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We describe a statistical model for images decomposed
in an overcomplete wavelet pyramid. Each neighborhood
of pyramid coefficients is modeled as the product of a Gaus-
sian vector of known covariance, and an independent hid-
den positive scalar random variable. We propose an effi-
cient Bayesian estimator for the pyramid coefficients of an
image degraded by linear distortion (e.g., blur) and additive
Gaussian noise. We demonstrate the quality of our results
in simulations over a wide range of blur and noise levels.

1. INTRODUCTION

Natural images have distinct features that allow the human
visual system to detect the presence of distortion, and to
extract remaining information from the observation. Im-
age restoration aims to construct an approximation sharing
the relevant features still present in the corrupted image, but
with the artifacts suppressed. In order to distinguish the ar-
tifacts from the signal, a good image model is essential. In
this work we use a Bayesian framework for image restora-
tion, basing on a prior statistical model for natural images.
We assume Gaussian noise of known covariance has been
added after having convolved the image with a known blur-
ring kernel. Such model for the distortion provides a reason-
able approximation to real-world corruption sources, such
as de-focus or photon and electron noise in cameras. In
previous works, we have described a model for wavelet co-
efficients using scale mixtures of Gaussians [1, 2]. Related
models have been developed by several groups [3, 4, 5, 6].
We have applied this model to estimate images in the pres-
ence of independent additive Gaussian noise of known co-
variance, following a suboptimal empirical Bayes strat-
egy [2, 7]. Recently, we developed a direct Bayesian Least
Square denoising procedure [8]. In this paper, we extend
this approach to include the full restoration problem.
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2. IMAGE MODELING

Modeling the statistics of natural images is a difficult task,
because of the high dimensionality of the signal and the
higher-order statistical dependencies that are prevalent. Sim-
plifying assumptions, such as homogeneity and locality are
usually applied. In the past decade it has become standard
to begin by decomposing the image with a set of multi-scale
band-pass oriented filters. This kind of representation is
adapted to the approximate scale invariance of natural im-
ages, and it has been shown to decouple some high-order
statistics. Another technique for simplifying the descrip-
tion of high-order statistics is to use a low-order local model
(e.g., Gaussian) whose parameters (e.g., variance) are gov-
erned by a local hidden random variable. In this work we
have combined these ideas into a Bayesian framework.

2.1. Image representation

As a preprocessing stage for image modeling, we use a fixed
multi-scale multi-orientation linear decomposition. It is now
generally agreed that the use of overcomplete representa-
tions is advantageous for restoration, in order to avoid alias-
ing artifacts that plague critically-sampled representations
such as orthogonal wavelets [9]. A widely followed ap-
proach is to use orthogonal or biorthogonal basis functions,
but without decimating the subbands [e.g., 10]. However,
after the critical sampling constraint has been removed, sig-
nificant improvement comes from using representations with
higher redundancy and orientation selectivity [9, 11, 12].
For the current paper, we have used a particular variant of an
overcomplete tight frame representation known as a “steer-
able pyramid” [9] (see [8] for details). In this paper we have
used 5 scales and 4 orientations for the decomposition, for
a total number of 25 subbands. This number includes 4 × 5
band-pass subbands plus 4 oriented high-pass subbands and
a non-oriented low-pass residual.
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2.2. Gaussian scale mixtures in the wavelet domain

For each coefficient in the pyramid representation, we con-
sider a neighborhood of coefficients, referring to the center
coefficient as the reference coefficient of the neighborhood.
The neighborhood may include coefficients from other sub-
bands (i.e., corresponding to basis functions at nearby scales
and orientations), as well as from the same subband. For
this work we have used a 3 × 3 neighborhood around the
reference coefficient, plus the parent coefficient (same ori-
entation and position, next coarser scale), whenever it ex-
ists. Due to sampling differences at different scales, the
coarser subband must be resampled at double rate in both
dimensions for obtaining the parent of each coefficient of
the subband.

We use a Gaussian scale mixture (GSM) to model the
coefficients within each local neighborhood with reference
coefficients belonging to every given subband. A random
vector x is a Gaussian scale mixture [13] if it can be ex-
pressed as the product of a zero-mean Gaussian vector u

and an independent positive scalar random variable
√

z:

x =
√

zu. (1)

The variable z is the multiplier. Vector x is an infinite mix-
ture of Gaussian vectors, whose density is determined by the
covariance matrix Cuu of u and the mixing density pz(z):

px(x) =

∫

p(x|z) pz(z) dz

=

∫

exp
(

−xT (zCuu)−1x/2
)

(2π)N/2|zCuu|1/2
pz(z) dz, (2)

where N is the dimensionality of x and u (the size of the
neighborhood). Without loss of generality one can assume
E{z} = 1, which implies Cuu = Cxx.

GSM densities are symmetric and zero-mean, and they
have leptokurtotic marginal densities (i.e., heavier tails than
a Gaussian). Another key property of the GSM model is that
the density of x is Gaussian when conditioned on z. Also,
the normalized vector x/

√
z is Gaussian. They also present

interesting joint statistics: the variance of a vector element
conditioned on a neighbor scales roughly linearly with the
square of the neighbor’s value. These marginal and joint
statistics of GSM distributions are qualitatively similar to
those of neighbor coefficients responding to natural images
in multi-scale and multi-orientation representation [14, 1].

2.3. Prior density for multiplier

Our model requires a specification of the density of the mul-
tiplier, z. An alternative to estimate adaptive priors for the
hidden multiplier (as in [e.g., 5, 7]) is to use a noninfor-
mative prior [15], which does not require the fitting of any
parameters to the observation. We have applied Jeffrey’s

prior, which for a Gaussian variable with a scale parameter√
z yields [16]:

pz(z) ∝ 1

z
. (3)

To avoid computational problems at the estimation stage,
we have set the prior to zero in the interval [0, zmin), where
zmin is a small positive number.1 This solution is simple and
efficient to implement. Surprisingly, it also performs better
than maximum likelihood fitted non-parametric priors for
the neighborhoods of each subband.2

3. RESTORATION

We model the observed image as:

y(n,m) = x(n,m) ∗ h(n,m) + w(n,m), (4)

where ”*” denotes convolution, x is the original image, h
is a known linear kernel and w is Gaussian noise of known
power spectral density (PSD) Pw(u, v).

3.1. GSM with blur and noise

We follow the usual procedure for image restoration in the
wavelet domain: (1) decompose the image y into pyramid
subbands; (2) restore each subband, except for the low-pass
residual; and (3) invert the pyramid transform. Translating
(4) into our local GSM model, a vector y corresponding to a
neighborhood of N observed coefficients around a reference
coefficient for each subband of the pyramid representation
can be expressed as:

y = Hx + w =
√

zHu + w, (5)

where u and w are zero-mean Gaussian vectors, and H is an
N ×M matrix expressing the convolution of N coefficients
with a kernel h of size Nh (Nh >> N , typically).3 The
density of the observed neighborhood vector conditioned on
z is zero-mean Gaussian, with covariance Cy|z = zCu′u′ +
Cww:

p(y|z) =
exp

(

−yT (zCu′u′ + Cww)−1y/2
)

√

(2π)N |zCu′u′ + Cww|
, (6)

where Cu′u′ = HCuuH
T is the N × N covariance ma-

trix of u′ = Hu. As the noise PSD Pw(u, v) is assumed
known, Cww is easily estimated by computing, for each
subband, the sample covariance for the pyramid coefficients

1We have chosen zmin = 10−9 in our implementation. Results remain
almost unaffected with zmin ∈ [10−17, 10−5].

2Note that, when estimating parameters under an overcomplete repre-
sentation, the set of least squares optimal solutions for the subbands is not
least square optimal for the whole image.

3The kernel h must be cropped in the frequency domain according to
the spatial resolution of the pyramid subband.



of the inverse Fourier transform of
√

Pw(u, v) (a delta for
the case of white noise). Given Cww and taking the expec-
tation of Cy|z over z, the filtered signal covariance Cu′u′

can be computed from the observation covariance matrix
Cyy: Cyy = E{z}Cu′u′ + Cww. Setting E{z} to 1, re-
sults in Cu′u′ = Cx′x′ = Cyy −Cww. To ensure positive-
definiteness, small negative eigenvalues are set to zero.

3.2. Bayes least squares estimator

For each neighborhood, we estimate xc, the reference coef-
ficient, from y, the set of noisy coefficients. The Bayes least
squares (BLS) estimate is:

E{xc|y} =

∫

xc p(xc|y) dxc

=

∫ ∫ ∞

0

xc p(xc|y, z) p(z|y) dz dxc

=

∫ ∞

0

p(z|y) E{xc|y, z} dz. (7)

Thus, the solution is an average of the least squares esti-
mate of xc when conditioned on z (local Wiener solution),
weighted by the posterior density of the multiplier, p(z|y).
This integral can be computed numerically for each neigh-
borhood of coefficients with a few (10 to 15) uniform sam-
ples in log z. We now describe each of these components.

3.3. Local Wiener estimate

The local linear estimate for the full neighborhood is the
Wiener solution:

E{x|y, z} = zCxx′ (zCx′x′ + Cww)
−1

y, (8)

where Cxx′ = CxxH
T is the M × N cross-covariance

matrix of x and x′ = Hx, the coefficients from the original
image and those from its blurry version. We explain below
a method for estimating this matrix.

We can simplify the dependence of this expression on z
by diagonalizing the matrix zCx′x′ + Cww. Specifically,
let S be the symmetric square root of the positive definite
matrix Cww (i.e., Cww = SST ), and {Q,Λ} the eigen-
vector/eigenvalue expansion of the matrix S−1Cx′x′S−T .
Then:

zCx′x′ + Cww = zCx′x′ + SST

= S
(

zS−1Cx′x′S−T + I
)

ST

= SQ (zΛ + I)QT ST . (9)

This diagonalization does not depend on z, and thus only
needs to be computed once for each subband. We can now
simplify (8):

E{x|y, z} = zCxx′S−T Q(zΛ + I)−1QT S−1y

= zM(zΛ + I)−1v, (10)

where M = Cxx′S−T Q, and v = QT S−1y. Finally, we
restrict the estimate to the reference coefficient:

E{xc|y, z} =

N
∑

n=1

zmcnvn

zλn + 1
, (11)

where mij represents an element (i-th row, j-th column) of
the matrix M, λn are the diagonal elements of Λ, vn the
elements of v, and c is the index of the reference coefficient
within the neighborhood vector.

3.3.1. Estimation of the cross-covariance matrix

We use the relation between the power spectrum of the ob-
served image and that of the original image, Py(u, v) =
Px(u, v)|H(u, v)|2 + Pw(u, v), to first obtain an approxi-
mation of the power spectrum of the filtered image:

Px′(u, v) '
⌊

|Y (u, v)|2 ∗ G(u, v) − Pw(u, v)
⌋

+
, (12)

where G(u, v) is a Gaussian convolving window for remov-
ing sampling fluctuations. Then, we use:

Px(u, v) ' Px′(u, v)/max(|H(u, v)|2, G−1
max), (13)

where Gmax is the maximal allowed gain for the inverse
filter. For the results shown in this paper (white noise case)
we chose Gmax = min(2400/σ2

0 , 180) with σ0 the standard
deviation of w. 4 Now Cxx′ can be estimated as the sample
cross-covariance of the coefficients of the inverse Fourier
transforms of

√

Px(u, v) and
√

Px′(u, v). The resulting es-

timate Ĉxx′ can be significantly improved by modeling its
bias using an N ×N linear transform: E{Ĉxx′} ' Cxx′B.
In order to estimate B, we assume that we would incur the
same proportional bias when estimating Cx′x′ from Px′(u, v):

E{Ĉx′x′} ' Cx′x′B = (Cyy − Cww)B. Solving this for
B−1 yields the following improved estimator:

̂̂
Cxx′ = Ĉxx′

[

(Cyy − Cww)Ĉx′x′

−1
]

(14)

Note that particularizing (14) for the reference c-th row of
Cxx′ (N values) suffices for solving (11).

3.4. Posterior distribution of the multiplier

We use Bayes rule to compute p(z|y) from p(y|z) and p(z),
normalizing numerically the integral of their product. Using
the relationship in (9) and the definition of v, the conditional
density p(y|z) defined in (6) simplifies to:

p(y|z) =
exp(− 1

2

∑N
n=1

v2

n

zλn+1
)

√

(2π)N |Cww| ∏N
n=1

(zλn + 1)
. (15)

4Other more accurate estimates could be used instead.



Observed BLS-GSM Wiener
Fig. 1. Up: High noise (σ = 20) and low blur (σb = 0.2);
PSNR values are (dB): 22.1, 29.9, 28.3; Middle: High
noise (σ = 20) and high blur (σb = 2.0), (21.5, 27.9,
27.0); Bottom: Low noise (σ = 2) and high blur (σb =

2.0), (29.7, 32.5, 31.8);

4. SIMULATIONS

We have applied our restoration algorithm to the Einstein
image. For h we used a unity volume circular low-pass
Gaussian filter with standard deviation σb. We added zero-
mean white Gaussian noise of variance σ2

0 . We compare to
the Wiener linear restoration method, (using (12) and (13)).
Fig. 1 shows the results with 2 levels of noise and blur.
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[5] M K Mihçak, I Kozintsev, K Ramchandran, and P Moulin,
“Low-complexity image denoising based on statistical mod-
eling of wavelet coefficients,” IEEE Trans. Sig. Proc., vol.
6, no. 12, pp. 300–303, December 1999.

[6] C Spence and L Parra, “Hierarchical image probability
(HIP) model,” in Adv. Neural Information Processing Sys-
tems, S. A. Solla, T. K. Leen, and K.-R. Müller, Eds., Cam-
bridge, MA, May 2000, vol. 12, MIT Press.

[7] J Portilla, V Strela, M Wainwright, and E Simoncelli,
“Adaptive Wiener denoising using a Gaussian scale mixture
model in the wavelet domain,” in Proc 8th IEEE Int’l Conf
on Image Proc, Thessaloniki, Greece, 2001, pp. 37–40

[8] J Portilla, V Strela, M Wainwright, and E P Simoncelli,
“Image denoising using scale mixtures of Gaussians in the
wavelet domain,” IEEE Trans. Image Proc., In Press. 2003.

[9] E P Simoncelli, W T Freeman, E H Adelson, and D J Heeger,
“Shiftable multi-scale transforms,” IEEE Trans Information
Theory, vol. 38, no. 2, pp. 587–607, March 1992,

[10] R R Coifman and D L Donoho, “Translation–invariant de–
noising,” in Wavelets and statistics, A Antoniadis and G Op-
penheim, Springer-Verlag lecture notes, San Diego, 1995.

[11] E P Simoncelli, “Bayesian denoising of visual images in the
wavelet domain,” in Bayesian Inference in Wavelet Based
Models, P Müller and B Vidakovic, Eds., chapter 18, pp.
291–308. Springer-Verlag, New York, Spring 1999,

[12] J Starck, E J Candes, and D L Donoho, “The curvelet trans-
form for image denoising,” IEEE Trans. Image Proc., vol.
11, no. 6, pp. 670–684, June 2002.

[13] D Andrews and C Mallows, “Scale mixtures of normal dis-
tributions,” J. Royal Stat. Soc., vol. 36, pp. 99–, 1974.

[14] E P Simoncelli, “Statistical models for images: Compres-
sion, restoration and synthesis,” in 31st Asilomar Conf
on Signals, Systems and Computers, Pacific Grove, CA,
November 1997, pp. 673–678, IEEE Computer Society,

[15] M Figueiredo and R Nowak, “Bayesian wavelet-based im-
age estimation using non-informative priors,” in SPIE Conf.
on Mathematical Modeling, Bayesian Estimation, and In-
verse Problems, Denver CO, Jul 1999.

[16] J O Berger, “Prior information and subjective probabil-
ity,” in Statistical Decission Theory and Bayesian Analysis,
Springer Series in Statistics. Springer-Verlag, 1990.

Administrador
Pencil

Administrador
Pencil

Administrador
Pencil

Administrador
Pencil

Administrador
Pencil


Administrador
Pencil

Administrador
Text Box
[0.1]

Administrador
Text Box
[1.0]

Administrador
Text Box
[Blurring sigmas areactually half of theirreported values]

Administrador
Line

Administrador
Line

Administrador
Line




