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Abstract

A novel edge operator is introduced based on steerable asymmetric linear filters consisting of
radial wedge segments. An intensity profile is computed by averaging intensity values along a
radial wedge segment as it “sweeps” about a small circular neighborhood. The “steerability”
of the filters allows for interpolation of a continuous profile function from n discretely sampled
positions of the radial wedge segments. Edge strength is then calculated as a simple difference
of conditional means of the resulting intensity profile. This paper introduces the basic paradigm
of using asymmetric filters for low-level image processing tasks and shows how this approach
is utilized to design a novel edge operator (the Radial InTensity Edge, or RITE, operator).
Features of the RITE operator include: (1) a mathematically simple algorithm with comparable
performance to the well-known gradient-based Deriche operator; (2) better performance at points
where several edges intersect; (3) an average time complexity reduction by a factor of 1.7 to 2.1
over the Deriche operator.
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1 Introduction

Edge detection is a crucial component of most machine vision systems. Although significant effort
has been directed towards developing edge detection operators, there is still considerable room
for improvement in the existing operators. The most widely-used approach to edge detection
is the gradient-based approach (see [3, 1, 2, 7], among many others). Although this approach
performs well in most circumstances, there are well-known problems, particularly, in regions of
high curvature or where multiple edges intersect.



A completely new approach to edge detection is introduced here which performs at least
as well as other operators based purely on bottom-up, local information. ' The edge operator
introduced in this paper is unique in its use of steerable asymmetric linear filters consisting of
weighted wedge segments. An intensity profile is computed by averaging intensity values along
the wedge as it “sweeps” around a small circular window. The “steerability” of the filters allows
for interpolation of a continuous profile function from n discretely sampled positions of the radial
wedge segments. The edge strength is then calculated as a simple difference of conditional means
of the intensity profile.

This paper introduces the basic paradigm of using steerable asymmetric filters for low-level
image processing tasks and shows how this approach is utilized to design a novel edge operator,
which we refer to as the Radial InTensity Edge (RITE) operator. The RITE operator introduced
here generates results comparable to the Deriche [3] operator, (which is based on the popular
Canny operator [1]) and performs better in some circumstances. Specifically, the RITE operator
offers:

1. a mathematically simple algorithm with comparable performance to other popular edge
operators

2. better performance at points where several edges intersect

3. an average time complexity reduction by a factor of 1.7 to 2.1 over the Deriche operator

This paper is organized as follows, Section 2 introduces the intuition and mathematical no-
tation behind the RITE operator. Section 3 relates our operator to other popular edge detection
methods. Section 4 presents the algorithm for the RITE operator, an empirical comparison to

the Deriche operator on several real-world images, and an analysis of the time complexity of the
RITE and Deriche operators.

2 Theory

The process of detecting edges in grey-scale images consists of identifying edges via intensity
differences in the image. Typically this involves (1) convolving the input image with filters, and
then (2) applying a discriminant function to the convolved images in order to identify edges.
The most common approach, the gradient-based approach, applies symmetric gaussian filters
and then uses the magnitude of the intensity gradients as the discriminant for identifying edges.
In this paper, an operator is described which applies asymmetric filters and then uses intensity
differences as the discriminant for identifying edges. This section first presents the intuition
behind this novel approach, and then outlines the mathematical basis of the operator.

2.1 Intuition

The intuition behind the use of asymmetric filters for feature extraction is relatively straight-
forward. Consider a circular window with radius r placed at a region on the image (Figure la).
Possible intensity profiles computed by averaging along a radial wedge segment as the segment

!Some operators have been extended with top-down information, such as Zucker [6].



“sweeps” around the circular window, are shown in Figure 1b-d; these profiles correspond to
regions b-d, respectively, in Figure 2. Distinguishing among different features is thus possible if
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Figure 1: (a) Circular sampling window; (b-d) examples of possible profiles resulting from
“sweeping” a wedge around the circular window.

Figure 2: Sample image from which profiles in Figure 1 are taken.

the resulting intensity profiles are unique and can be differentiated. In particular, we show in this
paper how a simple difference of conditional means can be used to detect edges. One of perhaps
many other applications include using the kurtosis (ratio of higher order central moments) for
vertex detection.?

Figure 3 depicts the intensity profiles of (a) an ideal edge; (b) a noisy edge; and (c) a
mostly uniform area. The intensity difference is computed as the difference of conditional means
(fig,p—), where gy and p_ are the mean of the values of the profile function P greater than and
less than the mean u, respectively, as depicted in Figure 3b.?> The reason for using this difference
of conditional means is that it provides a noise-insensitive measure of the amplitude of the profile
function. Clearly, the intensity difference of a mostly uniform region (c) will be considerably
smaller than that of an ideal or noisy edge. Thus, we propose that a simple difference of the
conditional means of the intensity profile is sufficiently powerful to differentiate between edges
and noise. The next section formalizes the intuition behind this proposed edge operator.

2Work in progress.
3Note that this difference of conditional means is invariant to the orientation of the edge.
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Figure 3: Intensity profiles from (a) an ideal edge; (b) a noisy edge; and (c) a mostly uniform
area. In (b), p is the mean intensity, py and p_ are the conditional means, and g4 — p— is the
intensity difference.

2.2 Notation and Definitions

This section formalizes the concepts presented in the previous section. The ideas behind the
computation of the intensity profiles are formalized followed by formal definitions of the difference
of conditional means used by the RITE operator.

The processing is described for a single point in the image. Throughout, a polar image
coordinate system (r, ) is used with the origin at this point.

Definition 1 (Intensity Profile) The intensity profile, P(-), is

Pla) = /dr/d@ r w(r,a — 0) 1(r,6) (1)

where I(r,0) is the image intensity in polar coordinates centered at a point in the image,

and,

w(r,0) = g(r)h(?)
o(r) = {(1) ifr <ro

otherwise

W) = {1 if 10] < 6o

0 otherwise

ro defines the radius of the wedge filter, and 0y defines its angular width.

Note, that equation (1) expresses a convolution (in the angular coordinate) of the image intensity
with the wedge filter. Figure 4 shows w(r,8 — «).

Three examples of various regions in an image and their corresponding profiles are shown in
Figure 5.

Definition 2 (Difference of Conditional Means) The measure of edge strength is given by
the difference of conditional spatial means (6).

6= pg — po



Figure 4: Wedge with angular width 6.
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Figure 5: Three local intensity images with their corresponding intensity profiles. The black
region has an intensity value of 0, and the white region, 255. A small 8y is assumed.

where, the conditional means are defined as:

e = [ Pla)i(a)da
* [i(a)da
L P - i)

J(1 —i(a))da

where the indicator function v is defined as:

oL i Ple) >
i(a) _{ 0 if Pla) < p
and, p is the mean value of P,

_ [ Pla)da

T2

]



i+ is the mean profile value conditional on P(«) > p, and similarly, g_ is the mean profile value
conditional on P(a) < p. Note that ¢ is invariant to the edge orientation.

Before presenting an algorithm for edge detection based on the above theory, a comparison
to other edge detection techniques is discussed in the following section.

3 Relationship to Other Techniques

3.1 Gradient Based Approaches

In this section, the relationship between the RITE operator and a gradient-based edge operator
is described. Consider the following edge map computation based on simple gradients:

1. Convolve the image with x— and y— derivative filters v, (z,y) and ~,(x,y). The filter
kernels might typically be derivatives of a gaussian. This produces two derivative images:

Io(x,y) = I(x,y) * 7z(x,y) and Iy(z,y) = [(z,y) * 7 (2, y).

2. At each pixel, compute the sum of squares of the two derivatives: E(z,y) = I*(z,y) +
]5(;17, y). This magnitude may be considered to be a measure of “edge strength”.

3. Binarize this via a threshold operation.

In order to compare this operator to the RITE operator, the gradient approach must be
considered from a slightly different point of view. First note that the directional derivative in
an arbitrary angular direction @ may be computed as a linear combination of the directional
derivatives in the x— and y— directions:

Doly(z,y)] = cos(a)ve(z,y) + sin(a)y, (=, y), (2)

where D,[-] is the directional derivative operator at angle . This property of derivatives has
been studied and generalized by Freeman and Adelson [4] who named it “steerability”.

Suppose we are interested in the inner product of a directional derivative operator with the
image I(x,y). It follows naturally from equation (2) that this may also be written as a linear
combination of the inner product with the xt— and y— derivative filters:

Pla) = (I(z,y)- Daly(z,y)])

)(e(,y) - L(2, y)) + sin(a)(yy (2, y) - [(2,y))
) (2, )+Sm( My(2,y)
= Az, y)cos(a = d(2,y)),

= cos(a

= cos(a

where,

Alzyy) = JI2(z,y)+ I2(z,y)
¢(z,y) = arctan (I,(z,y)/L(z,y)),

and () designates an inner product.



Note that the function P(«) is an angular profile function. It is similar to the profile function
computed by the RITE operator, although it is based on a different set of filters. Note also that
this profile function is restricted to a very specific form: it is a single-cycle sinusoidal function of
a.

Now reconsider the gradient edge-detection algorithm described above. The algorithm es-
sentially computes A(z,y), the amplitude of the profile function, and compares it to a threshold.
Recall that the RITE algorithm performs an operation that is conceptually similar: it computes
the profile function and then computes a metric that gives a measure of the amplitude of the
function. Unlike the RITE algorithm, the gradient-based algorithm computes the amplitude
analytically (although the computation is still nonlinear).

Despite the similarity in the forms of the gradient and RITE operators, the linear filters
used to gather the initial measurements are quite different. The gradient algorithm is based on
directional derivatives of a radially symmetric function. These filters are anti-symmetric about
the origin, whereas the RITE operator uses an asymmetric wedge function.

3.2 Steerable “Wedge” Filters

In this section, we show some examples of steerable asymmetric filters derived from derivative
filters. The filters are first written in polar-separable form. Consider writing the z—derivative of
a two-dimensional radially symmetric function, v(r), where r = /22 + y? is the radial coordinate:

) _ or
= cos(0) ry'(r)
where 6 is the angular coordinate and +/(r) = < [y(r)], the derivative of v(r) with respect to its

argument. Note that this function is polar separable, a product of angular and radial component
functions. Similarly, the y—derivative may be written in polar-separable form:

0 .
—gij) = sin(0) rvy'(r)
= cos(w/2 —0) ry'(r).
Now, in polar coordinates, the steerability property is written as:

D, [y(r)] = cos(a — 0)rv'(r) = [cos(a)cos(8) + sin(a)sin(8)] ry'(r)
= cos(a)cos(0 — )ry'(r) + sin(a) cos(7/2 — 0)r+'(r)

This equation is a specific instance of the more general steerability condition described in [4]:

h(a — 0)g(r) = Z k() h(an — 0)g(r),

where h(-) is the angular portion steerable kernel, the k,(-) are interpolation functions, the «,, are
a fixed set of N orientations, and ¢(r) is the radial portion of the kernel. The gradient example,
with N = 2, is the simplest such filter set with h(6) = cos(0), g(r) = rv'(r), and «,, € {0, 7/2}.

7



Now, the advantage of using steerable filters to compute our profile function should be clear.
Because the filters are steerable, the full profile function can be analytically interpolated from a
small number of samples:

Pla) = /dr/d@ rw(r,a—0) I(r,0)

= S kn(a)/dr/dH rw(r,a, —0) I(r,0)

n=0
1

= kn(a) Play,).
The simplest example of an asymmetric steerable kernel is the following angular function:

h(0) = % [1 4 cos(8)].

It is easily verified that this function will be steerable with N = 3, and the “steering formula” is

as follows:
h(a—0) = Z (% + gcos(a — an)) ko, —0) (3)

n=0
where «,, = 27n/3. Combining this with an unspecified radial function ¢(r) gives a functional
form for the set of asymmetric steerable filters:

wn(r, ) = h(an = 0)g(r).
where a,, € {0,27/3,4x/3}. These three filter kernels are illustrated in figure 6. Note that

Figure 6: A simple set of steerable “wedge” filters.

these kernels are not very “wedge-like”: the angular form of the function is too broad. Narrower
steerable wedge filters can be created by raising the cosine function to a power:

,wn(n 9) = [1 + cos(ozn — 9)]N9(T)

where o, = 2xn /(2N + 1), for 0 < n < 2N. The interpolation functions may be derived using
techniques described in [4, 8]. Some example filter kernels for N = 8 are shown in figure 7. Note
that these are much narrower.



Figure 7: Six of the set of 17 steerable wedge filters for N = 8.

3.3 Signal Processing

The RITE operator is also related to some approaches that have been used in the signal processing
and pattern-classification communities, in that they all use statistical classification techniques
(see [5] for a review of signal classification measures).

Cast in the terminology of signal classification, the RITE operator performs binary classifi-
cation on the profile function: it an edge is present, the profile function will have two intensity
levels, or classes, C'; and Cy, and the goal is to classify C; and €. Given the profile function P
with mean m = E(P), this classification is done by computing the difference between the two
conditional means py(P) = E(P|P > m) and p_(P) = E(P|P < m), where E means expected
value.?

Related binary classification approaches are widely used in signal processing. Several mea-
sures related to the measure used in the RITE operator have been used; one of the closest is the
deflection D = (1/a3(P))[m1(P) — my(P)]?, where a3(P) = [P — p_(P)|P > m]* (cf. [5]). A full
description of the relationships between the classification measures used in the RITE operator
and in the signal processing community is given in the full paper.

4 Edge Detection

Outlined below are two algorithms for edge detection based on calculating intensity differences
from intensity profiles. The intensity profiles are computed by “sweeping” a weighted radial
wedge segment about small local neighborhoods.

“We assume that class C; is defined by P where P < m, and class C5 is defined by P where P > m.



The first algorithm (Algorithm 1) computes the intensity profile by “sweeping” a weighted
wedge around a 5 x 5 neighborhood. The “sweeping” of a wedge is simulated by convolving each
point on the image with nine wedge filters (See Appendix B). The edge strength is then simply
computed as the intensity difference of the resulting profile (See Section 2). This implementation
of the RITE operator was not designed for efficiency, but rather, to show the feasibility and power
of the radial intensity approach to edge detection. A simpler, faster version of this algorithm is
described below.

The second algorithm (Algorithm 2) computes the intensity profile by sampling eight neigh-
bors about a 3 x 3 neighborhood. Thus, the weighted wedge described in Algorithm 1 is ap-
proximated here as an un-weighted radial segment. The edge strength is then computed as the
intensity difference of the resulting profile. Although more sensitive to noisy images (due to
the smaller sampling window), this algorithm is extremely fast, running four times as fast as
Algorithm 1, and, in general, generating comparable results.

Both Algorithms are outlined below. The code for both algorithms is written in C” and
implemented on a Sparc architecture. The code is extremely straight-forward, requiring only 320
and 240 lines for Algorithms 1 and 2, respectively.

Algorithm 1:

o Fdge Detection:
For each pixel in the image:

1. Perform convolution with each of nine 5 x 5 wedge filters (See Appendix B).
2. Compute the intensity profile (P).

3. Compute the intensity difference (6) of the profile (P).

4. Set the output pixel value to 6.

e Post Processing:
For each pixel in the image:

1. Convolve image with a 5 x 5 “smoothing” filter.
2. Perform post-processing to “thin” detected edges. The post-processing requires two

passes through the image, where, at each point in the image, a pixel whose intensity
value is less than the average of its eight neighbors is trimmed.

Algorithm 2:

e Gaussian Smoothing (optional):
Convolve with a 3 x 3 Gaussian filter for noise suppression.

o Fdge Detection:
For each pixel in the image:

. Sample eight neighbors about a 3 x 3 neighborhood.

. Compute the intensity profile (P).

. Compute the intensity difference (6) of the profile (P).
. Set the output pixel value to 6.

= QO DN —

10



e Post Processing:
For each pixel in the image:

1. Convolve image with a 3 x 3 “smoothing” filter.
2. Perform post-processing to “thin” detected edges. The post-processing requires two

passes through the image, where, at each point in the image, a pixel whose intensity
value is less than the average of its eight neighbors is trimmed.

Results from several real world images for both implementations of the RITE operator and,
for comparison, the Deriche operator [3] are presented in the next section. Run-time benchmarks
and a formal time complexity analysis of the RITE and Deriche operators are also presented.

4.1 Results

Results from both implementations of the RITE operator, and for comparison, the Deriche
operator on real-world images are presented in this section. The first test image, the Hieroglyphs

image ° is shown in Figure 8.

Figure 8: Test image (612 x 176): Hieroglyphs (transliterated - gemeh) means perception.

Results, prior to post-processing, for the Deriche operator and both implementations of the
RITE operator, are shown in Figure 11 (See Appendix A). Figure 12 depicts a magnified view
of the eye from the Hieroglyphs image (See Appendix A). Results, after post-processing, for the
Deriche operator and both implementations of the RITE operator, are shown in Figure 13 (See
Appendix A). Throughout, the Deriche operator was run with an « value equal to 1.75.

Empirical comparisons of edge operators are frequently quite subjective. In the images
presented in Appendix A, we hope only to show that the RITE operator compares favorably to
the Deriche operator. Prior to the application of a post-processing stage, the RITE operator
produces results nearly identical to that of the Deriche operator. Although the post-processing
stage of the RITE operator is very simple in comparison to the Deriche operator, the resulting
outputs are comparable. However, the RITE operator outperforms the Deriche in certain areas.
Examples of such areas are given in the next section.

>The hieroglyphs in Figure 8 (transliterated - gemeh) means perception.
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4.2 On the Accuracy of Edge Operators

Two criteria proposed to evaluate edge operators are signal-to-noise ratio and “accuracy”. Al-
though much work has been devoted to edge detection, the notion of what an edge is, and more
importantly, what an accurate edge operator is, remains ill-defined. In this paper we do not
propose to clarify this topic. Instead, we introduce qualitative arguments as to why the RITE
operator is more accurate than Deriche; where by accurate, we mean the identification of edges
true to the original image both in locality and edge strength.

One well-known problem with gradient-based operators is their failure to accurately identify
edges along high-curvature regions or places where multiple edges intersect. In such regions,
operators like Deriche produce imprecise edges. In contrast, the RITE operator performs well in
such regions. Figure 9 depicts an example where the Deriche operator produces discontinuous
edges at the neck region in the Venus image, while the RITE operator produce continuous edges
in this region. It is important to note that prior to post-processing, both operators produce
continuous edges at the neck region. However, application of the post-processing stage in the
Deriche operator results in a discontinuity of five pixels (not due to thresholding), possibly due
to a lack of consistent structure in these regions. In contrast, even the simplistic post-processing
stage of the RITE operator is able to preserve regions where several edges intersect. We believe
that the use of asymmetric filters in the RITE operator results in better “edge structure” thus
yielding higher accuracy at such regions; current work involves further study in this area.

4.3 Performance in the Presence of Noise

The images presented in the previous sections have some amounts of noise, but, a more thorough
investigation of the performance of edge detection in the presence of noise is warranted. Results
from several experiments suggest that in the presence of low-intensity noise, the RITE operator
performs extremely well. This is due to the fact that the intensity difference for low intensity
noise tends to be small (while intensity differences of edges tends to be high), and thus few false
positive edges are detected by the operator. On the other hand, high intensity noise tends to
have high intensity differences in the same range as edges. The RITE operator which uses 5 x 5
sampling performs “smoothing” by virtue of the weighted wedge, however, in the case of the
3 x 3 version of the RITE operator, it is necessary to perform Gaussian smoothing prior to edge
detection. Results from the RITE (5x5 and 3 x 3) operator and the Deriche operator in the
presence of Gaussian noise are shown in Figure 10.

4.4 Run-Time Analysis

Both implementations of the RITE operator run in linear time with respect to the image size
(i.e. O(n), where n is the size of the image). An empirical comparison of run-times of both
versions of the RITE operator and the Deriche operator is shown in Table 1. All times (given in
seconds) are averaged over ten separate runs on five different 256 x 256. All runs were performed
on a Sun Sparc 10. With post-processing, the fast version (i.e. 3 x 3 sampling neighborhood) of
the RITE operator is 1.16 times faster than the Deriche operator, and without post-processing,
1.5 times faster.

12



Figure 9: Venus image (top-left): Magnification of neck (top-right); Results from the Deriche
operator (bottom-left); Results from the RITE operator (bottom-right). Note that, unlike the
Deriche operator, the RITE operator produces continuous edges at the neck region.

Since comparisons of run-time are highly dependent on the particular implementation of
each algorithm, an analysis of the computational complexity (i.e. number of mathematical
operations) of all three algorithms was performed (Table 2). On average, running on a Sparc
10, an addition/subtraction takes 7.46 x 107 seconds, a multiplication 8.32 x 10~7 seconds,
and division 8.68 x 1077 seconds. Thus, the Deriche operator requires 6.9718 x 10~7 seconds of
computation at each point on the image, while the RITE operator requires only 4.014 x 10~7
seconds (5 x 5) and 3.182 x 1077 (3 x 3) seconds of computation. Both implementations of
the RITE operator, 5 x 5 and 3 x 3, result in a theoretical speed up factor of 1.74 and 2.19,
respectively. These values do not include the post-processing stage of either operator; we simply
note here that the post-processing stage of the RITE operator is considerably simpler than that
of the Deriche operator.

Prior to post-processing, both versions of the RITE operator require only local information
from a single pass through the image. As such, the algorithm is well suited for a parallel
implementation. Although the post-processing stage of the RITE operator requires two passes
through the image, only local information is needed during each pass and thus this stage could
also be easily implemented in parallel. Currently, the RITE operator has only been implemented
on a sequential architecture.

13



Figure 10: Cross image: Original 128 x 128 image (top-left); Cross with additive Gaussian
noise (0=32) (top-right); Results from Deriche operator (a = 1.75) (bottom-left), left). Results
from RITE operator with 5 x 5 sampling and 3 x 3 (bottom-middle, bottom-right).

Table 1: Time benchmarks for the Deriche and RITE operator.

Operator Average run-time (sec) | Standard Deviation
Deriche o = 1.75 (post) 1.745 0.112
RITE 5 x 5 (post) 5.547 1.031
RITE 3 x 3 (post) 1.506 0.121
Deriche a = 1.75 (no post) 1.449 0.098
RITE 5 x 5 (no post) 4.422 0.079
RITE 3 x 3 (no post) 0.962 0.195

5 Discussion

This paper introduces a novel approach to general low level image processing. In particular,
the use of asymmetric linear filters and the edge strength metric of computing the difference of
conditional means is, to our knowledge, novel.

The application of the general approach to image processing introduced in this paper is an
edge operator (the RITE operator) based on asymmetric linear filters consisting of radial wedge
segments. The edge operator computes an intensity profile by averaging intensity values along
the wedge as it “sweeps” around a small local neighborhood. Edge strength is then measured as

14



Table 2: Arithmetic operations performed at each point in image for Deriche and RITE oper-

ator.
Operator Add/Sub | Mul | Div || Total
Deriche ov = 1.0 31 56 0 87
RITE 5 x5 38 10| 4 52
RITE 3 x 3 29 0 3 32

a simple difference of conditional means.

Empirically, results from the RITE operator are comparable to the well-known gradient-
based Deriche operator. However, in some respects the RITE operator outperforms the Deriche
operator. In particular, unlike the Deriche operator, the RITE operator generates continuous
edges at points where several edges intersect. Note that although prior to post-processing, both
operators produce continuous edges at points where several edges intersect, the Deriche operator
is unable to preserve these regions after applying its post-processing stage. In contrast, even the
simple post-processing stage of the RITE operator is able to successfully preserve such regions.
This type of behavior is especially attractive since these regions generally contain important
contour information.

Further improvements over the Deriche operator include a reduction in time complexity by
a factor of 1.7 to 2.1. The RITE operator is also ideal for a parallel implementation since the
operator requires only local information from a single pass through the image.

The use of asymmetric linear filters has been shown to be a sufficiently powerful image
processing tool; further applications to a variety of low-level image processing tasks are currently
being investigated.

15



Appendix A

Results from Deriche, and RITE operator on Hieroglyphs image:

Figure 11: Results from edge detection on Hieroglyphs image (prior to post-processing). Re-
sults from Deriche operator with a = 1.75 (top); Results from RITE operator with 5x 5 sampling
(middle), and 3 x 3 sampling (bottom).

16



Figure 12: Magnification of eye from Hieroglyphs image (top); Results from Deriche operator
(a = 1.75) and from RITE operator (5 X 5) bottom left and right, respectively.

17



Figure 13: Results from edge detection on Hieroglyphs image (after to post-processing). Results
from Deriche operator with a = 1.75 (top); Results from RITE operator with 5 x 5 sampling
(middle), and 3 x 3 sampling (bottom).

18



Appendix B

Below are the nine 5 x 5 wedge filters used by the RITE operator (Algorithm 1).

0 1 2 3 4 0 1 2 3 4
0l 0.0 0.1 2.2 5.0 0.0 o 0.0 1.8 0.4 0.0 0.0
1] 0.0 0.0 6.1 41.7 14.8 1] 9.3 20.1 1.1 0.0 0.0
2| 0.0 0.0 0.0 97.5 34.6 2| 30.6 8.3 0.0 0.0 0.0
3] 0.0 0.0 6.1 41.7 14.8 3] 18.1 64.8 19.8 0.5 0.0
4| 0.0 0.1 2.2 5.0 0.0 4| 0.0 10.2 7.0 0.7 0.0
0 1 2 3 4 0 1 2 3 4
o) 0.0 2.6 15.7 15.5 0.0 o .0 0.0 0.0 0.0 0.0
1] 0.2 3.4 44.4 77.9 17.4 1] 1.4 1.5 0.0 0.0 0.0
2| 0.0 0.0 0.0 59.3 21.0 2] 10.9 30.9 0.0 0.4 0.1
3] 0.0 0.0 0.1 6.9 4.4 3] 13.0 73.3 73.9 12.3 0.9
4| 0.0 0.0 0.0 0.4 0.0 4| 0.0 18.3 26.2 6.6 0.0
0 1 2 3 4 0 1 2 3 4
o) 0.0 12.1 33.5 16.9 0.0 o 0.0 0.0 0.0 0.0 0.0
1] 3.1 30.1 94.6 53.7 7.4 1] 0.0 0.0 0.0 0.2 0.3
2| 1.0 2.8 0.0 11.6 4.1 2| 1.0 2.8 0.0 11.6 4.1
3] 0.0 0.0 0.0 0.2 0.3 3] 3.1 30.1 94.6 53.7 7.4
4| 0.0 0.0 0.0 0.0 0.0 4| 0.0 12.1 33.5 16.9 0.0
0 1 2 3 4 0 1 2 3 4
o) 0.0 18.3 26.2 6.6 0.0 o 0.0 0.0 0.0 0.4 0.0
1] 13.0 73.3 73.9 12.3 0.9 1] 0.0 0.0 0.1 6.9 4.4
2] 10.9 30.9 0.0 0.4 0.1 2| 0.0 0.0 0.0 59.3 21.0
3] 1.4 1.5 0.0 0.0 0.0 3| 0.2 3.4 44.4 77.9 17.4
4| 0.0 0.0 0.0 0.0 0.0 4] 0.0 2.6 15.7 15.5 0.0
0 1 2 3 4
0l 0.0 10.2 7.0 0.7 0.0
1] 18.1 64.8 19.8 0.5 0.0
2| 30.6 8.3 0.0 0.0 0.0
3] 9.3 20.1 1.1 0.0 0.0
4| 0.0 1.8 0.4 0.0 0.0
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