent. We plot a joint conditional histogram of the

two normalized filter responses, Ri. The resulting joint conditional histogram sig-

nifies that responses are more independent: vertical cross sections have a similar

width of distribution. Also plotted is a line indicating one times the conditional

standard deviation; following divisive normalization, the conditional standard devi-

ation is roughly constant. Figure 2.13 shows additional examples of filter responses

following divisive normalization. Responses are typically more independent, al-

though there are variations for different filter pairs and signals. Note that this

technique largely reduces second order variance dependencies, but does not guar-

antee to achieve full independence.

We can also go back and look at the marginal distribution of a filter response

following divisive normalization. Recall that in our formulation of equation 2.5 we

assumed that Li given a neighborhood of filter responses is Gaussian, with the vari-

ance determined by the weighted sum of neighborhood responses. Then dividing
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Li by the square root of the variance estimate should result in a Gaussian marginal

distribution. Figure 2.14 demonstrates that the normalized marginal distributions

are close to Gaussian. Figure 2.15 shows additional examples of marginal distri-

butions for different signals and filters. The fit is better in the example images

than in the example sounds. But in both cases, this should be contrasted with the

highly superGaussian distribution of responses through the original linear filters Li

(Figure 2.2).

2.7 Discussion

We have shown that natural signals through typical sensory filters exhibit striking

statistical dependencies, in which the width of distribution of the response of one

filter grows with the response amplitude of neighboring filters. We have demon-

strated empirically that divisive normalization by a weighted linear combination of

squared responses of neighboring filters can largely reduce this form of dependency.

The statistics we describe are common to both visual and auditory stimuli. Intu-

itively, we interpret this to mean that natural signals tend to have strong “features”

that may be captured by several linear filters simultaneously. These type of depen-

dencies have been documented in the vision image processing literature. Simoncelli

et al. have shown that image processing techniques, such as compression, denoising,

and enhancement, can benefit from taking advantage of the variance dependency

[141, 28]. Statistical dependencies in vision have also been documented through a

quadrature pair of filters [172]. Variations in the choice of filters, neighbors in the

optimization, and specific optimization procedure have yielded similar results (see
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Figure 2.12. Two dimensional joint conditional histogram following divisive nor-

malization. Each filter response (L1 and L2 respectively) is squared and divisively

normalized by the sum of weighted squared responses of its neighbors (equation

2.3). Shown is the square root of the resulting responses (R1 and R2 respectively).

Responses are more statistically independent. Line represents one time the con-

ditional standard deviation. Top, R1 and R2 computed for a vertical filter, and a

diagonal filter (shifted 4 pixels). The pool of filters in the divisive normalization

procedure consists of 4 orientations and 24 spatial positions (displaced vertically,

horizontally, and diagonally) for each orientation, and 2 spatial frequencies. Bot-

tom, R1 and R2 computed for speech through two auditory filters with center

frequencies 2000 and 2840 Hz. The pool of filters in the divisive normalization

procedure consists of 15 temporal frequencies, and 3 time shifts.
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Figure 2.13. Additional examples of two dimensional joint conditional histograms

following divisive normalization (as in Figure 2.12) Top, a, Van Hateren outdoor

scene of grass and animals. Divisively normalized responses R1 and R2 computed

for a vertical filter, and a diagonal filter (shifted up by 4 pixels). b, Regular

example images. R1 and R2 computed for a vertical filter, and a vertical filter

shifted up by 8 pixels. Bottom, a, Monkey sound. R1 and R2 computed for

auditory filters with center frequencies 2000 and 2840 Hz. b, Regular speech

sounds. R1 and R2 computed for auditory filters with center frequencies 2000Hz

and 1660 Hz. Line represents one time the conditional standard deviation.
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Figure 2.14. One dimensional marginal histograms following divisive normaliza-

tion. R1 values are positive due to the rectification and squaring in equation 2.3.

But for readability, we compute the histogram over both positive and negative

values (that is, L1 divided by the normalization signal). Top, Normalized signal

computed for images through a vertical filter. Dashed line indicates Gaussian with

same variance. Bottom, Same with normalized signal for speech through auditory

filter with center frequency 2000 Hz.
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Figure 2.15. Additional examples of marginal histograms following divisive nor-

malization (as in Figure 2.14) Top, a, Van Hateren outdoor scene of grass and

animals. Normalization signal computed for vertical filter. b, Regular example

images. Normalization signal computed for diagonal filter at +45 degrees. Bottom,

a, Monkey sound. Normalization signal computed for filter with center frequency

2000 Hz. b, Regular speech sounds. Normalization signal computed for filter with

center frequency 1660 Hz.
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Figure 2.16. Generic normalization model for vision and audition. Each filter

response (L1 and L2) is squared and divided by the weighted sum of squared

responses of neighboring filters and an additive constant (yielding R2
1 and R2

2).

Parameters are determined using Maximum Likelihood on typical natural signals.

The conditional histogram of the original filter responses indicates that they are

highly dependent; the conditional histogram of the normalized responses demon-

strates that the variance of R1 is roughly constant, independent of R2. The dia-

gram is a schematic representation of the computation and is not meant to specify

a particular mechanism or implementation.
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[28, 144, 162]). The statistical observations for natural sounds are rather prelimi-

nary. Para et al. have also described bowtie dependencies in speech [105]. Further

analysis is needed to understand possible variations in the statistics across different

classes of natural sounds. This line of work could potentially open up possibilities

for auditory signal processing applications, and it is our hope that this may also

lead to improved aids for hearing and vision. In chapter 3 we try to link between

the statistical observations and neuronal processing.

The procedure we describe for reducing statistical dependencies is a step for-

ward from ICA, which is restricted to a linear decomposition. Nevertheless, our

technique also does not guarantee to capture all dependencies; we only capture a

specific form of variance dependency. Additionally, we have not proven that divi-

sive normalization is in fact optimal. Wainwright et al. have established a more

formal class of image model for which division is optimal [164, 165]. Specifically,

Gaussian Scale Mixture models are probability densities given by a Gaussian distri-

bution multiplied by a random (hidden) variable. These models produce marginal

distributions that are superGaussian, and variance scaling joint conditional distri-

butions (consistent with the statistics presented in the chapter). Responses of filters

are linked by the hidden scaling variables corresponding to local image structure.

These hidden variables can be estimated, and a divisive normalization procedure

can be used to Gaussianize and make more independent the filter responses. In the

simplest case (uncorrelated Gaussian), the estimator is a sum of squares.

A limitation of the optimization procedure is that the self filter (or any highly

correlated filter response) cannot be included in the neighborhood. If, for example,

the self is included, then the variance estimate can be extracted exactly from the
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self. The Gaussian Scale Mixture model offers more complicated computational

routes that can include the self [111]. Intuitively, these procedures estimate a single

hidden variable for a local neighborhood, and thus no one filter in the neighborhood

can dominate the estimation. Here, in contrast, the estimate is done separately

(and is different) for each filter. These recent computational routes offer potential

opportunities to improve our statistical model. However, these issues are still under

investigation in the engineering community, and the underlying computations are

not a simple sum of squares.

As a consequence, the neighborhood filters in our optimization procedure cannot

be sampled too finely along the parameters of interest. There is a tough tradeoff

in our model between smoothly covering the parameters of interest, and choosing

a neighborhood that is roughly uncorrelated. For example, the steerable pyramid

guarantees smooth coverage of orientation, but adjacent orientation bands are not

uncorrelated. We minimize the correlations by choosing only 4 orientation bands.

We have previously used an orthonormal pyramid, which does not have such corre-

lations; the model has still yielded similar results, although the diagonal orientation

filters are mixed and do not provide a good model of simple cells [144]. In the gam-

matone filters, we choose frequency bands that are close to uncorrelated, but still

reasonably cover the frequency space. Sampling in space and time is also chosen

such that there is minimal correlation; this means that we do not get as smooth a

coverage as one would like. An additional route would be to start off with a set

of filters computed from ICA analysis. The disadvantage is that such filters tend

to be blocky; they are usually computed over a fixed size of spatial patch or fixed

time window (as in figure 2.7). It is also more difficult to inspect their behavior
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as a function of different parameters. For our purposes here, and in chapter 3, we

have chosen to work with a smoother set of filters (steerable and gammatone).

As noted earlier, we have assumed a variance estimation procedure, but more

generally the conditional relationship between a filter and its neighbors need not

be a power of two. Specifically, for any p, one can estimate
∑

j wjiL
p
j + σp. We

actually do not know which choice of p is a better statistical description of the

dependency, from the observed pairwise conditional distributions. In particular, for

a pair of filters L1 and L2, the expression w21L
p
2 + σp would appear rather similar

for different p, except perhaps at the low intensity regions (governed by σ). This

issue could perhaps be resolved, by examining dependencies between more filters

(beyond pairwise) empirically. Here we have chosen a power of 2 for convenience

of modeling neural data.

Finally, we aim to link more closely between the signal statistics presented here

and neuronal processing. The statistical properties described in the chapter suggest

a generic phenomenological model, analogous for vision and audition (Figure 2.16).

A natural signal is passed through a bank of linear filters (only 2 depicted for read-

ability). In the divisive normalization stage, the response of each filter is squared

and divided by a weighted combination of squared responses of other filters in the

population plus an additive constant. The resulting responses are significantly more

independent. The model is phenomenological, i.e., the simplest conceptualization

of what the neurons might actually be computing.

We assume that the model parameters are determined over the course of evolu-

tion and development, when the system is exposed to many signals in the natural

world. Note that the responses of the normalized filters to any arbitrary signal
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need not be statistically independent. Responses are presumably independent to

“typical” natural signals.

It is interesting to note that this particular model for achieving more inde-

pendence might be at odds with an alternative hypothesis–that a goal of neural

processing should be to achieve sparseness [51, 52, 171, 159]. As stated in the in-

troduction, independence is a different motivating principle than sparseness. The

notion of sparseness that people often have in mind is that for a given natural stim-

ulus, only few neurons are firing. This is difficult to verify experimentally, since

typically one is recording only from a single neuron, or from several neurons.

A more concrete measure for examining sparseness is based on the marginal

distributions of neural responses to natural stimuli (but note that this measure

does not guarantee the more intuitive notion above). Based on examination of

marginal distributions, the model we propose is not sparse. The original marginal

distributions are superGaussian through typical filters, whereas the marginal dis-

tributions following divisive normalization are Gaussian. In theory, each neural

response could now be passed through an additional point nonlinearity to achieve a

desired marginal distribution. If responses of two neurons are statistically indepen-

dent, then this property will be retained following a point nonlinearity. Adding such

a stage to our model would require both a good understanding of what marginal

statistical criteria to use (for example, based on the constraints through the in-

dividual channels) and what marginal distributions the real neurons have when

exposed to natural stimuli. Since both these issues are unresolved at the moment,

we examine the model in its current simple form.

From now on, we’ll consider just a single filter that interacts with a neighborhood
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of filters. The single-filter scenario is analogous to a physiologist recording from a

single neuron. Though we assume that all filters in the neighborhood undergo a

similar divisive normalization procedure, we examine the behavior of only one filter.

This is a simplification, that ignores issues of implementation and dynamics. In the

next chapter we set up specific versions of the model to compare to physiology.

75



CHAPTER 3

NATURAL SIGNAL STATISTICS MODEL VS.

PHYSIOLOGY

In this chapter, we continue to address the question of efficient coding and sen-

sory neural representations. In chapter two we derived a phenomenological model

of neural processing from the statistical properties of natural signals. Figure 3.1 de-

picts the resulting conceptualization of a model neuron. The response of the model

neuron to an input stimulus is given by the squared response of a filter, divided

by the weighted sum of squared responses of neighboring filters and an additive

constant. The weights in the model are determined from the statistical properties

of an ensemble of natural signals.

We assume that the model parameters are determined over the course of evolu-

tion and development, when the system is exposed to signals in the natural world.

Given these parameters, the model represents an abstraction of a neuron. The

response of the model neuron can be computed for any stimulus; it is simply given

by the squared linear response, divided by the weighted sum of squared responses

of neighboring filters plus an additive constant.
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The model developed from signal statistics incorporates a form of automatic

gain control known as “divisive normalization” that has been used to account for

some nonlinear steady-state behaviors of neurons in area V1 (e.g., [64, 58, 30]).

Divisive normalization models have been motivated by several basic properties.

First, gain control allows a system with limited response range to handle a wider

dynamic range of input. Divisive normalization achieves this goal, producing sig-

moidal contrast-response functions similar to those seen in neurons. In addition, it

seems advantageous for tuning curves in stimulus parameters such as orientation to

retain their shape at different contrasts, even in the presence of response saturation

[64]. Previous models have accomplished this by computing a normalization signal

that is independent of parameters such as orientation (achieved with a uniformly

weighted sum over the entire neural population). A consequence of this design is

that the models can account for the response suppression that occurs, for example,

when a grating of non-optimal orientation is superimposed on a stimulus.

Here we set up specific versions of the normalization model to compare to phys-

iological data. We focus on vision (area V1), and also present few examples from

audition (auditory nerve). We show that the resulting models, with weights de-

termined from natural signal statistics, can qualitatively account for a number of

nonlinear behaviors in neurons.

3.1 Primary Visual Cortex

We now compare the model with electrophysiological measurements from single

neurons in area V1. Physiologists have distinguished between two basic types of
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Figure 3.1. Phenomenological neural model for vision and audition. Each filter

response is squared and divided by the weighted sum of squared responses of

neighboring filters and an additive constant. Parameters are determined from

natural signal statistics.

V1 experiments: inside the classical receptive field (center); and outside the classical

receptive field (surround). The so-called classical receptive field is the spatial region

that elicits an excitatory response in the neuron. We note at the outset that the

spatial borders of the classical receptive field are not easily determined, and various

methods can yield receptive fields of different sizes. We will discuss this in more

detail later on in the chapter. The surround is considered a spatial region that

by itself elicits no response in a neuron; but nevertheless a stimulus placed in this

region can modulate the response of a neuron to stimuli placed inside the classical

receptive field.

We first show that the statistically derived model can account for a number of

nonlinear neural behaviors inside the classical receptive field, as in previous divisive

normalization models [64, 65, 30]. Subsequently, we show that the model can also

account for additional nonlinearities outside the classical receptive field. Physio-

logical data inside the classical receptive field are taken from published journals,

and data outside the classical receptive field were collected by Cavanaugh, Bair and

Movshon ([33]).
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3.1.1 Methods

Linear receptive fields are derived using the steerable pyramid multi-scale oriented

decomposition [142]. The basis functions of this representation are localized in

spatial position, orientation, and spatial frequency (scale). In this sense, they are

qualitatively similar to simple cell receptive fields in area V1. The steerable pyramid

is constructed by recursively splitting an image into subbands with directional

derivative operators a given order (4 orientations chosen here).

In order to simulate an experiment, we first choose a primary filter and a set

of neighboring filters that interact with the primary filter. The primary filter is

the linear front end of the model neuron response, which is modulated by the re-

sponses of the neighboring filters. We make a simplifying assumptions that other

filter choices behave similarly (see discussion). The primary filter is vertically ori-

ented with peak spatial frequency of 1/8 cycles/pixel (second recursion level of the

pyramid).

The filter neighborhood includes four orientations at the spatial frequency of the

primary filter. At each of these orientations, displacements of neighboring spatial

filters are horizontally, vertically, and diagonally subsampled at 3-pixel intervals (up

to 9 pixel displacement in each direction). The farthest displacement (vertically and

horizontally) extends to approximately 2 times the diameter of the primary filter.

The neighborhood also includes four orientations at half the spatial frequency, but

only at the center location (figure 3.2). There are a total of 103 filters in the

neighborhood.

Next, we choose a natural image ensemble. The ensemble consists of 8 images

from the Van Hateren database of calibrated images [156], and 4 images from a
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Figure 3.2. Neighborhood for vision optimization. The primary filter is circled.

The figure does not show all neighboring filters, but depicts the spatial extent of

the farthest filter at each orientation and spatial frequency.

database of standard images used in computer science (Figure 3.3). The images

from the standard database are squared to achieve a rough calibration; typical

digital images are corrected for a power-law monitor nonlinearity with an exponent

of approximately 2. We crop each image to 256 by 256 pixels. We also include the

symmetric left-right flipped version of each image, assuming that these are equally

likely to occur.

We now run the maximum likelihood procedure described in chapter 2, with

the chosen primary filter, neighborhood, and image ensemble. This results in a set

of weights, and a constant σ. The weights in the model are pre-determined from

the natural image ensemble and remain fixed throughout the model simulations.

However, the constant σ is regarded as a free parameter to the model. As dis-

cussed in chapter 2, the value of the constant σ from the optimization depends on
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Figure 3.3. Ensemble of images, from Van Hateren database of calibrated images

[156], and from database widely used in computer science and neural modeling

efforts.
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the somewhat arbitrary scaling of the input signal. One can in theory adjust the

optimal σ to match the input level of the experimental stimuli. However, we have

found in practice that neurons also exhibit a range of different sensitivities. So we

choose different values of σ in the simulations to match the sensitivity of the cell

being modeled. The value of σ controls the contrast at which the response of the

neuron reaches semi-saturation, and the contrast at which the divisive gain signal

is not effective in modulating the response of the model neuron; for weak signals, σ

dominates the divisive equation. Changing σ is equivalent to shifting the contrast

scale.

Finally, we simulate each experiment, holding all weights of the model fixed.

We present the model neuron with input, typically gratings that vary in some pa-

rameter. The response of the neuron is simulated by computing the normalized

responses of the primary filter to the experimental stimuli. The response of the di-

visive neighborhood is assumed to be phase invariant, as if it is coming from either

an ensemble of simple cells at a variety of phases, or from complex cells. Computa-

tionally, similar results are obtained by averaging the response over multiple phases

(this would be similar to the summed response to a drifting grating), or by taking

the sum of squared responses of two filters that are 90 degrees out of phase (e.g.,

quadrature pairs). Here we have chosen the latter solution, because it speeds up

simulation time and does not alter the results.

3.1.2 Mapping out the Receptive Field

As a prior step to running experiments on the model, we need to map out a receptive

field. We could just measure the excitatory extent of the primary filter in our model.
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However, a physiologist does not have this luxury; so we also estimate the receptive

field extent, as if we do not know the structure of the model. We assume a circular

receptive field, as is often done in physiology (note that this is not exactly correct

for our receptive fields, but it is also not exactly correct for real cells).

Ideally, we’d like to choose a method for estimating the receptive field that is

most comparable with the physiological data. Unfortunately, there are no uniform

standards for measuring the receptive field. In general, for experiments that probe

only the classical receptive field and not the surround, the exact choice of receptive

field extent has not been a major issue at all, so long as the selected region drives

the cell. Experimenters aiming to separate out influences of center and surround

have struggled with the problem of choosing the extents appropriately. Early exper-

iments have typically hand-fitted the receptive field based on responses to oriented

bars or lights. These procedures tend to underestimate the size of the receptive

field by about a factor of two relative to more recent methods (see for example [33]

for a discussion). Here we follow recent physiological procedures of expanding the

diameter of an optimal sine grating until a maximal response (typically 95 percent

of the maximum) is achieved [43, 33, 128]. This technique is matched to all the

surround experiments of Cavanaugh et al. presented in the chapter.

The procedure is illustrated in figure 3.4a for our model neuron. When a grating

of optimal orientation and spatial frequency is expanded in diameter, the mean

response of the model neuron increases, until it reaches a peak. Subsequently, the

response of the neuron declines and eventually tapers off to a minimal value. This

increase and subsequent decrease of response is very typical of cells in area V1 (see

for example, [33, 128]). Based on this procedure, the receptive field is mapped out

83



Classical RF

Suppression

extent

Numerator

Denominator

0 10 20 30
0

1

2

3

4

5

6

7

0 10 20 30
0

50

100

150

200

Grating diameter

Grating diameter

M
e
a
n
 
r
e
s
p
o
n
s
e

M
e
a
n
 
r
e
s
p
o
n
s
e

a

b

Figure 3.4. Mapping out the classical receptive field. a, Response of model

neuron (from divisive normalization) to an expanding optimal sine wave grating.

Arrows indicate 95 percent of the peak (corresponding to the estimated extent

of the receptive field) and 95 percent of the minimal value (corresponding to the

estimated suppressive effect). Procedure based on Cavanaugh et al. [33]. b, Com-

ponents of the model leading to overall response in (a). Specifically, plotted are

the numerator component (squared response of excitatory filter) and denominator

component (sum of squared responses of the neighboring filters, with constant σ

omitted in the plot). Arrows indicate same positions as in (a).
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as a circular region with a diameter equal to 95 percent of the maximal value. In

the model neuron, the estimated receptive field diameter spans 9 pixels (first arrow

in the figure). The 95 percent minimum point following the decline in response is

suggestive of the suppressive extent of the neuron [33]. In the model neuron, this

point corresponds to 24 pixels (second arrow in the figure).

In physiology, it is difficult to disentangle the components that lead to this be-

havior. But since we know the components of the model, we can examine separately

the excitatory numerator component response (coming from the true primary fil-

ter) and the divisive component (coming from the weighted squared neighboring

neuron responses). We ignore for now the constant σ in the divisive component and

assume it is relatively small and has minimal influence on the denominator. This

is a reasonable assumption, since most physiological studies have fit the receptive

field with high contrast stimuli. However, we will come back to this issue later on

in the chapter.

Figure 3.4b illustrates the two components of the model. The numerator com-

ponent is just the squared response of the primary filter. It continues to increase

and reaches 95 percent of the peak at around a 14 pixel diameter. Note that this

is approximately 1.5 times the estimated diameter. That is, we have underesti-

mated the true spatial extent of the primary filter. The minor decrease in response

following the peak is due to the structure of the linear filter, which has a small

inhibitory sidelobe. The denominator component coming from the sum of squared

responses of neighboring filters continues to increase farther out in space than the

numerator component. The denominator reaches 95 percent of the maximum value

at approximately 24 pixels. This is approximately 2.5 times the extent of the esti-
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mated receptive field, and 1.7 times the extent of the true excitatory component.

Note that the peak of the denominator component in the model (figure 3.4b) is

also roughly equal to the minimum value of the overall model neural response (fig-

ure 3.4a). Thus, the overall model neural response gives a good indication of the

suppressive extent in the model.

Now that we’ve mapped out a linear receptive field, we can proceed to com-

pare model and physiology. We will point back to some of the issues raised here

throughout the comparison.

3.1.3 Comparison to Physiology Inside the Classical Receptive Field

We first demonstrate behavior of the model for stimuli presented inside the classical

receptive field.

Figure 3.5 shows data and model simulations of cross-orientation suppression.

An optimal grating is placed inside the classical receptive field. An orthogonal

mask grating is superimposed on the optimal grating (forming a plaid). Each curve

in the figure indicates the response as a function of the contrast of the optimal

grating, for a particular mask contrast. The sigmoidal shape of the curves results

from the squaring nonlinearity and the normalization. The steepness of the model

curves is determined by the fixed exponent of two, and appears to roughly match

the cell.

The presence of the mask suppresses the responses to the optimal grating.

Specifically, the contrast response curves are shifted to the right (on a log axis),

indicative of a divisive gain change. The model exhibits similar behavior, which is

a direct consequence of the statistically-chosen normalization weights. Neighboring
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model filters responding to the orthogonal grating exert a divisive effect on the

primary filter. This, in turn, arises from the statistical properties of natural images

discussed in chapter 2.

Masking effects can also be observed at a single contrast, as a function of mask

orientation. Figure 3.6 depicts the orientation tuning curve for a fixed optimal

grating in the presence of a mask of varying orientation. As before, the optimal

grating and the mask are additively combined to form a plaid. Also plotted is

the orientation tuning curve for the model neuron without a mask (control). Both

curves are normalized to a maximum value of 1. The mask exerts a mixture of

excitatory and suppressive effects. In particular, the presence of the mask at orien-

tations close to the optimal serves both to excite the primary filter, and to provide

suppression through division. This results in a broadening of the orientation tuning

curve, because the response is increased more near the optimal orientation, while

the divisive component does not change as much as a function of orientation.

Orientation tuning in area V1 has been a widely studied topic. One of the

striking features of orientation tuning is that it appears to be invariant to the

contrast of the stimulus (e.g., [130, 145], and see also [50]). Figure 3.7 depicts the

orientation tuning as a function of contrast for a typical V1 cell [145] versus the

model. Both the cell and model orientation tuning are roughly contrast invariant.

In the context of a divisive normalization model, invariance of orientation tuning

has been postulated to arise through equal weighting of the squared filter responses

in the denominator [64]. If the divisive signal is equally weighted at each orien-

tation, then the tuning of the primary filter cannot be altered. To examine the

model behavior more closely, we separate out the components of numerator and
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denominator (figure 3.8). The top panel depicts the same overall model response as

in figure 3.7. The middle panel illustrates the two model components. The divisive

denominator component is not truly flat as a function of orientation. This means

that the model orientation tuning curves are only close to contrast invariance; at

high contrast, the tuning is slightly sharper than at low contrast. This is possibly

an artifact of the model. Specifically, the optimization procedure does not allow to

include the excitatory filter or filters that are highly correlated with the excitatory

filter. As a result, there is no source of self-suppression in the model (see discussion

in chapter 2). Added self-suppression would help to achieve true contrast invari-

ance. In our model, increasing the stimulus diameter would result in an added

suppression at the optimal orientation. When we actually do this (bottom panel of

the figure) the divisive signal is roughly constant as a function of orientation.

Experimentally, it would be interesting to understand if the contrast invariance

of V1 neurons holds up across stimuli of different sizes. Though contrast invariance

of orientation tuning is widely published, we believe it has only been examined for

certain stimulus sizes, most probably small ones that match hand-computed recep-

tive fields [130, 145]. Perhaps cells are most optimized for orientation invariance

at particular stimulus sizes. For example, if the orientation tuning of the surround

suppression is more sharply tuned than the center, then very large stimuli will have

added suppression at the preferred orientation, and this could potentially result

in a broader tuning curve at high contrasts. But less relative suppression at the

preferred orientation for small stimuli could potentially result in a sharper tuning

curve at high contrasts (as in our model). Sclar and Freeman note in their paper

that “For only two cells, tuning patterns were marginally different from zero and
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Figure 3.5. Cross-orientation suppression in area V1 [24]. Responses to optimal

stimulus are suppressed by an orthogonal masking stimulus within the receptive

field. This results in a rightward shift of the contrast response curve (on a log

axis). Curves on cell data plot are fitted with a Naka-Rushton function, r(c) =

c2/(ac2 + b2).

in these cases, tuning sharpness appears, counterintuitively, to decrease slightly

as contrast increases” [130]. The relation between stimulus size and orientation

invariance needs to be examined experimentally.

3.1.4 Mapping the Region Outside the Classical Receptive Field

As stated earlier, stimuli outside the classical receptive field are useful in experi-

mental settings, because they elicit no response in the neuron when presented alone.

Nevertheless, they can modulate the response of a neuron to stimuli placed inside

the classical receptive field.

The region outside the classical receptive field is usually chosen as an annular

ring surrounding the receptive field. Selecting the dimensionality of the annulus
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Solid line indicates response to an optimal grating additively superimposed on a
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Figure 3.7. Contrast invariance of orientation tuning in area V1 [145]. Cell and

model are plotted such that their bandwidth is visually equated, even though the

specific bandwidth differs.
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Figure 3.8. Examination of model components of orientation tuning as a function

of contrast in area V1. a, Overall model response, as in figure 3.7. b, Compo-

nents of the model leading to overall response in (a). Specifically, plotted are

the numerator component (squared response of excitatory filter) and denominator

component (sum of squared responses of the neighboring filters, with constant σ

omitted in the plot). Note that denominator component is not truly constant as a

function of orientation. c, Components of the model for stimulus that is twice the

size of the estimated receptive field. Now the denominator component is roughly

constant as a function of orientation, leading to true orientation invariance.
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(and especially its most inner border) is again a rather tedious issue for physiolo-

gists. If one underestimates the surround, then it could actually exert an excitatory

effect on the neuron. This effect could be particularly extreme if the surround inner

annulus diameter is chosen equal to the diameter of the estimated receptive field.

Remember in the model that the estimated receptive field extent was smaller than

the true extent of the receptive field (figure 3.4). Moreover, estimated receptive

fields using small bars or spots of light are even smaller. If special care is not

taken to separate out the center and surround, the physiological results could be

contaminated by interactions between these two components.

Only recently, physiologists have taken more scrutiny to separate out center

and surround. Cavanaugh et al. have developed a method, which we follow here,

for determining the surround [33]. The method is illustrated in figure 3.9a for the

model neuron. A zero-luminance “hole” is placed in the center. Surrounding the

hole is an annular ring at the optimal orientation and frequency for the model

neuron. The diameter of the hole is expanded, which is equivalent to expanding

the diameter of the inner border of the annulus. Now the 95 percent minimal value

is taken to represent the diameter of the inner border of the annular surround.

This amounts to a 12 pixel diameter in the model neuron. An annular ring of zero

luminance is then placed between the estimated center and surround.

Figure 3.9b illustrates the two components of the model. Note that both the

excitatory numerator and suppressive denominator decrease for larger proximal

borders of the annulus, but the numerator decreases more rapidly to a minimal

value. The 12 pixel diameter that was chosen based on the overall model neuron

response is quite well matched to the minimal value of the numerator alone. We
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Figure 3.9. Mapping out the surround annulus inner diameter. a, Response of

model neuron (from divisive normalization) to an optimal grating with a “hole”

of zero luminance. As the hole is expanded, the proximal border of the annulus is

increased. Arrow indicates 95 percent of the minimal value. Procedure based on

Cavanaugh et al. [33]. b, Components of the model leading to overall response

in (a). Specifically, plotted are the numerator component (squared response of

excitatory filter) and denominator component (sum of squared responses of the

neighboring filters, with constant σ omitted in the plot). Arrow indicates same

position as in (a).
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should point out that this value is almost equal to, but slightly below, the peak

of the numerator of an expanding sine grating computed in figure 3.4b. The in-

consistency between the two methods is a consequence of the squaring nonlinearity

of the numerator kernel response. Thus, we have come close to but marginally

underestimated the real inner border of the surround. That is, an optimal stimulus

placed in the surround will elicit no response, as required. But the opposite is not

true; a stimulus expanding from the center will still slightly increase its response

as it encroaches onto the surround. Remember that the physiologist does not have

access to the true extent of the presumed center component.

3.1.5 Comparison to Physiology Outside the Classical Receptive Field

We now compare model responses to steady-state nonlinear physiological behaviors

outside the classical receptive field.

Figure 3.10 shows data from a Macaque monkey [33]. An optimal sinusoidal

grating stimulus is placed inside the classical receptive field of a neuron in area V1.

A mask grating is placed in the annular region surrounding the classical receptive

field. Each curve in the figure indicates the response as a function of the center

contrast for a particular surround contrast.

Presentation of the mask grating alone does not elicit a response from the neu-

ron, but its presence suppresses the responses to the center grating. Specifically,

the contrast response curves are shifted to the right (on a log axis), indicative of a

divisive gain change. When the mask orientation is parallel to the center, this shift

is much larger than when the mask orientation is orthogonal to the center (Figure

3.10).
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Figure 3.10. Contrast response curves for parallel versus orthogonal surround

masks in area V1. cell data from [33]. a, Mean response rate of a V1 neuron as

a function of contrast of an optimally oriented grating presented in the classical

receptive field, in the presence of a surrounding parallel masking stimulus. Curves

on cell data plots are fits of a Naka-Rushton equation with two free parameters

[33]. b, Mean response rate vs. center contrast, in the presence of an orthogonal

surround mask.
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The model exhibits similar behavior (Figure 3.10), even though we have not

fitted the model to the data. The model behavior is due to a suppressive weighting

of neighboring model neurons with the same orientation preference that is stronger

than that of neurons with perpendicular orientation preference (see also [144]). Note

that this behavior would not be observed in previous equally weighted normalization

models, because the parallel and orthogonal surround stimuli would produce the

same normalization signal.

The weighting in our model is determined by the statistics of our image ensem-

ble, and is due to the fact that adjacent regions in natural images are more likely to

have similar orientations than orthogonal orientations. For example, oriented struc-

tures in images (such as edges of objects) tend to extend along smooth contours,

yielding strong responses in linear filters that are separated from each other spa-

tially, but lying along the same contour (see also [60, 138]). In other experiments

in V1, it has been demonstrated that for a parallel surround, more suppression

is observed for aligned patches in the surround than for non-aligned patches [33].

Our model is expected to be consistent with this result, since we obtain stronger

weighting for iso-oriented filters that are aligned with the primary filter, than for

non-aligned filters (also see bowties in chapter 2).

We have thus far examined surround suppression as a function of only two

surround orientations, parallel and orthogonal to the optimal. Figure 3.11 explores

a wider range of surround orientations at a single (high) contrast. The center

orientation is held fixed at the optimal orientation of the neuron. Both in cell and

in model, most suppression is observed when the surround stimulus is also placed

at the preferred orientation of the neuron. The amount of maximal suppression is
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Figure 3.11. Surround suppression as a function of orientation for optimal center

stimulus in area V1. Maximum suppression is obtained when the surround orien-

tation is also at the preferred orientation of the neuron. Model neuron is plotted

with twice the number of orientation points, but marked points correspond to cell.

Model is scaled to have same maximal value as cell.

also very similar in model and cell.

This behavior has led experimenters to wonder whether the absolute surround

orientation drives the amount of suppression, or whether the relative orientation

between center and surround is pertinent. It has been suggested that the amount of

surround suppression depends contextually on the orientation of the grating placed

in the center, consistent with the latter hypothesis. Specifically, some experimental

data show that neurons appear to shift their point of maximal surround suppression

to match the orientation of a grating placed in the center [139, 33]. This seems to

be counterintuitive to the type of divisive normalization model we’ve described, in

which the point of maximal suppression ought to be fixed and determined by the

weighting of the divisive pool. For example, in our model neuron, we would always

expect maximal suppression for a surround stimulus with the preferred orientation
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Figure 3.12. Dependence of surround suppression on center orientation in area

V1. a, Surround orientation suppression when center orientation is fixed at +45

degrees from the preferred orientation of the neuron. Maximum suppression is

obtained when the surround orientation is equal to the orientation of the center

grating (for the cell) and shifted towards the orientation of the center grating (for

the model). b, Surround orientation suppression when center orientation is fixed

at -45 degrees from the preferred orientation of the neuron. Maximum suppression

is obtained when the surround orientation is equal to the orientation of the center

grating (for the cell) and shifted towards the orientation of the center grating (for

the model). Physiological data from [33]. Model neuron is plotted with twice

the number of orientation points, but marked points correspond to cell. Model is

scaled to have same maximal value as cell.
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Figure 3.13. Model dependence of surround suppression for different separations

of center and surround with optimal center stimulus. a, Center stimulus 9 pixels;

surround stimulus 10.5 pixels (i.e., smaller than estimated surround). b, Center

stimulus 9 pixels; surround stimulus 12 pixels. (i.e., equal to estimated surround).

c, Center stimulus 9 pixels; surround stimulus 16 pixels. (i.e., larger than estimated

surround). In all cases, maximal suppression is achieved when the surround grating

is at the preferred orientation of the model neuron.
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Figure 3.14. Model dependence of surround suppression for different separations

of center and surround with non-optimal center stimulus. Center orientation is

fixed at the +45 degrees away from the preferred orientation of the neuron. a,

Center stimulus 9 pixels; surround stimulus 10.5 pixels (i.e., smaller than estimated

surround). b, Center stimulus 9 pixels; surround stimulus 12 pixels. (i.e., equal

to estimated surround). c, Center stimulus 9 pixels; surround stimulus 16 pixels.

(i.e., larger than estimated surround).
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of the neuron, regardless of the center stimulus orientation.

We decided to test this idea through simulation in the model. Figure 3.12a

illustrates cell and model mean response rate as a function of surround orientation,

for a center stimulus that is fixed at +45 degrees the optimal orientation. The point

of maximal suppression now shifts towards +45 degrees in the cell. In the model,

the shift is not quite as extreme; a maximal suppression is seen at +22.5 degrees.

Note that we have sampled orientation at a finer scale in the model than in the

experimental data to illustrate this point. Similar behavior is observed for a center

stimulus that is fixed at -45 degrees the optimal orientation (figure 3.12b): the cell

and model minimum is shift towards -45 degrees. There is also a broadening of

tuning (relative to figure 3.11) in the model and (especially at -45 degrees) in the

cell.

The model does not behave in detail like the cell. But the fact that the model

also obtains a shift toward the orientation of the center stimulus is interesting.

This kind of behavior could arise if the center and surround of the model are

not truly separated. In fact, center and surround are not truly separated in the

model. Recall that the surround was slightly underestimated in the inner annulus

expansion experiment. So stimuli placed in the surround may have a minor effect

on the excitatory filter of the model. In addition, stimuli placed in the center will

naturally also effect the divisive normalization signal. This is expected because the

suppressive pool includes filters in the center and filters at 3 pixel displacements

from the center, which would still be influenced by the spatial region of the classical

receptive field.

To test the hypothesis that the behavior in the model arises from incomplete
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separation of center and surround, we decided to alter the separation between cen-

ter and surround stimuli. That is, the center receptive field is held at the fixed

estimated diameter, and the surround inner annulus diameter is modified. We ei-

ther reduce (to 10.5 pixels), keep constant (12 pixels), or increase (to 16 pixels) the

inner annulus diameter. Figure 3.13 depicts the behavior of the model to a center

stimulus at the optimal orientation. As before, maximal suppression is obtained

when the annular surround stimulus is also at the optimal orientation. This be-

havior is consistent for all three conditions. Figure 3.14 depicts the behavior of the

model to a center stimulus shifted by +45 degrees. This time the model behaves

differently in all three conditions. For smaller separation, the maximal suppression

is at around +45 degrees. In contrast, for larger separation, the maximal sup-

pression is centered approximately at the optimal orientation of the model neuron.

Note that for larger separation we guarantee that the surround stimulus does not

encroach on the excitatory filter. However, the center stimulus still does encroach

on the suppressive filters. Analogous behavior is observed for a center shifted to

-45 degrees (not shown here).

We have demonstrated that incomplete separation of center and surround could

lead to changes in model behavior. This is a preliminary result; whether it has

bearing to neural data requires further investigation. Perhaps biology is set up

such that two stimuli that closely border one another contextually shift the ori-

entation of maximal suppression. In any case, a divisive normalization model can

produce this type of effect, at least qualitatively. Cavanaugh et al. have suggested

another explanation for this behavior in the context of a divisive gain model: that

changing the balance between a center and surround gain (such that the center gain
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Figure 3.15. Response as a function of surround inner diameter in area V1.

Physiological data from [33].

is favored) could amount to a shift in the orientation of maximal suppression [33].

We now examine the suppressive effect of the surround as a function of spatial

proximity to the center. In figure 3.15 a surround mask is placed at the optimal

orientation. As the surround mask is moved farther away from the receptive field,

the suppressive effect is reduced both in the cell and model neuron.

As mentioned above, a motivating characteristic of normalization models has

been the preservation of tuning curve shape under changes in input level. However,

the shapes of physiologically measured tuning curves for some parameters exhibit

dependence on input level [128, 76, 33]. Figure 3.16 shows an example of this

behavior in a neuron from primary visual cortex of a Macaque monkey [33]. The

graph shows the response of the cell as a function of the radius of a circular patch

of sinusoidal grating, at two different contrast levels. The high-contrast responses
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are generally larger than the low-contrast responses, but in addition, the shape

of the curve changes. Specifically, for higher contrast, the peak response occurs

at a smaller radius. The same qualitative behavior is seen in the model neuron,

although weaker than in the physiological cell.

The behavior in the model is a result of two competing factors: primary filter

excitation and neighboring filter suppression. At high contrasts, the suppressive sig-

nal modulates the shape of the tuning curve of the primary filter. Recall figure 3.4,

in which neighboring filters that are spatially displaced relative to the primary filter

reduce the excitatory response of the primary filter through division. This results in

both a shift of the peak to a smaller diameter, and a continued decline in response

following the peak. But at low contrasts, the tuning function is primarily deter-

mined by the excitatory numerator component, because σ dominates the divisive

gain signal. So the tuning as a function of radius is more matched to the linear

tuning properties of the primary filter.

3.1.6 Cell and Model Variations in area V1

We have modeled the behaviors of “typical” cells, but there are quantitative differ-

ences amongst individual cells. Figure 3.17 shows an example of variation across

cells in physiological recordings in V1. In this figure, the amount of suppression

for a parallel and orthogonal surround varies across the population. Amount of

suppression is computed as the response of the neuron to an optimal grating inside

the classical receptive field together with a surround mask (either parallel or or-

thogonal to the optimal orientation), divided by the response of the neuron to an

optimal grating and no surround mask. This value is computed for high contrasts
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Figure 3.16. Nonlinear changes in tuning curves as a function of stimulus diam-

eter for different input levels in area V1. Plotted is the mean response rate of a
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105



of the stimulus and mask. Each point in the graph corresponds to data from a sin-

gle cell. A large proportion of the cells show substantially more suppression when

the preferred orientation is in the surround than when the orthogonal orientation

is in the surround. Note that some of the cells also exhibit facilitation due to the

surround, although suppression is much more prominent.

Variations can also arise in the model. One source of variation in the model is

observed when the divisive weights are optimized for different images. Figure 3.18

demonstrates the amount of suppression for a parallel versus orthogonal surround.

Each point in the figure corresponds to a simulation with weights computed from

a single image. Overall we ran simulations over 40 different images. The model

follows a similar trend to the physiological data; there is more suppression when

the preferred orientation is in the surround than when the orthogonal orientation

is in the surround. The gray arrow in the figure points to the values obtained with

the weights from the image ensemble used throughout the chapter. Figure 3.19

shows that images from the Van Hateren versus the standard image data set follow

a similar distribution. White noise, in contrast, yields roughly the same amount of

suppression for parallel and orthogonal surround.

The definition of “natural images” is quite loose. Some images in the set yield

points away from the prominent data cloud, although these too still exhibit more

suppression for the parallel than for the orthogonal surround. Shown in the figure

are two such images, that appear rather texture-looking. Textures (both artificial

and natural) are likely to have more variant statistics than so-called natural scenes

(see also [110]).

We have illustrated one possible source of model variation, but variations in
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the model may also arise from other factors, such as the choice of primary and

neighborhood filters. We have chosen one primary filter in the model, and com-

pared simulation results to neurons with different tuning properties. We have thus

assumed invariance with respect to frequency and orientation. Images are roughly

spatial frequency invariant, and we have verified that modifying the spatial fre-

quency of the primary filter does not alter the qualitative results in the chapter.

However, we believe that images are not orientation invariant; for example, vertical,

horizontal and diagonal orientations probably do not appear with equal probability

in nature. We are beginning to investigate how the results vary with orientation of

the primary filter. Preliminary examination suggests that the qualitative nature of

the simulations in the chapter does not change. However, the strength of the sup-

pression, and relative contributions of aligned and non-aligned positions are likely

to change. Since we also do not have a detailed account of changes in physiology

as a function of neuron orientation and frequency, the assumption of invariance in

the model is not unreasonable.

These two sources of variation, experimental and model, are very different; it is

difficult to directly compare between them. There are numerous possible explana-

tions for the variations that arise in physiological recordings, including cells from

different animals; different layers; with different tuning properties; and (perhaps)

one can also hypothesize that different cells are optimized for different subclasses

of images.
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Figure 3.17. Distribution of physiological recordings from different cells, for

parallel versus orthogonal surround in area V1. Each point corresponds to data

from a single cell. The x axis is the response of the neuron to a center optimal

grating with an orthogonal surround, divided by the response of the neuron to

the center grating alone. The y axis is the response of the neuron to a center

optimal grating with a parallel surround, divided by the response of the neuron to

the center grating alone. Most points in the graph lie below the unit slope line,

indicating that there is more suppression for parallel surround than for orthogonal

surround.
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Figure 3.18. Distribution of model simulations with weights computed for dif-

ferent natural images, for parallel versus orthogonal surround. Each point corre-

sponds to a simulation with weights computed for a single image. The x axis is

the response of the model neuron to a center optimal grating with an orthogonal

surround, divided by the response of the model neuron to the center grating alone.

The y axis is the response of the model neuron to a center optimal grating with

a parallel surround, divided by the response of the model neuron to the center

grating alone. Most points in the graph lie below the unit slope line, indicating

that there is more suppression for parallel surround than for orthogonal surround.

The gray arrow points to simulation results for the image ensemble used in the

chapter.
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Figure 3.19. Distribution of model simulations with weights computed for dif-

ferent natural images, for parallel versus orthogonal surround (part 2). Same as

Figure 3.18, but we plot separately simulation results from the Van Hateren im-

age database and the standard image database. Also shown is a simulation with

Gaussian white noise. Unlike the images, the white noise simulation yields roughly

the same suppression for parallel and orthogonal mask gratings (lying close to the

unit slope line).
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3.2 Auditory Nerve

We have found interesting parallels in auditory nerve data. Though we have not

studied the auditory behaviors as extensively as vision, we show below that an

analogous auditory model can account for some basic nonlinearities in auditory

nerve fibers.

3.2.1 Methods

For the auditory simulations we use a set of Gammatone filters as the linear front

end [146]. We choose a primary filter with center frequency 2000 Hz, and a neigh-

borhood of filters for the normalization signal: 16 filters with center frequencies

205 to 4768 Hz, and replicas of all filters temporally shifted by 100, 200, and 300

samples (figure 3.20). The time replicas should be thought of as discrete snapshots

of the response of the same filter over time; in a real system, we expect the response

over time to be more continuous.

The ensemble of natural sounds consists of 9 animal and speech sounds (cat,

monkey, chimpanzee, and so on), each approximately 6 seconds long. The sounds

are obtained from commercial compact disks and converted to sampling frequency

of 22050 Hz.

We run the maximum likelihood procedure described in chapter 2, with the

chosen primary filter, neighborhood, and sound ensemble. We now simulate each

experiment, holding all weights of the model fixed (and hand fitting σ). The re-

sponse of the neuron is simulated by computing the normalized responses of the

primary filter to the experimental stimuli. As in the visual case, we assume in this
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computation that the divisive signal is independent of phase. This is achieved by

averaging the squared filter responses over time. We compare simulations of the

model neuron to electrophysiologically auditory nerve data published in journal

papers.

3.2.2 Comparison to Auditory Nerve Physiology

We concentrate both on masking experiments (known as “two-tone suppression”),

and presentations of single tones at different frequencies to the neuron. These ex-

periments are similar in flavor to some of the visual experiments, but with emphasis

on temporal frequency instead of orientation.

Figure 3.21 shows data from a two-tone suppression experiment, in which the

response to an optimal tone is suppressed by the presence of a second tone of non-

optimal frequency. Two-tone suppression is often demonstrated by showing that the

rate-level function of the optimal tone alone is shifted to the right in the presence of

a non-optimal tone. In both cell and model, we obtain a larger rightward shift when

the non-optimal tone is relatively close in frequency to the optimal tone (1.25 times

the optimal), and almost no rightward shift when the non-optimal tone is more

than two times the optimal frequency. The model behavior is due to variations in

suppressive weighting across neurons tuned for adjacent frequencies, which in turn

arises from the statistical properties illustrated in in chapter 2, in which stronger

dependency is seen for nearby frequency bands in typical natural sounds.

Now what happens in the model if the mask frequency is even closer to the

optimal? In this case, we expect the mask to elicit excitation in addition to sup-

pression. Figure 3.22 illustrates this behavior in the model for a mask that is 1.15
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Figure 3.20. Neighborhood for auditory optimization. Primary filter is in black;

neighborhood filters are in gray. Neighborhood includes 16 frequency bands and

3 time shifts of each band. a, Frequency tuning of all filters in the neighbor-

hood. Note that frequency bandwidth is roughly equal on a log scale. b, Time

representation (including 3 time shifts) of the primary filter.
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Figure 3.21. Suppression of responses to optimal stimuli by masking stimuli

in auditory nerve fiber. Physiological data from [71]. a, Mean response rate of

an auditory nerve fiber a function of sound pressure level, in the presence of a

non-optimal mask at 1.25 times the optimal frequency. b, Mean response rate

vs. sound pressure level, in the presence of a non-optimal mask at 1.56 times the

optimal frequency. c, Mean response rate vs. sound pressure level, in the presence

of a non-optimal mask at 2.08 times the optimal frequency. For all plots, maximum

model response has been rescaled to match that of the cell.
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Figure 3.22. Model response for masking stimuli that exerts both excitation

and suppression. Masking stimuli is at 1.15 times the optimal frequency. Follows

figure 3.21 experiment, but neural data wasn’t available for this mask frequency.

Rate-level curve with mask is result of both excitatory and suppressive effect ex-

erted by the mask stimulus. Similar auditory nerve fiber behaviors reported in

[46].
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Figure 3.23. Nonlinear changes in frequency tuning curves as a function of sound

pressure level in auditory nerve fiber. Physiological data from [120]. Tuning curve

broadens and saturates at high levels. Maximum model response has been rescaled

to match that of the cell.
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Figure 3.24. Examination of model components for nonlinear changes in fre-

quency tuning curves as a function of sound pressure level. Shown are model

components leading to overall response in figure 3.7. Specifically, plotted are

the numerator component (squared response of excitatory filter) and denominator

component (sum of squared responses of the neighboring filters, with constant σ

omitted in the plot). Frequency axis is extended beyond frequencies available in

the data.
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times the optimal frequency. The rate-level curve produced with signal and mask

is now significantly above zero until about 50 decibels, and then takes on the usual

sigmoidal shape. This behavior occurs because the mask (which is fixed at 80 dB)

is eliciting an excitatory response in the primary filter, even when the signal is

eliciting a relatively low response. Thus the mask is exerting both an excitatory

and a suppressive effect. In previous examples in figure 3.21, the mask primarily

contributed to suppression but not to excitation. This form of excitatory masking

behavior at frequencies close to the optimal has been observed in auditory nerve

fibers, and denoted “Line-busy masking” by Delgutte [46].

Figure 3.23 demonstrates changes in tuning curve shape for a typical cell in the

auditory nerve fiber of a squirrel monkey [120]. Responses are plotted as a function

of frequency, for a number of different sound pressure levels. As the sound pressure

level increases, the frequency tuning becomes broader, developing a “shoulder” and

a secondary mode. Both cell and model show similar behavior, despite the fact that

we have not adjusted the parameters to fit these data: all weights in the model are

chosen by optimizing the independence of the responses to the ensemble of natural

sounds.

The model behavior arises because the weighted normalization signal is frequency-

dependent. At low input levels, this frequency dependence is inconsequential be-

cause the additive constant dominates the signal. But at high input levels, this

frequency dependence will modulate the shape of the frequency tuning curve that

is primarily established by the numerator kernel of the model.

To understand this behavior better, we plot the two components of the gain

control model, the squared excitatory kernel response and the suppressive sum of
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weighted squared responses of the denominator (figure 3.25). As expected, the sup-

pressive response is stronger at frequencies close to the optimal than at frequencies

farther away. This effectively serves to broaden the frequency tuning curve. In Fig-

ure 3.23, the high contrast secondary mode corresponds to frequency bands with

minimal normalization weighting. That is, even though the excitation level is also

low, for minimal values of σ, the ratio of the numerator and denominator still yields

a significantly high value.

3.2.3 Cell and Model Variations

As in the visual case, there are individual differences in responses of auditory nerve

fibers. One of the striking differences amongst individual responses is that auditory

nerve fibers are not frequency invariant. For example, when the center frequency is

relatively low, the fibers respond to high amplitudes by widening their tuning sensi-

tivity towards higher frequencies. This is different from the example in Figure 3.23,

in which the widening of tuning curve sensitivity was towards lower frequencies.

In some neurons, for mid-frequencies, the widening of tuning curves is symmetric

about the preferred frequency.

We simulate a new model neuron with a low center frequency (400 Hz). The

neighborhood consists of 18 frequency bands from 100Hz to 3300Hz and replicas

of all filters temporally shifted by 100, 200, and 300 samples. The optimization

procedure is performed over the same sound ensemble as in the previous examples.

Figure 3.25 demonstrates changes in tuning curve shape for a nerve fiber of a

squirrel monkey [120] with a low center frequency (200 Hz). As the sound pressure

level increases, the frequency tuning of the nerve fiber becomes broader towards
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Figure 3.25. Nonlinear changes in frequency tuning curves as a function of

sound pressure level low center frequency in auditory nerve fiber. Physiological

data from [120]. Tuning curve broadens towards high frequencies and saturates

at high levels. Maximum model response has been rescaled to match that of the
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high frequencies. Our model neuron does not behave the same in detail; the amount

of broadening in the auditory nerve fiber is significantly larger than in the model.

However, qualitatively we also obtain a broadening towards higher frequencies. The

model also yields a secondary shoulder to the right, similar to Figure 3.23, but in the

opposite direction. The direction of expansion in the model appears to be mostly

a property of the weights–the tuning curve broadens towards frequency bands with

small weighting. However, for very high or very low frequencies, ceiling effects can

also come into play.

A more detailed population study is needed to quantify individual difference be-

tween nerve fibers and model neuron behavior. We think our model does not exhibit

strong enough broadening of tuning curves, because the self-suppressive frequency

component is underestimated. We chose discrete time shifts in the optimization,

such that the time-shifted filters are roughly uncorrelated with the primary filter.

This is again a limitation of the optimization procedure.

3.3 Discussion

We have described a phenomenological nonlinear model for early sensory processing,

in which linear responses are squared and then divided by a gain control signal

computed as a weighted sum of the squared linear responses of neighboring neurons

and a constant. The form of this model is chosen to reduce the type of variance

dependencies that we have observed between responses of pairs of linear receptive

fields to natural signals (chapter 2). The parameters of the model (in particular,

the weights used to compute the gain control signal) are chosen to maximize the
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independence of responses to a particular set of signals.

We have demonstrated that the resulting model accounts qualitatively for a

range of sensory nonlinearities in “typical” cells. The model can account for non-

linearities in two different modalities, suggesting a canonical neural mechanism for

eliminating a type of statistical dependency prevalent in typical natural signals.

Throughout the chapter, we have examined a number of different neural be-

haviors. We have shown examples of saturation of response curves and rightward

shifts of response curves on a logarithmic scale due to the presence of a suppressive

mask (figures 3.5, 3.10, 3.21). The amount of rightward shift was determined in

the model by the strength of the divisive weights corresponding to the filters that

responded to the mask stimulus.

We have also demonstrated rough constancy of tuning curves (figure 3.7) versus

changes in tuning curves as a function of stimulus strength (figures 3.16, 3.23). The

ability of our model to account for nonlinear changes in tuning curve shape at dif-

ferent levels of input is particularly interesting. Such behaviors have been generally

interpreted to mean that the fundamental tuning properties of cells depend on the

strength of the input signal. But in our model, the fundamental tuning properties

are determined by a fixed linear receptive field, and are modulated by a divisive

gain control signal with its own tuning properties. Although such behaviors may

appear to be artifacts, our model suggests that they occur naturally in a system

that is optimized for statistical independence over natural signals.

Additionally, we have examined what appear to be more complex neural be-

haviors, arising in the model from interactions of excitation and suppression (fig-

ures 3.6, 3.12, 3.22). In particular, if the excitatory and suppressive components
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have some overlap in the model, then these components can interact to produce

rather interesting behaviors.

The model does not account for the data on a quantitative level. For example,

some of the effects we describe are weaker in the model neuron than in the cell.

This could arise from numerous factors, including the specific choice of optimization

procedure which does not incorporate self-suppression (chapter 2 discussion); the

choice of filters and filter neighborhood; the rectification power which was fixed at

2; and the stimulus ensemble which we optimized over. Some of the more technical

issues (such as optimization procedure) are also current topics of research in en-

gineering (e.g., [111, 165]). Additionally, there are quantitative variations among

individual cells, as illustrated in figure 3.17. For these reasons, we have attempted

to model qualitative behaviors that are rather typical in area V1 and in the auditory

nerve. We have also experimented with variations of the visual model using different

filters, neighborhoods, and optimization procedures, and these have yielded similar

results qualitatively [144, 129, 163]. Improvements in the optimization technique

together with a more detailed population study might generate more quantitative

comparisons between model and neural behavior.

The concept of gain control has been used previously to explain nonlinear be-

haviors of neurons. A number of auditory models have incorporated explicit gain

control mechanisms [84, 167, 59]. Visual models based on divisive normalization

have been developed to explain nonlinear effects in cortical area V1 within the

classical receptive field [64, 30]. The standard model assumes the response of each

neuron is divided by an equally weighted sum of all other neurons and an additive

constant. But data in the surround is not matched to an equally weighted normal-
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ization model. Cavanaugh et al. have shown that their surround data can still be

well fit to a divisive gain control formulation, with parameters that are allowed to

vary as a function of stimulus attributes such as orientation and spatial position

[33]. Our model utilizes a weighted sum for the normalization signal, and for the

first time demonstrates behaviors both inside and outside the classical receptive

field.

Our current model provides a functional description, and does not specify the

circuitry or biophysics by which these functions are implemented. The divisive

normalization computation is performed instantaneously and we have only modeled

mean firing rates. Divisive gain control behavior could potentially arise through a

number of mechanisms. For example, feedforward synaptic depression mechanisms

have been documented and have been shown to exhibit gain control properties (e.g.,

[1]). Although such mechanisms may account for suppressive V1 behaviors within

the classical receptive field, they seem unlikely to account for behaviors outside the

classical receptive field.

It has also been proposed that divisive gain control could result from shunting

inhibition driven by other neurons (e.g., [29]). In a shunting inhibition model,

the linear stage feeds into a circuit composed of a resistor and capacitor in parallel.

The divisive pool increases conductance of the resistor without introducing any

current at rest. This effectively results in a divisive gain control operation. It

has been controversial whether such increases in conductance actually occur in

neurons. But recently, a number of studies have reported increases in conductance

in V1 cells [26, 66, 4]. Interestingly, such increases in conductance are well tuned

for orientation, and are maximal at the preferred orientation of the cell [4]. These
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findings offer support to a divisive normalization model that is tuned for orientation,

consistent with the predominant surround suppression observed at the preferred

orientation of neurons in area V1. This type of implementation necessarily involves

recursive lateral or feedback connections, thus introducing temporal dynamics (see

[33] for the possible roles of feedback from higher cortical areas versus horizontal

connections in determining surround behaviors). Some researchers have described

recurrent models that can produce steady-state responses consistent with divisive

normalization in area V1 [64, 30, 91].

In the peripheral auditory system, outer hair cells have been implicated in gain

control [59]. The outer hair cells provide energy to traveling waves in the cochlear

partition. Gain control arises when the outer hair cell receptor potential is pushed

into its compressive regions. This in turn produces less energy into the incoming

signal, resulting in suppression as a function of stimulus strength. For stimulus fre-

quencies below the characteristic frequency, this process can occur as the traveling

wave passes through the characteristic region corresponding to the outer hair cell.

For stimulus frequencies above the characteristic frequency, the traveling wave can-

not physically reach the characteristic location, but presumably neighboring outer

hair cells can still change the gain in the outer hair cell amplification [173]. It is

also believed that outer hair cells cannot account for the full extent of two-tone

suppression observed in auditory nerve, suggesting the possibility that additional

mechanisms are in play [59].

Some of the gain control behaviors we describe may be attributed to earlier

stages of neural processing. Gain control is known to occur at the level of the

retina [134, 158], although selectivity for orientation does not arise before cortical
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area V1. In fact, Ruderman and Bialek [122] have suggested division by local

contrast as a means of maximizing marginal entropy, thus providing a functional

explanation for gain control in the retina. Our work differs conceptually in the

choice of statistical criteria (independence between filters, as opposed to marginal

statistics of one filter). As stated earlier, the behaviors we describe at the level of

the auditory nerve are largely attributed to outer hair cells, and similar behaviors

have been documented in recordings from basilar membrane.

Our model is based on a mechanism that is fundamentally suppressive, but a

number of authors have reported facilitative influences in vision from outside the

classical receptive field [87, 96, 61, 139]. Many of these facilitative effects might

be explained by the use of masking stimuli that inadvertently excite the receptive

field of the neuron (e.g., [43, 33]). We have encountered this issue throughout the

chapter: if center and surround mechanism are not well separated, then stimuli

placed in the surround can cause excitation of the numerator kernel in the divi-

sive normalization formulation. This is similar to the idea that masks inside the

classical receptive field with tuning close to the optimal can exert both excitation

and suppression (see [97] and figure 3.6); and masks in auditory nerve data with

tuning close to the optimal can exert both excitation and suppression ([46] and

figure 3.22). Facilitative effects might also be explained by dis-inhibition, in which

a third cell inhibits a second cell, thus releasing its inhibition of the recorded cell.

As mentioned above, our current model does not utilize a recurrent implementation

and thus cannot predict such effects.

There are a number of important directions for further refinement of the con-

nection between natural signal statistics and neuronal processing. We have opti-
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mized our model for a generic signal ensemble. The ensemble is small compared to

the signals an animal comes across over the course of evolution and development.

Furthermore, the signals are influenced by the biases of the photographer, the re-

searcher, and so on. Sensory neurons may have evolved to represent a broad class of

signals, or they might be specialized for processing particular classes of signals that

are important to an animal’s survival. For example, Rieke et al. have shown that

auditory nerve fibers in bullfrogs are much more suitable for coding noise shaped

to have a naturalistic amplitude spectrum of frog calls than broadband white noise.

Additionally, the specific sensory environment in which an animal is reared may

influence the neural representation. From a theoretical point of view, different

classes of signals may exhibit different statistical properties. Lewicki has demon-

strated that in an ICA analysis of natural sounds, the resulting linear filters vary

when optimized over animal sounds, human speech, or environmental sounds [82].

A mix of the above result in filters that resemble the gammatone representation.

In addition, we have lumped evolution and development into one fixed process.

But it is more likely that adjustment to signal statistics would occur over a number

of associated time scales, including evolution, development, learning, and multi-

ple adaptation processes. For example, some visual adaptation effects have been

explained by adjusting model parameters according to the statistical properties of

recent visual input [17, 162]. Specifically, Wainwright et al. have modeled adap-

tation with a divisive normalization model similar to ours. The weights are first

determined generically for an ensemble of images, but these are then adjusted ac-

cording to the statistics of the adapting stimuli [162]. Carandini et al. have shown

that adaptation to a plaid containing both the optimally oriented grating and a per-
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pendicular grating could increase the amount of cross-orientation suppression in V1

neurons [31]. Such a result is also consistent with an adaptive model, in which the

increased statistical dependency in the responses of orthogonally oriented neurons

would lead to an increase in the suppressive weights between them. Future work

should be aimed at testing more directly how variations in the statistical properties

of signals effect variations in the response properties of a neuron. This requires

construction of stochastic stimuli that vary across specific statistical properties.

A more complete theory also requires an understanding of which groups of neu-

rons are optimized for independence. A sensible assumption might be that each

stage of processing in the system takes the responses of the previous stage and

attempts to eliminate as much statistical redundancy as possible, within the lim-

its of its computational capabilities. It remains to be seen how much of sensory

processing can be explained using such a bottom-up criterion. Ultimately, it seems

that one must also consider the specific tasks, such as detection, recognition and

localization, that the organism must perform.

The relationship between the model and perception should also be explored. For

example, psychophysical experiments suggest that visual detectability is enhanced

along contours [53]. At first glance, this might appear to be inconsistent with our

model, in which neurons that lie along contours will suppress each other. But the

apparent contradiction is based on the unsubstantiated intuition that a reduction

in the neural responses implies reduced detectability. Presumably, any difference

in relative activity of neurons along the contour, as compared with the activity

of neurons in other regions, could be used for contour detection. More generally,

examination of the implications of our model for perception requires a method of
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extracting a percept from a population of neural responses. While this has not been

done for contour detection, we find it encouraging that other basic percepts have

been explained in the context of a population of neurons performing gain control

(e.g. detectability of a grating in the presence of a mask [54]; perceptual segregation

of visual textures [62]).

Finally, the work presented in the chapter has highlighted some of the difficul-

ties involved in disentangling the excitatory and suppressive components in neural

processing. This issue is commonly faced by physiologists. In some cases, excita-

tion and suppression appear to be overlapping in space or in time, as in the V1

experiments inside the classical receptive field and in the auditory nerve examples.

The experiments outside the classical receptive field that we utilized in the chap-

ter (and developed by [33]) were constructed to overcome this problem: there is

a significantly better spatial separation of excitation and suppression. Even then,

excitation and suppression are not entirely mutually exclusive. The recent exper-

imental results illustrated in figure 3.16 suggest that it could be more correct to

estimate the receptive field at low contrasts. However, contrasts that are too low

may lead to noisy measurements.

More generally, it would be useful to separate out excitation and suppression,

even when these components largely overlap. This calls for the difficult task of

developing computational techniques for characterizing excitation and suppression

in a neuron. In chapter 4, we revisit this issue in the context of a white noise

methodology and gain control model.
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CHAPTER 4

SPIKE-TRIGGERED COVARIANCE

CHARACTERIZATION

What kind of representations do sensory neurons form and how can we char-

acterize these representations quantitatively? To answer this question, one can

design experiments with stimuli that vary along specific parameters, and propose a

model that well explains the neural data. An alternative route, often referred to as

white noise analysis, is to present a neuron with random input that explore a wider

stimulus space, and then examine the subset of stimuli that elicit spikes. White

noise methods offer a quantitative framework for analyzing this “spike-triggered”

stimulus ensemble. The analysis can provide information about a neuron’s response

characteristics, typically assuming an underlying class of neural models. Ultimately,

one would like to come up with characterizations that are generically useful for de-

scribing the response properties of neurons.

Probably the most widely used form of neural characterization is the linear

receptive field. In the context of white noise analysis, one estimates an excitatory

linear kernel by computing the spike-triggered average (STA); that is, the mean
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stimulus that elicited a spike (e.g., [45, 74]). Under the assumption that spikes

are generated by a Poisson process with instantaneous rate determined by linear

projection onto a kernel followed by a static nonlinearity, the STA provides an

unbiased estimate of this kernel [36].

The STA is limited to finding a single axis representing the neuron. But we

would like a more general methodology for describing a subspace of axes that gov-

ern the response of a neuron. Recently a number of authors have developed an

interesting extension to white noise analysis for recovering subspaces [42, 5]. For

example, an excitatory subspace is recovered by estimating the covariance matrix

associated with the spike-triggered stimulus ensemble (i.e., the spike-triggered co-

variance or STC), followed by an eigenvector analysis to determine axes of maximal

variance that presumably drive the cell the most. The analysis does not specify a

functional form for how the retrieved axes operate together. So although covari-

ance is a linear operation, the axes may interact nonlinearly. Thus, STC offers a

general framework for recovering a subspace, and potentially exploring neuronal

nonlinearities within the subspace.

Sensory neurons exhibit striking nonlinear behaviors that are not explained by

fundamentally linear mechanisms. For example, the response of a neuron typically

saturates for large amplitude stimuli; the response to the optimal stimulus is often

suppressed by the presence of a non-optimal mask (e.g., [30]); and the kernel re-

covered from STA analysis may change shape as a function of stimulus amplitude

(e.g., [135, 35]). The third behavior signifies that STA analysis alone is often not a

sufficient model for representing the response of a sensory neuron.

A variety of these nonlinear behaviors can be attributed to gain control (e.g.,
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[135, 134, 84, 58, 64]), in which neural responses are suppressively modulated by

a gain signal derived from the stimulus. Although the underlying mechanisms

and time scales associated with such gain control are current topics of research,

the basic functional properties appear to be ubiquitous, occurring throughout the

nervous system.

Here we develop a white noise methodology for characterizing a neuron with gain

control. We show that a set of suppressive kernels may be recovered by finding the

eigenvectors of the spike-triggered covariance matrix associated with smallest vari-

ance. We apply the technique to electrophysiological data obtained from ganglion

cells in salamander and monkey retina, and recover a set of axes that are shown

to reduce responses in the neuron. Moreover, when we fit a gain control model to

the data using a maximum likelihood procedure within this subspace, the model

accounts for changes in the STA as a function of contrast.

4.1 Characterizing a Neuron with Gain Control

As in all white noise approaches, we assume that stimuli correspond to vectors, ~s, in

some finite-dimensional space (e.g., a neighborhood of pixels or an interval of time

samples). We assume a gain control model in which the probability of a stimulus

eliciting a spike grows monotonically with the halfwave-rectified projection onto an

excitatory linear kernel, b~k0 · ~sc, and is suppressively modulated by the fullwave-

rectified projection onto a set of linear kernels, |~kn · ~s|.

The method proceeds in three steps: (1) Estimating excitatory kernel with STA;

(2) Estimating suppressive subspace with STC; and (3) Fitting specific gain control
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model to data using maximum likelihood in the reduced subspace.

This approach can be generalized to cases in which the STA is approximately

zero (such as in complex cells), but in which the STC yields excitatory axes (see

extensions section). In addition, even when the STA exists, there may be more

than one excitatory kernel governing the neural response. Here we focus primarily

on cases in which the STA is meaningful, with the aim of understanding how the

STA works in the context of a suppressive subspace. This will also be relevant for

the retinal ganglion cell data in the chapter.

4.2 Estimating Excitatory Kernel with STA

First, we recover the excitatory kernel, ~k0. This is achieved by presenting spherically

symmetric input stimuli (e.g., Gaussian white noise) to the neuron and comput-

ing the STA. Figure 4.1 provides a geometric depiction of the STA analysis. The

analysis is depicted along only two dimensions. This can be interpreted as corre-

sponding, for example, to stimulus intensity at two different times. Alternatively,

we may interpret the axes to correspond to the projection of the stimuli onto two

abstract kernels within a high dimensional space.

STA correctly recovers the excitatory kernel, under the assumption that each

of the suppressive kernels are orthogonal (or equal) to the excitatory kernel. The

proof is essentially the same as that given for recovering the kernel of a linear

model followed by a monotonic nonlinearity [36]. In particular, any stimulus can

be decomposed into a component in the direction of the excitatory kernel, and a

component in a perpendicular direction. This can be paired with another stimu-
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Figure 4.1. a, Geometric depiction of spike-triggered averaging with two-

dimensional stimuli. Black points indicate raw stimuli. White points indicate

stimuli eliciting a spike, and the STA (black vector), which provides an estimate

of ~k0, corresponds to their center of mass. b, Based on symmetry argument, STA

correctly recovers excitatory kernel if suppressive kernels are orthogonal or equal to

excitatory kernel. Plotted are two stimulus vectors symmetric about the excitatory

kernel (white). See main text for sketch of proof.
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lus that is identical, except that its component in the perpendicular direction is

negated. The two stimuli are equally likely to occur in a spherically Gaussian stim-

ulus set (since they are equidistant from the origin), and they are equally likely

to elicit a spike (since their excitatory components are equal, and their rectified

perpendicular components are equal). Their vector average lies in the direction of

the excitatory kernel. Thus, the STA (which is an average over all such stimuli,

or all such stimulus pairs) must also lie in that direction. In a subsequent section

we explain how to recover the excitatory kernel when it is not orthogonal to the

suppressive kernels.

4.3 Estimating Suppressive Subspace with STC

Next, we recover the suppressive subspace, assuming the excitatory kernel is known.

Consider the stimuli lying on a plane perpendicular to this kernel. These stimuli

all elicit the same response in the excitatory kernel, but they may produce different

amounts of suppression. Figure 4.2 illustrates the behavior in a three-dimensional

stimulus space, in which one axis is the excitatory kernel, and the two-dimensional

plane represents a subspace perpendicular to the excitatory kernel. Within this

plane, one axis is assumed to be suppressive. The distribution of raw stimuli on

the plane is spherically symmetric about the origin (because the raw stimuli are

spherically symmetric, and thus remain so when projected onto the two axes of

the plane). But for stimuli eliciting a spike, any distribution that deviates from

spherical symmetry is potentially indicative of the response properties of the neuron.

We are specifically interested in the scenario plotted in the figure, in which the
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distribution of stimuli eliciting a spike is elliptical and narrower (i.e., lower variance)

along one of the axes. The narrow axis corresponds to a suppressive direction:

stimuli that have a large component along this direction are less likely to elicit a

spike.

Stated differently, we limit the problem of finding suppressive axes, to that of

finding axes in which the variance of the response of a neuron along those axes is

reduced (relative to the variance of random spherical stimuli). We prove in the

end of the chapter that if the response of a neuron is given by a projection onto a

subspace followed by a general nonlinearity (e.g., gain control), then for a stimulus

direction outside this subspace, the variance of the response of the neuron will

be equal to that of the random spherical stimuli. Thus, axes that have variance

below what is expected from random stimuli, are truly indicative of the response

properties of the neuron.

This behavior is easily generalized from the plane in the figure to the entire

stimulus space. If we assume that the suppressive axes are fixed, then we expect

to see reductions in variance in the same directions for any level of numerator

excitation. In practice, we do not force the stimuli to elicit constant response in

the excitatory kernel, resulting in perpendicular planes at different distances from

the excitatory kernel, but all with the same axes.

Given this behavior of the spike-triggered stimulus ensemble, we can recover the

suppressive subspace using principal component analysis. We construct the sample

covariance matrix of the stimuli eliciting a spike:

C =
1

Ns − 1

∑

~sspike

~s ~sT , (4.1)
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k0

Figure 4.2. Geometric depiction of spike-triggered covariance analysis of sup-

pressive axes. Shown are a set of stimuli lying on a plane perpendicular to the

excitatory kernel, ~k0. Black points indicate raw stimuli. White points indicate

stimuli eliciting a spike. Within the plane, stimuli eliciting a spike are concentrated

in an elliptical region. The minor axis of the ellipse corresponds to a suppressive

stimulus direction: stimuli with a significant component along this axis are less

likely to elicit spikes. The stimulus component along the major axis of the ellipse

has no influence on spiking.
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Figure 4.3. Estimation of kernels from a simulated model (equation 4.2). Left:

Model kernels. Right: Sorted eigenvalues of covariance matrix of stimuli elicit-

ing spikes (STC). Three eigenvalues fall significantly below the others. Middle:

STA (excitatory kernel) and eigenvectors (suppressive kernels) associated with the

lowest eigenvalues.

where Ns is the number of spikes. To ensure the estimated suppressive subspace

is orthogonal to the estimated ~k0 (as in Figure 4.2), the stimuli ~sspike are first

projected onto the subspace perpendicular to the estimated ~k0. The principal axes

(eigenvectors) of C that are associated with small variance (eigenvalues) correspond

to directions in which the response of the neuron is modulated suppressively.

4.4 Estimating Suppressive Subspace in Simulation

We illustrate the technique on simulated data. The goal of simulation is to probe

the temporal response properties of a model neuron by presenting full-field white

noise stimuli at every time frame. The simulation is easily extendible to space-

time subspaces (using bars for one dimension of space; or pixels for two dimensions

138



of space). However, the temporal example serves as a reference for most of the

physiological data in the chapter.

The model neuron consists of a temporal receptive field, and a suppressive sub-

space made up of three orthogonal temporal kernels. The kernels are randomly

chosen, and then filtered such that more emphasis is placed on recent time (i.e.,

to make them look more realistic). Each kernel is restricted to a 60 dimensional

space. Thus, in the analysis, stimuli preceding a spike are taken over a 60-segment

time window.

Spikes are generated using a Poisson process with mean rate determined by a

specific form of gain control:

P (spike|~s) =
b~k0 · ~sc

2

∑

n wn|~kn · ~s|
2
+ σ2

. (4.2)

The goal of simulation is to recover excitatory kernel ~k0, the suppressive subspace

spanned by ~kn, the weights wn, and constant σ.

Figure 4.3 shows the original and estimated kernels for a model simulation with

80K input samples and 8.374K spikes. First, we note that STA recovers an accurate

estimate of the excitatory kernel. Next, consider the sorted eigenvalues of C, as

plotted in Figure 4.3. The majority of the eigenvalues descend gradually (the

covariance matrix of the white noise source should have constant eigenvalues, but

remember that those in Figure 4.3 are computed from a finite set of samples).

The last three eigenvalues are significantly below the values one would obtain with

randomly selected stimulus subsets. The eigenvectors associated with these lowest

eigenvalues span approximately the same subspace as the suppressive kernels 1

1Due to the non-uniqueness of the eigenvector decomposition, one can also get out mixtures
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Figure 4.4. Estimation of kernels for a salamander ganglion cell. Left: Retrieved

kernels from STA and STC analysis of ganglion cell data from a salamander retina

(cell 1999-11-12-B6A). Right: sorted eigenvalues of the spike-triggered covariance

matrix, with corresponding eigenvectors. Low eigenvalues correspond to suppres-

sive directions, while other eigenvalues correspond to arbitrary (ignored) direc-

tions. Raw stimulus ensemble was whitened prior to analysis and low-variance

axes under-represented in stimulus set. Therefore, only 30 out of 60 input dimen-

sions are plotted here.

In contrast, eigenvectors corresponding to eigenvalues in the gradually-descending

region appear arbitrary in their structure and cover the full temporal range.

4.5 Estimating Suppressive Subspace in Retinal Ganglion

Cells

Retinal ganglion cells exhibit rapid [135, 158] as well as slow [35, 147, 78] gain

control; slow gain control has been observed over tens of seconds, and fast gain

of the original suppressive kernels. In the example simulation, weights are uniquely chosen.
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control over tens of milliseconds. We demonstrate that we can recover a rapid gain

control signal by applying the method to data from retinal ganglion cells.

Data were recorded by Chander and Chichilnisky from a planar array of ex-

tracellular microelectrodes [35]. The input sequence in the experiments consists of

either full-field 33Hz flickering binary white noise refreshed every two frames (sala-

mander) or full-field 33Hz/66Hz flickering Gaussian white noise refreshed every

frame (monkey). Some of the data were recorded with stimuli of a single contrast,

and others with multiple contrasts. We define the stimulus vectors in the analysis

over a 60-segment time window. Since the raw stimuli are finite in number (and

sometimes binary) they are not spherically distributed. To correct for this, we dis-

card low-variance axes and whiten remaining axes. In the Salamander data, half

the axes are disregarded, due to the fact that the stimuli are refreshed every two

frames.

We first demonstrate the technique on a salamander retinal ganglion cell. The

input sequence consists of 80K time samples of full-field 33Hz flickering binary

white noise (contrast 8.5%). Figure 4.4 depicts the kernels estimated from the 623

stimulus vectors eliciting spikes. Similar to the model simulation, the eigenvalues

gradually fall off, but four of the eigenvalues appear to drop significantly below

the rest. To make this more concrete, we test the hypothesis that the majority

of the eigenvalues are consistent with those of randomly selected stimulus vectors,

but that the last 4 eigenvalues fall significantly below this range. We perform a

Monte Carlo simulation, drawing (with replacement) random subsets of 623 stimuli

from the full set of raw stimuli. More specifically, since the position of the spikes

(and possible stimulus correlations for adjacent spikes) may result in a distribution
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slightly different from random, we test the hypothesis that that the majority of the

eigenvalues are consistent with those of randomly selected stimulus vectors with

the same inter-spike interval. This does not make any difference for the particular

cell shown here because the spike rate is so low, but makes a minor difference for

other examples in the chapter.

We also randomly select 4 (orthogonal) axes, representing a suppressive sub-

space, and project this subspace out of the set of randomly chosen stimuli. We

then compute the eigenvalues of the sample covariance matrix of these stimuli. We

repeat this 1000 times, and estimate a 95 percent confidence interval for each of

the eigenvalues. The figure shows that the first eigenvalues lie roughly within the

confidence interval, but the 4 lowest eigenvalues drop significantly below. In prac-

tice, we repeat this process in a nested fashion, assuming initially no directions

are significantly suppressive, then one direction, and so on up to four directions

(Figure 4.5).

These low eigenvalues correspond to eigenvectors that are concentrated in recent

time (as is the estimated excitatory kernel). The remaining eigenvectors appear

to be arbitrary, spanning the full temporal window. We emphasize that these

kernels should not be interpreted to correspond to receptive fields of individual

neurons underlying the suppressive signal, but merely provide an orthogonal basis

for a suppressive subspace. The derivative-like appearance of some of the low-

eigenvalue eigenvectors could potentially be explained by the fact that PCA forces

the recovered axes to be orthogonal (for example, consider a time-shifted version

of the same kernel forced to be orthogonal).

Figures 4.6 and 4.7 illustrate more examples of low eigenvalues and correspond-
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Figure 4.5. Nested Monte Carlo hypothesis testing of number of suppressive axes

in ganglion cell data from a salamander retina (1999-11-12-B6A). Gray solid line

corresponds to 95 percent confidence interval, assuming 0 suppressive axes (left),

2 suppressive axes (middle), and 4 suppressive axes (right). If the hypothesis is

correct, eigenvalues to the left of the dashed line should lie within the confidence

interval. For the assumption of 0 or 2 suppressive axes, some eigenvalues to the

left of the dashed line lie below the confidence interval, indicating the hypothesis

is incorrect. In contrast, for the assumption of 4 suppressive axes, eigenvalues to

the left of the dashed line lie roughly within the confidence interval.

ing eigenvectors in salamander (including a summary of the original cell) and mon-

key cells. These differ in the number of suppressive kernels and their variance (even

among the same species), and hence the presumed suppressive strength. The dif-

ferences in the slopes of the gradually descending eigenvalues (and how tightly they

are around 1, and the width of the confidence interval) is due to the number of

spikes, which varies from cell to cell. Note that in all cells, the suppressive kernels

are concentrated in recent time, sometimes extending farther in time than the STA.

We now verify that the recovered STA axis is in fact excitatory, and the kernels

corresponding to the lowest eigenvalues are suppressive. Figure 4.8a shows a scatter

plot of the stimuli projected onto the excitatory axis versus an arbitrary axis in

the original salamander cell. Spikes are seen to occur only when the component
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Figure 4.6. Examples of estimated kernels in salamander ganglion cells. Left: Re-

trieved kernels from STA and STC analysis of ganglion cell data from salamander,

with binary white noise stimuli. Right: sorted eigenvalues of the spike-triggered

covariance matrix, with corresponding eigenvectors. Low eigenvalues correspond

to suppressive directions, while other eigenvalues correspond to arbitrary (ignored)

directions. a, 1999-11-12-B6A (from previous figures, 623 spikes out of 80K input

samples) b, 1999-01-19-G2A (8882 spikes/181290 input samples)
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Figure 4.7. Examples of estimated kernels in monkey ganglion cells. Left: Re-

trieved kernels from STA and STC analysis of ganglion cell data from monkey,

with Gaussian white noise stimuli. Right: sorted eigenvalues of the spike-triggered

covariance matrix, with corresponding eigenvectors. Low eigenvalues correspond

to suppressive directions, while other eigenvalues correspond to arbitrary (ig-

nored) directions. a, 2001-09-29-1-E6A (36436 spikes/284745 input samples) b,

2001-09-29-0-B5A (24350 spikes/284745 input samples) c, 1999-01-28-B1A (17477

spikes/84135 input samples)
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Figure 4.8. Scatter plots of stimuli projected onto estimated kernels for sala-

mander ganglion cell (1999-11-12-B6A). Black points indicate the raw stimulus

set. White points indicate stimuli eliciting a spike. a, Projection of stimuli onto

estimated excitatory kernel vs. arbitrary kernel. b, Projection of stimuli onto an

estimated suppressive kernel vs. arbitrary kernel.

along the excitatory axis is high, as expected. Figure 4.8b is a scatter plot of the

stimuli projected onto one of the suppressive axes vs. an arbitrary (ignored) axis.

The spiking stimuli lie within an ellipse, with the minor axis corresponding to the

suppressive kernel. This is exactly what we would expect in a suppressive system,

such as that plotted in Figure 4.2.

Figure 4.9 illustrates additional examples of scatter plots from monkey cells.

The excitatory scatter plots (even within species) differ in the threshold at which

the neuron spikes (also seen in salamander); and the suppressive scatter plots differ

in the amount of variance reduction of the minor axis of the ellipse.
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Figure 4.9. Scatter plots of stimuli projected onto estimated kernels for monkey

ganglion cells. Top, Monkey retina (cell 2001-09-29-E6A). Bottom, Monkey retina

(cell 2001-09-29-0-B5A).
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4.6 Fitting Specific Model Within Reduced Subspace

We have recovered an excitatory kernel and suppressive subspace. It is not clear,

however, in what way the suppressive kernels effect the excitatory response of the

neuron. A reduction in variance (as seen in the eigenvalues and scatter plots) may

be caused by a number of mechanisms, including two basic kinds of suppression:

subtraction or division. Figures 4.10 and 4.11 illustrate that the suppressive kernels

are significantly more divisive than subtractive. This is demonstrated by computing

the mean spike count for the excitatory kernel response, conditioned on values of a

suppressive kernel response in two bins. The top curve (low values of suppressive

kernel response) is better related to the bottom curve (high values of suppressive

kernel response) by division than by subtraction. This is consistent with previous

notions of gain control in retinal ganglion cells (e.g., [158, 134]).

Based on these observations, we now fit a specific gain control model to the

data:

P (spike|~s) =
b(~k0 − α) · ~sc

p

(
∑

n wn|~kn · ~s|
2
)p/2 + σp

(4.3)

where the exponent p is incorporated to allow for more realistic contrast-response

functions; and α allows for spikes when response values are below zero (see for

example monkey cell in Figures 4.9b and 4.10b).

We recover the scalar parameters of this specific model (p, α, wn and σ) by

selecting them to maximize the likelihood of the spike data according to equa-

tion (4.3):

{p, α, ~w, σ} = arg max
p,α,~w,σ

∏

k

P
(

spike|~Sk

)

∏

j

(1 − P
(

spike|~Sj

)

) (4.4)
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Figure 4.10. Division versus subtraction in salamander retinal ganglion cells.

Mean spike count for the excitatory kernel response, conditioned on two different

ranges of suppressive kernel response in Salamander cells. Responses of suppressive

kernel are divided into two bins of equal number of stimuli. The top curve is fit to

the bottom curve by minimizing the mean squared error of a divisive scalar (left)

and subtractive scalar (right). In the subtractive model, we only consider points

in the two curves whose difference is above a threshold, yielding slightly better

fits than a pure subtractive model. In all cells, the divisive fit produces a smaller

mean squared error than the subtractive fit. a, Salamander (1999-11-12-B6A).

Division: scalar 0.2815, mean squared error 2.4422e-05; Subtraction: scalar .0309,

mean squared error .0215. b, Salamander (1999-01-19-G2A). Division: scalar 0.85,

mean squared error 3.9861e-04; Subtraction: scalar 0.0249, mean squared error

0.0041.
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Figure 4.11. Division versus subtraction in monkey retinal ganglion cells. Mean

spike count for the excitatory kernel response, conditioned on two different ranges

of suppressive kernel response in Monkey cells (analogous to Figure 4.10) a, Mon-

key (2001-09-29-0-B5A) Division: scalar 0.7312, mean squared error 0.0013; Sub-

traction: scalar .0841, mean squared error .0696. b, Monkey (2001-09-29-1-E6A).

Division: scalar 0.8289, mean squared error 2.3385e-04; Subtraction: scalar .0275,

mean squared error .0014. c, Monkey (1999-01-28-B1A) Division: scalar 0.809,

mean squared error 0.0047; Subtraction: scalar .0834, mean squared error .0105.
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Note that a direct maximum likelihood solution on the raw data would have been

impractical due to the high dimensionality of the stimulus space. In the subsequent

section, we use this technique to recover a specific model for ganglion cells. But

we first draw the attention of the reader to a potential problem with the method

described thus far for recovering the kernel subspace.

4.7 Correcting for Bias in Kernel Estimates and Explaining

Changes in the STA

The kernels in the previous section were all recovered from stimuli of a single con-

trast. However, when the STA is computed in a ganglion cell for low and high

contrast stimuli, the recovered kernels typically differ in shape ([35], and see fig-

ure 4.12). This would appear inconsistent with the method we describe, in which

the STA is meant to provide an estimate of a single excitatory kernel. This behavior

can be explained by assuming a model of the form given in equation 4.3, and in

addition dropping the constraint that the gain control kernels are orthogonal (or

identical) to the excitatory kernel.

First we show that when the orthogonality constraint is dropped, the STA es-

timate of the excitatory kernel is biased by the gain control signal. Consider a

situation in which a suppressive kernel contains a component in the direction of

the excitatory kernel, ~k0. We write ~kn = α~k0 + ~k′

n, where ~k′

n is perpendicular to

the excitatory kernel. Then, for example, a stimulus ~s = ~k0 + β~k′

n, with β > 0,

produces a suppressive component along ~kn equal to α||~k0||
2 + β||~k′

n||
2, but the
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Figure 4.12. Change in STA kernels for different contrasts in salamander retinal

ganglion cell. STA kernels derived from salamander ganglion cell spikes for 8.5

percent and 32 percent contrast stimuli (1999-11-12-B6A). Input stimuli are full-

field 33Hz flickering binary white noise. Kernels are normalized to unit energy.

Note the change in kernel shape as a function of contrast, specifically larger onset

latency and slower timecourse at low contrast.

corresponding paired stimulus vector ~s = ~k0 − β~k′

n produces a suppressive compo-

nent of α||~k0||
2 − β||~k′

n||
2. Thus, the two stimuli are equally likely to occur but not

equally likely to elicit a spike. As a result, the STA will be biased in the direction

−~k′

n. Figure 4.13 illustrates an example in which a non-orthogonal suppressive axis

biases the estimate of the STA.

Now consider the model in equation 4.3 in the presence of a non-orthogonal

suppressive subspace. Note that the bias is stronger for larger amplitude stimuli

because the constant term σ2 dominates the gain control signal for weak stimuli.

Indeed, in chapter 3 we have hypothesized that changes in receptive field tuning

can arise from divisive gain control models that include an additive constant.

Since suppressive axes bias the STA kernel estimate away from the true exci-

tatory kernel, one can try and use the full recovered subspace to obtain a better
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k0

�����
 estimate

ksupp

Figure 4.13. Demonstration of estimator bias. When a gain control kernel is

not orthogonal to the excitatory kernel, the responses to one side of the excitatory

kernel are suppressed more than those on the other side. The resulting STA

estimate is thus biased away from the true excitatory kernel, ~k0.
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Figure 4.14. ML retrieved model for salamander cell (1999-11-12-B6A). Remain-

ing model parameters are: p = 7.18, σ = 0.4126 and k = 0.
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Figure 4.15. ML estimated model producing changes in the STA as a function of

contrast for salamander retinal ganglion cell. Changes in the STA for 8.5 percent

and 32 percent contrast in salamander cell (1999-11-12-B6A). Input stimuli are full-

field 33Hz flickering binary white noise. Left, STA kernels derived from simulated

spikes using ML-estimated model. Right, STA kernels derived from ganglion cell

spikes (same as Figure 4.12). Kernels are normalized to unit energy.
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Figure 4.16. Data and ML retrieved model changes in the STA for different

contrasts in salamander retinal ganglion cells. Input stimuli are full-field 33Hz

flickering binary white noise. a, 1999-11-12-B6A. In the data, 8.5 percent contrast

resulted in 623 spikes with spike rate of 0.0078; and 32 percent contrast in 1677

spikes with spike rate of 0.0404. Remaining model parameters are: p = 7.18,

σ = 0.4126, k = 0. b, 1999-01-19-G2A. In the data, 16 percent contrast resulted

in 8074 spikes with spike rate of 0.0447; and 32 percent contrast in 8877 spikes with

spike rate of 0.0490. Remaining model parameters are: p = 3.9206, σ = 1.6712,

k = −0.6126. Kernels are normalized to unit energy. Error bars are standard

deviations computed by boot-strapping 1000 times from the set of stimuli eliciting

spikes.
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Figure 4.17. Data and ML retrieved model changes in the STA for different

contrasts in monkey ganglion cells. Input stimuli are full-field 33Hz flickering

Gaussian white noise. a, 1999-01-28-A4A. In the data, 24 percent contrast resulted

in 25778 spikes with spike rate of 0.2309; and 48 percent contrast in 23346 spikes

with spike rate of 0.2776. Remaining model parameters are: p = 2.7687, σ =

1.8504, α = −0.9914 b, 1999-01-28-B1A. In the data, 24 percent contrast resulted

in 18867 spikes with spike rate of 0.1690; and 48 percent contrast in 17477 spikes

with spike rate of 0.2078. Remaining model parameters are: p = 2.7580, σ = 1.88,

α = −0.8857 c, 1999-01-28-D2A. In the data, 24 percent contrast resulted in 7623

spikes with spike rate of 0.0683; and 48 percent contrast in 9466 spikes with spike

rate of 0.1125. Remaining model parameters are: p = 2.3809, σ = 1.0016, α = 0.

Error bars are standard deviations computed by boot-strapping 1000 times from

the set of stimuli eliciting spikes.
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estimate of the excitatory kernel. Specifically, we assume that the true excitatory

kernel lies within the subspace spanned by the estimated (biased) excitatory and

suppressive kernels. So, assuming a particular gain control model, we maximize

the likelihood of the data, but now allowing both the excitatory and suppressive

kernels to move within the subspace spanned by the initial estimated kernels. The

resulting suppressive kernels need not be orthogonal to the excitatory kernel.

We maximize the likelihood of the full two-contrast data set using the model

described by equation (4.3). The subspace is given by the STA and STC retrieved

from the high contrast data (since the high contrast suppressive kernels are typically

more salient than the low contrast kernels). The excitatory axis is initially set to

the STA and the suppressive axes are set to the low-eigenvalue eigenvectors of

the STC, along with the STA (e.g., to allow for self-suppression). But during the

fitting procedure, the excitatory and suppressive axes are allowed to take on any

linear combination of the original STA and STC estimates. The recovered axes,

weights and parameters are shown in Figure 4.14. The recovered suppressive axes

typically extend farther in time (preceding a spike) than the recovered excitatory

axis. Once again, these suppressive axes should not be interpreted as individual

neurons. Whereas the axes recovered from the STA/STC analysis are orthogonal,

the axes determined during the maximum likelihood stage need not be (and in the

data example are not) orthogonal.

Figure 4.15 demonstrates that the fitted model accounts for the change in STA

observed at different contrast levels. Specifically, we simulate responses of the

model (equation (4.3) with Poisson spike generation) on each of the two contrast

stimulus sets, and then compute the STA based on these simulated spike trains.
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Figures 4.16 and 4.17 demonstrate similar results for additional salamander and

monkey cells. Although the fitted model is based on a single fixed excitatory kernel,

the model exhibits a change in STA shape as a function of contrast very much like

the ganglion cell data.

4.8 Extensions

We have limited the discussion thus far to recovering a suppressive subspace. But

in addition to low-variance axes, the analysis can recover high-variance axes (which

we will denote as excitatory axes). Excitatory axes are detected in some ganglion

cells, as demonstrated in figure 4.18,a. A scatter plot of the projection onto the STA

versus the projection onto the STC excitatory axis reveals an interesting shape; one

that resembles a portion of an annulus (figure 4.18,b). We are still in the process

of analyzing those neurons with excitatory axes and formulating a more generalized

characterization.

In addition, we have limited the discussion to full-field stimuli that vary only in

time. But the method can be used more generally to probe spatio-temporal dimen-

sions. Preliminary data gathered by Rust and Movshon in area V1 (unpublished)

reveal suppressive axes in one dimension of space and time in complex direction-

selective cells (Figure 4.19). The stimuli presented to the neuron are randomly

chosen bars. The STA is close to zero. This can occur, for example, if there are

equally excitatory axes symmetric about the origin. Then, a stimulus and its re-

versed polarity (which are equally likely to occur in spherical input) are equally

likely to elicit a spike along each of these axes. Thus, the stimuli eliciting spikes
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along these axes will average to zero. The STC, in contrast to the STA, can detect

axes that are symmetric about the origin. The STC analysis for this cell retrieves

a number of non-arbitrary axes, both excitatory and suppressive. The excitatory

axes are consistent with Touryan et al. [152], in which each pair of kernels obtained

from STC analysis are approximately 90 degrees out of phase. This is expected

for complex cells, which respond roughly equally to counter-phase gratings. But in

addition to Touryan’s result on complex cells, the method also detects a suppressive

subspace. The nature of the suppression, and whether it is divisive or subtractive,

is yet to be determined.

4.9 Discussion

We have described a spike-triggered covariance method for characterizing a neuron

with a suppressive subspace (and specifically, gain control). We have demonstrated

the plausibility of the technique through simulation and analysis of neural data. We

have shown that under a gain control model, axes of low variance can reveal infor-

mation about the response properties of neurons. In addition, this type of model

can explain the observed biases in computing the STA under different contrast

levels.

The suppressive axes recovered from retinal ganglion cell data appear to be

significant because: (1) As in the model simulation, a small number of eigenvalues

are significantly below the rest; (2) The eigenvectors associated with these axes

are concentrated in a temporal region immediately preceding the spike, unlike the

remaining axes; (3) Projection of the multi-dimensional stimulus vectors onto these
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Figure 4.18. Facilitation in monkey retinal ganglion cell (2002-05-03-0-B7A).

a, Left: Kernels from STA and STC analysis. STC analysis reveals excitatory

and suppressive kernels. Right: Sorted eigenvalues of covariance matrix of stimuli

eliciting spikes. b, Scatter plots of stimuli projected onto recovered axes.
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Figure 4.19. Estimated kernels in V1 direction selective complex cell. Input

stimuli are 32 bars of binary white noise, and the stimuli preceding a spike are

taken over a 16-segment time window. Thus, the full stimulus dimensionality over

time and one dimension of space is 512. There are 32441 spikes in the analysis.

a, Left, Kernels from STA and STC analysis. STC analysis reveals excitatory and

suppressive kernels. Each pair is approximately 90 degrees out of phase. Right,

Sorted eigenvalues of covariance matrix of stimuli eliciting spikes. b, Sum of kernel

energies of excitatory and suppressive kernels.
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axes reveal reductions of spike probability; (4) The full model, with parameters

recovered through maximum likelihood, explains changes in STA as a function of

contrast.

Models of retinal processing often incorporate gain control [135, 134, 158, 78, 90].

We have shown for the first time how one can use white noise analysis to recover a

gain control subspace directly from a neuron. The kernels defining the suppressive

subspace correspond to relatively short timescales of milliseconds. This appears

consistent with the rapid gain control model of Victor [158], in which contrast ad-

justs retinal dynamics with a time constant of 15 milliseconds. In Victor’s model,

a feedback gain signal is formed from a lowpass filtered version of the rectified re-

sponse, and is used to modulate the neural response. Victor’s model is also capable

of explaining temporal changes in the STA. It is difficult, however, to compare

Victor’s model directly to our characterization: his model consists of a series of

dynamical (and sometimes) nonlinear filter descriptions; our characterization, in

contrast, defines an input output relationship.

Slow gain control has also been documented in retinal ganglion cells [35, 147, 78].

An increase in contrast typically results in the reduction of the firing rate (and STA

amplitude) over the course of several seconds. The fact that we do not see evidence

for slow gain control in the analysis might indicate that these signals do not lie

within a low-dimensional stimulus subspace. For example, if the slow gain is set

by many axes over a significant temporal window, one might expect to see many

slightly suppressive axes.

Our analysis is sensitive to the constraint that the input stimuli should be

spherically symmetric. In particular, the proofs in the chapter for both the STA and
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STC analysis rely on spherical symmetry. All of the salamander stimuli were binary.

Binary stimuli can potentially introduce artifacts because they do not spherically

explore the input space. We partially corrected for this by whitening the input,

which makes the covariance structure sphered; but this cannot in principle make

the data entirely spherical. For the salamander binary data, it is possible that

artifacts may have mixed in with the true suppressive axes. We believe this did

not substantially effect the results. In particular, the ML fit takes into account

both the stimuli that elicited spikes and those that did not (as opposed to the STC

analysis, which is performed only on the stimuli eliciting spikes). As a result, the

ML stage is unlikely to include artifactual axes, because suppressive axes will be

those that really brought about less spikes (as opposed to axes that were absent

from the raw stimulus set). This was also reflected in the results of the ML fit: even

for the binary stimuli, the full ML model could explain the changes in the STA as a

function of contrast. Nevertheless, future experiments should clearly be performed

with stimuli that are spherically symmetric. Indeed, this will be required if one

wishes to make a thorough comparison across cells and species.

The model underlying the analysis is a phenomenological description of the

response of a neuron. Thus, the analysis is not capable of distinguishing between

physiological mechanisms that could underlie gain control behaviors. The model

assumes a Poisson spiking mechanism. We stress that even though the complete

model is able to account for changes in the STA shape as a function of contrast,

this does not indicate that the real spiking mechanism of the retinal ganglion cells

is Poisson. If spikes are generated according to a Poisson process, then each spike

should be independent of previous spikes. But spike trains analyzed in different
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regions of the brain indicate that spikes are not independent. For example, Troy

and Robson found that the interval statistics of spike trains in retinal ganglion cells

are gamma distributed (and not exponentially distributed, as would be expected

in a Poisson process) [154]. A more realistic spike generation mechanism should

take into account refractory period, as well as larger timescale dependencies on the

previous spike. Other modeling work in the lab has suggested that an integrate

and fire spike generation can also produce temporal changes in the STA [108]. It

will be interesting to understand how much of the changes we describe here may

be attributed to spiking mechanism. Physiological mechanisms underlying gain

control may also be due to internal biochemical adjustments, synaptic depression,

and shunting inhibition driven by other neurons.

The methodology will not recover all forms of suppression in a neuron. The

measurements assume that the response of a neuron is suppressively modulated by

a projection onto a subspace, and that this suppression is revealed by a reduction in

the variance of the response. The analysis is second-order, and thus is blind to sup-

pressive axes that do not effect the variance of the neural response. In particular,

the analysis will not be able to pick out any anti-symmetric responses. That is, the

analysis is blind to a mechanism that preserves the second order aspects of the re-

sponse, but changes other aspects, such as the skew or kurtosis. A more generalized

approach would be to use measures from information theory to examine arbitrary

changes between the distributions of the raw stimuli and spike-triggered stimuli. For

example, the Kullback-Leibler divergence provides a quantitative measure for how

different two distributions are. The limitation in using a more generalized approach

is, of course, that experimentally there is not enough data to describe any arbitrary
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distribution in a high dimensional space. Therefore, simplifying assumptions are

required (see for example, [104]).

Even in the spike-triggered covariance approach, an important theoretical ques-

tion is how much spike data is actually needed to detect suppressive axes. For ex-

ample, in some cells (salamander cell 1999-11-12-B6A) only hundreds of spikes were

sufficient to detect suppressive axes; but other cells required thousands of spikes.

The amount of spike data required largely depends on the strength of suppression

in the neuron, and the dimensionality of the stimulus space to be recovered.

Figure 4.20 illustrates the error in kernel estimation, as a function of the variance

reduction of a suppressive axis in simulation. We assume a suppressive kernel

that reduces the response variance by a factor of either 0.16 or 0.85. We run a

Monte carlo simulation, selecting Gaussian samples and projecting them onto a

60-dimensional space. All the vectors in the space have variance of 1 and only one

of the vectors has reduced variance (i.e., the suppressive kernel). Therefore, all

but one of the eigenvalues will be distributed around 1, and we are interested in

how many samples are required to significantly pick out the suppressive eigenvalue.

First, note that in both cases for large error, the suppressive eigenvalue is within the

range of the gradually descending eigenvalues of the random vectors, and cannot

be recovered. Thus, the suppressive eigenvalue is undistinguishable from a typical

axis eigenvalue. For smaller errors (and larger sample size) the spread of gradually

descending eigenvalues becomes tighter and the suppressive eigenvalue becomes

distinct. The STC analysis can only detect suppressive axes that are below the

spread of eigenvalue variances expected for random axes. In addition, the number of

samples required to detect a suppressive axis depends dramatically on the variance
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Figure 4.20. Estimation error as a function of sample size. For each sample

size, Gaussian stimuli are projected onto a 60-dimensional space. The space is

a an ellipsoid, with all axes in the space of variance one and only one axis of

reduced variance (i.e., the suppressive axis). An STC analysis pulls out the lowest

eigenvalue eigenvector, which is the estimated suppressive kernel. The error is the

angle between the true and estimated suppressive kernel, such that the maximal

error is 1. Gray line illustrates an example point of equal error on both graphs.

Also shown are the eigenvalues and estimated suppressive kernel for particular

points. a, Variance reduced by factor of 0.16 along suppressive direction. b,

Variance reduced by factor of 0.85 along suppressive direction.
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of the suppressive kernel: for a fixed error (gray solid line in figure) between one

and two hundred samples are needed for 0.16 variance, and around 10000 samples

for 0.85 variance.

Related work in statistics provides a closed-form equation that can indicate

asymptotically how much data is needed. The expected distribution of eigenvalues

of white noise stimuli is computed as the number of samples N (i.e., spikes) and the

dimensionality of the space p tend to infinity with a fixed ratio [88]. In particular,

the minimal/maximal eigenvalues of this distribution are σ2(1±
√

p/N)2, where σ2

is the noise variance. In experimental settings the data is, of course, finite. However,

the equation can still provide a rough estimate of the number of spikes required as

a function of reduction in variance of a suppressive axis. To pull out a suppressive

axis, its variance reduction must be smaller than the smallest eigenvalue of a random

selection of white noise. Thus (for a noise variance of 1) , Vsupp < (1− sqrt(p/N)2,

where Vsupp is the variance of the suppressive axis. For p = 60 and Vsupp = 0.16 we

obtain 166.667; and for p = 60 and Vsupp = 0.856 we obtain 9.8504e+03. The ratio

is roughly a factor of 60, similar to Figure 4.20 (and unrelated to the 60 dimensions

of the stimulus space!).

The equation also indicates that for a fixed suppression variance, the number

of required samples scale linearly with the dimensionality of the space. This could

place a constraint on the ability to gather enough data in high dimensional spaces,

unless the suppression is considerably strong. A challenging avenue of work will be

to come up with more efficient stimuli that explore the input space, especially in

higher neural areas in which Gaussian white noise does not drive the cells very well.

An interesting direction will be to develop methodologies using stochastic stimuli
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that are more realistic than white noise, but perhaps not as complex as naturalistic

stimuli.

As stated in the extensions section, future work will probe retinal ganglion cells

with stimulus dimensions that vary not only over time, but also over space. Whereas

suppression over time may be explained using non-Poisson spiking mechanisms,

spatial suppression is likely to require other explanations. For example, spatial

suppression has been documented from regions outside the classical receptive field of

a neuron. Will the method pull out suppressive axes outside the classical receptive

field, and will these axes be useful for characterizing a neuron? We expect that in

V1 the STA spatial dimensions should vary as a function of contrast [128]. Will

the method be able to recover a subspace that can account for these variations in

the STA? And how will this bear out in the retina? Will such representations also

predict a wider range of experimental data?

Though the gain control representation is also overly simplistic, it will poten-

tially offer a more powerful representation than the STA. Though Wiener and

Volterra analysis can represent any nonlinearity with an infinite amount of higher

order kernels [168, 160], our methodology requires only computation of the second

order (covariance) matrix, which is more feasible for a finite amount of data. In

particular, gain control behaviors are not well captured by a small number of power

series kernels. The concept of gain control is central to many neural models, and

thus our work provides a technique with potentially widespread applicability.
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4.10 Proofs

We assume that the response of a neuron is given by the projection onto a sub-

space followed by a nonlinearity, and that the input to the neuron are samples of

independent Gaussian white noise with a variance of 1. We now prove that for a

stimulus direction outside the subspace, the variance of the response of the neuron

will be equal to 1 (at the limit of infinite data).

Specifically, we assume that spikes are generated by a Poisson process with

instantaneous rate determined by:

P (spike|~s) = f( ~K · ~s) (4.5)

where K is a subspace and f(·) is a generalized nonlinearity. For example, for the

model discussed in the chapter, the subspace K would be comprised of excitatory

and suppressive axes; and the nonlinearity would be a gain control function. We

assume without loss of generality that K is a tall and skinny matrix with orthogonal

columns.

According to Bayes rule:

P (~s|spike) = P (spike|~s)P (~s) /P (spike) (4.6)

The spike-triggered covariance (STC) is defined as follows:

STC =
∫

~s
~s~sTP (~s|spike) (4.7)

where we assume that the mean has been subtracted off of ~s.

And plugging in Bayes rule (equation 4.6):

STC =
∫

~s
~s~sTP (spike|~s)P (~s) /P (spike) (4.8)
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Plugging in equation 4.5:

STC =
∫

~s
~s~sT f( ~KT · ~s)P (~s) /P (spike) (4.9)

We want to show that for any stimulus direction outside the subspace K, the

variance of the response of the neuron will be equal to 1 in the limit of infinite data.

Any stimulus ~s can be decomposed into a component in the direction of K and

a component in a perpendicular direction, K⊥:

~s = ~sK + ~s⊥ (4.10)

where ~sK = (KKt)~s and ~s⊥ = (I − KKt)~s.

Then from orthogonality we obtain the following two equations:

~sT
⊥
~sK = 0 (4.11)

~KT ~s⊥ = 0 (4.12)

Now since the input stimuli are Gaussian white noise, the samples are statisti-

cally independent, so: P (~s) = P ( ~sK)P ( ~s⊥)

Therefore equation 4.9 becomes:

STC =
∫

~s
~s~sT f( ~KT · ~s)P ( ~sK)P ( ~s⊥) /P (spike) (4.13)

Separating out ~sK and ~s⊥ in the integral of 4.13 we obtain (also based on

equation 4.12):

STC =
∫

~s⊥

P ( ~s⊥)
∫

~sK

~s~sT f( ~KT · ~sK)P ( ~sK) /P (spike) (4.14)
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Now consider the variance of a unit vector in the direction û lying in K⊥. The

variance is given by ûT (STC)û. That is:

ûT (STC)û =
∫

~s⊥

P ( ~s⊥)
∫

~sK

ûT~s~sT ûf( ~KT · ~sK)P ( ~sK) /P (spike) (4.15)

But based on the decomposition of ~s and equation 4.11:

ûT~s~sT û = ûT ~s⊥ ~s⊥
T û. (4.16)

This term can thus be moved to the outer integral in equation 4.15, since it

only depends on s⊥:

ûT (STC)û =
∫

~s⊥

P ( ~s⊥) ûT ~s⊥ ~s⊥
T û

∫

~sK

f( ~KT · ~sK)P ( ~sK) /P (spike) (4.17)

Now the inner integral is equal to 1 because:
∫

~sK
f( ~KT · ~sK)P ( ~sK) is actually

∫

~sK
P ( ~sK)P (spike| ~sK), which is equal to P (spike). This exactly cancels out with

the P (spike) in the denominator.

Thus we are now left with:

ûT (STC)û =
∫

~s⊥

P ( ~s⊥) ûT ~s⊥ ~s⊥
T û (4.18)

But ~s⊥ is univariate Gaussian, and this is just the variance in direction û, which

must be 1.
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CHAPTER 5

GENERAL DISCUSSION

We set out to understand what kind of representations sensory neurons form, and

why they form the particular representations that they do. Since sensory neurons

exhibit highly nonlinear behaviors, we aimed to go beyond linear receptive field

representations. We utilized computational approaches to try and understand the

multiple axes (or stimulus dimensions) that might govern the responses of neurons.

We approached the “why” question using the efficient coding hypothesis; this

led to a gain control model, known as divisive normalization, whereby the squared

response of a primary filter is divided by the weighted squared responses of other

filters and an additive constant. We further sought to understand “what” represen-

tations neurons form in the context of a gain control model. We demonstrated that

a spike-triggered covariance technique can be used to characterize a gain control

subspace in spiking neurons.

As noted in the introduction, neural gain control models have been constructed

to explain physiological sensory nonlinearities in a number of systems. Gain control

has its roots in models of retinal processing [134]. Gain control was also suggested
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in the context of movement in the visual system of the fly [113]. The divisive

normalization model was coined to explain physiological data inside the classical

receptive field in area V1 [64]. Gain control models have also been formulated

independently in the context of the peripheral auditory system, spearheaded by

the work of Lyon [84]. Our work thus provides theoretical justification to such

neural models.

Throughout the thesis we employ two very different computational frameworks

for developing a gain control model– theoretical and through neural characteriza-

tion. We also examine three different neural systems: retinal ganglion cells, V1, and

auditory nerve. Nevertheless, some of the conclusions we reach are rather general.

Our work helps to elucidate particular aspects of divisive gain control models.

It was originally suggested that constancy of tuning as a function of input strength

is an important property for a system that recognizes objects in the world [64]. A

gain control model with uniform weighting is able to satisfy this condition, and is in

line with the constancy of orientation tuning observed inside the classical receptive

field in V1 cells.

However, we have seen three examples in which the tuning properties of sen-

sory neurons are not always constant as a function of input strength. In area V1,

the diameter tuning of the mean neural response changed for low and high con-

trast stimuli; in auditory nerve, the frequency tuning of the mean neural response

changed for low and high sound pressure levels; and in retinal ganglion cells the

temporal tuning of the mean neural response changed for low and high contrasts.

Changes in tuning shape occur in our model when the weighting of the divisive

signal is not uniform over a particular parameter (orientation, frequency, position,
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time, and so on) in the operating regime of the primary filter. Stated differently,

the fundamental tuning properties of the response is determined by a primary linear

filter (or, more generally, a possible combination of several filters, as in V1 complex

cells), and by a gain control signal with its own fixed tuning properties. Nonetheless,

the combination of these two fixed entities can modulate the overall tuning of the

neural response. The gain signal is most modulatory at high signal strengths. But

at low signal strengths, the constant dominates the divisive equation and the gain

signal is inconsequential; the tuning of the neural response resembles that of the

primary filter.

We have also seen that masks with different attributes can exert very different

effects on the response properties of neurons. This is apparent both in V1 data from

beyond the classical receptive field and in auditory two-tone suppression. The mask

typically shifts the response curve of the neuron to the right on a log scale, indicative

of a divisive gain change. These shifts are easily explained with a non-uniformly

weighted divisive gain control model; stronger weighting along a particular stimulus

axis results in a greater rightward shift.

This picture of fixed excitatory and suppressive tuning, should be contrasted

with an alternative view of nonlinear sensory behaviors. One can imagine an ex-

citatory and suppressive pool of filters that are not fixed; their tuning changes as

a function of contrast. Sceniak et al. have suggested that changes in V1 diameter

tuning occur because a neuron recruits more excitatory connections from neighbor-

ing neurons [128]. Polat et al. have suggested that low and high contrast stimuli

dictate whether neighboring neurons in area V1 exert an inhibitory or excitatory

effect [109]. This would imply two different strategies for handling low and high
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contrast stimuli. Although such interpretations cannot be ruled out, the weighted

divisive gain control model offers an alternative explanation of the data. The tuning

properties of a primary filter and a divisive gain signal are fixed, but the relative

impact of the divisive gain signal varies as a function of input strength. The ad-

vantage of this formulation is that a single model can explain behaviors at both

low and high stimulus strengths, and can further explain nonlinear masking data.

The fixed model is, of course, overly simplistic. It does not incorporate temporal

dynamics or possible adaptation effects (see [162] for adaptation in the context of a

gain control model). Nevertheless, the model can explain some basic nonlinearities

in sensory neural data.

In chapter 3, this form of model provides a qualitative match to V1 orientation

data, with a gain signal that is less selective in the center for orientation, and

more strongly selective for orientation in the surround; and with a gain signal

that extends spatially beyond the primary excitatory receptive field and falls off

with distance. The resulting model can qualitatively explain both data inside the

classical receptive field (as in the classical divisive normalization model [64]) and

data outside the classical receptive field (as in Cavanaugh et al. [33]). The model

also explains basic auditory nerve phenomenon, with a gain signal that is stronger

at the preferred temporal frequency of the neuron. This is consistent with a recent

gain control model by Robert et al., in which the gain signal is frequency dependent,

with strongest weighting at the preferred temporal frequency [119]. The gain signal

in their model controls the width of tuning of a primary filter over time. In chapter

4, we recover a low-dimensional gain control signal in retinal ganglion cells. The

gain control signal is selective for temporal attributes of the stimulus. This bears
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some similarity to Victor’s model, in which the contrast of the stimulus over time

determines the time constant of the primary filter [157]. In all cases, we have worked

with a single form of gain control model, in which the tuning of the primary filter

and the gain filter determine particular nonlinear response properties of the neuron.

Gain control has been suggested as a mechanism by which a neuron can deal

with a limited dynamic range. It appears that gain control in sensory processing is

not only adjusted by the overall amplitude or contrast of the input stimuli. It is,

under certain circumstances, also sensitive to other qualities of the stimuli, and is

stronger for particular stimulus attributes. Our work suggests that the tuning of

the gain signal relative to the primary filter is not an accident; the gain signal might

operate along dimensions that are optimal for forming efficient representations of

typical stimuli in the environment.

The divisive gain control model provides a functional description, and does not

specify the circuitry or biophysics by which these functions are implemented. The

specific form of implementation, and the timescales over which gain control op-

erates are likely to be different across sensory systems, levels of processing, and

species. For example, in the auditory system outer hair cells have been implicated

in providing gain control; but there are species of vertebrates that have no outer

hair cells and still exhibit two-tone suppression [59]. Even within the same species,

multiple mechanisms appear to be at work. Gain control in the retina is mediated

by a number of mechanisms and levels, likely involving both feedforward and feed-

back connections [134, 153, 157]. Some of the temporal gain control behaviors we

describe in chapter 4 might be due to non-Poisson spiking mechanisms (see chapter

4 discussion). In area V1, synaptic depression could potentially explain gain control
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in the center [1], but gain control in the surround is likely to involve feedback from

other neurons, perhaps via a form of shunting inhibition [29]. Implementation and

dynamics, while partially understood in these different systems, remains an active

topic of research.

Gain control might also operate in a cascaded fashion, as suggested in some

models of cortical processing [143]. One might imagine a system starting with

luminance and contrast gain control in the retina; spatio-temporal gain control in

area V1; speed gain control in MT; and perhaps color gain control as well. Similar

systems might also exist within the auditory system. It is possible that each stage

of processing performs gain control within its own capabilities.

Indeed, it appears that sensory systems have come up with multiple, creative,

solutions for implementing gain control. Although the details of implementation

will vary, our work suggests that the steady state computation underlying gain

control might be generic.

The two parts of the thesis offer a potentially interesting path for future ex-

ploration. Stochastic stimuli are useful for exploring the response properties of

neurons. But one of the disadvantages in stimuli such as white noise is that these

are not naturalistic and do not drive cells in higher regions of the brain very well.

However, natural images and sounds are often too complex for exploring neural

behavior. The statistical properties of natural signals might be utilized for creating

experimental stimuli that are more tractable than natural signals, yet more natural-

istic than white noise. If we can derive a model of gain control from natural signals,

then perhaps we can create stochastic stimuli that are suitable for testing issues

of gain control in neural processing. Related work on texture synthesis provides
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a potential framework for creating stimuli with specific statistical properties [110].

These directions may offer opportunities for exploring gain control along multiple

time scales (as in [49]); and neural adaptation to specific statistical properties, such

as mean, variance, and more complex statistical attributes.

A major issue highlighted throughout the thesis is understanding the various

components that lead to an overall neural behavior. This can be studied at many

different levels of detail. We have specifically focused on the interaction of excita-

tion and suppression in producing a steady state response. If one cannot separate

out these components, then the task of interpreting experimental data becomes dif-

ficult. But to do so requires an assumption about some form of underlying model,

or at least class of models. At this particular juncture, neural modeling can con-

tribute not only to the analysis of data, but also to the design of experimental

methodologies that are aimed at testing and characterizing classes of model.

As nonlinearities continue to be found in neural processing, it becomes important

to develop computational tools for experimentation, analysis, and modeling of the

neural data. It is not uncommon that the same computational tools are utilized

in the study of several systems. This has been the case with white noise reverse

correlation, wiener analysis, information theory, masking experiments, and so on.

As we begin to have a better grasp of the type of nonlinearities that occur in

neural processing, the set of tools should be tailored for the study of these systems.

Current advances in both computational capabilities and experimental techniques

should offer promising opportunities for the field.
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