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ABSTRACT

LOCAL MOTION DETECTION: COMPARISON OF HUMAN AND MODEL

OBSERVERS

Paul Schrater

David Knill

We investigated the mechanisms of visual motion processing in humans. Previous research had shown

the human visual system decomposes moving images by a set of spatio-temporal frequency selective mech-

anisms which do not unambiguously encode the velocity of moving patterns. By pooling the outputs of

these mechanisms which have frequency selectivity lying on a common plane in spatio-temporal frequency

space, the visual system can encode pattern velocities. The goal of this research was to investigate whether

the visual system uses such pooling.

We designed a novel set of stimuli which are optimal for pattern motion detectors. By comparing

detection performance on these stimuli against a set of control stimuli, we found evidence for pooling. A

trial by trial perturbation analysis of this data was used to determine the observers’ pooling strategies,

which showed at least two distinct kinds of frequency weighting, narrow band in orientation and broad

band with weights restricted to a common plane. Finally, using subthreshold summation experiments we

found that fourier power lying a common plane is additively pooled while power not a common plane is

subadditively pooled.

The thesis provides the first unambiguous psychophysical evidence for a set of visual mechanisms

specialized to encode pattern velocity.
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Chapter 1

Introduction

In this chapter we frame the general problem of computing image motion biologically and motivate the
experiments.

1.1 Image Motion

One of the most striking aspects of visual experience is the ease with which we make sense of motion in
the world. The apparent ease with which motion is perceived can obscure the fact that the visual system

is faced with a formidable set of problems in processing visual motion. At the physical level, movement
in the world causes changes in the distribution of light across the retina. Somehow the visual system
extracts information about the environment from the pattern of these changes. In order to study how
this occurs, we need a description of the information available at the retina, for which we will make some
simplifications. Ignoring wavelength information and adopting a ray model for light, the light distribution
on the retina can be described by specifying the intensity at each point (x, y) on the retina at each moment

of time, t: I(x, y, t).
We refer to the instantaneous light distribution on the retina I(x, y) as the retinal image, which is

formed by the projection of light from points in the world onto the retina. When objects in the world
move relative to the observer, the projected points move within the retinal image. The movement of the
projected points on the retina is referred to as the motion field. Several authors have shown that by having

access to the motion field many properties of the world can be estimated, including relative depth, surface
shapes, and object motions [71, 70, 101, 68].

The motion field is not directly available to the observer. What is available to the observer are the
changes in intensity at each point in the image. However, if the intensity of a projected point remains
constant as the point moves, then the change in the image intensities can be used to compute the motion

field. One of the simplest ways to measure the positional change of an image point is to approximate
the path by a set of local translations. If a projected point (x, y) at time t1 moves to (x′, y′) at time
t2, and the intensity of that point remains constant for the duration of the movement, then the result of
the movement is to transfer the image region from one region of the retina to another region I(x′, y′) =
I(x(t1 + ∆t), y(t1 + ∆t)). For small time durations ∆t, the change in position can be approximated by a

translation, so that the image at time t2, I(x(t2), y(t2)) is given by:

I (x(t2), y(t2)) = I(x(t1)− vxt, y(t1)− vyt) (1.1)

where vx and vy are functions of image position and time, and t = t2 − t1. The approximation of image
changes by estimates of local image translations at each retinal location is commonly called the optic flow

1



1.1. IMAGE MOTION 2

field. Use of the optic flow approximation by the visual system can be motivated by the simple relationship
between optic flow and the movement of points in the world which holds when image intensities remain
constant, and by the fact that local translations are the simplest approximation of motion induced image
changes.

However, care must be taken when interpreting optic flow in terms the motions of points in the world,
since in computing optic flow we assume that the intensity image of objects remain fairly constant as they
move. Several authors have shown that this assumption is frequently violated in real scenes [130, 99]. The
problem is that the luminance profile of an object can change quite substantially for reasons other than the
object’s motion, the most important of these being: changes in reflectance due to changes in object pose,

changes in the illumination condition, object occlusion, and shadowing. Thus under many circumstances
the motion field can only be accurately estimated by combining the optic flow measurements with estimates
of other scene attributes (e.g. light source direction, object reflectances, etc.).

Local image translations are also useful outside the context of inferring the motion of points in the
world. Another distinct motivation for their use by the visual system stems from their utility as an

efficient code for time-varying images. This motivation follows from the hypothesis that the goal of the
early visual system is to efficiently encode the time varying image [16, 137, 37]. In this view, what
determines early motion processing is the statistical structure of the received luminance signal and not in the
relationship between the signal and motions in the world. The encoding of the time varying image amounts
to finding an approximation to I(x, y, t) which captures most of the significant behavior of the function (i.e.

allows approximate inversion of the code) while eliminating redundancies in the code. Interestingly, the
consideration of efficient coding within the context of eye movements1 has led to the idea that the visual
system should make local translation measurements[37]. Eckert et al.[37] show that the time varying image
can be decomposed into an optic flow component and a ’stationary’ component2, and that the optic flow
representation efficiently encodes the redundancies in the time varying image introduced by eye movements.

Thus, we see that the measurement of local translations of the retinal image can be motivated by two
different assumptions of the goal of early motion processing. These theoretical motivations are corroborated
by the abundant evidence that local image translations are sufficient for the performance of large set of
perceptual tasks. Observers can be forced to rely exclusively on motion information by using stimuli
composed of moving dots which are randomly spatially distributed in which each individual dot has a

limited duration of exposure. Using these stimuli, investigators have shown that observers can use local
motion information to estimate the observer’s direction of heading [133], object geometry [59, 75, 35], depth
relationships [108], and define boundaries between objects [19, 108], to name only a few. In addition, McKee
and others [82, 20] have argued that the visual system explicitly represents image velocities from the fact
that observers are highly sensitive to changes in speed and direction of moving images. Finally, Schrater

& Simoncelli have found evidence for the representation of image velocities by the visual system in a set
of adaptation experiments [111].

In addition to psychophysical evidence, electrophysiological recording in monkey visual area MT have
revealed neurons with many of the properties expected of mechanisms which measure local image transla-
tions [80, 8, 10, 90].

All of these finding suggest that the visual system may make measurements of local image translations.

1particularly tracking eye movements
2the stationary component represents all the changes in luminance not accounted for by local image translations
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1.2 Measuring Local Translations

In the previous section the measurement of local image translations by the visual system were motivated
and it was suggested that the visual system may make such measurements. In this section we address how
these measurements might be made. A large number of measurement schemes have been published (see

Simoncelli [112], Nakayama [92], or Koenderink [125]) for reviews), however, most proposed measurement
methods can be classified as belonging to one of three basic types: [125, 112]

•Matching methods Matching methods estimate image translations by attempting to match local image
regions or characteristic image features at subsequent instants of time [100, 127, 49, 24, 27, 88, 89].

• Gradient methods Gradient methods use derivatives of image intensity over space and time to form
estimates [61, 79, 55, 146].

• Frequency-based or Filter-based methods Frequency-based methods is an umbrella term for a
collection of methods developed by considering the problem in the spatio-temporal frequency domain.

These methods fall into two different categories - amplitude based [56, 53, 112] and phase based [46].

Simoncelli [112] and others have shown that there are numerous connections between these various
methods and that all of these methods can be described in a common framework based on spatio-temporal
filtering. In the remainder of the thesis we will focus on frequency based methods for two reasons: 1) The

description of image translations in the frequency domain is fundamental and simple. The reason that so
many different estimation methods can be put into a common framework is that they each make use of
the structure of the signal, which is evident in the frequency domain. 2) The evidence for the existence of
mechanisms which act as frequency selective filters in the visual system is quite substantial (see Graham,
1989 for a review). Thus a translation estimation method which uses spatio-temporal filtering can be

naturally implemented in the visual system. The next section describes the structure of translating signals
in the frequency domain.

1.2.1 Image translations in the frequency domain

Translating images have a simple structure in the spatio-temporal frequency domain which is illustrated
in figure 1.1 for the temporal and one spatial dimensions. At the top of the figure a random texture is
illustrated, with the black arrow indicating the direction of the translation. If we stack up the images of
the texture at a set of discrete time points, we will have a ’movie’ of the translation. The x-t slice of this

movie is shown in the lower left side of the figure. Notice that the slice has the appearance of a oriented
pattern. The orientation θx−t is the result of the shearing transformation caused by translation, and it
is directly related to the speed: θx−t = tan−1(1/v). Because of the dominant orientation, the Fourier
decomposition of the x-t slice consists of the set of sinusoids with the same orientation in x-t, differing
only in phase and frequency magnitude3. Thus, the Fourier transform of the x-t signal has an amplitude

spectrum constrained to lie on a line through the origin whose slope represents the orientation of the
pattern, shown in the bottom right hand side of figure 1.1.

A more intuitive way to understand the Fourier representation is to consider a one dimensional intensity
signal along x which is drifting with uniform speed. We can decompose the signal into its set of component
sinusoids each of which drifts at the same speed. Having the same speed means that each undergoes the

same spatial displacement in the same duration. For a speed v = 1 deg/sec, a sinusoid with a spatial

3Frequency magnitude refers to (ω2
x + ω2

t )
1
2 . It is the same concept as wave number and spatial frequency magnitude in

the space domain.
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Figure 1.1: Fourier analysis of a translating image in 2-D. a, Random intensity image translating to the left
(as indicated by the arrow). b, x-t slice of the image sequence shown in a. The pattern has a characteristic
orientation which uniquely specifies the speed of the translation. c, Amplitude spectrum of the Fourier
transform of the x-t slice. All the non-zero coefficients lie on a line through the origin. Deviations from the
line are caused by the use of a finite size fourier transform.

frequency of 2 cyc/deg must move 2 cycles per sec, similarly 4 cyc/deg, 4 cycles per sec. In general

v = −ωt/ωx, which is the equation of a line in (ωx, ωt) passing through the origin4: ωt = −vωx, with slope
−v. The angle of the line is θωx,ωt = tan−1(v) = π − θx,t

Although reintroducing the neglected spatial dimension complicates matters, the description is a simple
generalization of the x-t analysis. An image sequence can be represented as a block of data in (x,y,t) space.
The data block representation is illustrated on the right hand side of figure 1.2, for a movie depicting a

forest scene translating to the right. The front x-y face shows the image of the trees. The top x-t face
shows the evolution over time of the luminance pattern at the top of the x-y image. If we take x-t slices
at different y positions, a similar oriented pattern would be revealed. Thus, in three dimensions the signal
can be described as a set of luminance fibers all with the same 3-D orientation. y-t slices of the data cube
for different x positions are all broad band, illustrated by the visible y-t face of the cube.

The Fourier transform of the data cube is illustrated on the right hand side of the figure. In three
dimensional spatio-temporal frequency space, translating signals are constrained to lie on a plane passing
through the origin [138]: ωt = −(vxωx + vyωy). This is the natural generalization of the line in 2-D and
many of the properties of the 2-D analysis carry over. The orientation of the plane uniquely specifies the
velocity of the translation, with the speed given by the angle between the velocity plane and the (ωx, ωy)

plane.
An intuitive motivation for the result that the spectral power of a translating image lies on a plane can

be given by considering the previous 2-D analysis and the properties of the x-t and y-t slices of the data
cube. From the 2-D analysis, we know that an image translating in the x direction will have spectral power
which lies on a line in (ωx, ωt). Since all of the x-t slices have the same oriented structure, the averaging

of (ωx, ωy, ωt) over ωy results in a spectrum which lies on the same line. Thus the spectrum in (ωx, ωy, ωt)
must be either a plane or a line. Since the y-t slices are broadband, it must be a plane. Because this result
is central to the thesis, a proof is sketched below:

4This can also be derived using dimensional analysis, speed = deg/sec, tf = cycles/sec, sf= cycles/deg.
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Figure 1.2: Illustration of the information in a translating image. a, Movie showing a forest scene translating
to the left is represented as a data cube. This is a representation of the intensity information in the retinal
image (the x-y plane) over time. The leftward motion can be inferred from oriented lines on the x-t face. b,
The amplitude spectrum of the 3-D Fourier transform of the data cube is rendered as gray levels in (ωx, ωy, ωt)
space after the DC component is removed. For a translation, the non-zero Fourier amplitudes are constrained
to lie on a plane through the origin. The slant and tilt of this plane uniquely specify the speed and direction
of the translation.

For a globally translating image, I(x, y, t) can be rewritten as I(x− vxt, y − vyt). This signal can be
written as the sum of sinusoids which have a constant spatial spectrum, with the translation causing a
phase shift in each sinusoid:

I(x(t), y(t)) =

∫ ∞

−∞

∫ ∞

−∞
A(ωx, ωy) exp(2πi(ωx(x− vxt) + ωy(y − vyt))dωxdωy (1.2)

I =

∫ ∞

−∞

∫ ∞

−∞
A(ωx, ωy) exp(2πi(ωxx + ωyy)) exp(−2πi(ωxvxt + ωyvyt))dωxdωy

The 3D Fourier Transform of this expression is:

F{I} =

∫

x,y,t
exp(−2πi(ωxx + ωyy + ωtt)) (1.3)

(∫ ∞

−∞

∫ ∞

−∞
A(ωx, ωy) exp(−2πi(ωx(x− vxt) + ωy(y − vyt)))dωxdωy

)
dx dy dt

The spatial sinusoids in the transform and the signal multiply to one, and switching order of integration
using Fubini’s theorem:

F{I} =

∫ ∞

−∞

∫ ∞

−∞
A(ωx, ωy) (1.4)

(∫

t
exp(−2πi(ωt + ωxvx + ωyvy)t)dt

)
dωxdωy

The inner integral evaluates to:

F{I} =

∫ ∞

−∞

∫ ∞

−∞
A(ωx, ωy)δ(ωt + ωxvx + ωyvy)dωxdωy (1.5)
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Recall that δ(0) = 1, and that δ(x 6= 0) = 0. Thus the transform is non zero for

ωt + ωxvx + ωyvy = 0 (1.6)

~u · ~ω = 0

which is an equation for a plane in frequency space (ωx, ωy, ωt), with the normal vector to the plane given
by ~u

||~u|| where ~u = (vx, vy, 1). Equation 1.5 also shows that the amplitude spectrum on the plane is just the

spectrum of the initial spatial image. What changes when a image translates is that the sinusoids at each
spatial frequency drift with a temporal frequency consistent with the pattern motion. This is illustrated
in figure 1.3.

Figure 1.3A illustrates a random texture translating to the left. The spectrum of this image sequence
will be constrained to lie on a plane, illustrated by dashed lines in figure 1.3B. Pairs of points on the plane

represent drifting gratings, and the translating texture movie can be constructed by summing up all of
these gratings, weighted by their complex amplitudes. To illustrate the decomposition of the translating
texture into its component gratings, six points lying on the plane were chosen, illustrated by pairs of gray
balls. The spatial and temporal properties of the gratings can be determined by looking the projection of
the frequency point onto the spatial frequency plane and onto the temporal frequency axis. The projection

lines are shown for one of the frequency points in gray. The length of the projection onto the spatial
frequency plane gives the spatial frequency magnitude and the spatial orientation θ of the projection. The
projection onto the ωt axis gives the temporal frequency, and the angle φ between the frequency vector
and the spatial frequency plane is related to the speed at which the grating drifts in the direction of its
orientation. The six gratings are depicted in figure 1.3D, with the lengths of the arrows representing the

speed of the gratings in their normal directions.
An important point is that the frequency description of translations subsumes the ’intersection of

constraints’ rule for determining the direction of motion of a coherent pattern made up of several one
dimensional components. Figure 1.3C illustrates the ’intersection of constraints’ construction [2]. The
figure represents the motion in three grating’s normal directions as vectors in velocity space. Because

each grating is a one dimensional signal, the motion in the direction parallel to the grating’s orientation
is ambiguous, a property often called the ’aperture problem’. Thus a grating can have any motion which
preserves the speed orthogonal to the grating’s orientation, shown as the three gray ’constraint’ lines. The
point of intersection of the gray lines is the velocity of the coherently moving pattern. This velocity is
identical to the velocity indicated by the common plane which contains the set of frequency points. The

importance of this fact will be clearer when we discuss translation detectors. Detectors which estimate
velocity by pooling information across planes in frequency space automatically ’solve’ the aperture problem
because they are intrinsically estimating pattern motion5.

Having determined the structure of a signal which is translating globally, it is easy to describe the
structure of a local translation. We can model localization of a signal as multiplication by a smooth

window in space and time W (x, y, t). The localized signal spectra is just the spectrum lying on a plane
convolved with the fourier transform of the smooth function W , since multiplication in the space domain
results in convolution in the frequency domain. For functions which are sufficiently smooth, the effect will
be to ’fuzz out’ the plane. For instance if the window function is Gaussian, then the localized spectrum
will be the non-zero points on the plane blurred by a Gaussian function. Thus for local translations, the

plane becomes a ’pancake’.

5Except for signals which are intrinsically one dimensional, for which there is no well defined pattern motion. For instance,
a grating is represented by a pair of points in frequency space which can be fit by the infinite family of planes which intersect
these two points.
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Figure 1.3: Illustration of properties of translating images in the frequency domain. A, Random intensity
image translating to the left (as indicated by the arrow). B, Translating pattern in the frequency domain. Six
frequency points on the plane are selected, represented by pairs of gray balls on opposite sides of the origin.
The properties of the grating can be determined from the projections onto the frequency axes, shown in gray.
θ determines the spatial orientation of the grating, and φ determines the speed in the direction orthogonal
to the grating orientation. C, The points on the plane obey the ’intersection of constraints’ rule. D, The six
points from B shown as gratings. See text for details.

1.2.2 Models for translation detection

Having characterized the structure of image translations, we can discuss more readily the methods the
visual system might use to estimate image velocities. When analyzed in the fourier domain, every successful
method will estimate velocity by extracting information which lies on a common plane, but the structure

of the estimator will vary depending on the task the visual system is optimized for. For instance, assume
the visual system is optimized for the task of detecting a translating image whose spatial and temporal
characteristics are exactly known buried in Gaussian white noise. Since the optimal detector for this task
is the matched linear filter, then in this case we would expect the visual system to exhibit the properties
of this detector.

What can we say about the task of estimating image velocities a priori? 1) Velocities can only be
estimated in regions which have non-constant luminance profiles. 2) A generic image velocity estimator
must be able to process a large class of different spatial patterns. 3) Under most circumstances the
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Figure 1.4: Planar power detector model for estimating image velocities.

estimator will have considerable uncertainty about the properties of the translating image. Chief among
these are uncertainty about initial phases and the amplitude spectrum of the signal.

Properties 1 & 2 suggest that an image velocity estimator, in the absence of any a priori information
about the spatial structure, should pool fourier information across the plane consistent with the expected
image structure. Studies of natural image statistics suggest a reasonable model of the expected image
structure is isotropic with a 1/f fall off in frequency magnitude f [45]. Thus, we might expect a velocity
detector to tile a plane in Fourier space with bandpass filters which span all spatial orientations and have

roughly one-octave frequency magnitude bandwidths (due to the 1/f fall off). If we further assume that
the visual system’s task is to detect translating images buried in Gaussian white noise, then Property 3
suggests a specific form for the velocity estimator: the optimal estimator in this case is a planar power
detector, which sums the squared local fourier amplitude on the plane. The power detector is optimal for
signals with unknown phase and amplitude buried in white noise [58, 128]. Although the background noise

in the average motion detection task is unlikely to be either exactly Gaussian or white, the structure of a
detector which is optimized for more complicated background noise can be expressed as extensions of the
power detector model. In addition, the power detector model is the simplest model which can handle the
expected kinds of uncertainty.

In the last ten years, several models for translation detection have been developed which are essentially

planar power detectors [56, 53, 112]. Each of these models estimates local velocities by pooling the spectral
power information across planar regions of frequency space. A version of this model is illustrated in
figure 1.4. Depicted is a set of band pass filters which intersect a common plane. The outputs of these
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filters are squared and summed. The result produces a mechanism which is tuned for a particular velocity.
A population of these mechanisms each tuned for different velocities can code for several aspects of local
motions, such as providing an estimate of image velocity which is (nearly) independent of contrast from
the mean or peak of the population, representing multiple motions, the uncertainty in the velocity of a

motion, and the distribution of motions present[112].
Many motion detection models other than the planar power detector have been proposed. Most of

these, however, do not satisfy the criteria set out above, and hence are not generic translation detectors.
For instance most models make particular assumptions the spatial structure of signals. This class includes
’motion energy’ detectors which assume signals are one-dimensional [1], feature matching in which partic-

ular features are determined [88, 89], and matched filter models[143], among others. However, when these
models are actually implemented, they typically combine the estimates from detectors sensitive to differ-
ent patterns. When this combination is least squares and enough different patterns are averaged across,
the resulting algorithms strongly resemble planar power detectors[112]. Thus the planar power detector
model is useful in that it represents the optimal estimator of image translations under the assumptions of

uncertainty and gaussian noise, and because it represents a natural approximation to a large set of motion
detection models which estimate the velocity of generic patterns.

1.3 Thesis Overview

The goal of the thesis is to investigate the utility of the planar power detector as a model of motion
processing in the visual system.

In chapter 2 I introduce a novel set of stimuli for which planar power detectors are the ideal observers.
The stimuli are used detection experiments which qualitatively test two predictions made by the model:
1) observers should efficiently pool spectral power across spatial orientation when all the power lies on

a common plane. 2) Planar configurations of spectral power should be more detectable than non-planar
configurations. The results are consistent with the planar power detector model.

In chapter 3 a kind of perturbation analysis is used to analyze the data from chapter 2 to determine
what frequency pooling strategies observers used in detecting the stimuli. Frequency space is divided
into a set of bands and weights for each band are estimated. The results show that observers are able

to use at least two distinct kinds of frequency weighting, one narrow band in orientation and one broad
band in spatial orientation but which restricts its weights to a common plane. In addition, significant
negative weights appear for all the stimuli, which suggests that the planar power detector model needs to
be extended to handle some inhibitory interactions between frequency bands.

In chapter 4 we test the prediction of the model that power which lies on a common plane is additively

pooled. We perform three tests of additivity using sets of three band-pass stimuli. In two of the tests the
band pass stimuli lie on a common plane, and in the third one of the band-pass stimuli is off the common
plane specified by the other two. For the configurations on a common plane subject’s pooling is described
by an additive law, while for the off-plane configuration pooling is significantly subadditive.

In chapter 5 we state the general conclusions of the thesis from the experimental results.



Chapter 2

Detection Experiments

2.1 Introduction

In the last chapter we introduced a model for local translation detection we called a ’planar power detector’.

The purpose of this chapter is to experimentally test several qualitative properties of the model. The
experiments involve comparing detection performance across a novel set of stochastic stimuli buried in
white noise.

The chapter is divided into several sections. In the first section, the basic properties of the model to be
tested are outlined. The stochastic stimuli are then introduced, and the ideal observer for their detection

is discussed. In the next section the experimental logic is explained and predictions are generated. The
remaining sections present the results of the experiments and a general discussion.

2.1.1 Properties of model

In this section we will describe several basic properties of the planar power detector which are experimen-
tally testable.

Recall the basic structure of the model: the detector additively pools power around planes in spatio-
temporal frequency space (fig. 1.4). The detector can be implemented as a two-stage computation [56, 53,
112]. In the first stage, motion energy is computed by squaring the output of spatio-temporal frequency
tuned bandpass filters (e.g. Gabor filters). In the second stage, translation velocities are estimated by
pooling the outputs of motion energy detectors whose peak frequencies lie on common planes.

The critical features of the model are (1) that the inputs to the pooling process are squared (or similarly
rectified) filter outputs which provide estimates of spectral power within different pass-bands, (2) that the
inputs to the pooling process span a range of spatial orientations, and (3) the inputs have preferred spatio-
temporal frequencies lying in a plane.

The presence of planar power detectors in the visual system predicts observers should be able to

efficiently pool across planar regions of frequency space. This observation can be re-expressed as two
general hypotheses outlined below, which will be more precisely formulated in the predictions section. The
first hypothesis is that human observers will be better at detecting signals whose amplitude spectrum lies
around a plane (planar signals) than signals which do not (non-planar signals). In addition, planar signals
contain power at all orientations. The second hypothesis is that human observers should be at least as

efficient at detecting signals whose power which include all spatial orientations as those which are narrow
band in orientation. This will be subsequently referred to as the hypothesis of perfect pooling across
orientation.

10
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2.1.2 Stimuli and Task

The experimental paradigm is based on a simple idea. We choose a task and stimuli matched to the
properties of planar power detectors and have subjects maximize their performance on the task. Perfor-
mance will then be limited by the mismatch between the visual mechanisms and decision rule used by
the visual system and the optimal mechanisms and decision rule. Measuring this mismatch gives a basis
for inferring the plausibility of the planar power detector model for human vision (see [138] for a similar

experimental paradigm). First we will explain the matched task and stimuli, after which we will describe
the experimental logic.

Because the detectors only depend on signal power, they are insensitive to the phase spectrum of the
signal. Thus all stimuli with the same power spectra will stimulate the detectors equally. In particular, we
show in Appendix A the detectors are ideal for detecting signals in white noise whose phase spectra are

random but whose average power spectra are equal to the detectors’ spectra . A simple method to construct
stochastic stimuli whose expected power spectra have a particular shape is to pass spatio-temporal Gaussian
white noise through a filter with the desired shape. Thus, we can create stimuli matched to planar power
detectors by passing white noise through a filter which preserves the frequencies lying around a plane.
Stimuli constructed by filtering white noise are spectrally flexible because filters can be designed which

have nearly any spectral shape. Although spatially filtered noise stimuli have been frequently used before
in vision research[69, 87, 81, 63, 65], to our knowledge the use of spatio-temporally filtered noise stimuli in
vision is novel.

We constructed three types of stochastic signal stimuli by passing spatio-temporal Gaussian white noise
through three different configurations of band-pass filters. The first type of signal stimulus had a power
spectrum confined to a single pass-band, which we term Component stimuli since they form the components

of the other two stimuli. Level sets for the Component filter are shown in fig.2.1a. The Planar signals
had a power spectrum confined to an annulus in frequency, which was created by passing white noise
through the sum of a set of Component filters at different orientations in a common plane (fig.2.1b). The
Scrambled signals had a power spectrum which was a scrambled version of the Planar signal, in which every
other component filter in the annulus has the sign of its temporal frequency inverted (fig. 2.1c). Subjects

detected these stochastic signals added to white noise in a two-interval forced-choice discrimination between
signal-plus-noise vs. noise alone. Noise contrast energy was fixed and the total signal power (energy) was
varied to find thresholds.

Examples of the stimuli are depicted in space-time as data cubes beneath the filters which created
them in fig. 2.1d-f. Consider the example Planar signal shown in fig. 2.1e. In the space domain Planar

signals are bandpass noises which have a spatio-temporal correlation structure consistent with a particular
velocity. The stimuli have the phenomenal appearance of lumpy textures which non-rigidly drift rightward,
somewhat like the movement of a shallow rocky stream. The x-y face of the cube shows an example of the
spatial appearance of the texture. To imagine the motion, look at the x-t face of the cube. Luminance
elements from the top of the x-y face shift rightward as time progresses into the page. However, unlike

a rigid translation, the luminance elements fade in and out of existence and drift rightward for variable
amounts of time.

These stimuli have three properties which make them much better suited to addressing questions
about the pooling of Fourier energy than those previously used. The stimuli are matched to hypothesized
detectors, they can be created with any spectrum by changing the filters, and they require a non-linear

mechanism to process them. The last property stems from the fact that all the information is contained
in the covariance of the signal. Linear filters compute weighted averages of a signal, which make them
sensitive to the local average or mean function of the stimulus. The filtered noise stimuli have the property
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that any weighted average is zero in expectation 1, which means the performance of a linear matched filter
detector (ideal for exactly known deterministic signals) on these signals is chance [129].

In contrast, the vast majority of previous studies have used stimuli which have properties ill-suited to
address hypotheses involving pooling of spectral energy. The two most common types of motion stimuli,

drifting sinusoidal gratings2 and moving fields of random dots, represent spectral extremes. Drifting
sinusoids have their spectral power concentrated at a single spatio-temporal frequency and thus a single
spatial orientation, while drifting dots are isotropic (all orientations are equally likely) and have their
spectral power concentrated around a plane. In neither stimulus type is the frequency content adjustable,
making them unsuited to questions about spectral pooling.

A third commonly used type of stimulus which is spectrally adjustable are sinusoidal plaids, consisting of
drifting sinusoidal gratings summed together. Since sinusoidal plaid stimuli have two spectral components,
questions about pooling can be addressed with this paradigm. However, plaid components are detected
independently at threshold (i.e. they show no summation) [135] which has forced investigators to use less
direct perceptual measures to study pooling. It has been shown that for a broad range of component

gratings and for long enough viewing durations, the perceived direction and speed of the plaid pattern
motion is given by the ’intersection of constraints’ rule discussed in chapter 1 [2, 90, 72, 115, 18]. This
shows that under most conditions the visual system is able to extract the actual velocity of a translating
pattern. However, the studies do not address whether there exist mechanisms which are specialized for
extracting image velocities. The perceptual results could be generated by any process which leads to a

veridical percept, for which specialized planar power detectors are not necessary. Indeed several other
hypotheses about plaid stimuli processing have been generated, including feature tracking [6, 145] and
non-linear 1-D methods3[43, 44, 147, 26]. In short non-optimal choices in stimuli have led previous studies
to determine very little about spectral pooling in local motion processing, except the suggestion that some
pooling must occur to explain the perceptual results with plaids.

2.2 Experimental Logic

In the main experiment we compare detection performance on Component, Planar and Scrambled signals.

These comparisons were chosen to control for generic sources of task inefficiency so that our inferences
are based on signal specific sources of task inefficiency. Generic sources of inefficiency include internal
noise and generic spatial and temporal subsampling4. When observers detect signals which differ only
in their configuration of power, it is reasonable to assume that the generic sources of inefficiency remain
relatively constant. Given this assumption, the relative efficiency of detecting stimuli with different spectra

provide a measure of how well the observer can use (’pool’) all the signal power which factors out generic
sources of inefficiency. Because the ideal detectors for the stimuli are power detectors matched to the signal
spectrum, the primary source of suboptimal pooling of power in the signal is the mismatch between signal
and internal filter spectra5. Thus in principle, we can use comparisons of performance across stimuli type
to infer aspects of the filtering properties of the visual system.

One of the two experimental hypotheses outlined above is that observers should efficiently pool power

across spatial orientation for frequency bands which lie in a common plane. To test this possibility, we

1in statistical parlance, the stimuli are zero mean Gaussian processes
2often windowed by a Gaussian function
3commonly called non-Fourier processing [29, 28].
4e.g. subsampling due to the cone array, the use of a discrete neural temporal code (spiking), etc.
5The term ’internal filter’ is a convenient way of describing the power spectrum the observer pools over in detecting the

signal.
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Figure 2.1: Filters used to generate experimental stimuli and the data cube representations of stimuli made
by the filters. The top panels depicts level sets (65% of peak response) of the three different filters used to
generate stimuli for this paper. The bottom panels are data block representations of the stimuli produced
by passing spatio-temporal Gaussian white noise through the filters in the top panels. a) The ’Component’
filter, which is a spatially and temporally bandpass filter, rotated to lie in the plane depicted in gray. b)
The ’Planar’ filter produced by rotating a set of 10 ’Component’ filters from a by multiples of 18 deg within
the common plane shown in gray. These filters are arranged to tile an annular region of a plane in frequency
space which specifies a rightward translation. c) The ’Scrambled’ filter, which is produced by reflecting every
other band pass filter in the ’planar’ filter about the temporal frequency axis. d) The ’Component’ stimulus
produced by passing spatio-temporal Gaussian white noise through the filter shown in a. The x-y face shows
the spatial characteristics of the stimuli: band-pass and oriented in the y direction. The x-t face shows the
rightward motion information as oriented structure localized in time and which appear randomly across the
image. e) The ’Planar’ stimulus produced by passing spatio-temporal Gaussian white noise through the filter
shown in b. The x-y face shows the spatial characteristics of the stimuli: band-pass and isotropic. The
x-t face shows the rightward motion information as oriented structure localized in time and which appear
randomly across the image. f) The ’scrambled’ stimulus produced by this filter, as shown in the lower middle
panel, has local oriented structure in the x-t slice consistent with both leftward and rightward motions.
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Figure 2.2: The average spatial and temporal frequency structure of both the Planar and Scrambled filters.
The left side shows the spatial frequency amplitude spectrum of both filters averaged across temporal fre-
quency. The right panel shows the temporal frequency amplitude spectrum of the filters, averaged over both
dimensions of spatial frequency.

compared efficiencies for Component and Planar stimuli. Component stimuli have power concentrated
around a single orientation while Planar stimuli have power at all orientations. The prediction can be
rephrased as: observers should lose no more information detecting Planar stimuli than detecting Component

stimuli. Let νPl and νC represent the subject’s efficiencies for Planar and Component stimuli respectively.
Then the prediction can be expressed as: νPl ≥ νC , where νC = νPl represents the case in which the visual
system is able to pool across orientation with no loss of information. On the other hand, if νC À νPl then
it is unlikely that the visual system has detectors specialized for detecting planar configurations of power.

The other hypothesis states observers should be much more efficient at detecting planar configurations

of power than non-planar configurations. We tested this hypothesis by comparing detection efficiencies Pla-
nar and Scrambled stimuli. Recall that Scrambled stimuli are constructed from Planar stimuli (fig 2.1b)
by inverting ωt for every other bandpass component. These stimuli represent the most non-planar con-
figuration of power which can be constructed from the Planar stimuli’s ten bandpass components which
preserves an important spectral property: the spatial and temporal frequencies are matched except for the

sign of some of the temporal frequencies. This equivalence should minimize the effect that anisotropies in
the observer’s spectral sensitivity might have on the performance comparison. The spectral equivalence
also controls for the use of non-motion cues present in the stimuli. Both stimuli have the same average
spatial ’lumpiness’ and temporal flicker cues, because the filters have identical spatial frequency structure
averaged across temporal frequency, and also have identical temporal frequency structure, averaged across

spatial frequency. The spatial and temporal frequency structure of both filters is shown in fig. 2.2. Thus, if
subjects are using the spatial appearance or temporal flicker of the stimuli as cues to detection, we would
expect identical detection performance for the two stimuli.
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2.3 Methods

2.3.1 Definitions

The following definitions are used to describe the physical properties of the stimuli. The Power Spectral
Density is the squared Fourier amplitude spectrum of the stimulus, i.e. if the stimulus has a luminance
distribution L(x,y,t) and F (ωx, ωy, ωt) = F{L(x, y, t)} is the 3-D Fourier transform of L, the power spectral
density is |F (ωx, ωy, ωt)|2.

The energy of a stimulus is the integrated power spectral density,
∫
~ω |F (ωx, ωy, ωt)|2 d~ω.

The filter bandwidth with respect to frequency coordinate variable ωu is measured by taking the second
moment of the spectrum of the normalized filter, Bωu =

∫∞
−∞ ω2

u · |Fn(~ω)| d~ω, where Fn = |F (~ω)|∫∞
−∞ |F (~ω)| d~ω

.

The equivalent flat filter is derived in Appendix A and is a rectangular filter which produces performance
equivalent to a given non-rectangular filter. The equivalent flat filter is used to determine the effective
number of samples used by the human observer.

The equivalent background noise is the additional background noise required to make the ideal observer

perform at the same level as the human observer. It is a kind of ’referring the noise to the input’ [5, 96].
Formulas for the equivalent background noise are derived in appendix A.

The sampling efficiency is a measure of the number of samples effectively used by the observer.

2.3.2 Apparatus

Stimuli were displayed on a Radius 20” grayscale monitor at nominal 12 bit grayscale precision by a
Macintosh PowerPC. The display had a P104 phosphor and a frame rate of 75 Hz. Monitor MTF was
measured and the central region used for display was verified to be linear for all but the 3 highest screen

harmonics. Custom software was used to display the stimuli which employed VideoToolbox software written
by Denis Pelli and David Brainard. Denis Pelli’s Video Attenuator was used to achieve 12 bit precision.
The attenuator sums together the 24 bit r,g, and b channel DAC outputs with simple resistors to produce
a nominal 12 bit signal to the monitor [98]. Custom code was employed to rapidly transform floating point
luminance images into 24 bit r,g, b inputs for the attenuator. Subject’s heads were kept stationary during

the experiment using a chin/head-rest.

2.3.3 Stimuli

Signal stimuli were produced by digitally filtering spatio-temporal gaussian white noise with spatio-

temporal linear filters using the discrete fourier transform. Spatio-temporal gaussian white noise was
produced by transforming a double precision pseudo-random number generator with a rectangular distri-
bution. After filtering, the stimuli were truncated at +

−3.5 standard deviations. The probability of exceeding
those bounds after filtering is much less than 4.7x10−4. Since the stimuli have about 1.3x105 samples, only
a few values were truncated on a given stimulus. Signal stimuli were added to either unfiltered background

noise, or filtered background noise. Unfiltered background noise was spatio-temporal gaussian white noise
which was bounded by systematically resampling any values which exceeded +

−2 standard deviations. The
filtered background noise was produced in the same manner as the signal stimuli. Both signal and noise
stimuli had a mean luminance of (25 ) cd/m2 which was the same as the background luminance.

Stimuli dimensions were 64x64 pixels in space and 32 frames in time. The viewing distance was 44

cm, and the stimuli subtended 2.2 deg. Subjects viewed the monitor binocularly in a darkened room, and
fixated a spot 1.3 deg above the center of the stimulus. Stimuli were modulated in space by a circularly
symmetric ’smooth pillbox’ window and in time by a ’smooth box’ function. The ’smooth box’ function
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W (r), r =
√

x2 + y2 is given by:

W (r) =





1, l + w < r < u−w

0, l < r > u
cos[π(r − l)/w], left transition
cos[π(u− r)/w], right transition

where l and u are the left and right boundaries of the box function, respectively. The aperture window
had a radius of r = 1.1 degrees, with transition width w = 0.26 degrees. The temporal window had an

identical form, replacing r with t. For the temporal window stimulus onset and offset transition durations
were w = 0.053 seconds. The fourier transform of this window function is a blurred sinc function, which
can be approximated by a gaussian with sigma of 0.034 cyc/deg (1 pixel in fft). For the stimuli employed,
windowing the stimuli changes the spectral density by at most 8% at any given frequency and produces
an average change less than 3%. Performance calculations which assumed no windowing differed from

performance calculations which included windowing by less than 1%, hence the effect of windowing on
the signal shape was ignored. Windowing does reduce the total energy available to the observer. This
reduction was factored into the ideal observer calculations.

2.3.4 Subjects

Three subjects took part in the experiments, one being the first author (PS) and the other two being
undergraduates who were experienced psychophysical subjects but were naive to the purpose of the ex-
periments (ML and AS). All three observers had corrected to normal vision. Viewing was binocular with
natural pupils.

2.3.5 Procedures

Data were collected using the method of constant stimuli for two temporal interval forced choice discrimi-
nation between signal plus noise and noise alone. Typically 5 or 6 different energy levels were chosen, and
these were uniformly intermixed during the sessions. Within a session, one type of signal was randomly
selected and presented, and subjects were told which signal type was present at the start of each session.

Before this data was collected, observers had at least three hours practice for detecting each signal type.

Practice data was collected using a QUEST[142] adaptive procedure, and subjects were given practice until
their last three thresholds were not significantly different. In each practice session, the signal type was
randomly selected and used for the entire session. An exception to this procedure were the Gabor filter
stimuli, on which data was collected after the completion of the other data sets.

Thresholds were determined by fitting 2 parameter Weibull functions to the detection data using a

maximum likelihood procedure. The α parameter was used as a measure of threshold, which is equivalent
to reporting the signal to noise ratio which produced 81.1% correct. Error bars for thresholds, slopes,
and efficiencies are computed from the inverse numerical Hessian of their likelihood functions, which were
cross-validated using a parametric bootstrap procedure. In the bootstrap procedure, 1000 data sets were
simulated by sampling from the binomial distributions of the observer’s data points. Maximum likelihood

fits of the parameters were then generated for each data set. The distribution of fitted parameters was used
to estimate the standard error on the parameters. The bootstrap distribution of fitted α and β parameters
were also used to compute bootstrap T-tests and ANOVAs [40].
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2.3.6 Filters

Three different filters were used to create stimuli. One filter is a rotationally symmetric bandpass filter

(the Component filter), and two other filters are created by summing together spherically rotated copies
of this bandpass filter (the Planar and Scrambled filters.

Component Filter The Component filter’s amplitude spectrum has this functional form in spherical
spatio-temporal frequency coordinates:

C(ωr, ωθ, ωφ) = R(ωr)|(cos(ωθ − ωθ0)|
9| cos(ωφ − ωφ0)|

9 (2.1)

Where R(ωr) is given by the smooth box function with transition region width of 1.45 cyc/deg, and low-
high frequency cutoffs of (0.49,7.6) cyc/deg. This filter has an orientation bandwidth of about 18 degrees,
and an ωφ bandwidth of 18 degrees. To interpret ωθ and ωφ, recall that the plane in frequency space is

given by vxωx + vyωy +ωt = 0, thus the normal vector to the plane is given by ~u = (vx vy 1)/
√

v2
x + v2

y + 1.

The angles ωθ0 and ωφ0 can be determined from velocity through the normal vector:

ωφ0 =
π

2
− tan−1(

1√
v2
x + v2

y

) (2.2)

ωθ0 = π + tan−1(
vy

vx
) (2.3)

The peak frequency of this filter had ωθ0 = 90deg, and ωφ0 = 36.9 deg which corresponds to a grating
moving in the negative y direction at a speed of 1.93 deg/sec.

Planar Filter The Planar filter is produced by summing together 10 BandPass filters rotated such that
they lie on a common plane. The simplest way to express this is to express the BandPass filter in Cartesian

coordinates. Then the Planar filter can be written as the sum of BandPass filters rotated in direction by
multiples of 18 deg, then rotated in φ to lie in a common plane. Let ~ω represent the vector [ωx, ωy, ωt],
and Rx(φ) and Rt(θ) denote the 3-D rotation matrices which leave the ωx and ωt axes fixed respectively.
Then the Planar filter can be expressed as:

Pl(~ω) =
10∑

i=1

C (Rx(−φ0)Rt(−θ0 − i π/10) ~ω) (2.4)

Scrambled Filter The Scrambled filter’s amplitude spectrum is obtained from the Planar filter’s by
rotating every other component BandPass filter around the ωt axis by 180 deg.

2.3.7 Ideal Observer calculations

Ideal observer performance was calculated in two ways. The first is from an approximate expression
for the performance which is derived in appendix A. The second was a simulation of the ideal observer

performance on the stimuli used in the experiment, except that luminance quantization was not modeled.
The simulations were performed by computing the energy within the filter in each interval and then
choosing the interval which contained the largest energy to compute a binary response. The probability
of correct detection at each signal energy was then estimated by performing a thousand trials per signal
energy. The energy within the filter for each interval was computed by taking the 3-D fft of the signal

plus noise interval and the noise alone interval, multiplying by the optimal filter spectrum, then summing
across all the squared complex amplitudes. The simulations showed the approximations to be accurate to
much less than 1%.



2.4. RESULTS 18

Figure 2.3: Probability correct is plotted as a function of log signal to noise ratio (SNR), base 2, for both
Planar (solid lines and circles) and Component stimuli (dashed lines and crosses). The psychometric functions
to the left with no data points are the theoretical performances of the ideal observers for Planar stimuli (solid
line) and Component stimuli (dashed line).

2.4 Results

The performance of human and ideal observers for detecting Planar and Component signals (see fig. 2.1)
are shown in figure 2.3 as a function of signal to noise energy ratio (SNR). The data are plotted on a log

base 2 scale, so that a factor of two difference in threshold SNR becomes a one unit shift in the psychometric
function. Solid curves plot human and ideal performance for the Planar stimuli, while dashed curves plot
performance for the Component stimuli. The data show that detection threshold energies at any % correct
are lower for Component stimuli than Planar, except for subject ML for which the psychometric functions
cross.

Care must be taken in interpreting this difference in threshold energies. To infer subjects are better at
detecting Component stimuli implicitly assumes that Planar and Component stimuli with the same energy
should be equally difficult to detect. This assumption turns out to be incorrect. To understand why Planar
and Component stimuli matched in energy are not matched in detectability, we need the concept of an
ideal observer. An ideal observer is the theoretically optimal observer for a given task given the statistics.

Let the signal power spectrum be denoted by |S(ωx, ωy, ωt)|2, and let |F(ωx, ωy, ωt)|2 denote the spectrum
of the filter which made the signal. For the task of detecting the stochastic stimuli buried in white noise,
the ideal observer computes the energy within the filter F:

E =

∫

ωx,ωy,ωt

|S(ωx, ωy, ωt)|2|F(ωx, ωy, ωt)|2 dωxdωydωt (2.5)

on each interval and chooses the interval with the larger energy. It turns out that ideal performance changes

with total bandwidth (filter volume) of the ideal’s filter, since the number of frequency samples available
and the amount of background noise viewed by the ideal’s filter changes. Because the expressions for ideal
performance are quite complicated, it is useful to examine a case for which a simple result can be achieved.
When the filters and signals have rectangular power spectra, a useful approximate expression for d′ can be
derived [52, 65]:

(d′)2 =
2(E/N)2

MBxByBt + E/N
(2.6)
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where E is the signal energy, N is the background noise power, M the number of signal samples, and
the Bu are the bandwidths for of the filter for the u variable. The expression shows that even in this
simple case ideal performance is a function of the filter bandwidths, and hence a function of stimulus
type. This change in ideal performance across stimulus type indicates that the information available for

detection varies with the properties of the signal, which means a straight comparison of thresholds across
stimulus type is misleading. To correct for this difference in ideal performance across stimuli, we computed
subject’s efficiencies for detecting each stimulus type. Efficiencies represent an absolute measure of observer
performance on a task which corrects for differences in inherent detectability across stimuli type.

Statistical efficiency ν for the task is defined as the percentage of available samples which are effectively

used by subjects to detect the stimuli:

ν =
Nideal

Nhuman
(2.7)

where Nx represents the number of samples required by the observer to achieve a given level of performance.

An approximate expression for efficiency is given by the squared ratio of ideal and human observers
detection thresholds:

ν =
E2

ideal

E2
human

(2.8)

where Ex are the threshold signal energies for the human and ideal observers. Because this approximation
is frequently poor we used formulae derived in Appendix B to compute efficiencies.

Using the ratio of thresholds approximation, the efficiencies can be estimated as 1/4d, where d is the
difference between the subject’s and ideal’s thresholds on the log scale in figure 2.3. For instance, differences
of one, two, and three on a log2 scale yield efficiencies of about 25%, 12.5%, and 6.25% respectively. Notice
the difference in ideal performance for Planar and Component stimuli. The difference means Planar stimuli

intrinsically require more energy to be equally detectable. By inspection, the difference in subject’s energy
thresholds between Planar and Component stimuli is similar to the difference in ideal observer thresholds,
indicating the efficiencies are comparable.

To make more straightforward comparisions of ideal and human behavior, we found the best fitting
Weibull function to the ideal psychometric function using a least squares criterion. Figure 2.4 shows the

Weibull fit parameters α and β for the ideal observer as a function of efficiency. Decreased efficiency for the
ideal is modeled by incrementing the ideal’s decision variable variance. Surprisingly, the β parameters are
approximately constant across efficiency and stimulus type, which means the ideal psychometric functions
are nearly shift invariant on a log SNR scale.

The slopes β, of the fitted Weibull psychometric functions are shown in figure 2.5 on the right. The

slopes are not significantly different except for the Component condition for subject ML. Since the slopes
for the ideal observers are constant across efficiency and stimulus type, we can directly compare their
magnitudes. When the slopes are not significantly different, relative performance can be sufficiently sum-
marized by the α parameters, which can be used to compute the efficiencies. Efficiencies were computed
from the Weibull α parameters, which are a measure of the threshold signal to noise ratio at 81.1% correct,

and are shown in figure 2.5 on the left.
In order to make performance comparisons for subject ML, we computed an average efficiency across

the measured data points. For each measured percent correct, we can compute an efficiency with respect
to the ideal at the same percent correct. Assuming each measured percent correct is equally informative,
averaging across these efficiency estimates is the best measure of the subject’s overall performance on a

stimulus type. The average efficiencies are shown in figure 2.6 and have the same qualitative trends as the
efficiencies computed from the α estimates. Thus, Planar and Component performance is not significantly
different in expectation across performance criteria, consistent with the hypothesis that observers can pool
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Figure 2.4: Left: Weibull β (slope) parameter estimates for as a function of efficiency for Planar and
Component stimuli for the ideal observers. Right: Weibull α parameter estimates for as a function of
efficiency for Planar and Component stimuli for the ideal observers

Figure 2.5: Left: Efficiencies for Planar and Component stimuli for three subjects computed from the fitted
Weibull α parameter. Error bars represent standard errors of the estimate. Right: Weibull β parameter
plotted for Planar and Component stimuli. Error bars represent standard errors of the estimate. Slopes are
mostly close to the ideal β of 2.5, and are not significantly different across conditions except the Component
condition for subject ML.



2.4. RESULTS 21

Figure 2.6: Average efficiencies for Planar and Component stimuli for three subjects computed from the
fitted Weibull α parameter. Error bars represent standard errors of the estimate.

across planar regions of Fourier space without loss of information.

The results are consistent with perfect pooling across the set of bandpass visual filters which are sensitive
to Planar stimuli. To better assess the strength of this inference, we computed predictions for Planar
performance using two suboptimal detection strategies: no pooling across the Planar components and
probability summation across the set of components. The purpose of the predictions is to give quantitative
insight into the kind of performance which can be achieved by suboptimal pooling.

To make performance predictions we assumed that the observer is faced with the same sources of
inefficiency in processing components of the Planar stimuli as faced detecting Component stimuli. We
estimated the equivalent input noise for Component stimuli, which measures the additional background
noise power needed for the ideal observer to perform the same as human observers. The equivalent input
noise is then treated as additional background noise which corrupts the suboptimal model performance on

Planar stimuli.
To compute predictions for the suboptimal model which does not pool across Planar components, we

notice that assuming no pooling is the same as assuming observers can only use information from a single
Planar component. The model uses energy within one of the component filters corrupted by the equivalent
input noise as a decision variable. Detecting Planar stimuli using the power within one component predicts

a reduction of efficiency by a factor of about 5 over performance on Component stimuli, i.e. each Planar
component ’sees’ about 20% of the available information.6

We also estimated the performance for another standard suboptimal model, probability summation
across the Planar components. We modeled probability summation by a maximum output rule [96], and
used the equivalent input noise to estimate subject inefficiency as before. Since the Planar component

filters overlap, the probability summation rule is not as simple as that derived for independent channels.
Computing the predictions for both suboptimal models is discussed in detail in Appendix C.

Threshold SNRs and efficiencies for the two stimuli are shown next to the probability summation and
component filter predictions in fig. 2.7. For all three subjects, Planar and Component efficiencies are not
significantly different (bootstrap T-test, p<0.05), while efficiencies for Planar stimuli exceed those of either

the probability summation or component filter predictions by a factor greater than two. Although the
predictions were generated using particular filters, the prediction results suggest that it would be difficult
to achieve the efficiencies observed for Planar stimuli using a suboptimal pooling strategy. This suggestion

6Since there are ten component filters, we might expect each component to contain about 10% of the available information.
However, the overlap of the filters coupled with a change in decision variable variance with filter volume conspire to double
this expectation.
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Figure 2.7: Summary of subject performance on Component and Planar stimuli. 81% threshold energies
are shown on the left and efficiencies are shown on the right for Component (white bars) and Planar (light
gray bars) stimuli. The error bars represent the standard error of the estimates. The two suboptimal pooling
predictions for the detection of Planar stimuli are shown as dark gray bars. The error bars for the predictions
represent the prediction uncertainty generated by the standard errors for Component detection.

is supported by the fact that all of the existing psychophysical and physiological evidence [138, 143, 83]
suggests that spatio-temporal filters in the early visual system are narrow-band in spatial frequency, since
these filters would ’see’ less of Planar stimuli than Component stimuli. For instance, Watson’s ’optimal
motion filter’ passes 60% of the information7 in component stimuli but only 14% of Planar stimuli, a

4:1 ratio. Suboptimal schemes like probability summation lose more information the narrower the filter
bandwidths are and lose the least information when the filters are closest to the Planar filter spectrum.
Thus we would not expect probability summation over Watson’s filters to overcome the 4:1 ratio to produce
equal performance on Planar and Component stimuli.

The results show that on average the same percentage of information is lost for both Planar and

Component stimuli, even though in the Planar case the information is spread across orientation. This
suggests that observers can use a planar pooling strategy.

2.4.1 Planar vs. Scrambled

The previous result suggests the visual system can efficiently pool across planar configurations of power.
In this section we control for the possibility that generic (rather than plane-specific) pooling processes

could explain detection performance on Planar stimuli. In other words, if the visual system can learn to
pool efficiently across arbitrary configurations of power, given enough practice, then there is no need to
hypothesize specialized planar power detectors. This possibility is suggested by the results of Kersten[65]
in the spatial frequency domain, who found efficiencies for detecting spatial noise signals remained constant
over a 6 octave range of signal bandwidths, providing evidence that arbitrary pooling may be possible in

7In this context, the amount of information means the number of independent and equivalent frequency samples in the
stimulus.
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Figure 2.8: Probability correct is plotted as a function of log signal to noise ratio (SNR), base 2, for both
Planar (solid lines and circles) and Scrambled stimuli (dashed lines and crosses). The psychometric functions
to the left with no data points are the theoretical performances of the ideal observers for Planar stimuli (solid
line) and Scrambled stimuli (dashed line).

the spatial domain.
We investigated the possibility that observers may be equally good at pooling energy across non-planar

as planar configurations by comparing detection efficiencies for Planar and Scrambled stimuli. Recall
that Scrambled stimuli have the most non-planar configuration which can be produced while preserving
the spatial and temporal structure of the Planar stimuli. The matching spatial and temporal structure

controls for the possibility that a difference in performance is simply due to differences in the visual system’s
sensitivity to the frequencies in the two stimuli. Thus if the visual system uses a generic pooling strategy
we would expect equivalent performance on Planar and Scrambled stimuli.

Psychometric data for Planar and Scrambled stimuli are shown in figure 2.8. Planar data is replotted
from figure 2.3.

The slopes of the fitted Weibull psychometric functions are shown in figure 2.9 on the right. The slopes
are not significantly different for the three observers. As before, this allows us to summarize our data using
the threshold parameters. Efficiencies were computed from the Weibull α parameters, which are shown
in figure 2.9 on the left. The results show that Planar efficiencies are consistently higher than Scrambled.
The efficiencies for Planar stimuli are more than twice those for Scrambled stimuli for all three subjects.

Thus, the visual system is not able to perform arbitrary efficient pooling.
To better quantify how much pooling occurred for Scrambled stimuli, we compared Scrambled perfor-

mance with the predictions from the no-pooling and probability summation suboptimal strategies. The
predictions were made in the same manner as for Planar stimuli: the equivalent input noise performance on
Component stimuli was used to predict the effects of using a single Scrambled component and probability

summation across these components.
Comparisons of predicted and actual efficiencies at 80% correct are shown in figure 2.10. The results

show that efficiencies for Scrambled stimuli are processed more efficiently than predicted by a single Com-
ponent filter for all three subjects, but less efficiently than predicted by probability summation for two
subjects. Observer ML performance is not significantly different from probability summation. Thus, al-

though Scrambled performance is well below Planar performance, there is evidence for some pooling which
is within the range expected for a system which detects the components independently.

The result indicates that the visual system is not as sensitive to all non-planar configurations as planar



2.4. RESULTS 24

Figure 2.9: Left:Efficiencies for Planar and Scrambled stimuli for three subjects computed from the fitted
Weibull α parameter. Error bars represent standard errors of the estimate. Right: Weibull β parameter
plotted for Planar and Scrambled stimuli. Error bars represent standard errors of the estimate. Slopes are
close to the ideal β of 2.5, and are not significantly different across conditions.

Figure 2.10: Subject performance on Scrambled stimuli compared to predicted performance and perfor-
mance for Planar stimuli.
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configurations. Since the Scrambled stimuli are matched in spatio-temporal frequency content and in spatial
and temporal structure, this conclusion cannot easily be attributed to a difference in spectral sensitivity
to the two stimuli. Despite the large difference between Planar and Scrambled efficiencies, the visual
system is not insensitive to Scrambled stimuli, since efficiencies are higher than those predicted from a

single component.

2.5 Experiment 2

In experiment 1 we compared detection performance for Planar and Component stimuli and remarked that
the near equivalence of efficiency suggests observers pool information across orientation in a plane. Implicit
in this inference is the assumption that the observer used different internal filters for detecting Planar and

Component stimuli which were reasonably matched to the spectra of the stimuli. However, it is possible
that the visual system relies on bandpass detectors to detect planar and component stimuli which are not
matched to either stimuli’s spectra. If these bandpass detectors process Planar and Component stimuli
with about the same efficiency, then the equal detection efficiencies for Planar and Component stimuli
could be explained without hypothesizing specialized planar power detectors. Note that this hypothesis

does not require Planar and Component stimuli to be equally processed by a single bandpass detector. For
instance, there could be two bandpass detectors each of which is more sensitive to one of the stimuli than
any other detector in the visual system, and such that the sensitivities of these two detectors cause the
two stimuli to be processed with equal efficiency. In this section we test this possibility.

2.5.1 Experimental Logic

For a non-matched bandpass filter to explain the Planar detection results, the processing efficiency of the
detector must be higher than the measured Planar efficiency, since it needs to overcome the additional
information loss caused by the mismatch. Let νf

s denote the efficiency for detecting a signal with spectrum
s using an internal filter with spectrum f , and m(s, f) represent the fraction of the total signal information

preserved by the internal filter. Then the efficiency of the observer relying on the mismatched internal
filter can be expressed as:

νf
s = m(s, f)νf

f (2.9)

In words, the efficiency of the observer using the filter is the product of the maximal efficiency obtainable
using the filter, νf

f , and the fraction of signal information preserved by the filter. Thus, if the observer is
using a mismatched internal filter to detect the Planar and Component signals, then the observer should

be more efficient at detecting stimuli matched to this internal filter by a factor of 1/m(s, f).
What sort of bandpass internal filters could explain Planar performance? In order to produce high

relative efficiencies on Planar stimuli the bandpass filter should be better matched to Planar stimuli than
Component stimuli. This means that the bandwidths of this filter must be large enough that the filter ’sees’
more additional background noise processing Component stimuli than it discards signal power processing

Planar stimuli. Such filters do exist, hence the hypothesis is viable. A special role is played by the bandpass
filter which can best process the Planar stimuli. This filter is better matched to the planar spectrum than
any other filter narrow band in orientation. If we make stimuli with spectra matched to this filter, then any
internal filter narrow band in orientation which could explain the Planar results must be better matched
to these stimuli than Planar stimuli. Implicit in this prediction is an assumption that the sensitivity of the

observer is reasonably isotropic, an issue we will return to in the discussion.
To test this prediction, we found the Gabor bandpass filters which could best process the Planar

stimuli. Gabor filters were chosen because of their frequent use in modeling the early visual system
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Figure 2.11: The Gabor filter which optimally processes Planar stimuli. The right panel contains the 50%
level sets of the optimal Gabor filter. The method for finding this filter is given in Appendix D. On the right
is an image of the optimal Gabor filter intersecting the Planar filter, to illustrate the fit.

[31, 32, 56, 110, 74, 143] and their simple parametrization. The 50% level sets of a resulting filter is shown
in fig. 2.11 in the first panel. The filter is unique except that it may be rotated within the Planar filter
spectrum. We created a set of control stimuli by passing white noise through the optimal Gabor filter
shown in the figure, which was chosen to produce stimuli with the same direction of motion as the Planar

stimuli. Under the assumption that observer’s sensitivities are isotropic, filter bandwidths become the
principle determinate of a bandpass filter’s processing efficiency for Planar stimuli. Under isotropy, single
band-pass filters with bandwidths large enough to potentially detect Planar stimuli better than Component
stimuli would be better matched to Gabor stimuli than Planar stimuli. Thus, if performance on the planar
stimulus is based on a single pass-band filter, we would predict higher detection efficiencies for the Gabor

control stimuli than Planar stimuli.

2.5.2 Methods

The Gabor filter used is a sinusoid enveloped by a gaussian window which is given by:

G(~ω) = exp(−1

2
((~ω − ~ω0)

T Λ−1(~ω − ~ω0)) (2.10)

The parameters of the Gabor filter were determined by a fitting procedure described in Appendix D. ~ω0

was set to [x, y, t] and Λ is a diagonal matrix, with non-zero entries given by the squared bandwidths
[σx, σy, σt] = (2.4 cyc/deg, 6.2 cyc/deg, 5.0 Hz). The filter is centered at (2.73 cyc/deg, 0 cyc/deg, 5.3

Hz).
The experimental procedures were the same as for the previous experiment. Subjects were given at

least two hours training before data collection using a QUEST[142] procedure to track performance and
estimate thresholds. At the end of the training period the difference between the last four thresholds
was not significantly different from the group mean (bootstrap ANOVA, p < 0.05.). The data for this

experiment were collected after the data for experiments 1 & 3. 8

8Although not critical it is noteworthy that subject performance was initially much better and leveled out faster for all of
the stimuli used in experiments after the Planar, Scrambled, and Component.
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Figure 2.12: Performance on Gabor stimuli is shown for three subjects. Dashed line represents ideal observer
performance. See figure 2.8 for details.

Figure 2.13: Left:Efficiencies for Planar and Gabor stimuli for three subjects computed from the fitted
Weibull α parameter. Error bars represent standard errors of the estimate. Right: Weibull β parameter
plotted for Planar and Gabor stimuli. Error bars represent standard errors of the estimate.

2.5.3 Results

The slope parameters, β, of the Gabor and Planar psychometric functions are shown in fig. 2.13 on the
right. The slope parameters are not significantly different using a bootstrap T-test at the p¡0.05 level,
so the data were summarized by the efficiency computed from the threshold parameter. Efficiencies for
Planar and Gabor stimuli are shown on the left in fig. 2.13. The results show that Planar efficiencies are
consistently higher than Gabor, not consistent with the idea that Planar stimuli are being processed by

single bandpass filters.
The discrepancy between the results and the hypothesis that the Planar results can be explained by

a single bandpass filter is accentuated by considering the predicted efficiency for Gabor stimuli. The
prediction was generated by determining how much information would be lost in processing the Planar
stimuli using the optimal Gabor filter. The intersection of this Gabor filter and the Planar filter are shown

in the second panel of fig. 2.11. Visually, the Gabor stimulus appears to cover about 2/3 of the frequencies
in the Planar stimuli, which suggests the filter should discard about 33% of the information in Planar
stimuli. The actual maximum processing efficiency of 65.7% is close to this visual estimate. Thus if the
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visual system were using a bandpass filter with bandwidths similar to this Gabor filter to detect the Planar
stimuli, the filter must be operating with a minimum efficiency of 1

0.657 ' 1.5 times the Planar efficiency.
An internal bandpass filter with different bandwidths would have to be even more efficient to explain the
results. Since performance on Gabor stimuli shows the opposite trend, the results argue strongly against

a single bandpass filter model.

2.5.4 Discussion

The result indicates that the observers are not using a bandpass filter which is narrow band in orientation
to detect the stimuli, under the assumption that the visual system’s sensitivity is reasonably isotropic.

The assumption of isotropy is needed to cover the following possibility. The Gabor stimuli we chose
does not cover all of the frequencies contained in the Planar stimuli (see the second panel in figure 2.11).
It is possible that all of the observers are detecting Planar stimuli using the frequencies in the side bands

excluded from the Gabor stimuli. However, for this hypothesis to be feasible, visual efficiency for the
frequencies in these sidebands must be at least 3 times the efficiency for the shared frequencies, since the
sidebands constitute only 1/3 of the frequencies in Planar stimuli. This possibility is unlikely given previous
data which do not show much anisotropy in visual sensitivity[64, 123], and by the fact that the shared
frequencies are much closer to measured optimal temporal frequencies (5.5 Hz, compared with Watson &

Turano’s 5 Hz[143].) than the sideband temporal frequencies (which are less than half that).
While we framed the discussion in terms of the a single filter detecting the stimuli, the results generalize

to probability summation across a set of band-pass filters as well. Consider a bank of bandpass filters which
intersect both the Planar and Gabor stimuli, and which are better matched to the Gabor stimuli than the
Planar stimuli. The vector of energies across the bank of filters can be transformed to a new basis in which
each of the energy measurements are independent. In the new energy bases, the Planar energy vector will

have more independent samples but less energy per sample than the Gabor energy vector. We can also
rotate these bases so that the vector components are equal. Because the probability correct for probability
summation depends on the product of the detection probabilities of a set of independent samples and
these probabilities are less than one, the probability correct for detecting Planar stimuli will be less than
detecting Gabor stimuli. That is:

p(Rk = 1|Planar) =
n∏

i=1

p(Rk = 1|EPli) <
m∏

j=1

p(Rk = 1|EGj) = p(Rk = 1|Gabor) (2.11)

since: p(Rk = 1|EPli) < p(Rk = 1|EGj ) for i = j, and n > m

In eqn. 2.12, EXi is the energy along the ith independent energy coordinate for stimulus X after rotating
to equalize the coordinate components, and n, m are the number of independent samples across the bank
of filters for the Planar and Gabor stimuli. The formula leaves out the contributions of irrelevant samples,
which is safe as long as the number of irrelevant samples included in the probability summation calculation
is relatively constant between the Planar and Gabor stimuli. Thus, probability summation does not change

the qualitative predictions. A bank of filters better matched to narrow band stimuli still predicts that Gabor
stimuli should be more efficiently processed than Planar stimuli, which was not the case.

Planar stimuli could still be detected by an internal filter which matches the Planar stimuli better
than the Gabor stimuli. This filter cannot be narrow band in orientation, hence it must be broad band
in orientation. To serve as an alternate hypothesis to planar pooling, this filter must not be to be tuned

to planar configurations of power. Thus the filter must be broadband in orientation and not tuned to any
plane. This is essentially a description of cylindrical filter, which detects the planar stimuli on the basis of
the spatial and temporal structure of the stimuli without using the motion information. This possibility
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Figure 2.14: The ’Cylinder’ filter, which detects Planar stimuli on the basis of spatial and temporal structure,
without access to motion information. It is constructed by multiplying the spatial and temporal profiles shown
in fig. 2.2. A lumpy background noise was constructed by passing spatio-temporal white noise through this
filter.

is unlikely since the use of a cylindrical filter predicts equivalent performance on Planar and Scrambled

stimuli, unlike the results.

2.6 Experiment 3

2.6.1 Planar vs. Scrambled, Cylindrical Background Noise

Although the results of the comparison between Planar and Scrambled stimuli suggest that observers do
not use a strategy which only uses the spatial or temporal structure, there is still a possibility that the

Scrambled stimuli were a particularly poor choice in non-planar comparison stimuli. For instance, it is
possible that some inhibitory interactions exist which may serve to cancel parts of the Scrambled signal. In
this case it is possible that subjects used a strategy that was not motion specific to detect Planar stimuli,
but that this strategy resulted in a large loss of information on the Scrambled stimuli.

To test this possibility we used the following experimental logic. Let us assume that the Planar

and Scrambled stimuli are both detected using only the spatial or temporal structure, with additional
information being lost in the Scrambled case. This is similar to the observers using an internal filter
which is selective to the spatial frequencies in the stimulus at all of the temporal frequencies present in
the signal. The internal filter described is cylindrical and is shown in Figure 2.14. The cylindrical filter’s
amplitude spectrum is made by multiplying the spatial frequency spectrum of the Planar (or Scrambled)
filter averaged across temporal frequency with the temporal frequency of the Planar filter averaged across

spatial frequency, shown in fig. 2.2. In symbols:

Cyl(~ω) =

(∫

ωt

Pl(~ω)dωt

)
·
(∫

ωx

∫

ωy

Pl(~ω)dωxdωy

)
(2.12)

We passed white noise through this filter to generate a lumpy dynamic background noise. Observers
detected the Planar and Scrambled stimuli added to this lumpy background in two different conditions.
In the first condition, the same background energy was used in both intervals of the 2AFC task (Signal
Increment condition). In the second condition, the background energy in the noise alone interval is increased

to match the signal plus noise energy (Constant energy condition). If subjects are only using the spatial or
temporal structure of the Planar or Scrambled stimulus (i.e. a cylindrical internal filter), then the observer’s
performance is limited by the difference in energy between the two intervals. Thus the hypothesis predicts
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Figure 2.15: Subject performance on Planar and Scrambled stimuli added to Cylindrical background noise
for two conditions: Constant Cylindrical noise power (CN) and constant total power in each interval (CN,
constant total power).

that observers will be able to perform the task in the signal increment condition, but that performance
will go to chance in the Constant energy condition.

Thresholds for 79% correct performance were determined using a transformed 3-down, 1-up staircase
procedure [77]. Thresholds are computed as the mean of 20-30 reversals, and 4-5 thresholds were collected
for each subject. The standard errors are given by the standard deviation of the thresholds9. The mean

threshold SNR energies are shown for both conditions in Figure 2.15. Threshold energies for the Planar
stimuli are higher for the signal increment condition by 16-50%. However, a difference in threshold is
expected for a matched filter power detector. In the Constant energy condition, the difference in energy
within the matched filter between the signal plus noise and noise intervals is reduced over the Signal
Increment condition by 29% on average. This reduction is large enough to account for the observed

increases in Planar thresholds.
Threshold energies for the Scrambled stimuli are much higher for the Constant energy condition, yet

observer performance is still well above chance. This suggests that observers are able to use the spatio-
temporal structure in the Planar case, but use something closer to an internal cylinder filter in detecting
the Scrambled stimuli. However, the fact that performance is above chance on Scrambled stimuli indicates

that subjects were able to use some of the spatio-temporal structure in the signal. This result corroborates
the previous results which suggest that subjects can selectively and efficiently pool planar configurations
of spectral power.

9Data for the Signal Increment, but not the Constant energy condition were also collected by the Method of Constant
stimuli. The thresholds collected by both methods are quite similar.
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2.7 Discussion

2.7.1 Interpretations

The relative efficiencies for observers on Planar, Component, and Scrambled stimuli are consistent with
the idea that the visual system has mechanisms which efficiently pools across planes in spatio-temporal

frequency space. The functional significance of this pooling is clear in light of the relationship between
planes in spatio-temporal frequency space and translations of an image: the results support the idea that
the visual system has planar pooling power detectors specialized for processing local translations of an
image. This idea, of course, does not exhaust the list of possibilities. Any successful theory, however, must
account for the high relative efficiency of Planar stimuli to Scrambled stimuli, and the nearly equal relative

efficiency of Planar and Component stimuli. Since the number of comparison stimuli were limited, it is
possible that a more complete set will reveal a different or more complicated set of conclusions.

While the relative efficiencies for the task suggest that the visual system is specialized for detecting
planar configurations of power, the absolute efficiencies found for this task are lower than those found in
other studies, which can be as high as 50-70% [15, 126, 23]. In the next section we discuss some of the

possible sources of inefficiency in this study.

2.7.2 Sources of inefficiency

There are at least four distinct sources of inefficiency in processing the stochastic stimuli used here, which
include internal filter spectrum/signal spectrum mismatch, generic sampling inefficiency, sensory noise,
and the use of a suboptimal detection strategy (e.g., a non-linearity other than squaring, or a non-optimal
decision rule such as probability summation). Analogous sources of inefficiency have been identified in

previous studies [14, 15, 21, 65, 76, 22, 38]. Statements about the relative role of these sources of inefficiency
cannot be made from the data shown here. We can, however, derive some upper bounds on the inefficiencies
of these sources, which are presented below.

Since background noise powers were quite high it is likely that sensory/internal noise was ’swamped’[97],
and thus played a small role in determining efficiencies. Signal-internal filter mismatch can result in two

different kinds of inefficiency. If the internal filter bandwidth is smaller than the signal bandwidth, then the
observer loses frequency samples in making the decisions. This is a kind of sampling inefficiency. On the
other hand if the internal filter bandwidth is larger than the signal bandwidth, then more background noise
is added to the decision variable which is a kind of additional internal noise. It is also possible for the filter
to partially overlap the signal and the background noise to produce both types of inefficiency at once. The

use of a suboptimal detection strategy can be functionally considered as a kind of sampling inefficiency, in
that the available samples are not being optimally used. Since the none of the efficiencies were high and
the Planar and Component efficiencies were nearly identical it is likely that generic subsampling, such as
those due to the retinal mosaic and the temporal sampling of the signals, was a large source of observer
inefficiency. It is easy to see how this could occur since the spatial size and temporal length of the stimuli

may exceed the ability of the visual system to represent the signal. For instance, if temporal sampling
errors discard half the frames, then efficiencies will be reduced by 50%. Thus the loss of efficiency could
be attributed any combination of sampling inefficiencies and additional internal noises.

In figure 2.16, we illustrate the trade off between sampling efficiency and internal noise for the subjects
on each of the three stimuli. Estimates of the equivalent input noise are plotted on the abscissa, to

represent possible degradation due to internal noise. The equivalent input noise is measured as multiples
of the background noise power. Estimates of percent samples used are plotted on the ordinate, representing
the sources of sampling inefficiency.
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Figure 2.16: The tradeoff between information loss due to sampling inefficiency and internal noise is shown
for the three subjects for the Planar, Component, and Scrambled stimuli. Internal noise is represented in
units of the background noise power using estimates of the equivalent input noise.

2.7.3 Comparison to other detection studies

The current study is novel in that it considers motion detection for spatio-temporally filtered stimuli.
Other motion detection studies have been performed, using much different stimuli. One set of studies most
related to the work at hand is due to van Doorn and Koenderink [122, 121, 125], who had subjects detect
rigidly translating binary noises added to spatio-temporal binary noise. They found signal to noise r.m.s.
contrast ratios of about 0.05 for velocities similar to those used in this study. The threshold expressed in
energy units is about 1x10−6 given the stimulus dimensions, which is quite low. The stimulus, however,

is quite large (at 200 x 255 points) which means the ideal observer will be quite good as well. Assuming
an integration time of about 150 ms, a rough estimate of their subjects’ efficiencies is 0.23 %, which is
substantially lower than the efficiencies presented here. However, due to the size of the stimulus, it is
unlikely the visual system can use all of the information. If we assume that the subjects are only able
to use about 10 frames and about half the 5.2 deg2 spatial area of the original experiment, which yield

stimuli with close to the number of independent samples in our stimuli, then efficiencies increase to about
6%, which is comparable to those found here.

In another set of detection studies, van Doorn and Koenderink [124] divided the display into a series
of strips such that half the strips contained noise patterns rigidly translating downward interleaved with
half the strips moving upwards. Detection SNR thresholds were measured for these stimuli over a range of

different strip widths. They found that at small strip widths subject’s detection performance was good and
that the stimuli appeared transparent. The authors inferred from these results (and several others) that
the visual system processes translations using a bank of filters tuned to image velocity whose properties
vary across the retina [120, 119]. The results presented here are consistent with these conclusions and
extend them by suggesting a particular form for the velocity filter.

A detection study by Watson and Turano[143] is of interest here. In the study the authors searched
across the space of spatio-temporal Gabor stimuli for the stimulus which produced the lowest detection
thresholds, i.e. the stimulus within the family that the visual system is most sensitive to when the contrast
of the stimulus is dropped until observers can just identify the direction of motion (left-right). They found
that the best stimulus did not have a Fourier spectrum best suited to process 1-D velocities (long axis along

the velocity line), but instead was aligned with the Cartesian frequency axes, with the largest bandwidth
along temporal frequency.

Watson and others have argued that this result constitutes evidence against the idea the visual system
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has early mechanisms optimized for computing image velocities. However, Watson’s experiments are not
well suited to address the question. The ideal detectors for the Watson experiment are signal known exactly
(SKE) matched filters instead of power detectors. Thus the subjects will perform best when using a set
of linear filters best matched to the Gabor stimuli. Hence, it should come as no surprise that the filters

found by Watson are similar to simple cells found in area V1, the last neural locus for which responses are
reasonably linear[85].

Watson’s results in fact underscore the importance of using stimuli suited to the experimental question.
First, stimuli analogous to our Planar stimuli are not contained within the set of Gabor filters, since Gabors
are narrow band in orientation. Second, our use of filtered noises forced the visual system to detect the

stimuli with non-linear mechanisms. This choice was a conscience effort on our part to push the detection
stage beyond V1 simple cells and into something potentially more interesting. The filter bandwidths
inferred for the best linear detector need not correspond to the best filter bandwidths for power detectors.

Discussion of how the experimental results might be connected to neural processes is deferred until the
end of Chapter 4.

2.8 Conclusions

The results show that observers can efficiently pool fourier power across planar regions of frequency space.
In particular, observers are: 1) efficient at pooling spectral power across spatial orientation within a plane,
2) more efficient at detecting planar than non-planar configurations of power, 3) using spatio-temporal
structure (i.e. motion) cues rather than spatial or temporal cues alone to detect the stimuli.

These results are consistent with the idea that observers have mechanisms which estimate local velocities

using planar power detectors.

2.9 Derivation of Ideal Detector and Performance Approximations:

for Signal in White Noise Case

The derivation of the ideal largely follows van Trees (1971), with an extension for unknown signal energy.

In the 2AFC task, the subject is presented with two luminance distributions, the signal noise plus white
noise and white noise alone, which are both samples from gaussian processes whose mean and covariance
functions are known.

H1 = signal present:

H0 = noise alone:

r(x, y, t) = a · s(x, y, t) + n(x, y, t)

r(x, y, t) = n(x, y, t)

The constant a determines the contrast of the signal noise s, hence a2 is proportional to signal energy.

We will compute the ideal under two conditions, one in which the signal energy is known exactly on each
trial, and one in which the signal energy is not known at all.

The Bayes decision for the 2AFC task is to choose the interval i with the larger likelihood ratio L(r)i:

L(r)1

1

>
<
2

L(r)2 (2.13)

where the likelihood ratio is the ratio of the conditional probabilities of the the waveform r given signal
present and noise alone conditions:

L(r) =
p(r|H1)

p(r|H0)
(2.14)
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We use the fact that the stimuli are gaussian processes to write down the distribution functions explic-
itly. Since the mean functions are given by the background luminance, the processes are fully described
by the covariance functions. The key step is to transform to a function space in which the signal process

is uncorrelated. Since the signal is produced through the action of a linear shift invariant filter, the eigen-
functions of the covariance function are sinusoids. Thus by working in the fourier domain we may write
down the distribution functions for equation 2. Let R(ωx, ωy, ωt) denote the the fourier transform of the
signal r. For the purposes of this experiment, R is discretized over a vector of frequencies.

The signal is a gaussian process produced by convolving spatio-temporal white noise by a linear shift-
invariant filter, h(x,y,t). We denote the filter’s amplitude spectrum by |H(ωx, ωy, ωt)|. The filter excludes

the DC term (zero mean) and is linear in phase. The resulting signal process has a zero mean function,
and the transform of the covariance function is given by |H(ωx, ωy, ωt)|2. Since white noise has a flat power
spectrum, the covariance of R(ωx, ωy, ωt) is given by:

signal present:

noise alone:

K(ωx, ωy, ωt) = a2 · |H(ωx, ωy, ωt)|2 + N

K(ωx, ωy, ωt) = N

The distribution of the likelihood function is then:

Λ(R) =

∏M
i=1

1
[2π(a2|H( ~ωi)|2+N)]0.5 exp(−0.5

∑M
i=1

RiR
∗
i

(a2|H( ~ωi)|2+N))
∏M

i=1
1

[2πN]0.5 exp(−0.5
∑M

i=1
RiR∗i

N )
(2.15)

Since monotonic transforms of the likelihood function do not change performance, we work with log
likelihoods. Rewriting the equation gives an expression for the ideal receiver when the signal and noise
levels are known.

log Λ(R) =
1

N

M∑

i=1

(
a2 · |H(ωxi, ωyi, ωti)|2

a2 · |H(ωxi , ωyi , ωti)|2 + N

)
R2

i + k (2.16)

The optimal test given in equation 4.18 then becomes

log Λ(R)1 − log Λ(R)2

1

>
<
2

0 (2.17)

From equation 2.16 we see the ideal receiver is a generalized Weiner filter with kernel given by

|H(ωx, ωy, ωt)|2

a2 · |H(ωx, ωy, ωt)|2 + N
(2.18)

In the actual experiment, value of a2 is randomly chosen each interval from one of six or seven values. The
ideal can be adjusted to take the randomization into account, by averaging the likelihood function over
the set of values of a2, weighted by their probabilities:

Λ(R) =
n∑

j=1

Λ(R(a2
j ))p(a2

j ) (2.19)
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This equation does not appear to produce a simpler receiver, and its performance is difficult to analyze
analytically. Fortunately, an extremely good approximation exists. When a2maxH(~ωi) << N, the ideal
filter kernel reduces to

|H(ωx, ωy, ωt)|2 (2.20)

which is just a filter matched to the expected power spectral density of the signal. This receiver does

not use any information about the current signal level, while the first receiver had exact knowledge of the
signal level. The performance of decision rule in equation 2.19 uses approximate knowledge of the signal
level, hence its performance must lie in between the performance of receivers 2.18 and 2.20. We computed
the performance of both the receivers having exact knowledge and no knowledge of the signal level for all
the conditions of the experiment, and the results differed by less than 1%.

2.9.1 Performance

Next we derive approximate expressions for the performance of the ideal. Performance of the ideal only
depends on the probability:

p(log Λ(R|H1)− logΛ(R|H0) > 0) (2.21)

To find the performance of the ideal, we derive the distribution of the log likelihood on both the signal
present and noise alone intervals. Note that each complex frequency sample Ri is a gaussian vector in

which both the real and imaginary parts have identical distributions: N(0, σ2/2), where σ2 is given by:

H1 = signal present:

H0 = noise alone:

σ2 = a2 · |H(~ωi)|2 + N

σ2 = N (2.22)

The distribution of RiR
∗
i /(
√

2σ) is chi-square with 2 degrees of freedom. Thus the log likelihoods are
weighted sums of chi-square distributed random variables. Since the test statistic is the sum over a large

number of samples, by the central limit theorem the statistic will be approximately normally distributed
with the mean and variance given by the weighted sums of the mean and variance of the samples Ri. Let
Ri have a mean of zero and a variance of vi. Then the mean and variance of RiR

∗
i are given by:

µRi = 2vi (2.23)

σ2
Ri

= 8v2
i

Since equations 2.18 and 2.20 are simply weighted sums of RiR
∗
i , using equation 2.22 we can compute the

mean and variance of the test statistic:

µ = 2
M∑

j=1

K(~ωj)vj (2.24)

σ2 = 8
M∑

j=1

K(~ωj)
2v2

j

where K(~ωj)
2 are the receiver kernels. When the signal is present and the signal level known exactly (using

the kernel in equation 2.18, these evaluate to:

µH1 = 2
M∑

j=1

|H( ~ωj)|2

a2 · |H( ~ωj)|2 + N
·
(
a2 · |H( ~ωj)|2 + N

)
(2.25)
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µH1 = 2
M∑

j=1

|H( ~ωj)|2

σ2
H1 = 8

M∑

j=1

|H( ~ωj)|4

on the noise alone condition:

µH0 = 2
M∑

j=1

|H( ~ωj)|2

a2 · |H( ~ωj)|2 + N
· (N) (2.26)

σ2
H0 = 8

M∑

j=1

(
|H( ~ωj)|2N

a2 · |H( ~ωj)|2 + N
·
)2

The performance depends on the difference between the statistics on H1 and H0, which will also be
normally distributed by the central limit theorem with mean and variance:

µ = µH1 − µH0 (2.27)

σ2 = σ2
H1 + σ2

H0

Finally the probability correct is given by a cumulative normal function with µ and σ2 as distribution
parameters (using equation 2.21). Letting Φ(u, µ, σ2) denote the cumulative normal function integrated
up to u, and the binary response by Xi, then the probability correct is given by:

p(Xi = 1) = Φ(0, µH1 − µH0, σ
2
H1 + σ2

H0) (2.28)

The case for the matched power detector kernel is similar. Here we simply state the results. It is
useful to write out the expression for probability correct in this case in terms of the signal, filter, and noise
spectra and power. Let 〈, 〉 represent the inner product of two vectors. The result depends on a set of

inner products between spectra. Let R(~ω) denote the expected normalized signal spectrum. We define
two kinds of inner product:

HnRm = 〈|H(~ω)|n, |R(~ω)|m〉 (2.29)

Hn = 〈|H(~ω)|(n/2), |H(~ω)|(n/2)〉

where, for instance, H2R2 is the signal energy in the filter. Then the equivalent of equation 2.28 for the
matched power detector is:

µ = µH1 − µH0 = 2a2H2R2 (2.30)

σ2 = σ2
H1 + σ2

H0 = 8(a4H4R4 + 2a2H4R2N + 2H4N2)

2.9.2 Equivalent Flat Filter

The equivalent flat filter is a rectangular which produces performance equivalent to a non-rectangular filter.
We will derive this by setting the efficiency of the two filters equal to 1. In Appendix B, we show that
efficiency can be expressed as

ν =
σI2

σEq2

(2.31)
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where σI2 and σEq2 are the variances for the ideal and equivalent flat filters respectively. Thus equal
performance occurs when

σI2 = σEq2 (2.32)

σI2 is given by equation 2.31. For a flat filter, the filter spectrum H(~ω) is 1 within the pass band, and
zero elsewhere. We will adjust the width of this pass band until performance is equal. From equation
2.31 we know that the performance of the filter only depends on the signal power a2, noise power N, and
several sums of the signal and filter spectra raised to powers (equation 2.30). For a flat filter equation 2.30

becomes:

HnRm = 〈|H(~ω)|n, |R(~ω)|m〉 (2.33)

HnRm =
M∑

j=1

|H(~ωj)|n|R(~ωj)|m

HnRm =

MEq∑

j=1

|R(~ωj)|m

HnRm = MEq

∑MEq

j=1 |R(~ωj)|m

MEq

HnRm = MEq|R̄|m

where |R̄|m is the mean signal spectrum and MEq is the number of non-zero frequencies in the flat filter.
We now assume that we can change the number of non-zero frequencies without changing the value of the

mean signal spectrum, which allows us to adjust MEq to find an equivalent filter:

σI2 = σEq2 (2.34)

(a4H4R4 + 2a2H4R2N + 2H4N2) = MEq

(
a4|R̄|4 + 2a2|R̄|2N + 2N2

)

This last equation can be solved for MEq, which specifies the property of the flat filter we are interested
in. Another way to express the equivalent flat filter is the number of chi-square random variables we
need to sum together to produce a decision variable with a given variance. This expression has a natural
interpretation in terms of sampling: MEq relates how many identical frequency samples are needed to
produce a given level of performance. Although not obvious, MEq computed this way is always larger the

number of frequencies the filter passes, and MEq is a slow varying non-linear function of the signal power.
What the first property means is that to really get equivalent performance with a flat filter, we would have
to use a stimulus with more samples.

2.9.3 Equivalent Input Noise

The equivalent input noise is the result of referring the observer’s internal noise to the input. We express
the equivalent noise as the increase in background noise power needed for the ideal observer to have the
same performance as the subject. Using a gaussian approximation for the subject’s decision variable,

the performance is determined by the variance of the decision variable. Thus, we need to determine the
increase in background noise power needed for an ideal observer’s decision variable variance to be equal to
the subject’s variance:
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σ2
h = σ2

I (N) + σ2
internal = σ2

I (N + ∆N) (2.35)

Where the subject’s and ideal’s decision variable variances are denoted by σ2
h and σ2

I (N) respectively, and
N is the background noise power.

We write down the ideal’s variance as a function of N from equation (2.31),

σ2
I (N) = 8(a4H4R4 + 2a2H4R2N + 2H4N2) (2.36)

Substituting this expression into equation (2.35), we see that the expression is quadratic in N:

σ2
h = aN2 + b(a2

h)N + c(a2
h) (2.37)

where a = 16H4, b = 16a2H4R2, c = 8a4H4R4, and a2
h denotes the subject’s threshold signal power.

In Appendix B, we show how σ2
h can be estimated from the subject’s threshold. Using this estimate,

equation (2.37) can be solved for Nh, and ∆N determined. Standard errors for the estimate of ∆N were

obtained by propagating the error in the estimate of the subject’s threshold through the calculation using
a Monte Carlo method. A thousand threshold samples were taken from the gaussian approximation to
the subject’s threshold likelihood function. Equivalent input noises were then computed for each threshold
sample, from which the standard error on the equivalent input noise estimate could be computed.

2.10 Appendix B: Efficiency for the Detection of Signal Noises in White
Noise

The definition of efficiency comes from information theory, in which it expresses the amount of information
used by the human observer relative to the ideal. Let pI(s, n) represent the probability density of the 2AFC
decision variable XI for the ideal observer and ph(s, n) of Xh for the human observer. The difference in
entropies between these two distributions is a measure of the information used by the human observer. In

particular, efficiencies are defined such that

log(ν) = H(XI)−H(Xh) (2.38)

where H(X) is the entropy of the random variable X. If X is normally distributed, the entropy is
given by ln(2π) + ln(σ2). Thus assuming both Xh and XI can be reasonably approximated by a normal
distribution, the efficiency can be expressed as:

ν =
σI2

σh2

(2.39)

This definition is an information theoretic interpretation of the standard definition for efficiency of the
ratio of ideal to human d′2. To see this, note that in a generic signal detection model, d′ = s/σ, where s is
the signal strength. When the human observer can be modeled as being limited only by the noise in the

stimulus and some independently added internal noise, d′h = s/
√

σ2 + σ2
internal. For fixed signal strength

s,

ν =
d′2h
d′2I

=
σ2

I

σ2
h

=
σ2

I

σ2
I + σ2

internal

(2.40)
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The standard approach of computing efficiencies the ratio of squared ideal and observer thresholds can
be interpreted in light of this equation. At a given % correct, the signal threshold will be proportional
to the decision variable standard deviation, assuming a gaussian decision variable. If the ideal standard
deviation does not vary with signal level, then the ratio of the squared thresholds is computing the same

quantity as equation (2.40). Because the ideal standard deviation does vary with signal level, we cannot
use the ratio of squared thresholds to compute efficiencies.

If we assume that human observer’s decision variable is approximately normal, then we may use equation
(2.39) to construct a measure of efficiency. Since the variance is a function of signal energy, we would
underestimate human efficiency if we compared the ideal’s threshold to the human observer’s threshold,

since the ideal observer’s threshold is caused by a smaller decision variable variance. What we do instead
is to compute the ideal observer’s decision variable variance at the subject’s threshold signal energy which
supplies the numerator in equation (2.39). The denominator variance can be estimated assuming the
subject has a normally distributed decision variable. Then the subject’s variance can be computed from
the threshold using the expression for d′:

σh2 = µthreshold/d′
2
80% (2.41)

where µthreshold is the mean of the ideal’s decision variable at the subject’s threshold, and d′80% is the value
of d′ for 80% correct: 1.190233. From Appendix A we showed that the mean of the ideal is proportional
to the signal energy within the ideal filter, µideal = 2a2〈|H(~ω)|2, |S(~ω)|2〉, where H(~ω) is the ideal filter

amplitude spectrum, and S(~ω) is the signal spectrum, which are the same, of course. Plugging this in
along with an expression for the ideal variance into equation (2.39) gives an expression for the efficiency:

ν =
2c(a4

t 〈|H(~ω)|4, |S(~ω)|4〉+ 2a2
tN〈|H(~ω)|4, |S(~ω)|2〉+ 2〈|H(~ω)|4,N2〉)

(a2
t 〈|H(~ω)|2, |S(~ω)|2〉)2

where at is the subject’s threshold energy, and c = d′2. This expression has the usual interpretation of
the number of samples used by the human observer, which can be shown most easily by replacing the filter
spectra with their equivalent flat filters. First, however, we need a sampling interpretation of the estimate
of the subject’s decision variable variance. We reexpress the subject’s variance estimate as the variance

predicted by an equivalent flat filter:

a2
t 〈|H(~ω)|2, |S(~ω)|2〉)2/(2c) = Mh

(
a4|S̄|4 + 2a2|S̄|2N + 2N2

)
(2.42)

Substituting this expression and the expression for the variance of the equivalent flat filter of the ideal

(equation (2.35) into equation (2.42), we get:

ν =
MI

(
a4|S̄|4 + 2a2|S̄|2N + 2N2

)

Mh
(
a4|S̄|4 + 2a2|S̄|2N + 2N2

) (2.43)

ν =
MI

Mh

Note that in the expression Mh > MI which means that Mh has the interpretation of the additional
effective samples needed for the human observer to achieve the same performance as the ideal.
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2.11 Appendix C: Performance prediction calculations

In this section we explain how the performance predictions were generated. The component prediction was

generated by assuming the observer could monitor only one of the component filters which make up the
stimuli. In addition we assume that the decision based on the output of this filter is corrupted by the same
amount of internal noise as was estimated from subject’s performance on the Component stimuli. Let the
bandpass filter be denoted by |B(~ω)|2 and the signal spectrum by |S(~ω)|2. Modeling the effect of observer
internal noise as an equivalent input noise Nh, the output of the filter can be expressed: the bandpass

filter

on H1: EH1 =
M∑

j=1

|B(~ωj)|2
(
a2|S(~ωj)|2 + Nh

)
(2.44)

on H0: EH0 =
M∑

j=1

|B(~ωj)|2 (Nh)

The equivalent input noise Nh is estimated from each observer’s performance on the Component stimuli

as outlined in Appendix A. Using these equations, expressions for the mean and variance of the decision
variable similar to those in equation (2.31) in Appendix A can be derived, from which probability correct
and the 80% thresholds were computed. Standard errors for the threshold were computed using the
thousand Monte Carlo equivalent input noise samples, whose generation is described in Appendix A.

2.11.1 Probability summation

In the probability summation calculation, we used a decision process which computes the maximum output

of a set of bandpass filters and chooses the interval with the larger maximum [96]. We modeled each
bandpass filter as above. Let the ith bandpass filter be denoted by |Bi(~ω)|2 and the signal spectrum by
|S(~ω)|2. The output of each filter is:

on H1: Ei =
M∑

j=1

|Bi(~ωj)|2
(
a2|S(~ωj)|2 + Nh

)
(2.45)

on H0: Ei =
M∑

j=1

|Bi(~ωj)|2 (Nh)

On each interval, Ei is approximately gaussian, with mean and variance given by equation (2.31) in
Appendix A. However, because of filter overlap the Ei are correlated, which needs to be taken into account.
This can be accomplished by computing the covariance matrix C of the Ei, which has elements ij given

by E [EiEj]:

on H1: CH1
ij = E [EiEj ] =

M∑

k=1

|Bi(~ωk)|2|Bj(~ωk)|2
(
a2|S(~ωk)|2 + Nh

)
(2.46)

on H0: CH0
ij = E [EiEj ] =

M∑

k=1

|Bi(~ωk)|2|Bj(~ωk)|2 (Nh)

Thus, the outputs Ei of the bandpass filters can be treated as multi-dimensional gaussian vectors whose
distributions have means ~EHi and covariances CHi on H1 and H0. Performance is determined by the
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probability p
(
maxEi(

~EH1) > maxEi(
~EH0)

)
. A Monte Carlo method was used to simulate performance.

Ten thousand samples from the multi-dimensional gaussian distributions were taken for both intervals,
and responses were generated using by finding the interval with the largest output. Percent correct was
determined for 100 different signal power levels, from which the 80% thresholds were determined. Standard

errors were computed as above.

2.12 Appendix D: Finding optimal Gabor filters for Planar stimuli

In this section we describe how we determined the parameters of the Gabor filter which would yield the
best performance in the presence of the planar signal.

Gabor filters have been frequently used in models of early visual processing. The one-sided amplitude
spectrum of Gabor filters in 3-D (ωx, ωy, ωt) frequency domain can be written as:

G(ωx, ωy, ωt) = exp(−1

2
((~ω − ~ω0)

TΛ−1(~ω − ~ω0)) (2.47)

Λ was restricted to be a diagonal matrix with the squared ωx, ωy, and ωt bandwidths on the diagonal, since

Watson and Turano (1994) found that the optimal Gabor stimulus had zero off-diagonal elements. This
leaves 6 parameters to be fit, the bandwidths and the shift vector ~ω0.

The optimal parameters were found by minimizing the threshold planar signal energy required for the
a model detector using a Gabor filter over the 6 dimensional parameter space. The threshold planar signal
energy can be found from the expression for d′2. The function we minimized is the result of solving for

signal energy for a fixed d’ in terms of the filter parameters. We fixed d′ to give a percent correct of 80%.
Let |Pl(~ω)|2 denote the expected power spectrum of the planar signal and |G(~ω)|2 the power spectrum

of the Gabor filter. In Appendix B, we showed that:

d′2 =
s2〈|G(~ω)|2, |Pl(~ω)|2〉

2s4〈|G(~ω)|4, |Pl(~ω)|4〉+ 2s2N2〈|G(~ω)|4, |Pl(~ω)|2〉+ N4〈|G(~ω)|2, |G(~ω)|2〉
(2.48)

This equation is a quadratic in s2:

s2 =
−b −

√
b2 − 4ac

2a
(2.49)

Where

a = 2d′2〈|G(~ω)|4, |Pl(~ω)|4〉 − (〈|G(~ω)|2, |Pl(~ω)|2〉)2 (2.50)

b = 2N2〈|G(~ω)|4, |Pl(~ω)|2〉 (2.51)

c = 2N4〈|G(~ω)|2, |G(~ω)|2〉 (2.52)

The optimal bandwidths are (σωx , σωy , σωt) =(2.4 cyc/deg, 6.2 cyc/deg, 5.0 Hz), centered at (ωx, ωy, ωt) =
(2.73 cyc/deg, 0 cyc/deg, 5.3 Hz). The resulting filter is shown in fig. 2.11.



Chapter 3

Perturbation Analysis

3.1 Introduction

Since the first filter based models of local motion detection were introduced [142, 139, 1], the idea that the
visual system uses a set of spatio-temporal bandpass filters to analyze visual motion information has gained

a great deal of support (e.g. [1, 11, 24, 13, 12, 7, 54, 136, 83, 85, 143]). What characterizes these filters
is that their frequency selectivity is concentrated around a single spatio-temporal frequency [138]. Several
interesting kinds of retinal motion can be encoded by selectively pooling the outputs of these filters, and
virtually every motion processing model can be expressed in terms of the outputs of these filters [112]. For
instance, the velocity of a translating pattern can be encoded by pooling the filters whose peak frequencies
lie in a common plane [138, 56, 53, 112], ’opponent’ motion by subtractively pooling filters tuned for

opposite directions [127], ’group velocity’ by pooling along contours orthogonal to a plane through the
origin [47], and gradients in the motion field can be detected by subtractively pooling estimates of retinal
velocity across adjacent spatial regions of the retina [141]. In addition, a large class of phenomena have
been modeled by allowing nonlinear interactions between the outputs of spatio-temporal filters, including
contrast normalization [78, 57], motion induction [94, 66], motion contrast [60], motion transparency [103],

and trajectory detection [134], among others.
Each type of filter output pooling corresponds to a strategy for encoding information which is optimal

for a certain task. For instance, planar pooling is optimal for detecting translations and ’opponent motion’
pooling for discriminating opposite moving gratings. The results of the experiments in chapter 2 (partic-
ularly for ’Scrambled’ stimuli) showed that subjects are not able to adopt arbitrary detection strategies.

Thus the pooling strategies used by the visual system tell us something about the tasks the visual system
is optimized to perform.

In this chapter we examine two related issues: What pooling strategies do subjects use in detecting
local motions, and How adaptable are the visual system’s pooling strategies to the demands of a task?
We investigate these questions by focusing on how the visual system combines frequency information to

detect four different stimulus types: the Planar, Scrambled, and Component stimuli used in chapter 2, plus
one new stimulus type described below. Optimal detection performance on each stimulus type requires a
qualitatively different pooling strategy.

We perform a kind of perturbation analysis on the detection data which allows us to infer how subjects
weight a set of frequency bands when detecting the stimuli. The analysis we used is similar to several other

cue integration studies in vision [151, 67] and audition [4, 48, 105] in that it relies on cue perturbations
to derive the weights or relative contribution of the cues. We adapted an approach used by Knill [67] to
analyze the data from the last chapter. The relative weight or contribution that each frequency band made

42
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to detection performance was estimated by fitting a linear combination of the energies within the bands
to the variations in the subject’s trial by trial responses using a psychometric model.

The pattern of weights revealed by the analysis will be compared across stimuli type and also to the
ideal weighting strategy for the signal. Both comparisons will be used to infer how well subjects can adjust

their frequency pooling strategy to match the properties of the signal. The measured weights will also
allow us to make some general inferences about the kinds of tasks the motion system is optimized for.

The rest of the chapter is divided into several sections. First we describe possible weighting strategies
the visual system might use to detect the stimuli. Next we describe the weight estimation procedure, its
assumptions and conditions for validity. Finally the resulting weights for the four different stimuli are

presented and interpreted in terms of the detection strategies consistent with the results.

3.2 Detection Strategies

In the experiments described in this thesis, the information which supports successful detection is contained
in the differences in spectral power between the signal plus noise and the noise alone intervals. Subjects
could be using any viable detection strategy which makes use of these differences. Rather than attempting
to describe every possible strategy in detail, we will restrict our analysis of strategy to the linear weighting of

different regions (bands) of spatio-temporal frequency. Because the information for the task is contained in
differences in power within frequency bands across the two intervals, the main determinate of performance
is the weighting of these bands (e.g. what bands are discarded, what irrelevant bands are included, such
as bands without any signal power, and what bands are inappropriately weighted). Concentrating on the
linear weighting of frequency space is similar to estimating the first order kernel of a system: it constitutes

a first order approximation to the decision strategy employed by the visual system (see Appendix A).

3.2.1 Frequency Decomposition

In order to assign weights to different regions of frequency space, we decomposed frequency space into a
set of 13 non-overlapping bands arranged on a sphere. The decomposition is illustrated in figure 3.1. The
choice of decomposition was subject to several constraints. The most important constraints were to ensure

that the signal spectra lied completely within a small number of bands and that the weights would be
interpretable in terms of some general hypotheses about detection strategies outlined below. The number
of bands was determined by a trade off between the reliability of the weight estimates (which requires
a smaller number of bands) and reducing biases in the weights due to discretizing the subject’s spectral
weighting function (which requires a larger number of bands)1. The compromise of 13 bands is justified in

the discussion.
Because most of the signal spectra were concentrated around a single plane in frequency space, the

decomposition was centered around this plane. In the figure, the plane is shown in black. The equator
of the frequency sphere was chosen to lie in the plane, so that the signal spectra (except Scrambled) are
completely contained in bands 1-6. Details of the construction of the filters are contained in Appendix C.

Next we discuss how to interpret the bands in the sphere.
Because of the spherical shape of the decomposition, each band is most easily described in terms of

the orientations of the set of lines through the origin in frequency space which intersect the band (i.e.
in terms of ωθ and ωφ). Each line through the origin of frequency space represents the set of gratings
which have the same spatial orientation and speed. Thus the spherical bands primarily represent a range

1The biases induced by using too few bands are simple and predictable, constituting an average over the subject’s spectral
weighting profile within a band.
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Figure 3.1: Decomposition of spatio-temporal frequency space into 13 non-overlapping bands. The black
plane corresponds to the image velocity the stimuli were designed around. θ and φ in the diagram refer to
the slant and tilt of the plane, from which the direction and speed of the velocity can be computed. Each
of the bands is assigned a number which is shown on the visible area of the band. On the left hand are two
tables which give some of the properties of the frequencies within each of the bands. The top table divides
the 13 bands into 3 groups with qualitatively similar properties. The bottom table gives the mean spatial
orientation and temporal frequency range of the gratings within each band. The ’+’ (’-’) denotes gratings
which have the same (opposite) direction of motion as the velocity specified by the plane.
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of grating orientations and speeds. Each band also includes a range of spatial frequency magnitudes k,
however there is less spatial frequency selectivity between bands since the radial extent of the sphere is
large. Because grating speed is given by tf/k, where tf is the temporal frequency, the various speeds
are largely determined by the range of temporal frequencies within the band. Thus each band can be

characterized by the range of orientations and temporal frequencies contained in the band.
The mean spatial orientation and temporal frequency range of each of the bands is listed in the table

in figure 3.1. The six bands in the plane represent the frequencies which are consistent with downward
translational motion2, with each of the six having different ranges of spatial orientations and temporal
frequencies. Bands 7-11 represent frequencies which intersect planes corresponding to translations in the

opposite direction (upward) as the first 6 bands. We refer to these bands as opponent. Bands 12 and 13
surround the temporal frequency axis. Thus these bands do not have a specific directionality attached
to them, since they include gratings moving in all directions at high temporal frequencies. The pattern
of positive and negative weights across these bands, given the signal, can tell us a great deal about the
detection strategy used by the subject.

To help the reader to understand how different strategies for detecting the stimuli might appear in the
estimated weights, we will outline the predictions made by a number of possibilities.

3.2.2 Ideal strategies

The stimuli we used are ideally detected by power detectors whose spectrum is matched to the signal’s
spectrum. Thus, the ideal detector positively weights the bands containing the signal and sets the rest
of the bands to zero. The weights which we would find were an observer using the ideal strategy will be
designated the ’ideal weights’. The ideal weights for the stimuli, given our choice of frequency partition,

are shown in figure 3.2. The importance of the ideal weights is that they represent a benchmark against
which all strategies can be compared. To the extent that the weights estimated for subjects resemble the
ideal weights, we can infer that the filtering properties of the visual system are well suited to the structure
of the signal. The salient properties of the weights for each of the four stimuli are: Component stimuli are
concentrated around a single spatial orientation (bands 3 & 4), Planar stimuli are broad band in spatial

orientation (bands 1-6), Scrambled stimuli intersect most of the bands except 12 & 13, with the largest
weights for the horizontally oriented, low temporal frequency bands (1 & 6), and the Plaid stimuli are
concentrated around bands 1 & 6.

3.2.3 Subideal strategies

Probability Summation Pooling

Probability summation predicts weights similar to ideal pooling. This is true because the estimation of
weights does not require an additive law (see Appendix A). If the visual system’s bandpass channels are
smaller than the signal spectrum, then probability summation across the bands intersecting the signal

spectrum should lead to the exclusive weighting of the signal bands, like the ideal strategy. If the visual
system uses probability summation across a set of filters which include frequencies outside the signal bands,
then we should observe positive weights in bands close to the signal bands. In general, we will not be able
to distinguish between rival pooling rules using the same set of filters on the basis of the weights alone.

2These bands actually represent the frequencies consistent with a small range of speeds and directions due to the fact that
the bands include many planes other than the black plane. To visualize this range, imagine the set of planes passing through
the origin which only intersect bands 1-6.
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Figure 3.2: Ideal weights for detecting the four different signal types. Left column: The pictures depict
the 65% level sets of the average power spectral density of the four different stimuli. Center column:
Bar graphs depict the optimal weights computed using the ideal observer for each stimulus. Because the
ideal observers are matched power detectors, the weights reflect the overlap between the frequency bands
in figure 3.1 and the signal spectra. Right column: The frequency bands corresponding to the non-zero
weights are displayed using grayscale intensity to encode the magnitude of the weights.
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Spatial structure detectors

Since all the stimuli have a bandpass spatial appearance, it is possible to detect these stimuli solely on the
basis of the difference in spatial appearance between the two intervals, ignoring the phenomenal motion.
An observer detecting the stimuli on the basis of the spatial appearance would essentially be comparing
the average spatial appearance across the two intervals. This amounts to saying that the observer applies

a filter which has the same spatial frequency structure as the time averaged stimulus at each instant in
time. In the spatio-temporal frequency domain, these filters can be constructed by projecting the signal
spectrum onto the spatial frequency plane, and then copying this projection across temporal frequency.
Evidence for this strategy would be the same positive weights attached to all the frequencies with the same
spatial orientation as the signal. For instance if a band oriented near 0 deg receives a positive band, then

all the bands near that orientation should also receive positive weights (e.g. if band 9 receives positive
weight, then so should bands 3,4,7, & 11).

Temporal structure detectors

The stimuli also have a bandpass temporal structure, which means that the stimuli could be detected on

the basis of the difference in flicker between the two intervals. A fourier domain description of this strategy
is to combine across all spatial frequencies within the temporal frequency range covered by the signal.
Evidence for this strategy would be positive weights attached to all the bands except the high temporal
frequency bands 12 and 13.

Discrimination strategies and Motion Opponency

It is possible that the motion system is not optimized for detection, but rather is optimized for discrimina-
tion. Optimal discriminators subtract the signals which are to be discriminated across the two intervals,
such that these models predict negative weights. Two plausible discrimination models are motion oppo-
nent and velocity discriminators. Motion opponency has a long history as an integral part of many motion
processing models [104, 127, 1, 62]. The characteristic feature of these models is that the outputs of spatio-

temporal filters tuned for gratings drifting in opposite directions are subtractively combined. In terms of
the spherical frequency decomposition, this sort of model predicts that negative weights will be attached
to the bands which are reflections around the temporal frequency axis of bands receiving positive weights.
For example if band 3 receives a positive weight, we would expect negative weights on bands 7 and/or 9.

There is a great deal of evidence which supports some kind of inhibitory interaction between motion

in opposite directions, for instance the lack of motion of counterphase gratings [1], certain aftereffects of
motion[131], and the result that leftward and rightward moving gratings can be rendered undetectable
in the presence of a suprathreshold mask [62]. However, none of these effects require subtractive inter-
action, and using an extensive set of measurements Lubin [78] showed that the detectability of contrast
increments to sums of gratings moving in opposite directions was better fit by a divisive interaction. The

current methodology is not designed to distinguish between these possibilities, and divisive interactions
are discussed below.

Another possibility is that the motion system is naturally optimized to discriminate between motions in
the image. This hypothesis is motivated by the observation that thresholds for detection and discrimination
are comparable [20]. In the context of a motion detection experiment, the natural discrimination would be

between images coherently moving and those which are essentially stationary. This discrimination could be
implemented by subtracting a ’stationary signal’, i.e. all the frequencies which have temporal frequencies
close to zero. In terms of the decomposition, negative weights would be expected for bands 1,6,7 & 11.
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Normalization, Denoising, and Predictive Coding

This subsection describes a collection of possibilities involving divisive interactions between the frequency
bands which are suggested by several different processing demands. A general non-linear model which
appears in several contexts divides the contrast energy in each band by a weighted sum of the contrast
energies in the other bands:

Enormi =
EBP i∑

j wjEBP j

(3.1)

The most common name for this kind of model is contrast normalization, and is motivated by an appeal
to the limited response range of cortical neurons, which requires a gain control mechanism to maintain the
visual system’s responsiveness. Contrast normalization has been used to model psychophysical results [78]
and the contrast responsiveness of cortical neurons [57]. Although normalization is typically motivated by

an appeal to the processing constraints imposed by the response properties of neurons, divisive interactions
can also be motivated from a purely information processing perspective. Contrast normalization can be
shown to be a particular instance of a more general strategy for signal whitening and denoiseing. In
addition, a model which essentially computes contrast normalization has been presented in the context of
predictive coding [33], in which the divisive step is used to compute the predictive carrier band.

Typically in normalization models wj = 1 for all j, so that the energies in each band are normalized by
an estimate of the total energy in the stimulus. Since division will produce negative weights in our analysis,
normalization should produce equal negative weights for all the bands excluding the signal. However, when
some of the bands are more reliable estimators of the background noise or better predictors of the carrier
location than other bands, then we should not expect all the weights to be equal. If we allow for unequal

wj , then the only steadfast prediction is the presence of some negative weights outside the signal bands.

3.3 Perturbation Analysis

The typical method used to infer task strategy is to perform a large number of threshold comparisons

between different stimuli, each of which can support only broad qualitative distinctions. The goal of the
present analysis is to improve upon this situation. What we seek is a method which is more direct, makes
better use of the subject’s responses, and supports more quantitative inferences about task strategy. Several
previous investigators have approached this problem using a kind of perturbation analysis [4, 48, 105, 67].
In this paper we use a similar method to estimate linear weights for each band in which we correlate the

subject’s responses with the perturbations in the energies within a set of frequency bands on a trial by
trial basis.

The method relies on the stochastic nature of the stimuli. Recall that signal stimuli are filtered noises
which have mean power spectra given by the filter which produced them, while the backgrounds are
white noise samples which have expected flat power spectra. Because the stimuli are noises, their spectral

power fluctuates around the mean. In figure 3.3 we show the total power (energy) in a set of seven different
nonoverlapping frequency bands plotted above the observer’s binary response as a function of trial number.
Depending on how an observer weights frequency space, the fluctuations in power within each band will
cause different patterns of correct and incorrect decisions. Thus there exists a correlation between subject
responses and the fluctuations in stimulus energies. This correlation suggests we can estimate the weights

by back-correlating an observer’s trial by trial performance with the spectral power actually present in the
bands on each trial. The simplest method of estimating the weights is to directly correlate the power in
the bands with the observer’s responses[105]. However, this approach has limitations which make it less
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Figure 3.3: Total power in seven different nonoverlapping frequency bands plotted as a function of trial
number. Because the stimuli are stochastic, total power within each band is a random function which
fluctuates around a mean value. The bottom trace is the observer’s responses, 0=incorrect, 1=correct.

applicable to the current study, the principle of which is that the weights estimated from correlations are
known to be biased when the data is collected at several mean energy levels. Because of the limited amount
of data collected, we were interested in using an unbiased method which combined all of the collected data3.

Similar to Knill [67], we estimate weights from the maximum likelihood fit of a signal detection model to
the data.

The signal detection model is illustrated in figure 3.4. In this model the observer is assumed to
compute the energies ei within each band for both signal plus noise and noise alone intervals. The energy
computation is depicted as the integrals in the first boxes. Each of the energy estimates are corrupted by

an independent additive noise Ni. Subsequently the energies are weighted by the scalars wi and passed
through an unknown function g. The weighted, transformed energies are then summed within each interval,
and finally the difference of these sums is used as a decision variable dv, which is corrupted by central noise
Ncentral.

3Note that unbiased here refers to the theory, given the assumptions of the analysis are correct. If the assumptions of an
analysis are incorrect, then of course the method will not produce the correct weights. In Appendix A we explore some likely
violations of the assumptions and how this might affect the weights.
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Figure 3.4: Signal detection model used in our analysis. See text for details.

dv =
∑

i

∆g(wi · (ei + Ni)) + Ncentral (3.2)

Subject’s responses are determined by the decision variable dv, with dv > 0 producing a correct response
and dv < 0 an incorrect response. The unknown function g is used to represent the effects of pointwise
non-linearities and/or non-gaussian noise to the pooling process4.

This model can be linearized, as described in Appendix A, to yield the simpler expression:

dv =
∑

i

w′i ·∆ei + Ntotal (3.3)

where w′i represent the linearized weights and Ntotal is the total noise at the decision variable. This

model essentially lumps the effects of nonlinearities and non-gaussian noises into the noise term, whose
distribution then ultimately determines the shape of the psychometric function in the model. If the noise
were gaussian and independent of the energies, then the psychometric function should be well described as
a cumulative gaussian. Let the subject’s response on trial j be labeled by:

Rj =

{
1 : dv > 0

0 : dv < 0
(3.4)

4Note that the weight estimation procedure is only guaranteed to be unbiased if g is linear. For non-linear g, the linearization
may be different at different signal levels, causing the estimated weights to be compromises across signal level.
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then the probability of a correct response is given by:

p(Rj = 1) = p(dv > 0) = 1− Φ(0, µ, σ2
Ntotal

) (3.5)

where Φ is the cumulative gaussian function with the first argument giving the upper integrand. In the
expression µ is a linear function of the energies and σ is assumed to be constant.

µ = µbias + s(w′i ·∆ei) (3.6)

σ2
Ntotal

= c

The free parameters in this model are the weights w′i, the mean bias term µbias, and the variance constant.
The scalar s is simply absorbed into the magnitude of the weights.

In the case in which there are non-linearities or non-gaussian noise sources which are summed to form
the decision variable, a central limit theorem argument suggests that Ntotal might still be described as

approximately gaussian. However, the parameters of this gaussian distribution are likely to be functions of
the energies. For instance, the variance of Ntotal may increase with increased signal levels, which manifests
itself as a skewed psychometric function. The psychometric functions fit in Chap 1 all had significant skew,
suggesting the variance is a function of the signal level. The simplest choice for modeling this possibility
assumes Ntotal is a gaussian random variable with mean and variance functions linear in the input energies.

The resulting model is the same as before but allows the variance to linearly change with the input energies.

µ = µbias + (w′i ·∆ei) (3.7)

σ2
Ntotal

= c + d(w′i · (eisignal
+ einoiseonly

))

The separate scale factor d is needed since the mean and variance functions may grow at different rates.
The use of the sum rather than the difference in energies between the intervals for the variance term stems
from the fact that the difference of random variables produces a new random whose variance is the sum of

the previous two. Fits of this model to the data could not be rejected at the 0.05 level, which shows that the
addition of the linear variance term was sufficient to account for the skew in the psychometric function. We
tested the psychometric model against a null model in which the probability correct at each mean energy
is allowed to take its maximum likelihood (mean) value [135]. A likelihood ratio test was used, in which
the relative likelihoods of the psychometric model and the null model, 2 log (Lpsy/Lnull), is approximately

χ2 distributed with n − 13 − 3 degrees of freedom. The weights are computed from the number of data
samples n minus the total number of parameters: 3 psychometric plus the 13 weight parameters.

The likelihood of the weights and parameters given the data can be computed assuming that the set
of subject’s n responses Rj are independent bernoulli random variables:

L(wi, µbias, c, d|{Rj}) =
n∏

j=1

Rjp(Rj = 1) + (1− Rj)p(Rj = 0) (3.8)

L(wi, µbias, c, d|{Rj}) =
n∏

j=1

Rj(1− Φ(0, µbias + w′i ·∆ei, c + d(w′i · Σei)

+(1− Rj)Φ(0, µbias + w′i ·∆ei, c + d(w′i · Σei) (3.9)

where Σei = (eisignal + einoiseonly).
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The weights and the three parameters were simultaneously fit to the data by computing the maximum
likelihood parameters using a numerical search routine. To better assess whether the actual maximum
was discovered, ten different random initial values of the parameters were used for each fit. For all the
fits except the Planar data for subject PS, fits for each of the initial values found the same maximum.

In the exception, several distinct maximum were discovered, maximum likelihood of this set was taken as
the best fit. Each of the maxima was also corroborated by a Monte Carlo estimation of the mean of the
likelihood function (described below), which showed that the estimated maxima were within the error of
the estimated means for all the fits.

The standard errors and covariances of the weights and parameters estimates were computed by two

methods, from the inverse of the hessian matrix of the likelihood function and by a Monte Carlo integration.
The hessian matrix has elements given by

Hij =
∂2L(~θ)

∂θi∂θj
(3.10)

where ~θ is the combined vector of parameters and weights, and the inverse of the hessian matrix is a
measure of the covariance matrix of the parameters and weights. The hessian was computed numerically
using a modified finite difference algorithm, and the standard errors of the weights were computed from

the square root of the diagonal elements of the inverse Hessian matrix after integrating out the three
free parameters. Due to the large number of free parameters, the hessian approximation was sometimes
unstable5. To ameliorate this problem, we used a second method to estimate the covariance matrix. The
mean and covariance were estimated by computing the first and second moment of the likelihood function
using Monte Carlo integration over 100,000 samples. The covariances computed in this manner were
extremely similar for the two methods when the estimate of the Hessian was stable.

The standard errors in the estimates of the covariance matrix was assessed by performing a parametric
bootstrap estimation. In this procedure, 10,000 data sets were simulated assuming that the model of the
decision variable distribution was correct. The value of the decision variable for each trial was generated
by sampling from a gaussian distribution whose mean and standard deviation were given by equation 3.8,
using maximum likelihood weights and parameters and the energies for that trial. Correct responses were

generated by finding trials for which the decision variable was greater than zero. New maximum likelihood
weights were then generated by applying the fitting procedure to the simulated data. The results of this
showed that the estimates of standard error were quite repeatable, with average deviations of roughly 5%
of the standard errors. However, the estimates of the correlations between bands were quite noisy with an
average standard error of 0.44. Most of the correlations were quite low, with the highest absolute value of

the correlation coefficients being 0.52. Thus none of the correlations were significantly different from zero
at the 0.05 level, however the noise in these estimates precludes many conclusions to be made about the
correlations (e.g. we can’t conclude from this that the correlations are equivalent to zero).

The estimated mean and covariance of the weights were used to compute a gaussian approximation
to the likelihood function. T-tests of the difference of the weights from zero were computed using the

estimated mean and covariance as the parameters of the sample distribution. Where multiple T-tests were
used, the T-statistic was adjusted by the Tukey-Kramer correction.

3.4 Results

The results of the weight fitting procedure for the four stimuli are presented in figs 3.5- 3.8.

5i.e. the matrix inversion was nearly singular
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Figure 3.5: Resulting weights for Component stimuli for three subjects. Relative weight is plotted against
the 13 frequency bands shown in fig 3.1. The bands corresponding to the weights are depicted are depicted
as in fig 3.2 and are split into three categories: the bands receiving positive (top left) weights which are
significantly different from zero at the 0.05 level, the significant negatively weighted bands (bottom left),
and the bands which were not significantly different from zero (middle right). Because of the large number
of comparisons and in some cases the large standard error on the weight we cannot infer from the lack of
significance of the weights for these bands their equivalence to zero. A more valid inference is that we cannot
reliably determine what the actual value of the weight is. Because of this inferential problem we chose to
label these bands as Indeterminate.
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Figure 3.6: Resulting weights for Planar stimuli for three subjects.
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Figure 3.7: Resulting weights for Scrambled stimuli for three subjects.
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Figure 3.8: Resulting weights for Plaid stimuli for two subjects.
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3.4.1 Results for Component stimuli

The results of the analysis applied to the Component stimuli are shown in fig. 3.5 for three subjects. The
left hand side of the figure shows the estimated relative weights and their standard errors for each of the
13 bands. The right hand side depicts the bands corresponding to the weights, divided into three sets:
the positive weights significantly greater than zero at the 0.05 level, the significant negative weights, and
those weights which were not significantly different from zero. These insignificant weights were labeled

’Indeterminate’ to guard against the inference that these weights are either unimportant or equivalent to
zero. Weights close to zero could also be the result of subject’s using a non-stationary weighting strategy,
in which the bands are sometimes positively and sometimes negatively weighted during the course of the
experiment. There are two prominent trends in the data. The first is that for all three subjects the bands
which contain the signal (3 & 4) are the dominant positively weighted bands. For subjects PS and AS,

a band which does not contain the signal (band 2) also receives a significant positive weight. The second
trend is in the set of negative weights. All three subjects show significant negative weights given to band
9, which represents energy in the opposite direction as the signal band, and either band 1 or band 6, which
represent fourier energy from frequencies which are orthogonally spatially oriented.

3.4.2 Discussion for Component stimuli

The weighting results have two interesting properties. The positive weights show that the subjects use
a filtering strategy which is close to the properties of the signal. In fact, the significant positive weights
for subject ML are within the error bounds of the ideal weighting. Subjects PS and AS include irrelevant
information, which are most likely due to either i) a mismatch between the signal spectrum and the visual

filter most sensitive to the signal, or ii) probability summation across all the visual filters which intersect
the signal band so that the weights represent the envelope of these filters. The negative weights are in some
ways more interesting, since they are not predicted from ideal weighting behavior. The common weighting
of band 9 across subjects suggests something like motion opponency is occurring. This opponency could
be subtractive [127, 1], or it could be divisive [78]. Divisive opponency was found by Lubin[78] in a set

of contrast increment detection experiments involving the addition of small contrast increments to one of
the components of counterphase gratings. Subtractive opponency may indicate that the visually system is
more naturally a narrow band frequency discriminator than a narrow band detector. Divisive opponency,
on the other hand could represent an attempt to ’whiten’ the signal, or in other words the visual system
may try to discount an expected structure of the background which includes frequencies moving in the

opposite direction. In either case, the results show that some sort of opponency is occurring, which accords
well with many previous models of narrowband signal detection.

The negative weights in bands 1 or 6 was more surprising. These bands represent frequencies whose
spatial orientation is nearly orthogonal to the signal’s orientation and which are temporally slow. This
could represent the use of a spatial orientation discrimination strategy to detect the stimuli.

3.4.3 Results of Planar Data

The results for the Planar stimuli are presented in fig. 3.6. The significant positive weights show that the
visual system was able to successfully pool information across the bands in the plane, corroborating the
results of the qualitative analysis presented in the previous chapter. For all three subjects the bands which

include the signal (1-6) are positively weighted with the exception of band 6 for subject AS. The magnitude
of these weights vary, however, and thus are not equivalent to the ideal strategy of equally weighting bands
1-6. Subject PS’s and AS’s data also include small positive weights on bands which do not contain the
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signal (PS: 9 and 11, AS: 12). In addition, the weights across bands 1-6 are clearly different for Planar
stimuli than for Component stimuli.

No general trend exists for the negative weights across the three subjects, with the exception that
significant weights are present and the majority of the off planar weights are negative for subjects PS and

AS.

3.4.4 Discussion of Planar Data

The weights indicate that subjects are able to selectively pool frequency information across the planar
bands. In addition, the summed difference between the subject’ s weights on the planar and the ideal
weights is a valid predictor of the ordering of subject efficiencies on the task PS > ML > AS. A likely
source of the positive off planar contributions for subjects AS and PS is internal filter mismatch. If for
instance the interval filter used by the visual system has a broader temporal passband which is larger

than the temporal frequency range of the Planar signal, then the filter might systematically include the off
planar regions which contain lower (bands 7 and 11) and higher (bands 12 and 13) temporal frequencies.

Because of the lack of agreement in the negative weights across subjects, inferences about the role of
these weights are more difficult to make, and an interpretation should take into account this variability. The
data are not consistent with subjects using an opponent velocity strategy, which would produce negative

weights across 8,9,& 10, or a discrimination of moving vs. non-moving which would produce negative
weights for bands 7 &11. The negative weights could be the result of an unequally weighted divisive
normalization process or a subtractive opponency which is not general across subjects. One possible
source of the variability in the weights is that observers are are not stationary in their weighting strategy.
For instance, the subjects may be negatively weighting all the bands outside of the expected signals bands,

but the subject’s estimate of the expected signal may drift during the course of the experiment, causing
bands outside of the signal to be positively weighted some of the time.

3.4.5 Results for Scrambled Stimuli

The weights estimated for detecting the Scrambled stimuli are shown in figure 3.7. Comparing the weights
for the three subjects to the ideal weights shows that none of the subjects was able to learn the Scrambled
signal spectrum completely. Subject PS comes the closest to the ideal weights with the correct sign on all
the bands except 10 and 11. The significant positive bands for Subject ML, 1,2, and 7, are all adjacent and

concentrated around a single frequency region low in temporal frequency and spatial orientations close to
horizontal. The positive weights for subject AS are primarily concentrated around the bands intersecting
a plane consistent with upward movement (the direction opposite to the Planar stimuli).

Common significant negative bands are 12 and 13 for all three subjects, exactly those bands which do
not contain the Scrambled signal spectrum.

3.4.6 Discussion of Scrambled Data

Each of the three subjects appear to be using a different strategy for detecting the stimuli. The conclusion

that none of the subjects appear to have learned the signal structure is corroborated by the low efficiencies
on Scrambled stimuli6 for all three subjects. In the positive weights two trends seem apparent. Subject PS
appears to appropriately weight bands 1-6, suggesting that the subject may have been primarily looking for
the downward moving component of this signal. The other two subjects positive weights are concentrated

6Recall that Scrambled efficiencies lied in between the predicted efficiency for using only a single component band and the
predicted efficiency for probability summation across the Scrambled components.
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around the horizontally oriented low temporal frequency bands. Since these bands are adjacent it is
plausible that both these subjects primarily used horizontally oriented bandpass filters similar to those
suggested by the Component data to detect the signal. The consistent negative weights on the high
temporal frequency bands could be the result of subjects using a strategy of discriminating the signal from

high temporal frequencies.

3.4.7 Results for Plaid Stimuli

Results were collected for two subjects on a stimulus type not used in the last chapter. The construction
of the stimulus filter is easily described. Two filters with the same spectra as the Component filter were

summed after being rotated to have spatial orientations of +/-70 deg and to lie in the common plane used
for the other stimuli.

The results for Plaid stimuli for two subjects are presented in figure 3.8. For neither subject are the
positive weights close to ideal. The main deviation is the presence of significant positive weights in bands
3 and/or 4, which are ideally zero, and that the magnitude of bands 2 and 5 is greater than expected. The

common significant negative weights are the opponent direction bands 9 and the high temporal frequency
band 12.

3.4.8 Discussion of Plaid Data

The plaid data is interesting in that the subjects were not able to learn to concentrate the weighting around
the signal bands, and instead included bands from all spatial orientations (excepting band 3 for ML). This

is true despite the fact that the weights for the component signal, and the weights for the Scrambled signal
for subject ML, show that the subjects are able to selectively weight signals which are narrow band in
spatial orientation. In fact the weights for the plaid stimuli have a qualitative resemblance to the weights
for the Planar stimuli for both subjects. This suggests that the visual system may use a planar filter to
detect these stimuli. Comparing the magnitudes of the Plaid and Planar weights by inspection and by t-

test show that the weights are not significantly different for subject ML (p < 0.05), but are all significantly
different (p < 0.01) for subject PS. Thus even if a planar pooling strategy is being used to detect both
stimuli, there may be some adjustment of the weight gains into the pooling process for subject PS. This
sort of gain adjustment could be the result of the different inhibitory influences the planar and the plaid
signals have on the different regions of frequency space or represent partial adaptability to the properties of

the signal. Another prominent possibility is that the positive weights are simply due to subjects relying on
filters with large spatial orientation bandwidths which intersect both the signal and bands 3 and 4. There
are two pieces of evidence which argue that this interpretation is less likely. For subject PS, the weights on
bands 4 and 5 are nearly identical. If the weight on band 4 was due to the visual system using a filter which
overlaps both band 4 and 5, then we would expect the two bands to be nearly perfectly correlated (∼0.95).

The actual correlation is 0.09 +/- 0.3, which is nearly three standard deviations less than the prediction.
The other correlations are also low, but given the large standard error on the correlation estimates, we
cannot say much about them. The other piece of evidence comes from the additivity experiments which
are the topic of the next chapter. There we show that a plaid is additively combined with a single passband
centered at 90 deg across all ratios of plaid and passband energy. This suggests that plaid stimuli may

be always detected by a planar power detector. If this is true, then it may be that the visual system uses
two basic strategies for detecting motion, one being narrowband in spatial orientation, and the other being
broadband.
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3.5 Discussion

The main results of the weighting analysis can be summarized as follows. For Planar and Component
stimuli, the positive weights are reasonably matched to the signal bands. The positive weights for Plaid
stimuli inappropriately include planar bands which do not contain the signal, while the positive weights

for Scrambled stimuli inappropriately exclude many of the signal bands. For all signals subjects showed
negative weighting of bands outside the signal. From these results we can make some basic conclusions
about the kinds of strategies the subjects use in detecting the stimuli.

First, for none of the stimuli was there evidence for subjects using the spatial or temporal structure
strategies. Thus the observers were able to use some of the spatio-temporal correlations in all the stimulus

types. Second, although different weighting strategies were used for each stimulus, the results across the
four stimuli show that the visual system is not able to adapt its weighting to arbitrary signals, particularly
in the case of the Scrambled stimuli, and less so in the case of the Plaid stimuli. This lack of flexibility shows
that the visual system does not perform like a generic power detector. Rather the visual system is better
optimized to process certain signals. Although the number of different signals used in the experiments
is quite small, we can conclude that the visual system is relatively optimized for stimuli with spectra

concentrated around a point (Component) and a plane (Planar) in frequency space.
The relative optimization for Planar and Component stimuli show that the visual system can use at

least two distinct modes of operation when confronted with signals which have fourier components lying
on a common plane. The first mode of operation is a detector which is narrow band in orientation, while
the second involves a detector which pools power across planar regions of fourier space and is broadband

in orientation. The broadband detectors are readily identified with the planar power detectors which
have been the focus of the thesis. The resulting weights augment the qualitative arguments made in the
last chapter for the existence of such detectors. Thus it seems likely that the visual system does use
special detectors for processing local velocity. The weighting result for the Component stimuli, however,
demonstrate that the visual system has access to spatial structure information as well as the velocity

(planar) information at the decision stage for these stimuli. Information from passbands may be used in
conjunction with local velocity estimates to analyze the properties of moving textures. The possibility
that both orientation pooled and orientation narrow band signals are preserved at a relatively late stage
in visual processing is supported by the existence of both component and pattern type cells in area MT of
simian visual cortex[90].

As previously noted, bands which are adjacent to the signal bands are included for both the Component
and Plaid stimuli. The orientation bandwidths estimated from the weights are larger than would be
expected from previous psychophysical and electrophysiological studies. This overlap could be the effect
of using a population of similar narrow band power detectors and ’attending’ to the set of detectors which
intersect the spectra. In this case the bandwidths actually represent the envelope of the bandwidths of the

detectors which intersect the signal.

3.5.1 Negative Weights

One of the most striking results of the analysis is the ubiquitous presence of negative weights outside the
signal bands across all observers and stimuli. The negative weights are not predicted by a simple power
detector model and must be accounted for by some additional aspect of motion processing. As noted
before this could indicate one of several possibilities, which include optimization for certain discrimination

tasks, and normalization. While the current analysis could not decide between the two, discrimination and
normalization have different properties which are readily testable. A simple experimental paradigm is to
use mixtures of the signal constructed from the positively weighted bands with a signal constructed from
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the negative bands. By observing the change in performance induced by varying the relative energies in
the mixtures, it is possible to infer whether a divisive, subtractive, or some other kind of law governs the
interactions of the bands.

3.5.2 Generality of the Analysis

In performing the analysis we made particular choices of frequency decomposition and psychometric model.
In this section we discuss the generality and potential limitations of these choices. We first discuss the

psychometric model, then the choices of restricting the frequency decomposition to a sphere, and finally
how the number of frequency bands was chosen.

The limitations of the psychometric function model are extensively dealt with in Appendix A & B,
so a summary of those results follows. If subjects use an additive summation rule to produce a decision
variable which is gaussian distributed and subject’s weights are stationary, then the estimation procedure

is unbiased. We relax the distribution and additive rule assumptions and show that a large class of non-
gaussian distributions and non-linearities can be dealt with by adding a variable to the psychometric model.
However, the procedure uses a linearization around a given signal level, which means the procedure is not
guaranteed to produce unbiased weights when multiple signal levels are used. The potential biases are a
compromise between the different linearized weights at each signal level. Since we have no reason to expect

sudden changes in sign or magnitude of the subject’s weights as a function of signal level, we expect the
procedure is fairly robust to violations of the assumptions, particularly in the signs of the weight estimates.
The assumption that subject’s weights are stationary is implicit in any psychophysical paradigm similar to
ours. Our principal support for this assumption is the extensive training observers had on all the stimulus
types, which was continued until performance asymptoted.

In the frequency decomposition, choices were made to limit the analysis to a sphere in frequency

space, and to limit the number of frequency bands. The analysis was limited to the spherical region
after determining that subjects were not significantly weighting the frequencies outside this region. We
performed an initial decomposition of frequency space into a set of four bands, two of which included the
frequency sphere and two of which did not. Computing weights across these four bands showed that for
all subjects and all conditions, the two bands which did not include the sphere received essentially zero

weight. In addition, for none of the subjects or conditions did the addition of bands outside the sphere
lower the log likelihood of the fit more than 3 tenths of a log unit, which is not significant difference in the
fit. Thus we concluded that the frequencies outside the sphere were not used by the subjects. This agrees
with previous results which suggest that there exists a ’Window of visibility’, which is a nearly arithmetical
trade-off between spatial and temporal frequency such that when spatial frequency is increased, temporal

frequency must be decreased by a similar amount[140].
The number of bands was limited by two considerations. The first was the number of trials collected.

Simulations of the fitting process showed that reasonable fits, in terms of the accuracy and the error of
the estimate were obtained when the number of trials exceeded the number of bands by about two orders
of magnitude. Since the total number of trials varied between 750-1300, we wanted to keep the total

number of bands close to ten or less. In addition, the multidimensional minimization procedure is more
likely to get stuck in local minima for large numbers of weights. Both argue for using a small number of
frequency bands. However, simulations also showed that lumping differently weighted frequency regions
into one frequency band results in estimated weights which are approximately averages of the true weights.
Given the presence of both positive and negative weights in the results, lumping could conceivably result

in estimated weights close to zero. Thus, to get an accurate picture of the subject’s weights we should use
as many bands as is feasible. The simulations suggested that using 10 to 20 different bands constituted a
reasonable compromise. We can consider the constraint on the number of bands to be a sampling constraint.
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Like all sampling methods, our method will work best when the observer’s weighting function is smooth
and slow-varying across frequency. Since the 13 bands we used constitutes a fairly coarse sampling of
frequency space, our analysis is insensitive to any variations in the subject’s weighting function which are
finer grained than our sampling.

3.6 Conclusions

Of the pooling strategies discussed in the introduction, detection using only spatial or temporal structure
can be eliminated outright for all the stimuli. Thus, although we used a task which does not explicitly
require a judgement based on the perception of motion, we show that subjects are using motion information
to detect the stimuli.

The weights for Planar stimuli suggest the visual system uses planar power detectors to process local

motion information. The fact that observers can correctly weight narrowband stimuli may indicate the
visual system needs image texture information (given by the collection of narrowband detectors) as well
as image velocity information (given by planar detectors) to interpret local motions.

The inability of subjects to learn the signal model for Scrambled and Plaid stimuli suggest that observers
do not use generic pooling strategies like probability summation to detect the stimuli.

The presence of negative weights means the basic power detector model is not complete, hence the visual
system is not optimized for a pure translation detection strategy. Negative weights for Planar stimuli did not
fit the two most obvious motion discrimination strategies, but could be the result of contrast normalization,
pre-whitening, or predictive coding strategies. This suggests that the goal of the visual system is local
translation encoding rather than local translation detection. However, negative weights for Component

stimuli did fit a simple discrimination model, with weights consistent with opponent motion discrimination
and orientation discrimination, but are also consistent with directed normalization. Further research will
be necessary to determine the functional role of the negative weights.

3.7 Appendix A

In this appendix we show that estimating linear weights is a kind of first order approximation to the class
of decision models which use a one-dimensional decision variable.

We formalize the decision model by assuming the visual system computes the quantities Xs and Xn

on the signal plus noise (s) and noise alone (n) intervals, which are scalar functions of the energies Ei for
bands i ∈ {1, . . . , M}. The difference between Xs and Xn is used as a decision variable d to produce a
binary response R.

Xs = f(Es
1,E

s
2, . . . ,E

s
M ) (3.11)

Xn = f(En
1 ,En

2 , . . . ,En
M )

d = Xs −Xn

R = {1
0 for d>

<0

If we assume that f can be expanded as a Taylor series in Ei around the energy vector ~E0, then we may
write down the decision variable as a linear combination of the energies by ignoring the second and higher
order terms.

X =
∑

i

f(Ei0) +
∑

i

∂f(Ei0)

∂Ei
·Ei +

∑

i

∂2f(Ei0)

∂E2
i

·E2
i + · · · (3.12)
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If we designate
∂f(Ei0 )

∂Ei
by wi(Eei0) and ignore the second and higher order derivatives, we have:

X = b +
∑

i

wi(Ei0) ·Ei (3.13)

where b =
∑

i f(Ei0) is a mean bias term. Then the decision variable d becomes:

d = Xs −Xn (3.14)

d = (bs − bn) +
∑

i

wi · (Es
i − En

i )

d = b′ +
∑

i

wi ·∆Ei + ( higher order terms)

Thus, as long as the linear part of f dominates, then the analysis will capture the dominant behavior of the

decision system. This means that the weight fitting procedure does not rely on an additive combination
rule for the energies. However, there are two prominent cases in which the estimated weights will not
exactly correspond to ’actual’ weights.

The approximation is best when the perturbations in the energies are small and centered around a fixed
set of Ei0, so that the wi(Ei0) are approximately constant. In the experiments we used 5 or 6 different signal

energies, and hence 5 or 6 different mean values of the Ei0 . When the wi(Ei0) do not remain reasonably
constant across the different values of the energies, the fitted weights will represent a compromise between
the linearizations at the different signal energies. The other salient source of error is if the function f has
significant second or higher order terms. Here again we are performing a best linear fit to a curve which
is non-linear, and the fitted weights will represent the compromises that went into the fit.

An important example of the linearization is where the energy in each of the bands multiplicatively
interacts with the other bands. For example, in a normalization model, the energy in each of the bands is
divided by a weighted sum of the other bands.

Eout =
E1∑
i niEi

(3.15)

We are essentially finding the best linear fit to this expression:

E1∑
i niEi

'
∑

i

wiEi (3.16)

For a particular value of the energies, this is given by the leading order term of a Taylor series expansion:

∑

i

∂

∂Ei
(

E1∑
i niEi

) =
∑

i

−niE1(
1

(
∑

i niEi)2
)|~E=~E0

(3.17)

which can be written: ∑

i

wi(~E0)E1 (3.18)

where the wi are negative and functions of the energies. Since the energies vary from trial to trial, the

actual weights will be averages of the best linear weights for a single energy. Notice that the coefficients
wi are not equal to the actual multiplicative weights ni, however, the relative weights wi/maxi(|wi|) are
equal to the relative multiplicative weights.
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3.8 Appendix B

In this appendix we investigate the robustness of the fitting procedure to violations of the underlying
assumptions. First we discuss the basic model and show that the parameter estimates are consistent.

Recall that the basic model is a weighted sum of energies within the set of spatio-temporal passbands
plus some internal noises.

d = ~α · (~EBP + ~nBP )signal − ~α · (~EBP + ~nBP )noisealone + ncentral (3.19)

where ~α is the set of weights, ~EBP is the vector of energies across the set of passbands, and the n are
internal noises, either associated with the measurement of each energy (~nBP ), or present centrally in the
decision variable (ncentral). If the noises are independent of the value of ~E, then d can be expressed as a
noise process added to the weighted difference in energies between intervals:

d = ~α ·∆~EBP + ntotal (3.20)

where ntotal = ~α ·∆~nBP + ncentral

The simplest case is when ntotal can be well approximated by as a gaussian random variable with mean
µntotal and variance σ2

ntotal
. In this case we can write down the probability of a correct response from the

distribution of the decision variable d. We will assume a correct response occurs whenever d > 0. Then
the probability of a correct response Ri = 1 is given by

p(Ri = 1) = 1−Φ(0, µntotal + ~α0 ·∆~EBP , σ2
ntotal

) (3.21)

where Φ is the cumulative normal function where the first argument is the upper limit of integration,
the second and third arguments are the mean and variance of the gaussian distribution.

We are essentially fitting the weights by modeling the distribution which underlies the psychometric
function as a normal distribution with constant variance and a mean which is a linear function of the
weighted difference in energies,

µd = ax + b (3.22)

σ2
d = c

where x = ~α ·∆~EBP and a is a scalar which is absorbed into the magnitude of the weights. Thus, there
are M + 2 free parameters which we bundle into a vector ~β = [~α, b, c], where ~α has M parameters.

To estimate the weights we maximize the likelihood function over ~β, which is formed by assuming the

responses are bernoulli random variables:

L(Ri|~α) =
∏

i

(pi(~β))Ri · (1− pi(~β))1−Ri (3.23)

It is equivalent to maximize the log likelihood:

logL(Ri|~β) =
∑

i

log(pi(~β)) ·Ri + log(1− pi(~β)) · (1− Ri) (3.24)

~β∗ = arg max
~β

(log L(Ri|~β))

The equation is nonlinear in ~β and we could not solve it in closed form, hence we performed the
maximization numerically.
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Assuming that the model is true, we can show that the procedure produces unbiased estimates of the
weights, called consistency in statistical parlance. Consistency follows if we can show that the expected
likelihood function across all data sets of size N has a maximum at the true value of the parameter as N
grows large. A simple argument follows. We compute the expected log likelihood function over the set of

all Ri. Since the log likelihood function is linear in the Ri, the expected log likelihood function is simply
the weighted sum of the expectations of the Ri. Since the Ri are bernoulli random variables, E[Ri] = pi.
Thus

E[log L(Ri|~β)] =
∑

i

log(pi(~β)) · pi + log(1− pi(~β)) · (1− pi) (3.25)

This equation has a well known maximum at pi = 1/2. Equation 3.21 shows that this value of pi occurs

when ~β = ~β0. Thus the procedure is consistent. We also verified this argument by performing a large set of
Monte Carlo simulations of the fitting process. The fitted psychometric models for the Planar stimuli for
subjects PS and AS were used to generate 20 different artificial data sets. The trial by trial energies had
gaussian noises added to each band, were then weighted by a random set of weights of the same magnitude
as those estimated for the subject and summed together. Simulated correct responses were generated if the

signal interval had the larger sum. The noises added to the energies had randomly chosen variances which
were constrained to sum to the estimate of the subject’s decision variable variance. A thousand different
fits to each of these simulated data sets were performed. In all cases the estimated weights were very close
to the true values, even though the variances in each band could be quite different.

While this model is quite simplistic, a slight modification captures the leading behavior of a wide range

of models. The modification is to allow the variance of the decision variable distribution to change with
the signal level. We will briefly show how a variance term which is a function of signal level naturally arises
in two situations, non-gaussian additive noises and non-linear transformations of the energy variables after
internal noises have been added.

3.8.1 Nongaussian internal noise sources

Consider the basic model:

d = ~α ·∆~EBP + ntotal (3.26)

where ntotal = ~α ·∆~nBP + ncentral

Assume that ~nBP are non-gaussian noises (e.g. Poisson). If the dimensionality of ~nBP is reasonably
large then we expect ntotal will be approximately gaussian by a central limit theorem argument. The mean

and variance of ntotal will be a linear combination of the first and second moments of the distributions of
~nBP .

Since nBP i is added to αiEBP i, the density function can be written gi(x − αiEBP i ), where x denotes
a generic energy variable. Assuming that the first two moments of this distribution exist, the first moment
will be given by µi = κi + αiEBP i , where κi is the mean of the distribution when centered on zero. In

general, the variance will be a constant plus some function of the mean:

σ2
i = λ1i + h(µi) (3.27)

σ2
i = λ1i + h(κi + αiEBP i)

Expanding this equation in a Taylor series in EBP i and only keeping the first order term yields:

σ2
i = λ′1i

+ λ2i(αiEBP i) (3.28)
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where λ′1i
represents λ1i lumped together with the constant from the Taylor series. Using these expressions

for the mean and variance of the nBP i , we can write down the mean and variance of ntotal:

µtotal =
∑

i

κi +
∑

i

αi(E
s
BP i

− En
BP i

) (3.29)

µtotal = κ + ~α ·∆~EBP

σ2
total =

∑

i

λ′1i
+

∑

i

λ2iαi(E
s
BP i

+ En
BP i

) (3.30)

σ2
total = γ1 + γ2

∑

i

α′i(E
s
BP i

+ En
BP i

)

σ2
total = γ1 + γ2

(
~α′ · ~ES

BP

)

where γ1 lumped set of constants, γ2 represents the common factors in the λ2i , the α′i represent the weights

lumped with the non-common factors of the λ2i , and ~ES
BP represents the sum of the energies in the signal

plus noise and noise alone intervals.
Since it is reasonable to assume that all the energy bands are processed similarly, we can assume that

the density functions gi(x) will also be quite similar. Hence it is likely that the λ2i ' γ2 for all i, and so
~α′ ' ~α. Equations 3.30 and 3.31 specify a psychometric model in which there are M + 3 parameters: ~α,

κ, γ1, and γ2.

3.8.2 Nonlinear combinations of bands

Consider the non-linear model:

d = f(~Es
BP + ~ns

BP , ~En
BP + ~nn

BP ) (3.31)

If we approximate the function f() by its Taylor series and truncate to the first term, then we have

the situation sketched in Appendix A. The additive noise sources will then be transformed by the function
into something unlikely to be gaussian. At this point we have arrived at the same situation as detailed in
the section above. The simplest approximation to this general case is the same as the model given above,
a cumulative normal psychometric model with M + 3 parameters ~α, κ, γ1, and γ2.

3.9 Appendix C: Analysis Filters

The simplest way of describing the analysis is in terms of a spherical coordinate system (ωθ, ωφ, ωr) which

is rotated away from the (ωx, ωy, ωt) axes such that the equator of the spherical coordinates lies within
the plane in figure 3.1. Given this coordinate system, the bands can be described by the bounds on these
spherical variables. The bounds on spatial frequency magnitude were (0.49,10.2) cyc/deg along the spatial
frequency plane. The bounds on temporal frequency along the ωt axis were (1.4, 21.8) Hz. The frequency

radius of the sphere is given by ωr =
√

ω2
x + ω2

y + (ωt/2.1)2, for which the bounds are (0.49,10.2). The

angular bounds are summarized in the following table:
Bands ωθ range ωφ range

{1,2,3,4,5,6 } (0, 30) + j(30,30) deg (-30, 30) deg
{10,13,12,8,7,11 } (-30, 30) + j(60,60) deg (30, 75) deg

9 (0, 360) deg (75, 90) deg
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where j ∈ {1, . . . , 6} corresponds to the jth band in the set.
Since the discrete fourier transform was used, some of the frequency voxels intersected the boundaries

between the bands. These frequencies were assigned to the band which included the majority of the voxel.



Chapter 4

Additivity Experiments

4.1 Introduction

In the last two chapters we have shown evidence for subject’s ability to efficiently pool Fourier power across
planar regions of frequency space. In this chapter we test one of the prominent predictions of the planar
power detector model: additive pooling of energy on the plane. The primary reason for testing additivity
is that the existence of an additive law suggests observers are using specialized pooling mechanisms to
detect stimuli, since contrast pooling across frequency bands is typically subadditive [51, 50]. Conversely,

a non-additive pooling rule would not require the use of specialized mechanisms, and parsimony of strategy
would argue that the pooling observed in detecting the stimuli is due to a general rule.

Another reason to test additivity is that the ideal pooling strategy for this task is additive. By measuring
the observer’s conformance to an additive law, we can infer what proportion of the subject’s inefficiency
is due to an inappropriate pooling rule. Finally, the results of the analysis in the last chapter could be
substantially improved by having knowledge of the pooling rule, either in the strength of the conclusions

if the rule is additive, or by suggesting an improved psychometric model for a re-analysis.
In the rest of the paper, we explain why the planar power detector model predicts additivity, and

describe the stimuli and the experimental procedure. We then explain the data analysis and show the
results. We discuss the results in terms of models of motion processing, possible relations to physiology,
and the possibility of partial adaptability of orientation pooling.

4.1.1 Additivity predictions

The planar power detector additively pools power concentrated around a common plane to measure the
spectral energy E. If we split the signal into several non-overlapping bands, then the detector can be
described as summing the energies within each signal band, weighted by the detector’s spectral sensitivity.

If |S(~ω)|2 =
∑

i |Sbi(~ω)|2 denotes the signal spectrum and |H(~ω)|2 denotes the power spectrum of the
detector, then the output E can be expressed as:

E =

∫

~ω
|H(~ω)|2|S(~ω)|2d~ω (4.1)

E =
∑

i

wiEbi

Where Ebi is the signal energy in band bi, and the wi are weights which represent the average effect of the
detector’s sensitivity within band bi on the signal energy in the band. We show in the Appendix that the
performance of a planar power detector is well described by a psychometric function which only depends

68
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on the energies in the signal bands and the background noise power level N. If we denote the psychometric
function by Ψ, then the probability of a correct response Ri for an observer relying on a planar power
detector is given by:

p(Ri = 1) = Ψ

(
∑

i

wiEbi, N

)
(4.2)

If we fix N, then for any fixed probability correct the weighted sum of the signal energies must equal
a constant:

∑
i wiEbi = c. Assuming that the observer’s performance is entirely based on planar power

detectors, then we should observe the same performance for any combination of the energies whose weighted
sum is equal to the same constant c.

Prediction 1: In a task in which an observer relies on planar power detectors, the observer should
additively combine the energies from bands which intersect a common plane in frequency space.

Prediction 2: If planar configurations of power are specially processed by the visual system, we would
expect subadditive combination of non-planar configurations of power.

To test these predictions we used an experimental paradigm similar to the one used in the previous
experiments.

4.1.2 Experimental Logic

The basic idea is to combine two sets of bandpass signals in different ratios of signal energy. If the signal
sets are being additively combined, then performance should be determined by the total signal energy
independent of the ratio. We used two different types of bandpass signal sets, plaid signals and bandpass
signals. The bandpass signals are produced by passing spatio-temporal white noise through a filter which
is bandpass in spatial orientation, spatial frequency magnitude, and temporal frequency. These signals can

be described as noisy ’gratings’, since the stimuli have dominant spatial and temporal frequencies. The
plaid signals are formed by summing two equally weighted bandpass components which have different peak
spatial orientations but which lie on a common plane. Since each of the components can be described as
a noisy ’grating’, it is natural to call these combinations ’plaids’.

The plane in frequency space associated with each velocity can be specified by two frequencies on the

plane, since the plane is constrained to pass through the origin. Thus each plaid signal determines a unique
plane through the component’s peak frequencies. The minimum number of bands which can be used to
test for pooling on and off a common plane is three: a plaid which defines the common plane and a third
’test’ band which can be added to the plaid in various energy ratios to test additivity. Two different plaids
signals and three different bandpass signals were used in three different experimental conditions. The

expected signal spectra for the three conditions is shown in figure 4.1.
Two of the conditions, designated In-Plane and Asymmetric involve combining plaid and bandpass

signals which lie on a common plane in various energy ratios. In the In-Plane condition the plaid signal has
bandpass components which are symmetrically oriented around the direction of motion of the translation
specified by the common plane. The bandpass signal has an orientation which lies between the plaid

orientations, and thus is in direction of the plaid pattern motion. Since the additivity prediction does not
depend on which bands are traded off in the plane, we chose a different combination of the same three
bands for the second condition. In the Asymmetric condition, the plaid is asymmetric and is formed from
the signals in the In Plane condition by combining one of the plaid components with the bandpass signal.
The bandpass signal in the Asymmetric condition is just the other plaid component from the In Plane

condition. In this condition the combination signal has the same perceived direction of motion as the In
Plane condition, however, the plaid and bandpass signals alone are perceived to move in directions different
from the common motion.
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The third condition was designated Off Plane, and involved combining the symmetric plaid from the
In Plane condition with the bandpass signal from this condition rotated out of the common plane to lie
near the zero velocity. This off plane bandpass signal was chosen because the spatial frequency spectra of
the components in the In Plane and Off Plane conditions is nearly identical, and it allows us to separate

orientation specific pooling from motion specific pooling without the problems potentially caused by motion
opponency.

Two aspects of the experimental design promoted the reliance of the observer on planar power detectors.
The first aspect was that the combination signal had a large range of spatial orientations. Using a large
range of orientations encourages the observer to use an internal filter which is broadband in orientation,

like a planar power detector. The second aspect was that all the combinations of the plaid and bandpass
signals were randomly intermixed. Random intermixing encourages the observer to use a strategy which
combines across the ensemble of signals presented. For the experimental setup, additivity is not the optimal
combination rule. The ideal observer in this task uses power detectors which are matched to the plaid
spectrum and the bandpass spectrum, computes the energies in each signal band for a large set of possible

plaid and bandpass power levels, and averages the exponentiated energies across the set of signal power
levels. However, if the observer’s most sensitive detectors for the task are planar power detectors, the best
the observer can do is to sum together the bands in the plane weighted by the expected power for the
band.

4.1.3 Data Presentation

The natural way to present the data from the additivity experiments is to plot the constant % correct
thresholds in (Eb, Epl) space, illustrated in figure 4.2. Additivity shows up in this type of plot as a straight
line with negative slope which connects the plaid alone and bandpass alone thresholds. To assess deviations
from additivity we used a generalized summation equation:

1 = (Eb/TEb)
α + (Epl/TEpl)

α (4.3)

c = Eα
b + s · Eα

pl (4.4)

Additivity plots [51, 117] and analogues to equation 4.4 have been previously used to assess additiv-

ity. Equation 4.4 occurs naturally in the context of probability summation [50] and as the solution to a
functional equation for pooling [132].

For α > 1, equation 4.4 leads to subadditive combinations, i.e. to thresholds which are larger than
the sum of the component thresholds. Also for integral α > 1 this expression can represent probability
summation among α different independent bands. For α < 1, this equation leads to superadditive combi-

nations, i.e. to thresholds which are smaller than the sum of the component thresholds. The form of the
equation was chosen as a simple way to parametrize additive vs. non-additive combinations. By fitting
this equation to the resulting thresholds, we can determine the summation rule from the value of α.

4.2 Methods

4.2.1 Stimuli

The method for producing the stimuli was the same as chapter 2. Stimuli were produced by passing
spatio-temporal gaussian white noise through the set of filters described below.
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Figure 4.1: Filters used in additivity experiments. The illustrations are presented as a table with the rows
corresponding to different additivity conditions and the columns to the bandpass filters and their combination.
The three different additivity conditions, In Plane, Off Plane, and Asymmetric designate properties of the
stimuli.
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Figure 4.2: Plotting format for additivity experiments.

4.2.2 Filters

All of the filters used were rotated copies of a single bandpass filter. This filter has the following functional
form:

BP (ωr, ωθ, ωφ) = Wr(ωr)Wθ(ωθ)Wφ(ωφ) (4.5)

where Wx is a smooth box function on the variable x (see methods section Chap 2). Smooth box functions

were used because they allow fine control over the placement and smoothness of the spectral boundaries.
Wr had a transition region width of 1.45, and low-high frequency cutoffs of (0.49,7.6), where the frequency

radius of the sphere is given by ωr =
√

ω2
x + ω2

y + (ωt/2.1)2. Wθ and Wφ had a transition widths of 8

degrees, and the high low cutoffs which spanned 36 degrees.
All of the other filters were simply combinations of 3-D rotated copies of this base filter. If we choose

the base position of the BP filter to be centered around the ωx axis, then we can describe the positions of
the other filters by the composition of two rotations of BP . Let ~ω represent the vector [ωx, ωy, ωt], and
Rx(φ0) and Rt(θ0) denote the 3-D rotation matrices which leave the ωx and ωt axes fixed respectively.
The composition RxRt rotates the filter away from the ωx axis by θ0 degrees and then away from the
spatial frequency plane by φ0 degrees. Most of the filters were rotated up to lie in a common plane which

specified a downward motion with a speed of 1.93 deg/sec.
In Plane Condition The symmetric plaid filter is formed by summing together two copies of the BP

filter. The rotations angles for Rx are θ0 = 28deg and θ0 = 152 deg, which makes the orientations
symmetric around the ωy axis. Each of the filters have Rt rotation angles of φ0 = 36.9 deg so that the
bands lie in a common plane.

The bandpass filter for the Symmetric condition has rotations angles of θ0 = 90deg and φ0 = 36.9 deg so
that the plaid and bandpass filters lie on a common plane, with the bandpass spatial orientation orthogonal
to the direction of motion specified by the plane.
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Figure 4.3: Diagram illustrating the data collection method. Data was collected for 6 different constant
Epl/Ed ratios shown as gray arrows. The ratios are presented to the right of the arrows. The gray circles
represent the points the data was collected at. The ratios were chosen so that the distances d, between points
along the diagonal are equal on normalized energy axes. The data was analyzed by fitting Weibull functions
to the data along each constant ratio ray.

Asymmetric Condition The asymmetric plaid filter is also formed by summing together two copies of
the BP filter. The rotations angles for Rx are θ0 = 28deg and θ0 = 90deg. The bandpass filter for this
condition has θ0 = 152 deg. Each of the filters have Rt rotation angles of φ0 = 36.9 deg so that the bands
lie in a common plane.

Off Plane Condition In this condition the plaid filter is the same as in the In Plane condition. The
bandpass filter has the same θ0 = 90deg, but it does not lie in the plane. φ0 = 3deg for this condition,
hence the filter is nearly centered around the spatial frequency plane.

4.2.3 Procedures

Data were collected using a 2IFC task, in which subjects discriminated signal plus noise and noise alone
intervals. Signal stimuli in each condition were additive mixtures of one of the plaid stimuli with one of
the bandpass stimuli. Data from each condition was collected in separate sessions, but the sessions were

intermixed. Subjects were provided with knowledge of which stimuli were to be detected at the beginning
of each session. Subjects were also given two hours practice on each condition prior to data collection.

Figure 4.3 illustrates the data collection method. Signal energy was varied using the method of constant
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Subject Condition Epl/Ebp

In Plane 1:0 6.6:1 2.5:1 1.1:1 0.4:1 0:1

PS Off Plane 1:0 5.8:1 2.2:1 0.96:1 0.36:1 0:1
Asymmetric 1:0 6.0:1 2.3:1 1.0:1 0.38:1 0:1

In Plane 1:0 6.4:1 2.4:1 1.1:1 0.4:1 0:1

ML Off Plane 1:0 4.5:1 1.7:1 0.7:1 0.3:1 0:1
Asymmetric 1:0 5.9:1 2.2:1 1.0:1 0.38:1 0:1

Table 4.1: Table of constant (Epl/Ebp)

stimuli for six different constant plaid-bandpass energy ratios (Epl/Ebp), shown in the figure as grey rays.
Five different combination energies were used to estimate the psychometric function along each ray, shown

as open circles in the figure, for a total of 30 different combinations. At each combination, 100-120 trials
were collected. It required 3 1

2-4 hours to collect all the trials for a condition. To avoid subject fatigue the
data collection for each condition was split into one hour sessions.

To insure that the constant ratio rays were evenly distributed, we used estimates of the subject’s
thresholds for plaid and bandpass stimuli alone to distribute the measurements across the (Epl,Ebp) plane.

We measured the subject’s thresholds for each of the plaid and component stimuli alone using the method
of constant stimuli. We then determined the ratios which caused the constant ratio rays to divide the
line connecting the 80% correct Epl and Ebp estimates into equal length segments. Thus the ratios were
different for each subject and condition. The energy ratios used are presented in table 4.1.

Thresholds were determined by fitting Weibull functions to the detection data along each constant

ratio ray using a maximum likelihood procedure. Error bars for the thresholds were computed from the
inverse numerical Hessian of the likelihood function for threshold, which were cross-validated using a
parametric bootstrap procedure. In the bootstrap procedure, 1000 data sets were simulated by sampling
from the binomial distribution with the parameter p given by the measured probability correct. Maximum
likelihood fits of the parameters were then generated for each data set. The resulting distributions of fitted

parameters were used to estimate the standard error on the parameters.

4.2.4 Data Analysis

Additivity was assessed by fitting the following equation to constant %correct threshold points along each
of the constant ratio rays:

Eα
bp + (sEpl)

α = cα (4.6)

This equation represents a Minkowski metric model of pooling [50] which frequently arises in the context
of probability summation models. In the present context it provides a simple means for parametrizing
additivity through the exponent α. α < 1: superadditive, α = 1: additive, α > 1: subadditive. The ’slope’
s, gives us a measure of the relative weights given to the plaid and bandpass energies, when additivity
holds.

The model was fit to the data using non-linear least squares minimization. The squared distances along
the constant ratio rays between the measured threshold energies and the curve described by the equation
were inversely weighted by the variances of the threshold estimates. The sum of these weighted distances
were minimized over three parameters, α, s, and c using the Broyden-Fletcher-Goldfarb-Shanno variable
metric multidimensional minimization method [102].

Statistics on the fits were generated using a parametric bootstrap procedure. In the procedure, boot-
strap fits of the psychometric functions were used to generate 1000 estimates of each of the energy thresh-
olds. Least squares fits for each of the estimates was performed, generating distributions for α, s, and c.
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Variances for the parameter estimates were computed from these distributions. One way ANOVAs and
T-tests were performed on the parameter estimates using these variance estimates as the within-condition
variances. Since we could use as many bootstrap samples as desired, the within-condition degrees of free-
dom were effectively infinite. We used a large positive number 105, instead of infinity for the number of

degrees of freedom.

4.3 Results

4.3.1 In Plane Results

The results for the In Plane condition are shown in figure 4.4, plotted in plaid-bandpass threshold energy
space. Each data point represents the threshold energy along a constant ratio ray for one of four different

% correct values: 60%, 70%, 80% and 90%. The error bars are oriented along the constant ratio rays, and
were estimated from the psychometric function fit.

The dashed lines represent approximate constant performance contours, while the solid lines represent
the curves generated by the best fitting parameters of the pooling equation. When additivity holds the
performance contours should lie along straight lines, or equivalently, the best fitting additivity equation

exponents α should be 1. We see that for both subjects the best fitting curves are essentially linear. The
best fitting αs for each constant performance curve are gathered into a table on the right side of the figures.
Inspection shows that all of the αs are very close to 1. Subject PS shows a small but consistent trend for α
to increase with increasing % correct, however, none of the alpha are significantly different from 1 (T-test,
0.05 level). The alpha for Subject ML do not show an increased trend, and are clustered more tightly

around 1. Thus the visual system can be described as additively pooling the bands in this condition.

4.3.2 Asymmetric Results

The results for the Asymmetric condition are similar to the On Plane condition, as predicted by the planar
power detector model. The α estimates for subject PS are 0.2-0.3 higher than in the On Plane condition,
however, none of the α are significantly different from 1 (T-test, 0.05 level). Thus the visual system is able

to additively pool power as long as the components lie on a common plane. It also shows that subjects
are not using a detection approach which requires the phenomenal motion of the plaid and bandpass
components to be the same for additive pooling to occur.

4.3.3 Off Plane Results

The results for the Off Plane condition are very different. Notice that the best fitting curves are curved in

the subadditive direction. T-tests show that all of the α for this condition are significantly greater than
1 at the 0.01 level. Thus subjects are not able to additively pool bandpass power off the common plane
specified by the symmetric plaid. This result agrees with the results from Chapter2, which showed that
subjects are less efficient at detecting non-planar stimuli.

There is a highly significant trend for α to decrease as % correct increases for both subjects, which is
discussed below.

4.3.4 Additivity exponents

The fitted additivity exponents α are summarized in figure 4.7. As noted before, the salient feature of
the data is that exponents are clustered around 1 for the In Plane and Asymmetric conditions, but are
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Figure 4.4: In Plane additivity data. None of the estimated α are different from 1 at the 0.05 level using a
T-test.
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Figure 4.5: Asymmetric additivity data. None of the estimated α are different from 1 at the 0.05 level using
a T-test.



4.3. RESULTS 78

Figure 4.6: Off Plane additivity data. All of the estimated α are significantly different from 1 at the 0.001
level using a T-test.
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Figure 4.7: Additivity exponents for the three conditions.

Subject Comparison p: 60% p: 70% p: 80% p: 90%

In Plane vs. Asymmetric 0.19 0.29 0.26 0.48
PS In Plane vs. Off Plane < 0.001 0.003 < 0.001 0.001

Asymmetric vs. Off Plane < 0.001 0.008 < 0.001 0.006

In Plane vs. Asymmetric 0.33 0.75 0.77 0.71
ML In Plane vs. Off Plane < 0.001 < 0.001 < 0.001 < 0.001

Asymmetric vs. Off Plane < 0.001 < 0.001 < 0.001 < 0.001

Table 4.2: Table of α comparisons across condition at each probability correct, showing the probability that
the compared αs are drawn from the same distribution using the T-test statistic. The Off Plane condition is
significantly different from the other two conditions at better than the 0.01 level for both subjects.

significantly greater than 1 for the Off Plane condition. The planar power detector model predicts that
the pooling rule will be additive and hence equivalent for conditions In Plane and Asymmetric, but will
be significantly non-additive for the Off Plane condition. We performed a set of T-tests of the α estimates
between the conditions at each % correct level, the results of which are presented in table 4.2. The

analysis shows that the two conditions in which the bands are coplanar, In Plane and Asymmetric, are
not significantly different (max p = 0.19). In contrast, both of these conditions are significantly different
(p < 0.01) from the Off Plane condition.

Invariance across %correct

In our analysis of the ideal weighting strategy we predicted that the additivity result should hold equally for
any % correct slice we choose to analyze. We tested for invariance of the fitted pooling equation parameters
across the four %correct levels by performing a one-way ANOVA. The results of the analysis are gathered
in table 4.3. The estimates of α across % correct are not significantly different at the 0.05 level for the In
Plane and Asymmetric conditions for either subject. Thus for the conditions in which all of the bands lie

in a single plane, the assumption of additivity independent of the level of performance cannot be falsified.
There is a significant trend in the Off Plane data which is nearly identical for both subjects. The

trend is toward decreasing α with increasing % correct. The trend could be the result of pooling efficiency
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Subject Condition F(3,∞) p

In Plane 0.14 0.94

PS Asymmetric 0.03 0.99
Off Plane 2.72 0.043*

In Plane 0.07 0.98

ML Asymmetric 0.07 0.98
Off Plane 4.98 0.002*

Table 4.3: Table of ANOVA results for the estimates of α across % correct. p gives the probability that
each of the α are drawn from the same distribution, i.e. that there is no significant change in alpha across
the % correct slices. The Off Plane condition is significant at the 0.05 level for both subjects, shown by the
starred p values.

changing with % correct, such that subjects pool more efficiently at higher signal levels. If this hypothesis
were true we would expect the zero mixture Plaid thresholds for the In Plane and Off Plane conditions
to be roughly equivalent and for the mixture thresholds in the Off Plane condition to improve with %
correct. Expressed in terms of the slopes of psychometric functions, it predicts that the zero mixture
plaid psychometric slopes will be equivalent while the non-zero mixture will be shallower in the Off Plane

condition.
Instead we find that the Weibull slope parameters β along the plaid only axis are steeper for the On

Plane than Off Plane conditions (PS: βOnPlane = 1.69, βOffPlane = 1.14, ML: βOnPlane = 1.4, βOffPlane =
1.13), while the average mixture slopes are essentially equivalent ( PS: βOnPlane = 1.57, βOffPlane = 1.52,
ML: βOnPlane = 1.4, βOffPlane = 1.49 ). The decreased slope of the plaid energy psychometric function

in the Off Plane condition is the result of lower plaid thresholds at the low signal level/low % correct end
in the Off Plane condition than the In Plane condition, and slightly higher thresholds at the high signal
level/high % correct end. This suggests that the plaid stimuli are being processed differently in the presence
of the Off Plane bandpass stimuli than the In Plane bandpass stimuli. The result suggests that the source
of the variation across alpha is in the processing of the plaid component stimuli. To test this idea, we

refit the Off Plane data using the plaid only mixture data from the On Plane condition. The resulting α
estimates showed no trend across % correct, PS: αmod = (2.7, 2.6, 2.6, 2.7), ML: αmod = (2.1, 1.9, 1.9, 2.0).

4.3.5 Weighting across bands and the fitted slopes

Given the result of additivity, the slopes for the In Plane and Asymmetric conditions can tell us something
about the relative weighting across the three bandpass components which comprised the mixtures in the

two conditions. The slopes are given by the parameter s in the pooling equation 4.4, and the fitted slopes
are shown in figure 4.8.

We can use the slopes in the In Plane and Asymmetric conditions to derive estimates of the weights
across the three stimulus bands. Let wa denote the weight for the Asymmetric bandpass component, wb

the weight for the In Plane bandpass component, and wc the weight for the remaining band. An equivalent

rule for naming the bands is to label them {c, b, a} going counterclockwise in spatial orientation from the
ωx axis. Then in the In Plane condition, the slope sin in sinEbp + Epl = c is equal to

sin =
wb

(wa + wc)/2
(4.7)

Thus (wa + wc) = sin/2wb. In the case wa = wc, then these weights are 0.74 for subject PS and 0.48 for
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Figure 4.8: Slopes of the fits the three conditions. A one-way ANOVA of the slopes across % correct shows
no significant effect for either subject in any condition (largest probability is 0.43).

subject ML, relative to wb = 1. In the Asymmetric condition the slope is given by:

sasym =
wa

(wb + wc)/2
(4.8)

If we assume that the weighting is identical in the two experiments and set wb = 1, then we can use

equations (4.7) & (4.8) to solve for the weights for wa & wc relative to wb. The resulting weights for both
subjects are gathered in table 4.4.

Instead of an equal split between the weighting as expected by symmetry, assuming the invariance of
weights across conditions leads to a large bias in the weighting of bands corresponding to leftward and
downward moving gratings over those moving rightward and downward. However, to derive the weights,

we only considered the slopes and not the magnitude of the thresholds. If both In Plane and Asymmetric
weights are equal, then the threshold energies at a given %correct should also be equal, since the conditions
obey equation 4.2. Thus, we can use the common weights to compute a predicted Asymmetric bandpass
threshold from the In Plane threshold energy at a given % correct by multiplying wa by the In Plane
plaid threshold. We find that the actual thresholds in the Asymmetric condition are 27% & 34% higher on

average than the predictions from the In Plane condition for subjects PS and ML respectively. Using the
variance of the Asymmetric bandpass thresholds to construct a T-test, we found that these thresholds are
significantly different from the predictions at the p < 0.02 level. Thus, it seems likely that the assumption
that the weights are constant across the two conditions is false.

The other possibility is that subjects are able to adjust their weighting across bands, using different sets

of weights for the In Plane and Asymmetric conditions. Subjects will perform better in the experimental
conditions if they weight the three frequency bands by scalars proportional to the expected energy in each
band. Because the additivity experiments involved intermixing different sets of stimuli in the In Plane
and Asymmetric conditions, the expected energies, and hence the optimal weights are different for the
two conditions. We computed the optimal weights for each subject (see Appendix B) in each condition,

shown in table 4.4. The weights show that subjects can do better on average if they weight the bandpass
band more heavily than the plaid bands. If we assume that subjects equally weighted the plaid bands in
each condition (i.e. In Plane:wa = wc, Asymmetric:wb = wc), we can compare the optimal weights with
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Subject Condition Hypothesis wa wb wc

Optimal weights 0.65 1 0.65

In Plane Adaptable weights 0.74 1 0.74
PS Fixed weights 1.15 1 0.33

Optimal weights 1 0.61 0.61
Off Plane Adaptable weights 1 0.58 0.58

Fixed weights 1.15 1 0.33

Optimal weights 0.63 1 0.63
In Plane Adaptable weights 0.52 1 0.52

ML Fixed weights 0.86 1 0.11

Optimal weights 1 0.61 0.61
Off Plane Adaptable weights 1 0.67 0.67

Fixed weights 0.86 1 0.11

Table 4.4: Estimates of the relative weights across the bands in the plane under two different hypotheses,
the weights are fixed across the In Plane and Asymmetric conditions or the weights are adaptable to the
demands of each condition. The weight estimates are presented below the optimal weights for the condition
(see Appendix B). wa and wc correspond to the bands in the plane oriented rightward and leftward of the
direction of motion (downward) respectively, while wb corresponds to the band whose orientation coincides
with the movement direction. Assuming that both the weights are adaptable and equal weighting of bands
within the plaids leads to weight estimates which are not significantly different from the optimal weights.
Assuming the weights are fixed across the conditions leads to a strong weight bias toward leftward moving
bands, which we conclude is less likely. See text for details.

the weights estimated from the slopes. The estimated weights are shown in table 4.4 in the rows labeled
’Adaptable weights’. None the Adaptable weights are significantly different from the optimal weights (T-
test, 0.05 level), which suggests that subjects may be adapting their weights to optimize performance in

the two different conditions.

4.4 Discussion and Conclusions

We have shown that planar configurations of power are additively pooled. This result constitutes the
strongest evidence we are aware of for the existence of planar power detectors. The three conditions
together verify that planar configurations are special, while the additive law suggests that the detectors
are indeed power detectors. In terms of contrast, additivity in power (or energy) is a quadratic summation
rule. It is possible that the results are actually due to a nonadditive summation rule acting on contrast
which has been subjected to a non-linearity other than squaring, such that the conjunction of the summation

rule and the non-linearity conspire to produce the apparent additivity. However, the exact cancellation
that this would require seems implausible. Regardless, the net result is that configurations of power lying
on a common plane obey a summation rule which is equivalent to the rule used by planar power detectors,
while configurations of power which do not lie on a common plane are detected using a suboptimal rule.

For the Off Plane condition, the exponents indicated subadditivity. A simple hypothesis is that the

plaid and bandpass stimuli are independently processed and pooled by probability summation.

4.4.1 Context sensitive weighting across the plane

The results suggested that observers are adapting their weighting strategy across bands which lie in a
common plane to the demands of a task. These adaptations are modest, involving only 25-30% changes
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in the values of the weights, and hence do not contradict the conclusion that the visual system has a
limited capacity to adapt the weights across bands. One way to account for the adaptability of weighting
is to postulate the existence of a large set of fixed planar power detectors, each with different orientation
sensitivities. The adaptability of performance could then be attributed to the observer relying on detectors

with different spatial sensitivities in the two conditions. This possibility leads to the confounding of spatial
structure and velocity within a detector, which must then be disambiguated by making separate estimates
of the spatial structure to avoid image structure dependent biases in the encoded velocities.

Another way to account for adaptability is to postulate planar power detectors in which the weighting
across spatial orientation can be modified by perceptual learning. This possibility would be a way of

implementing optimal velocity estimators for the stochastic stimuli. Optimal velocity estimation can be
implemented using a population of detectors tuned to different planes in frequency space. The spectrum
around which the detector pools will be given by the expected spatial frequency spectrum projected unto
the plane specified by the velocity. If the visual system uses takes this expectation over a window of time
on the order of the experiments, then the adaptability could be accounted for by an attempt at optimality

(i.e. the development of perceptual expertise).
Neurally, this possibility could involve the feedback from some site which modifies the weighting based

on the pattern of correct and incorrect decisions. The idea that the visual mechanisms are flexible and
can be modified by perceptual learning has been recently suggested by several researchers as a means
of accounting for the stimulus and task specificity of several kinds of perceptual expertise (e.g. spatial

hyperacuity)[25, 3, 30, 36, 41]. Physiological evidence for receptive field structure being modified by
feedback also exists. Recently, McLean & Palmer[84] have shown that the phase selectivity of neurons
in primary visual cortex can be modified by associative learning, and were able to change the direction
selectivity in one cell in ten. In audition, Weinberger and colleagues [34, 144, 39] have presented evidence
that the peak frequency of auditory neurons in the guinea pig and cat could be modified by classical

conditioning. In visual area MT in monkeys, Treue (1996)[118] showed that neuronal firing rates could be
modulated by attention, suggesting that MT neurons have the potential to be modified by feedback from
higher stages of visual processing.

In addition to the difference in On Plane and Asymmetric weighting, we found evidence that the same
plaid stimuli are processed differently in the In Plane and Off Plane conditions. This difference cannot

be explained by an instantaneous interaction between the plaid and the bandpass stimuli, since the trials
we are considering did not include the bandpass stimuli. Due to the subadditive combination in the Off
Plane condition, we might expect some elevation of the plaid thresholds over the In Plane condition. For
instance, the bandpass stimuli in the Off Plane condition may increase the number of irrelevant detectors
the subject attends to in detecting the plaid stimuli (increased signal uncertainty)[96], or it might cause

the visual system to use a detector which is more poorly matched to the plaid signal than in the In Plane
condition. The latter possibility is less plausible given the fact that plaid thresholds are actually lower for
smaller %correct values in the Off Plane condition. Instead, the lower thresholds suggest that subjects may
actually be using detectors which are better matched to the plaid stimuli in the Off Plane condition, but
are attending to many irrelevant detectors. This possibility could produce the pattern of results, because

at low signal values the irrelevant detector responses will increase the decision variable variance less than
the positive weighting of the middle band would in the In Plane condition. We plan to investigate the
possibility that the frequency weighting for plaid stimuli differs in the two conditions using the perturbation
analysis from last chapter.
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4.4.2 Relations to physiology

There are a number of studies which suggest that the most probable location of planar power detectors in the
brain is in the human analogue to simian visual cortical area MT. Simoncelli and Heeger (1998) [113] have
recently modeled a great deal of electrophysiological data recorded from this area with a modified planar

power detector model. A subset of the neurons in MT, designated either ’pattern motion selective’[90]
or ’Type II’[8, 107] have several of the properties expected for planar power detectors. This set of MT
neurons are tuned to speed and direction [80, 106, 73] and are relatively insensitive to the spatial pattern
characteristics[90, 9]. Movshon et al. has also shown that the spatial and temporal frequency tuning in
some of these cells covary, which is required for pattern invariant speed tuning[91]. Lesion studies show

that MT neurons are critically involved in both the computation of direction of motion[93] and speed [95],
while electrical stimulation can produce directional biases in a perceptual task[109].

In addition, motion opponency for MT neurons similar to that found in the perturbation analysis has
been reported by several investigators[86, 106, 114, 103, 149, 150]. The opponency is manifested as a
suppression of neuronal firing rates for motions in the direction opposite to the cell’s preferred direction.

This inhibition has a component coextensive with the classical receptive, best demonstrated by experiments
of Qian and Anderson [103], who showed that superimposing random dot patterns suppressed firing rates,
especially when the opposite moving dots were locally paired in space. Snowden (1991) showed that this
inhibition is well modeled by a divisive interaction and Mikami et al.[86] showed that the inhibition can be
maximal for opponent motions which have speeds different than the cells preferred speed. Finally, several

researchers have shown that there is a strong inhibitory interaction for motions outside of the cells classical
receptive field[86], and that this inhibition is structured but spatially inhomogeneous[149, 150, 148].

The existence of spatially inhomogeneous interactions outside the classical receptive has been reported
by many researchers[10, 116, 17, 149, 150]. On the basis of these findings all of these researchers have
suggested that area MT may be involved in computations more complicated than simple image velocity

estimation, such as figure/ground segmentation, motion in depth, and computing surface curvature and
orientation in depth[148]. In addition, it has been shown that MT neurons are also tuned to binocular
disparity[80], which has led to the speculation of a role for MT in motion in depth computations [10].
Finally, there are suggestions that MT neurons may play a role in determining targets for tracking eye
movements [42]. These additional properties of MT neurons could be used to better assess experimentally

whether the psychophysically defined planar power detectors have their basis in visual area MT.

4.4.3 Model for velocity estimation

The preceding experiments have suggested the outlines of the properties of velocity detectors. However,
the visual system is more often faced with the problem of estimating image velocities than detecting image
movement. In this section we discuss how the results fit into a velocity estimation scheme, and outline
some possibilities for further testing.

Velocity estimation is a simple extension of translation detection. We propose a model based on the

experimental evidence and a set of assumptions motivated by optimal velocity estimation in conditions of
uncertainty. We assume: 1) The visual system makes local estimates of velocity. 2) The visual system
makes use of the expected spatial structure of the signal in making velocity estimates.

An interesting property of the translation detectors we have been discussing is that a population of
these detectors can be used to construct a likelihood function for image velocity. Thus the detectors could

be part of a general system for estimating local image velocity. The visual system can compute optimal
local estimates of velocity by using the expected spatial structure of the image, and the prior distribution
of image velocities.
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Let Ŝe(ωx, ωy) denote the expected spatial spectrum of the signal, and W (ωx, ωy, ωt) represent the
spectrum of the localization window. Then if the texture is moving with velocity ~v, the expected signal
spectrum is given by:

S(~ω,~v) =
(
Ŝe(ωx, ωy)δ(ωt + ~v · ~ωsp)

) ⊗
W (ωx, ωy, ωt) (4.9)

This equation represents the expected signal spectrum projected onto the plane given by the velocity
and blurred (convolved) by the localization function. Given S(~ω,~v) we can construct a family of detectors
tuned to different values of ~v. The likelihood function over velocity can be approximated by computing

the inner product of the input signal power spectrum X(~ω) with a set of detectors each with a different
fixed values of ~v.

log L(X|~vi) '
∫

~ω
|S(~ω,~vi)|2|X(~ω)|2d~ω (4.10)

where we have dropped out the scaling factors for simplicity, and used the small signal approximation.
A maximum (or mean) a posteriori estimate of the velocity can be made from this sampled likelihood

function by introducing a prior distribution on velocity.

p(~v|X) =
L(X|~v)p(~v)∫
L(X|~v)p(~v)d~v

(4.11)

A likely prior on velocity would be a bias for slower speeds. As pointed out by Simoncelli (1993), a
bias for slower speeds could explain several perceptual phenomena, including the wagon wheel effect and
the fact that one-dimensional signals are typically seen to move in the direction orthogonal to their spatial

orientations.
One of the interesting predictions of this sort of model is that speed and direction discrimination based

on these filters should obey a Weber’s law in speed, which has been previously shown[20].

4.5 Appendix

The planar power detector additively pools power lying on a common plane to measure the spectral energy
E around the plane. If we split the plane into several bands, then the planar power detector can be
described as adding the output energies within each of the bands.

E =

∫

~ω
|P (~ω)|2|S(~ω)|2d~ω (4.12)

E =

∫

~ω
|P (~ω)|2

∑

i

|Sbi(~ω)|2d~ω

E =
∑

i

∫

~ω
|P (~ω)|2|Sbi(~ω)|2d~ω

E =
∑

i

wiEbi

Where E is the output energy, |P (~ω)|2 is the planar power detector spectrum, |S(~ω)|2 is the signal spectrum,
and |Sbi(~ω)|2 are the band pass components of the signal spectrum. The weights wi represent the effect
the Planar filter has on the energy within each signal band i.

Next we show that the performance of the ideal observer has the form

p(Ri = 1) = Ψ(
∑

i

wiEbi) (4.13)
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If we fix p(Ri = 1) = p0, then
∑

i wiEbi must also be a constant c. Thus the equal performance contours
will lie on hyperplanes in the space of energies within the signal bands, Ebi .

In Chapter 1 we gave an expression for the ideal performance,

p(Xi = 1) = Φ(0, µH1 − µH0, σ
2
H1 + σ2

H0) (4.14)

where the mean and variance depend on the signal and receiver filter spectra, and the signal and background
noise power levels:

µ = µH1 − µH0 = 2s

∫

~ω
|P (~ω)|2|Sn(~ω)|2d~ω (4.15)

σ2 = σ2
H1 + σ2

H0

= 8(s2
∫

~ω
|P (~ω)|4|Sn(~ω)|4d~ω + 2sN

∫

~ω
|P (~ω)|4|Sn(~ω)|2d~ω + 2N2

∫

~ω
|P (~ω)|4d~ω)

where s|Sn(~ω)|2 = |S(~ω)|2, i.e. |Sn(~ω)|2 is the normalized signal spectrum and s is the signal power level.
The mean is simply proportional to the energy, and hence is linear in the energies in the bands. The
variance can be shown to be linear to an extremely good approximation. In the experiments, s ¿ N and
hence the first term in the variance can safely be dropped.

∫
~ω |P (~ω)|4d~ω = kp evaluates to a constant kp.

To evaluate the middle term we notice that when |Sn(~ω)|2 =
∑

i |Sbi(~ω)|2, the term
∫
~ω |P (~ω)|4|Sn(~ω)|2d~ω

evaluates to
∑

i aiwiEbi , i.e. weighting the signal spectrum by the square of the planar filter spectrum
simply scales the energy by a fixed amount ai.

Thus the mean and variance can be written:

µ = 2
∑

i

wiEbi (4.16)

σ2 = 16(
∑

i

aiwiEbiN + kpN
2)

When the filter overlap on each of the signal bands is identical, the inner products
∫
~ω |P (~ω)|4|Sbi(~ω)|2d~ω

are the same for all the bands, and hence all the ai = a are the same. This is true for two of the conditions
in the experiment, the In Plane condition and the Asymmetric condition.

Thus for the conditions in this experiment, the ideal performance can be written:

p(Xi = 1) = Φ

(
0, 2

∑

i

wiEbi , 16(a
∑

i

wiEbiN + kpN
2)

)
(4.17)

= Ψ(
∑

i

wiEbi ,N)

For fixed N and any fixed probability correct p(Xi = 1), the ideal observer’s performance is linear in
the energies.

It is important to point out that the condition of identical overlap between signal bands is not very

important, since the third term dominates the variance expression.
The previous discussion can be easily adapted to the human observer. We assume that the visual system

uses an unknown internal filter which is roughly selective for planar regions of spectral power. In addition,
the visual system is subject to additional sensory and internal noise. If we assume that the additional
noise is equally distributed across all the bands, then the subject’s decision variable variance should be

dominated by the effects of the background noise and the sensory and internal noises. In this case both
of the signal dependent terms in the variance will be nearly insignificant, and the subjects performance
should be approximately linear in the energies in the signal bands.
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4.6 Appendix B: Ideal observers for the task

The stimuli in the task can be described by the equations:

H1 = signal present:

H0 = noise alone:

r(x, y, t) = a1 · spl(x, y, t) + a2 · sb(x, y, t) + n(x, y, t)

r(x, y, t) = n(x, y, t)

where spl denotes the plaid signal waveform and sb denotes the bandpass signal waveform. The constants
a1 and a2 determine the contrast of the signal noises s, hence a2

1 and a2
2 are proportional to the signal

energies. We will compute the ideal for the case in which the signal energies are much lower than the
background noise energy. In the equations, a1 and a2 form a random vector since the data are collected
by randomly selecting from a set of [a1, a2] pairs.

The Bayes decision for the 2AFC task is to choose the interval i with the larger likelihood ratio L(r)i
averaged over the ~a = [a1, a2] pairs:

E [L(r|~a)1]

1

>
<
2

E [L(r|~a)2] (4.18)

where the likelihood ratio is the ratio of the conditional probabilities of the the waveform r given signal
present and noise alone conditions:

L(r|~a) =
p(r|H1,~a)

p(r|H0,~a)
(4.19)

Let |Spl(~ωi)|2 and |Spl(~ωi)|2 denote the plaid signal and bandpass signal normalized power spectra

respectively, and let ~S(~ωi) =
[
|Spl(~ωi)|2, |Spl(~ωi)|2

]
.

The likelihood ratio is given by:

Λ(R|~a) =

∏M
i=1

1
[2π(~a2·~S( ~ωi)+N)]0.5

exp(−0.5
∑M

i=1
RiR

∗
i

(~a2·~S( ~ωi)+N)
)

∏M
i=1

1
[2πN]0.5 exp(−0.5

∑M
i=1

RiR
∗
i

N )
(4.20)

Λ(R|~a) =

(
M∏

i=1

N0.5

(~a2 · ~S(~ωi) + N)0.5

)
exp


−0.5

N

M∑

i=1

(
~a2 · ~S(~ωi)

)
RiR

∗
i

(a2|Spl(~ωi)|2 + b2|Sb(~ωi)|2 + N)




When the background noise power is much greater than the total signal power the likelihood ratio

reduces to:

Λ(R|~a) = exp

(
−0.5

N2

M∑

i=1

(
~a2 · ~S(~ωi)

)
RiR

∗
i

)
(4.21)

The likelihood averaged across ~a2 is given by:

E [L(r|~a)] =
∑

~a

p(~a)Λ(R|~a) (4.22)

which follows because p(~a) = p(~a2), due to the fact that ~a is constrained to be positive. This expression
does not simplify but can be simulated.
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If the visual system computes the decision based on the sum of energies in the bands, but can vary
the weighting within the bands, then we can compute the optimal weights based on the set of stimulus
mixtures used. We can derive the optimal additive rule by using the log likelihood functions.

log Λ(R|~a) = −
0.5

N2

M∑

i=1

(
~a2 · ~S(~ωi)

)
RiR

∗
i (4.23)

The expectation of the log likelihood function over ~a2 is given by:

E [log Λ(R|~a)] = −
0.5

N2

∑

~a

p(~a)
M∑

i=1

(
~a2 · ~S(~ωi)

)
RiR

∗
i d~a (4.24)

= −0.5

N2

M∑

i=1

(
~a∗ 2 · ~S(~ωi)

)
RiR

∗
i

where ~a∗ 2 is the mean stimulus power vector. Thus in this case the decision is to compare the energies

in the filter ~a∗ 2 · ~S(~ωi) on both intervals and choose the interval with the larger energy.
From the set of (Epl, Ebp) energy vectors we used we can compute the expected energy and hence the

expected weights on the energy bands. These in turn produce expected slopes which we can compare
against the data. For subject PS the expected weights for the In Plane condition are (a, b, c) = (1,1.55,1),
while for the Asymmetric condition is (a, b, c) = (1.63,1,1). For subject ML, the expected weights for the
In Plane condition are (a, b, c) = (1,1.58,1), and for the Asymmetric condition are (a, b, c) = (1.65,1,1).



Chapter 5

Summary

We have provided substantial evidence for the existence of specialized mechanisms in the human visual
system which detect local image translations using a strategy of pooling spectral power across planes in
frequency space.

In the first chapter we motivated the problem of measuring local image displacements, and discussed
how the planar power detector model arises naturally when the measurements are made by a system which

is uncertain of the spatial profile of the moving signals.
In the second chapter, we designed a set of novel motion stimuli, and derived ideal observers to provide

an absolute measure of performance. We found that observers efficiently detected stimuli matched to
planar power detectors, relative to a set of control stimuli.

In the third chapter we reanalyzed the data from the second chapter using an ideal observer perturbation

analysis to estimate subject’s weighting function across spatio-temporal frequency. We found that subject’s
weighting functions supported the existence of planar power pooling in the visual system. However, the
results also pointed to the existence of ubiquitous negative weights outside the signal bands, suggesting
the planar power detector model must be modified to include some inhibitory interactions from frequency
bands outside the plane.

The fourth chapter tested for additive pooling of power on the plane. The results showed that additivity
held for bands intersecting a common plane, but performance was subadditive for bands not lying in a
common plane. These results strongly argue for the existence of planar power detectors in the visual
system. In addition we found evidence suggesting the visual system may be able to modify its spectral
weighting function across the plane to better match the expected spectral properties of the signal. These

results were discussed in terms of potential perceptual learning, possible relations between planar power
detectors and neurons analogous to those in simian visual area MT, and the possibility the visual system
uses a population of planar power detectors to perform image velocity estimation.
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