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We describe a statistical model for images decomposed in
an overcomplete wavelet pyramid. Each coefficient of the
pyramid is modeled as the product of two independent ran-
dom variables: an element of a Gaussian random field, and
a hidden multiplier with a marginal log-normal prior. The
latter modulates the local variance of the coefficients. We
assume subband coefficients are contaminated with additive
Gaussian noise of known covariance, and compute a MAP
estimate of each multiplier variable based on observation
of a local neighborhood of coefficients. Conditioned on this
multiplier, we then estimate the subband coefficients with a
local Wiener estimator. Unlike previous approaches, we (a)
empirically motivate our choice for the prior on the multi-
plier; (b) use the full covariance of signal and noise in the
estimation; (c) include adjacent scales in the conditioning
neighborhood. To our knowledge, the results are the best in
the literature, both visually and in terms of squared error.

1. INTRODUCTION

The images that we encounter in the real world have distinct
features that make them very different from white noise.
This enables humans to detect distortion in images, and to
extract the remaining visually relevant information. The
goal of image restoration is to release human observers from
this task, by constructing a plausible original given the noisy
observation. A prior probability model for uncorrupted im-
ages is of central importance for this application, as well as
many others (e.g., image compression).

Modeling the statistics of natural images is a challeng-
ing task, because of the high dimensionality of the signal,
and the complexity of statistical structures that are preva-
lent. Simplifying assumptions, such as homogeneity and
locality are essential. In the past decade, it has become
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standard to decompose images with multi-scale band-pass
oriented filters. These representations have been shown to
decouple some high-order statistical features of natural im-
ages.

In this paper, we describe a stochastic model for lo-
cal neighborhoods of coefficients of such a representation,
in which the parameters are governed by a hidden random
field. Specifically, local neighborhood of coefficients are
modeled as the product of a Gaussian random vector and
a hidden multiplier variable. We describe an efficient de-
noising method based on this model, and demonstrate the
strength of the approach through numerical experiments.

2. IMAGE REPRESENTATION

Linear representations based on multi-scale band-pass ori-
ented filters serve as a simple model for early processing in
the human visual system. In addition, they are well-suited
for representing basic properties of natural images, such as
scale-invariance and the existence of locally oriented struc-
tures (i.e., edges). Due to a convergence of these qualitative
properties, as well as an elegant mathematical framework,
wavelets have emerged as the representation of choice for
many image processing applications.

It has been observed, however, that overcomplete rep-
resentations are superior to orthogonal wavelets for image
denoising [e.g., 1, 2, 3, 4, 5]. The usual approach has been
to use the same basis functions as in a critically-sampled
orthogonal wavelet decomposition, but without decimating
below the Nyquist rate [2]. However, once the critical sam-
pling constraint has been eliminated, significant improve-
ment comes from re-designing smoother filters that achieve
rotation-invariance [4, 6]. For the current paper, we use a
tight frame known as the “steerable pyramid” [1]. Like the
undecimated wavelet transform, the subbands are translation-
invariant. But the basis functions are symmetric and smooth,
and (except for the high-pass and low-pass residuals) they
are rotated and scaled versions of each other.



3. STATISTICAL MODEL

3.1. Local GSMs in the wavelet domain

A random vector x is a Gaussian scale mixture (GSM) [7]
if it can be expressed as the product of two independent
random variables: x =

√
zu, where z is a positive scalar

and u is a zero-mean Gaussian vector with covariance ma-
trix Cu. The density of x, denoted px(x), is determined
uniquely by pz(z) and Cu. In its one-dimensional version,
the GSM class includes well-known symmetric heavy-tailed
densities [8]. The key advantage of the GSM model is that
the density of x is Gaussian when conditioned on z.

Marginal distributions of the wavelet coefficients of nat-
ural images are strongly non-Gaussian with heavy tails. In
addition, the wavelet coefficients exhibit striking high-order
joint statistical dependencies [9, 4]. Suppose x is a vector of
wavelet coefficients at neighboring locations, orientations
and scales (a generalized neighborhood). Empirically, it is
found that the amplitudes of the components of x are cor-
related [9, 4]. This is partially a consequence of the fluctua-
tion in local contrast at different locations: large-amplitude
coefficients tend to be near each other. But even after nor-
malization of the local contrast in a natural image, this ef-
fect persists. The reason is the existence of oriented local
structures (edges, lines, etc.), that couple the variance of the
wavelet coefficients at adjacent scales, orientations and lo-
cations. A multi-scale and multi-orientation representation
is thus essential for capturing the statistical dependencies
created by these structures.

We have previously shown that a GSM model can ac-
count for both the marginal and pairwise joint empirical
distributions of wavelet coefficients [8]. Local GSM mod-
els, which characterize a neighborhood of coefficients with
a single multiplier, have been used successfully for denois-
ing [11, 12, 6] (see [10, 13] for global GSM models that
include dependencies amongst multipliers). In this paper,
we extend these results by developing a more realistic prior
model for the hidden multiplier, by including a coefficient
from a coarser scale in the GSM vector x, and by using a
full covariance description of both the Gaussian vector u

and the noise.

3.2. Prior distribution of the multiplier

We use a non-parametric technique to determine the shape
of the marginal prior density of the multiplier

√
z from coef-

ficient histograms of a set of uncorrupted images. Consider
the marginal version of the GSM model. Taking absolute
values and logarithms gives: log |x| = 1

2
log z + log |u|. Be-

cause z and u are independent the density of log |x| may be
written as a convolution:

plog |x|(log |x|) = plog |u|(log |u|) ∗ 2plog z(2 log z).

−5 0 5

0

0.1

0.2

0.3

0.4

Fig. 1. Empirically measured distribution plog z(log z),
compared to a Gaussian (dashed line).

Without loss of generality, we assume u has same variance
as x. Thus, plog z(log z) can be estimated by deconvolving
the empirically estimated density plog |x|(log |x|) (note: due
to the estimation noise in the histogram of log |x|, a regular-
ization technique is required).

In Fig. 1 we show the resulting prototype for plog z(log z),
obtained from an average over the histograms of 306 sub-
bands of 18 test images (histograms are normalized for mean
and variance before averaging). The result is remarkably
symmetric, and close to Gaussian (dashed line). Thus, we
choose a log-normal model for pz(z):

pz(z) =
exp (−(log z − µl)

2/(2σ2
l ))

z(2πσ2
l )1/2

. (1)

Note that the density of
√

z will also be log-normal.

4. DENOISING

We follow a now standard approach for denoising in the
wavelet domain. We begin by decomposing the image into
18 pyramid subbands (4 orientations at each of 4 scales,
plus high-pass and low-pass residuals). For each band (ex-
cept the low-pass) we apply the denoising method explained
below. Although the subbands are processed sequentially,
they are not processed independently, since the condition-
ing neighborhoods include coefficients from coarser scales.
The denoised image is computed by inverting the pyramid
transform.

Suppose an image is corrupted by independent additive
Gaussian noise. A vector y corresponding to a general-
ized neighborhood of observed noisy coefficients can be ex-
pressed as:

y =
√

zu + w,

where u and w are zero-mean Gaussian vectors with covari-
ance matrices Cu and Cw. We wish to estimate x =

√
zu,

assuming a log-normal prior for z. Although optimal esti-
mation is difficult, a good solution arises naturally from the
structure of the GSM model: (1) estimate z, (2) conditioned
on z, estimate x. Because y is Gaussian conditioned on
z, the second step may be computed optimally as a linear
(Wiener) estimate [e.g., 14, 4, 11, 12, 6, 5].
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4.1. Parameter estimation

The parameters of our GSM model consist of the covari-
ances {Cu, Cw}, and the mean and variance of the (log)
multiplier distribution, {µl, σ

2
l }. Since u and w are inde-

pendent, the covariance matrix of y conditioned on z is
Cy|z = zCu + Cw. Taking the expectation over z yields
Cy = Ez{z}Cu + Cw. Without loss of generality we set
Ez{z} = 1, obtaining Cu = Cy−Cw. Cy is estimated from
each noisy subband and Cw is computed from the power
spectral density of the noise (flat, if white) and the pyramid
basis functions.

For the estimate of µl and σ2
l , we use the method of mo-

ments. First we estimate σ2
z from the expression E{y4} =

E{(√zu + w)4}, where E{y4} is estimated from the data:
σ2

z = (E{y4}/3 − σ4
y)/(σ2

y − σ2
w)2. Next we use equa-

tion (1) to express the mean and variance of z as functions
of µl and σ2

l , and equate them to 1 and σ2
z , respectively.

Solving these equations yields: µl = − log(σ2
z + 1)/2 and

σ2
l = log(σ2

z + 1)

4.2. Multiplier estimation

For simplicity, each multiplier is estimated independently,
ignoring the overlap of the neighborhoods. As in [11, 6],
we compute a maximum a posteriori (MAP) estimate of z:

ẑ = arg
z

max{pz|y(z|y)} = arg
z

max{py|z(y|z)pz(z)},

where

py|z(y|z) =
exp (−x

T (zCu + Cw)−1
x/2)

((2π)N |zCu + Cw|)1/2
, (2)

and N is the number of neighbors. Multiplying the right
hand sides of equations (1) and (2), taking logarithms, dif-
ferentiating the result with respect to z and equating to 0,
yields:

log z − µl + σ2
l

zσ2
l

+

N∑

n=1

z − zn

(z + λ−1
n )2

= 0, (3)

where zn = (v2
n−1)/λn, vn are the components of the vec-

tor V = QT S−1
y, S = C

1/2
w (i.e., Cw = SST ), λn are the

diagonal components of Λ, and (Q,Λ) are the eigenvector
and eigenvalue matrices of S−1CuS−T , respectively. Note
that S, Q, and Λ are computed once for each subband. We
apply the bisection method to solve this equation numeri-
cally, for each coefficient in the pyramid.

4.3. Coefficient estimation

Conditioned on z, y is Gaussian and may be estimated using
the Wiener filter (optimal both in maximum likelihood and
least square senses):

x̂ = ẑCu(ẑCu + Cw)−1
y,

which in terms of S,Λ, Q, V becomes

x̂ = SQ(I + ẑ−1Λ−1)−1V.

This expression gives an estimate for the whole neighbor-
hood, but we use it only for the central coefficient. Thus, our
final estimate is x̂ =

∑N
n=1 mc,nvn/(1 + ẑ−1λ−1

n ), where
mi,j represents an element of M = SQ, and c is the index
of the central coefficient.

4.4. Implementation

We have explored many combinations of neighbor positions,
scales and orientations for inclusion in the generalized neigh-
borhood. Results depend on the noise level, but for moder-
ate to high levels of noise, a 5×5 square region around each
coefficient, together with the coefficient at the same loca-
tion and orientation at the next coarser scale (the parent), is
roughly optimal. We denote this generalized neighborhood
5 × 5 + p. Another practical issue is convolution boundary
handling: we have used mirror-symmetric extension.

Our method is moderately demanding in terms of com-
putation. Our Matlab implementation takes 3.7 minutes to
process a 256 × 256 image on a 900 Mhz Pentium III, and
12.8 minutes for a 512 × 512 image. These times are re-
duced by roughly a factor of two with a 3 × 3 + p neigh-
borhood, at the expense of a small decrease in performance
(see Table 1).

5. RESULTS

Figure 2 compares the results of our numerical experiments
with the best available published results [3, 11, 5]. Two
common test images and five noise levels are used. We find
the improvement impressive. Figure 3 shows visual result of
denoising of the Barbara image, compared with the results
reported in [5]. Our method is seen to provide better preser-
vation of edges and other details. Also, the separation of
diagonal orientations in the steerable pyramid allows more
selective removal of the noise in diagonally oriented image
regions (see lines on the left side of the image).

Table 1 shows the decrease in performance that results
when various features of our model are removed. The first
two columns examine reduced neighborhoods. Removal of
the parent (see column Prnt) has roughly the same impact
as removing the outer ring of 16 spatial neighbors (3 × 3).
This is most significant for higher noise levels. The next two
columns examine simplifications of the probability model.
Eliminating the multiplier prior model (i.e., using a Maxi-
mum Likelihood estimate) leads to noticeable degradation
for higher noise levels (Prior). The importance of using the
full covariance of both noise and signal (as opposed to just
the variance) is largely due to the strong correlation of coef-
ficients in the steerable pyramid (Cov). The use of periodic
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Fig. 2. Denoising performance. Output PSNR vs. input
PSNR, in dB, for two images at four noise levels (σw =
{25, 20, 15, 10}). Comparison with three state-of-the-art
methods: diamonds [11]; circles [3]; crosses [5]; squares
indicate our results, with associated PSNR values.

σw / PSNR Prnt 3 × 3 Prior Cov Bdry

10 / 28.13 0.03 0.02 0.01 0.28 0.17
25 / 20.17 0.09 0.09 0.15 0.40 0.22
40 / 16.09 0.11 0.16 0.11 0.47 0.25

Table 1. Reduction in denoising performance (dB) due to
removal of model components (see text). Results averaged
over 5 images: Lena, Barbara, Boats, Yogi, Einstein.

convolution (as opposed to symmetric extension) leads to a
surprisingly large drop in performance (Bdry). Finally, al-
though not shown here, we also find that the impact of both
the prior and the parent is dramatically larger when used
with a smaller (3 × 3+p) neighborhood.
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