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Introduction

The search for efficient, accurate representations of the neural code has

been a central problem in neuroscience for the better part of the past century

[Adrian, 1926, Perkel et al., 1967, Rieke et al., 1997]. The basic question is

simply stated: given some experimentally observable signal x (some sensory

stimulus, or a certain type of movement) what is the probability of a given

response y (say, that a given neuron will emit an action potential)? To put

it more precisely, we want to estimate the conditional probabilities p(y|x),

for as large a set of observable signals x as possible. Stated this way, it is

clear that the neural coding problem is fundamentally statistical: how do

we estimate p(y|x) given finite data?

The relevance of statistical methods for neuroscience has been

demonstrated eloquently elsewhere. To list just a few classical ex-

amples: the elucidation of “hyperacuity” phenomena [Simmons, 1979,

Shapley and Victor, 1986, Wandell, 1995], and the demonstration that

the behavior of various sensory systems is limited by physical noise

[Hecht et al., 1942, Bialek, 1987]; the application of Bayesian methods for
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modeling otherwise apparently contradictory results in perceptual psychol-

ogy [Knill and Richards, 1996, Weiss et al., 2002]; more recently, the appli-

cation of well-defined probabilistic methods for the design of efficient neu-

ral prosthetic devices [Loizou, 1998, Shoham et al., 2003]; all of this work

depended critically on simple but powerful statistical ideas. To take a

somewhat wider view, if we try to solve problems like the ones that brains

solve without using brains per se — computer vision, speech recognition,

and machine learning are a few fields which immediately come to mind —

statistical techniques become dominant.

Nevertheless, there remains a great deal of room for work on the sta-

tistical theory relevant for the neural coding problem. The basic problem

is easily stated: we want to know p(y|x) for all x, and there are too many

possible x. Thus, to make progress, we have to do one of three things.

First, we can relax our requirements: instead of estimating p(y|x), which

is too difficult, perhaps we can get away with estimating a few important

functions of p(y|x), and make inferences based on these functions alone.

Second, along the same lines, we can try to fit some parametric model to

p(y|x); again, this reduces the intractably high-dimensional (what statisti-

cians would call “nonparametric”) original problem into a hopefully more

manageable, low-dimensional problem. Finally, we can take a different tack

and try to adaptively optimize the design of our experiment — that is, to

only probe the system at those points x for which the associated responses

y will specify the form of p(y|x) in as precise a manner as possible.
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We address specific instances of each of these three approaches here.

First, we look at a class of methods for estimating mutual information, one

of the most important functions of p(x, y). Our second problem involves

estimating a simple but powerful “cascade” model for stimulus-dependent

neural activity given some high-dimensional signal x. Finally, we develop

some of the necessary theory underlying a version of the adaptive experi-

mental design idea outlined above.

Part 1: Estimation of entropy and mutual information

We present some new results on the nonparametric estimation of entropy

and mutual information. The setup places no assumptions on the underly-

ing probability measure generating the data; this generality is necessary for

neural data, whose complexity and diversity complicates efforts to model

these probability distributions parametrically with sufficient precision for

accurate information estimation.

First, we use an exact local expansion of the entropy function to prove

almost sure consistency and central limit theorems for several of the most

commonly used discretized information estimators. In plain english, this

kind of “consistency” theorem says that an estimator “works,” in that the

estimator is guaranteed to be close to the right value, given enough data;

the central limit result sharpens the consistency statement by telling us

precisely how much data we need to collect for the estimators to be equal

3



to the true value, up to a given error tolerance. We also prove tight upper

and lower bounds on the bias, or average error, and useful upper bounds

on the variance of these estimators.

Second, we prove a converse to the consistency theorems, demonstrating

that a misapplication of the most common estimation techniques leads to an

arbitrarily poor estimate of the true information, even given unlimited data.

This “inconsistency” theorem leads to an analytical approximation of the

bias, valid in surprisingly small sample regimes and more accurate than the

widely used classical approximation [Miller, 1955, Panzeri et al., 1999] over

a large region of parameter space. The two most practical implications

of these results are negative: 1) information estimates in a certain data

regime are likely contaminated by bias, even if “bias-corrected” estimators

were used, and 2) confidence intervals calculated by standard techniques

drastically underestimate the error of the most common estimation meth-

ods.

Third, we note a very useful connection between the bias of entropy

estimators and a certain polynomial approximation problem. By casting

bias calculation problems in this approximation theory framework, we ob-

tain the best possible generalization of known asymptotic bias results. We

also obtain lower bounds on the convergence rates of any entropy estimator;

these bounds give some sense of exactly how difficult this problem is, i.e.,

how much we can hope to learn about the entropy of any distribution given

N samples. More interestingly, this framework leads to an estimator with

4



some nice properties: the estimator comes equipped with rigorous bounds

on the maximum error over all possible underlying probability distributions,

and this maximum error turns out to be surprisingly small. We demonstrate

the application of this new estimator to both simulated and real data. Mat-

lab code for the computation of this estimator has been placed in the public

domain at http://www.cns.nyu.edu/∼liam.

Finally, we collect a number of novel results on, for example: the

asymptotic normality of Bayes estimators of entropy (another kind of

central limit theorem, but from a completely different point of view)

[Wolpert and Wolf, 1995, Nemenman et al., 2002]; the expected error of a

certain kind of “approximate sufficiency” analysis, variants of which are

currently being developed to search for information-theoretic optimal com-

pressions of the neural code [Victor, 2000b, Gedeon et al., 2003]; permuta-

tion symmetry, the existence of symmetric minimax (best in a worst-case

sense) estimators of entropy, and the insufficiency of symmetric estimators,

all of which provides some justification and background for the main results

described above.

This work is to appear in the journal “Neural Computation,” and was

presented in part at the Society for Neuroscience 2001, Natural Signal

Statistics and Neural Coding 2002, and Computational Neuroscience 2002

meetings.
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Part 2: Statistical properties of linear-nonlinear cas-

cade models

We analyze the convergence properties of several spike-triggered analy-

sis techniques in the setting of a probabilistic linear-nonlinear (LN) cas-

cade neural encoding model [Brenner et al., 2001, Schwartz et al., 2002,

Hunter and Korenberg, 1986]. This model posits that the cell linearly

projects the high-dimensional input signal onto some low-dimensional sub-

space (the “L” step), then fires probabilistically with a rate given by some

nonlinear function of this linear projection (the “N” step; see Fig. 0.1).

Perhaps the most common example of an LN model is the following cari-

cature of a simple cell in primary visual cortex: the cell (linearly) projects

the image onto its receptive field, then spikes with a rate proportional to a

(nonlinearly) thresholded value of this inner product operation.

This model is simple and intuitive from a physiological point of view,

but presents some interesting statistical challenges. Most of the diffi-

culties can be traced to the fact that the model is “semiparametric”

[Begun et al., 1983, van der Vaart, 1998]; one parameter of interest (the lin-

ear projection) is finite-dimensional, while the other (the nonlinearity, which

is assumed to be completely unknown) is infinite-dimensional. We focus

mainly on learning the finite-dimensional parameter, since once the finite-

dimensional parameter is known, the infinite-dimensional problem becomes

a fairly standard conditional density estimation problem, about which much
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~x −→ K −→ f (.) −→ spike

Figure 0.1: Pictorial representation of the LN model. The cell projects the

stimulus ~x onto some relatively low-dimensional subspace K, then applies some

nonlinearity f to determine the probability of spiking on any given trial. Return-

ing to our V1 simple cell, the stimulus ~x is an image, the linear operator K has

rank one and corresponds to an inner product operation between the image ~x and

the (roughly Gabor-shaped) receptive field, and f is a thresholding nonlinearity.

is known [Devroye and Lugosi, 2001].

We start by giving exact consistency and central limit (i.e., rate of con-

vergence, as above) results for the common spike-triggered average (STA)

technique [Chichilnisky, 2001, Theunissen et al., 2001], which can be viewed

as an estimator of this finite-dimensional parameter under certain con-

ditions. Next, we analyze a spike-triggered covariance method, variants

of which have been recently exploited successfully by Bialek, Simoncelli,

and colleagues [Brenner et al., 2001, Schwartz et al., 2002]; similarly strong

consistency and rate-of-convergence results are provided. Unfortunately,

the conditions under which these two estimators converge to the correct

model parameters in general are quite stringent (for example, these con-

ditions are typically not satisfied by natural signal data or other standard

neurophysiological stimulus ensembles).

Therefore, we introduce an estimator for the LN model parameters which
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is designed to converge to the true parameter value under general condi-

tions. This estimator is based on the simple idea that not all distinct

nonlinearities in the LN model are detectable via their effects on the spike-

triggered mean and/or variance; however, there is a class of more general

information-theoretic “divergence” functions [Csiszar, 1967] which are able

to detect any given nonlinearity, and these divergences can be used to es-

timate, in turn, the linear projection term. We show that this estimator

is consistent in great generality, and derive its rate of convergence. We

conclude this mathematical analysis by providing lower bounds on the con-

vergence rate of any possible LN estimator; again, these bounds give some

rigorous insight into the difficulty of the LN estimation problem, and also

provide an absolute yardstick against which we can measure any candidate

estimator [van der Vaart, 1998].

We also develop an efficient, specialized algorithm for the com-

putation of the new estimator; this algorithm makes use of several

novel tricks which might be useful more generally for maximizing data-

dependent functions on spaces of vector spaces (for example, in “inde-

pendent components analysis” [Hyvarinen et al., 2001] or “projection pur-

suit” [Diaconis and Freedman, 1984] applications). We demonstrate the

applicability of the algorithm using data from the primary motor cortex

of awake behaving monkeys (partially recorded as an undergraduate stu-

dent in the lab of Dr. John Donoghue, at Brown University, under the

guidance of Dr. Nicholas Hatsopoulos and in collaboration with Matthew
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Fellows) [Paninski et al., 2003a, Paninski et al., 2002, Shoham et al., 2003];

here, the usual relationship between “stimulus” and “response” is effectively

reversed, but the math remains unchanged, and the analysis is therefore ap-

plicable without modification. We also give several examples of simulated

and real data on which the new estimator outperforms the classical meth-

ods (visual neural data from salamander and monkey retina, courtesy of Dr.

E.J. Chichilnisky, at the Salk Institute, San Diego) [Schwartz et al., 2002].

These results should prove useful in the study of the neural coding of

high-dimensional natural signals, a field which has seen much interest re-

cently [Theunissen et al., 2001, Brenner et al., 2001, Schwartz et al., 2002,

Ringach et al., 2002]. For example, we note that [Sharpee et al., 2003]

have recently (independently) employed a similar estimator for the esti-

mation of receptive fields from naturalistic data presented to simulated

visual and auditory cortical cells. Again, we plan to publicly dissemi-

nate Matlab and C (.mex) code for the computation of our estimator at

http://www.cns.nyu.edu/∼liam.

Finally, we discuss a few possible extensions of the basic methodol-

ogy presented here, to neural models which explicitly include the effects

of the spiking history of the cell and/or of its neighbors in a multiple-

cell network. We consider three such extensions. The first model relaxes

the Poisson structure of the spike trains of the basic LN model by allow-

ing a factored (multiplicative) form of refractoriness. We solve a prob-

lem posed (implicitly) in a few recent papers [Berry and Meister, 1998,
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Aguera y Arcas et al., 2001]: if we know the refractory properties of the

cell, how do we recover the linear prefilter? It is not hard to show that

spike-triggered averaging and covariance fail in this case, and why; the cor-

rect solution turns out to be simple and intuitive.

The second such extension is more specialized but somewhat more

grounded in cellular biophysics. We consider an integrate-and-fire cell

driven by a linearly-filtered version of the input signal [Reich et al., 1998];

the estimation of the parameters of this model is somewhat more difficult

than in the simple LN case. Note, for instance, that while the spike train is

a conditional renewal process, given the input signal, the conditional prob-

ability of a spike no longer has the factored form present either in the basic

LN model or in the LN model with refractoriness introduced in the last para-

graph. Thus, nonlinear optimization schemes must be employed to compute

the maximum likelihood estimator, which is easily proven to be consistent

and statistically efficient for this model. Our main contribution here is that

the likelihood surface does not suffer from any of the local minima that

often plague nonlinear optimizers, making computation of an efficient esti-

mator tractable [Pillow et al., 2003]. See also [Pillow and Simoncelli, 2003],

[Paninski et al., 2003c], and http://www.cns.nyu.edu/∼liam/adapt.html

for further analysis of a few of the interesting differences between integrate-

and-fire and LN models.

The final extension is perhaps the simplest: we append neural data —

either from different cells which might have been recorded simultaneously
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on a multielectrode array, or from the same cell at positive leads or lags

— to our description of the original signal vector space, and then apply

the LN estimation machinery developed here, unchanged, in the new space.

We show that, in primate primary motor cortex (MI), observing these side

neural effects — the state of the MI network, in some sense — significantly

increases the predictability of the firing rate, even given the full kinematic

signal. This kind of extension could provide a straightforward but effective

way to relax the assumption of conditional independence that plays such

a strong role in most applications of Bayesian decoding methods to neu-

ral data [Brown et al., 1998, Zhang et al., 1998, Dayan and Abbott, 2001],

thus providing a more accurate model of the neural code at a population

level.

This work is to appear in the journal “Network: Computation in Neural

Systems,” for a special issue on the neural coding of natural signals, and was

presented in part at the Sloan-Swartz, Computational Neuroscience, Society

for Neuroscience, and Neural Information Processing Systems meetings in

2002.

Part 3: Information-theoretic design of experiments

We discuss an idea for collecting data in a relatively efficient manner. Our

point of view is Bayesian and information-theoretic: on any given trial, we

want to adaptively choose the input in such a way that the mutual informa-
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tion between the (unknown) state of the system and the (stochastic) output

is maximal, given any prior information (including data collected on any

previous trials). We prove a theorem that quantifies the effectiveness of this

strategy and give a few illustrative examples comparing the performance of

this adaptive technique to the more usual nonadaptive experimental de-

sign.

This work is to be presented at the Computational Neuroscience meeting

in 2003.

12



CHAPTER 1

Estimation of entropy and mutual

information

1.1 Introduction

The mathematical theory of information transmission represents a pinna-

cle of statistical research: the ideas are at once beautiful and applicable

to a remarkably wide variety of questions. While psychologists and neuro-

physiologists began to apply these concepts almost immediately after their

introduction, the last decade has seen a dramatic increase in the popular-

ity of information-theoretic analysis of neural data. It is unsurprising that

these methods have found applications in neuroscience: after all, the theory

shows that certain concepts, such as mutual information, are unavoidable

when one asks the kind of questions neurophysiologists are interested in. For

example, the capacity of an information channel is a fundamental quantity
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when one is interested in how much information can be carried by a proba-

bilistic transmission system, such as a synapse. Likewise, we should calcu-

late the mutual information between a spike train and an observable signal

in the world when we are interested in asking how much we (or any ho-

munculus) could learn about the signal from the spike train. In this paper,

we will be interested not in why we should estimate information-theoretic

quantities (see, e.g., [Rieke et al., 1997] and [Cover and Thomas, 1991] for

extended and eloquent discussions of this question), but rather how well we

can estimate these quantities at all, given finite i.i.d. data.

One would think this question would be well-understood; after all, ap-

plied statisticians have been studying this problem since the first appearance

of Shannon’s papers, over fifty years ago. Somewhat surprisingly, though,

many basic questions have remained unanswered. To understand why, con-

sider the problem of estimating the mutual information, I(X; Y ), between

two signals X and Y . This estimation problem lies at the heart of the ma-

jority of applications of information theory to data analysis; to make the

relevance to neuroscience clear, let X be a spike train, or an intracellular

voltage trace, and Y some behaviorally relevant, physically observable sig-

nal, or the activity of a different neuron. In these examples, and in many

other interesting cases, the information estimation problem is effectively

infinite-dimensional — by the definition of mutual information, we require

knowledge of the joint probability distribution P (X,Y ) on the range spaces

of X and Y , and these spaces can be quite large — and it would seem to
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be very difficult to make progress here in general, given the limited amount

of data one can expect to obtain from any physiological preparation.

In this paper, we analyze a discretization procedure for reducing this

very hard infinite-dimensional learning problem to a series of more tractable

finite-dimensional problems. While we are interested particularly in appli-

cations to neuroscience, our results are valid in general, for any information

estimation problem. It turns out to be possible to obtain a fairly clear pic-

ture of exactly how well the most commonly used discretized information

estimators perform, why they fail in certain regimes, and how this perfor-

mance can be improved. Our main practical conclusions are that the most

common estimators can fail badly in common data-analytic situations, and

that this failure is more dramatic than has perhaps been appreciated in the

literature. The most common procedures for estimating confidence inter-

vals, or “error bars,” fail even more dramatically in these “bad” regimes.

We suggest a new approach here, and prove some of its advantages.

The paper is organized as follows: in section 1.2, we define the basic reg-

ularization procedure (or rather, we formalize an intuitive scheme that has

been widely used for decades). We review the known results in section 1.3,

then go on in section 1.4 to clarify and improve existing bias and variance re-

sults, proving consistency and asymptotic normality results for a few of the

most commonly used information estimators. These results serve mainly to

show when these common estimators can be expected to be accurate and

when they should be expected to break down. The next two sections contain
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the central results of this paper: in section 1.5 we show, in a fairly intuitive

way, why these common estimators perform so poorly in certain regimes,

and exactly how bad this failure is. These results lead us, in section 1.6,

to study a polynomial approximation problem associated with the bias of

a certain class of entropy estimators; this class includes the most common

estimators in the literature, and the solution to this approximation problem

provides a new estimator with much better properties. Section 1.7 describes

some numerical results that demonstrate the relevance of our analysis for

physiological data regimes. We conclude with a brief discussion of three

extensions of this work: section 1.8.1 examines a surprising (and possibly

useful) degeneracy of a Bayesian estimator, 1.8.2 gives a consistency result

for a potentially more powerful regularization method than the one exam-

ined in depth here, and 1.8.3 attempts to place our results in the context of

estimation of more general functionals of the probability distribution (that

is, not just entropy and mutual information). We attach two appendices:

in the first, we list a few assorted results which are interesting in their own

right but did not fit easily into the flow of the paper; in the second, we

give proofs of several of the more difficult results, deferred for clarity’s sake

from the main body of the text. Throughout, we assume little previous

knowledge of information theory beyond an understanding of the definition

and basic properties of entropy [Cover and Thomas, 1991]; however, some

knowledge of basic statistics is assumed (see, e.g., [Schervish, 1995] for an

introduction).
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This paper is intended for two audiences: first, applied scientists (es-

pecially neurophysiologists) interested in using information-theoretic tech-

niques for data analysis; and second, theorists interested in the more math-

ematical aspects of the information estimation problem. This split audience

could make for a somewhat split presentation: the correct statement of the

results requires some mathematical precision, while the demonstration of

their utility requires some more verbose explanation. Nevertheless, we feel

that the intersection between the applied and theoretical communities is

large enough to justify a unified presentation of our results and our motiva-

tions; we hope the reader will agree, and forgive the length of the resulting

manuscript.

1.2 The setup: Grenander’s method of sieves

As discussed above, much of the inherent difficulty of our estimation prob-

lem stems from the fact that the mutual information,

I(X,Y ) ≡
∫

X×Y
dP (x, y) log

dP (x, y)

d(P (x)× P (y))

is a nonlinear functional of an unknown joint probability measure, P (X,Y ),

on two arbitrary measurable spaces X and Y . In many interesting cases,

the “parameter space” — the space of probability measures under con-

sideration — can be very large, even infinite-dimensional. For example,

in the neuroscientific data analysis applications that inspired this work

[Strong et al., 1998], X could be a space of time-varying visual stimuli, and
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Y the space of spike trains that might be evoked by a given stimulus; this

Y could be taken to be a (quite large) space of discrete (counting) measures

on the line, while X could be modeled as the (even larger) space of general-

ized functions on ℜ3. Given N i.i.d. samples from P (X,Y ), {xi, yi}1≤i≤N ,

(“stimulus” together with the evoked “response”), how well can we esti-

mate the information this cell provides the brain about the visual scene?

Clearly, it is difficult to answer this question as posed; the relationship be-

tween stimulus and response could be too complex to be revealed by the

available data, even if N is large by neurophysiological standards. In fact,

there are general theorems to this effect (section 1.3). Therefore, some kind

of regularization is needed.

The most successful approach taken to date in our field to circumvent

these problems was introduced by Bialek and colleagues [Bialek et al., 1991,

Strong et al., 1998]. The idea is to admit to the difficulty of the problem,

and instead estimate a system of lower bounds on the mutual information

via the data processing inequality [Cover and Thomas, 1991], which states

that

I(X; Y ) ≥ I(S(X); T (Y )),

for any random variables X and Y and any functions S and T on the range

of X and Y , respectively. The generality of the data processing inequality

implies that we are completely unconstrained in our choice of S and T .

So the strategy, roughly, is to choose a sequence of functions SN and TN
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which preserve as much information as possible given that I(SN ; TN) can be

estimated with some fixed accuracy from N data samples. (Note that SN

and TN are chosen independently of the data.) As the size of the available

data set increases, our lower bound grows monotonically towards the true

information. In slightly different language, SN and TN could be viewed as

models, or parametrizations of the allowed underlying measures P (X,Y );

we are simply allowing our model to become richer (higher-dimensional) as

more data becomes available for fitting. Clearly, then, we are not introduc-

ing anything particularly novel, but merely formalizing what statisticians

have been doing naturally since well before Shannon had written his papers.

This strategy bears a striking resemblance to regularization methods em-

ployed in abstract statistical inference [Grenander, 1981], generally known

as the “method of sieves.” Here one replaces the parameter space of interest

with a closely related space which simplifies the analysis, or provides esti-

mators with more attractive statistical properties. The following example is

canonical and helps to clarify exactly why regularization is necessary. Say

one is sampling from some unknown, smooth probability density function,

and one is interested in estimating the underlying density. It is clear that

there exists no maximum likelihood estimator of the density in the space

of smooth functions (the object which formally maximizes the likelihood, a

sum of Dirac point masses, does not lie in the allowed smoothness class).

The situation is pathological, then: as the sample size increases to infin-

ity, our estimate does not converge to the true density in the sense of any
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smooth topology. To avoid this pathology, we regularize our estimator by

requiring that it take its values in a smooth function space. In effect, we

restrict our attention to a subset, a “sieve,” of the possible parameter space.

As the available data increase, we gradually relax our constraints on the

smoothness of the estimator (decrease the “mesh size” of our sieve), until

in the limit our estimate of the underlying density is almost surely arbi-

trarily close to the true density. We will borrow this “mesh” and “sieve”

terminology for the remainder of the paper.

Here, we have to estimate a joint probability measure, P (X,Y ), on a

large product space, X × Y , in order to compute I(X; Y ). This is very

difficult; therefore, we regularize our problem by instead trying to estimate

P (S, T ) (where P (S, T ) is induced by the maps S and T in the natural way,

i.e., P (S = i, T = j) = P ((x, y) : S(x) = i, T (y) = j)). Thus our “mesh

size” is determined by the degree of compression inherent in going from

(x, y) to (S(x), T (y)). Two variants of this strategy have appeared in the

neuroscientific literature. The first, the so-called “reconstruction” technique

[Bialek et al., 1991], makes use of some extremal property of the prior signal

distribution to facilitate the reliable estimation of a lower bound on the true

information. TN here is a series of convolution operators, mapping spike

trains (elements of Y) back into the signal space X . The lower bound on

the information I(X,TN(Y )) is estimated by spectral techniques: the prior

distribution of X, P (X), is chosen to be Gaussian, and the well-known

maximum-entropy property and spectral information formula for Gaussian
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distributions provide the desired bound. The lower bounds obtained by

this reconstruction approach have proven quite useful [Rieke et al., 1997];

however, the available convergence results (of I(X,TN(Y )) to I(X,Y ) as

N → ∞) rely on strong assumptions on P (X,Y ), and we will not discuss

this technique in depth. (One final note: the reader familiar with the

reconstruction technique will realize that this example does not quite fit

into our general framework, as the convolution operators TN , which are

chosen via regression techniques, are in fact dependent on the data. These

dependencies complicate the analysis significantly, and we will say very little

on this topic beyond a brief note in section 1.8.2.)

The second method, the so-called “direct method,” [Strong et al., 1998,

Buracas et al., 1998] is at first sight less dependent on assumptions on the

prior distribtion on X . Here one discretizes the space of all spike trains on

some interval [0, T ] into some finite number, m, of words w, and makes use

of the information formula for discrete distributions,

I(X; W ) = H(W )−H(W |X),

to obtain a lower bound on the mutual information between the spike train

and the signal of interest. H(.) above denotes the entropy functional,

H(W ) ≡ −
∑

i

P (Wi) log P (Wi),

and H(.|.) denotes conditional entropy; X is say, a visual signal on which we

are conditioning.1 In our previous notation, W (y) = T (y). The generality of

1We should note that, to keep data requirements manageable, H(W |X) —
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the data processing inequality, again, means that the discretization can take

arbitrary form; letting T depend on the data size N , TN could, for example,

encode the total number of spikes emitted by the neuron for small N , then

the occurrence of more detailed patterns of firing [Strong et al., 1998] for

larger N , until, in the limit, all of the information in the spike train is

retained.

Thus, in this “direct” approach, SN and TN are as simple as possible:

these maps discretize X and Y into a finite number of points, mS,N and

mT,N , where mS,N and mT,N grow with N . For each value of N , our prob-

lem reduces to estimating I(SN , TN), where the joint distribution of the ran-

dom variables SN and TN is discrete on mS,NmT,N points, and our param-

eter space, far from being infinite-dimensional, is the tractable mS,NmT,N -

simplex, the set of convex combinations of mS,NmT,N disjoint point masses.

We emphasize again that neither S, T , nor m are allowed to depend on the

data; in effect, we pretend that the discretizing maps and their ranges are

chosen in advance, before we see a single sample.

While this discrete “binning” approach appears quite crude, it will al-

low us to state completely general strong convergence theorems for the

the expected conditional entropy of W given x, averaged over P (X) — is often

replaced with H(W |x), the conditional entropy given only a single x. The fact

that any rigorous justification of this substitution requires a strong assumption

(namely, that H(W |x) is effectively independent of x with high P (x)-probability)

has perhaps been overly glossed over in the literature.
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information estimation problem, without any assumptions on, say, the ex-

istence or smoothness of a density for P (X,Y ). To our knowledge, re-

sults of this generality are unavailable outside the discrete context (but see

[Beirlant et al., 1997] for a good review of differential entropy estimation

techniques, which provide a powerful alternative approach when the un-

derlying probability measures are known a priori to possess a given degree

of smoothness [Victor, 2002]). In addition, of course, data which naturally

take only a finite number of values are not uncommon. Therefore, we will

analyze this discrete approach exclusively for the remainder of this paper.

1.3 Previous work

Most of the following results are stated in terms of the entropy H(X);

corresponding results for I(X,Y ) follow by Shannon’s formula for discrete

information:

I(X,Y ) = H(X) + H(Y )−H(X,Y ).

All of the estimators we will consider are functionals of the “empirical mea-

sures”

pN,i ≡
1

N

N∑

j=1

δi(TN(yj))

(where δi denotes the probability measure concentrated at i). The three

most popular estimators for entropy seem to be:

1. The maximum likelihood (ML) estimator given pN (also called the
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“plug-in” [Antos and Kontoyiannis, 2001] or “naive”

[Strong et al., 1998] estimator),

ĤMLE(pN) ≡ −
m∑

i=1

pN,i log pN,i

(all logs are natural unless stated otherwise);

2. The MLE with the so-called Miller-Madow bias correction

[Miller, 1955],

ĤMM(pN) ≡ ĤMLE(pN) +
m̂− 1

2N
,

where m̂ is some estimate of the number of bins with non-zero P -

probability (here we take m̂ to be the number of bins with nonzero pN -

probability; see [Panzeri and Treves, 1996] for some other examples);

3. The jackknifed [Efron and Stein, 1981] version of the MLE,

ĤJK ≡ NĤMLE −
N − 1

N

N∑

j=1

ĤMLE−j,

where HMLE−j is the MLE based on all but the j-th sample (unpub-

lished notes of J. Victor; see also, e.g., [Strong et al., 1998], in which

a very similar estimator is used).

1.3.1 CLT, asymptotic bias and variance

The majority of known results are stated in the following context: fix some

discrete measure p on m bins and let N tend to infinity. In this case,
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the multinomial central limit theorem implies that the empirical measures

pN are asymptotically normal, concentrated on an ellipse of size ∼ N−1/2

around the true discrete measure p; since ĤMLE is a smooth function of p

on the interior of the m-simplex, ĤMLE is asymptotically normal (or chi-

squared or degenerate, according to the usual conditions [Schervish, 1995])

as well. It follows that both the bias and variance of ĤMLE decrease ap-

proximately as 1
N

[Basharin, 1959] at all but a finite number of points on

the m-simplex. We will discuss this bias and variance rate explicitly for

the above estimators in section 1.4; here it is sufficient to note that the

asymptotic variance rate varies smoothly across the space of underlying

probability measures p(x, y), while the bias rate depends only on the num-

ber of nonzero elements of p (and is therefore constant on the interior of the

m-simplex and discontinuous on the boundary). The asymptotic behavior

of this estimation problem (again, when m is fixed and N → ∞) is thus

easily handled by classical techniques. While it does not seem to have been

noted previously, it follows from the above that ĤMLE is asymptotically

minimax for fixed m as N → ∞ (by “minimax” we mean best in a worst-

case sense; we will discuss this concept in more detail below); see, e.g.,

[Prakasa Rao, 2001] for the standard technique, a clever “local Bayesian”

application of the Cramer-Rao inequality.

There have also been several papers [Miller, 1955, Carlton, 1969,

Treves and Panzeri, 1995, Victor, 2000a] providing a series expansion for

the bias, in the hope of estimating and subtracting out the bias directly.
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While these authors have all arrived at basically the same answer, they

have done so with varying degrees of rigor: for example, [Miller, 1955]

use an expansion of the logarithm which is not everywhere convergent (we

ouline this approach below and show how to avoid these convergence prob-

lems). [Carlton, 1969] rearranged the terms of a convergent expansion of

the logarithm term in H; unfortunately, this expansion is not absolutely

convergent, and therefore this rearrangement is not necessarily justified.

[Treves and Panzeri, 1995] and [Victor, 2000a] both admit that their meth-

ods (a divergent expansion of the logarithm in each case) are not rigorous.

Therefore, it would appear that none of the available results are strong

enough to use in the context of this paper, where m and p can depend

arbitrarily strongly on N . We will remedy this situation below.

1.3.2 Results of Antos and Kontoyiannis, ‘01

[Antos and Kontoyiannis, 2001] recently contributed two relevant results.

The first is somewhat negative:

Theorem ([Antos and Kontoyiannis, 2001]). For any sequence {ĤN}

of entropy estimators, and for any sequence {aN}, aN ց 0, there is a

distribution P on the integers Z with H ≡ H(P ) <∞ and

lim sup
n→∞

E(|ĤN −H|)
aN

=∞.

In other words, there is no universal rate at which the error goes to zero,

no matter what estimator we pick, even when our sample space is discrete
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(albeit infinite); given any such putative rate aN , we can always find some

distribution P for which the true rate of convergence is infinitely slower

than aN . [Antos and Kontoyiannis, 2001] prove identical theorems for the

mutual information, as well as a few other functionals of P .

The second result is an easy consequence of a more general fact about

functions of multiple random variables; since we will use this general

theorem repeatedly below, we reproduce the statement here. See, e.g.,

[McDiarmid, 1989, Devroye et al., 1996] for a proof and extended discus-

sions; the result basically says that if f is a function of N independent

random variables, such that f depends only weakly on the value of any

single variable, then f is tightly concentrated about its mean (i.e., V ar(f)

is small).

Theorem (“McDiarmid’s inequality”; Chernoff, Azuma et al.). If

{xj}j:1,...,N are independent random variables taking values in some arbi-

trary measurable space A, and f : AN 7→ ℜ is some function satisfying the

coordinatewise boundedness condition

sup
{x1,...,xN},x′

j

|f(x1, . . . , xN)−f(x1, . . . , xj−1, x
′
j, xj+1, . . . , xN)| < cj, 1 ≤ j ≤ N,

(1.1)

then, for any ǫ > 0,

P (|f(x1, . . . , xN)− E(f(x1, . . . , xN))| > ǫ) ≤ 2e−2ǫ2/
PN

j=1 c2j . (1.2)

The condition says that, by changing the value of the coordinate xj, we

can not change the value of the function f by more than some constant cj.
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The usefulness of the theorem is a result both of the ubiquity of functions

f satifying condition (1.1) (and the ease with which we can usually check

the condition), and of the exponential nature of the inequality, which can

be quite powerful if
∑N

j=1 c2
j satisfies reasonable growth conditions.

Antos and Kontoyiannis [Antos and Kontoyiannis, 2001] pointed out

that this leads easily to a useful bound on the variance of the MLE for

entropy:

Theorem (Antos and Kontoyiannis, ‘01). a. For all N , the variance

of the MLE for entropy is bounded above:

V ar(ĤMLE) ≤ (
(log N)2

N
). (1.3)

b. Moreover, by McDiarmid’s inequality (1.2),

P (|ĤMLE − E(ĤMLE)| > ǫ) ≤ 2e
−N
2

ǫ2(log N)−2

. (1.4)

Note that, although this inequality is not particularly tight — while it

says that the variance of ĤMLE necessarily dives to zero with increasing

N , the true variance turns out to be even smaller than the bound indicates

— the inequality is completely universal, i.e., independent of m or P . For

example, [Antos and Kontoyiannis, 2001] use it in the context of m (count-

ably) infinite. In addition, it is easy to apply this result to other functionals

of pN ; see section 1.6 for one such important generalization.

28



1.3.3 ĤMLE is negatively biased everywhere

Finally, for completeness, we mention the following well-known fact:

Ep(ĤMLE) ≤ H(p), (1.5)

where Ep(.) denotes the conditional expectation given p. We have equality

in the above expression only when H(p) = 0; in words, the bias of the MLE

for entropy is negative everywhere unless the underlying distribution p is

supported on a single point. This is all a simple consequence of Jensen’s

inequality; a proof was recently given in [Antos and Kontoyiannis, 2001],

and we will supply another easy proof below. Note that (1.5) does not

imply that the MLE for mutual information is biased upwards everywhere,

as has been claimed elsewhere; it is easy to find distributions p such that

Ep(ÎMLE) < I(p). We will discuss the reason for this misunderstanding

below.

It will help to keep the following Figure 1.1 in mind. This figure gives

a compelling illustration of perhaps the most basic fact about ĤMLE: the

variance is small and the bias is large until N >> m. This qualitative

statement is not new; however, the corresponding quantitative statement

— especially the fact that ĤMLE in the statement can be replaced with any

of the three most commonly used estimators — appears to be novel. We

will develop this argument over the next four sections, and will postpone

our discussion of the implications for data analysis until the conclusion.
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1.4 The N >> m range: the local expansion

The unifying theme of this section is a simple local expansion of the entropy

functional around the true value of the discrete measure p, a variant of what

is termed the “delta method” in the statistics literature. This expansion

is similar to one used by previous authors; we will be careful to note the

extensions provided by the current work.

The main idea, outlined, e.g., in [Serfling, 1980], is that any smooth

function of the empirical measures pN (e.g., any of the three estimators for

entropy introduced above) will behave like an affine function with prob-

ability approaching one as N goes to infinity. To be more precise, given

some functional f of the empirical measures, we can expand f around the

underlying distribution p as follows:

f(pN) = f(p) + df(p; pN − p) + rN(f, p, pN),

where df(p; pN −p) denotes the “functional derivative” (Frechet derivative)

of f with respect to p in the direction pN−p, and rN(f, p, pN) the remainder.

If f is sufficiently smooth (in a suitable sense), the differential df(p; pN −p)

will be a linear functional of pN − p for all p, implying

df(p; pN − p) ≡ df(p;
1

N

N∑

j=1

δj − p) =
1

N

∑

j

df(p; δj − p),

i.e., df(p; pN − p) is the average of N i.i.d variables, which implies, un-

der classical conditions on the tail of the distribution of df(p; δj − p),

that N1/2df(p; pN − p) is asymptotically normal. If we can prove that
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N1/2rN(f, p, pN) goes to zero in probability (that is, the behavior of f is

asymptotically the same as the behavior of a linear expansion of f about

p), then a central limit theorem for f follows. This provides us with a more

flexible approach than the method outlined in section 1.3.1 (recall that that

method relied on a CLT for the underlying empirical measures pN , and such

a CLT does not necessarily hold if m and p are not fixed).

Let us apply all this to H:

ĤMLE(pN) = H(pN)

= H(p) + dH(p; pN − p) + rN(H, p, pN)

= H(p) +
m∑

i=1

(pi − pN,i) log pi + rN(H, p, pN). (1.6)

A little algebra shows that

rN(H, p, pN) = −DKL(pN ; p),

where DKL(pN ; p) denotes the Kullback-Leibler divergence between pN , the

empirical measure, and p, the true distribution. The sum in (1.6) has mean

0; by linearity of expectation, then,

Ep(ĤMLE)−H = −Ep(DKL(pN ; p)), (1.7)

and since DKL(pN ; p) ≥ 0, where the inequality is strict with positive prob-

ability whenever p is nondegenerate, we have a simple proof of the nonposi-

tive bias of the MLE. Another (slightly more informative) approach will be

given in section 1.6.
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The second useful consequence of the local expansion follows by the next

two well-known results [Gibbs and Su, 2002]:

0 ≤ DKL(pN ; p) ≤ log(1 + χ2(pN ; p)), (1.8)

where

χ2 ≡
m∑

i=1

(pN,i − pi)
2

p2
i

denotes Pearson’s chi-square functional, and

Ep(χ
2(pN ; p)) =

|supp(p)| − 1

N
∀p, (1.9)

where |supp(p)| denotes the size of the support of p, the number of points

with nonzero p-probability. Expressions 1.7, 1.8, and 1.9, with Jensen’s

inequality, give us rigorous upper and lower bounds on B(ĤMLE), the bias

of the MLE:

Proposition 1.

− log(1 +
m− 1

N
) ≤ B(ĤMLE) ≤ 0,

with equality iff p is degenerate. The lower bound is tight as N/m→ 0, and

the upper bound is tight as N/m→∞.

Here we note that [Miller, 1955] used a similar expansion to obtain the 1
N

bias rate for m fixed, N →∞. The remaining step is to expand DKL(pN ; p):

DKL(pN ; p) =
1

2
(χ2(pN ; p)) + O(N−2), (1.10)
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if p is fixed. As noted in section 1.3.1, this expansion of DKL does not

converge for all possible values of pN ; however, when m and p are fixed, it

is easy to show, using a simple cutoff argument, that this “bad” set of pN

has an asymptotically negligible effect on Ep(DKL). The formula for the

mean of the chi-square statistic (equation (1.9) above) completes Miller’s

and Madow’s original proof; we have [Miller, 1955]

B(ĤMLE) = −m− 1

2N
+ o(N−1), (1.11)

if m is fixed and N →∞. From here it easily follows that ĤMM and ĤJK

both have o(N−1) bias under these conditions (for ĤMM , we need only show

that m̂ → m sufficiently rapidly, and this follows by any of a number of

exponential inequalities [Dembo and Zeitouni, 1993, Devroye et al., 1996];

the statement for ĤJK can be proven by direct computation). To extend

these kinds of results to the case when m and p are not fixed, we have to

generalize (1.11); this desired generalization of Miller’s result does turn out

to be true, as we prove (using a completely different technique) in section

1.6.

It is worth emphasizing that Ep(χ
2(pN ; p)) is not constant in p; it is

constant on the interior of the m-simplex, but varies discontinuously on the

boundary. This was the source of the confusion about the bias of the MLE

for information,

ÎMLE(x, y) ≡ ĤMLE(x) + ĤMLE(y)− ĤMLE(x, y);

when p(x, y) has support on the full mxmy points, the 1
N

bias rate is indeed
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given by mxmy −mx −my − 1, which is positive for mx,my large enough.

However, p(x, y) can be supported on as few as max(mx,my) points, which

means that the 1
N

bias rate of ÎMLE can be negative. It could be argued that

this reduced-support case is non-physiological; however, a simple continuity

argument shows that even when p(x, y) has full support but places most of

its mass on a subset of its support, the bias can be negative even for large

N , even though the asymptotic bias rate in this case is positive.

The simple bounds of Proposition 1 form about half of the proof of the

following two theorems, the main results of this section: they say that if

mS,N and mT,N grow with N , but not too quickly, the “sieve” regularization

works, in the sense that the sieve estimator is almost surely consistent and

asymptotically normal and efficient on a
√

N scale. The power of these

results lie in their complete generality: we place no constraints whatsoever

on either the underlying probability measure, p(x, y), or the sample spaces

X and Y . Note that the theorems are true for all three of the estimators

defined above (i.e., Ĥ above — and in the rest of the paper, unless oth-

erwise noted — can be replaced by ĤMLE, ĤJK , or ĤMM); thus, all three

common estimators have the same 1
N

variance rate: σ2, as defined below.

In the following, σX,Y is the joint σ-algebra of X × Y on which the un-

derlying probability distribution p(X,Y ) is defined, σSN ,TN
is the (finite)

σ-algebra generated by SN and TN , and HN denotes the N -discretized

entropy, H(SN(X)). The σ-algebra condition in Theorem 2 is merely a

technical way of saying that SN and TN asymptotically retain all of the
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data in the sample (x, y) in the appropriate measure-theoretic sense; see

the appendix for details.

Theorem 2 (Consistency). If mS,NmT,N = o(N) and σSN ,TN
generates

σX,Y , then Î → I a.s. as N →∞.

Theorem 3 (Central limit). Let

σ2
N ≡ V ar(− log pTN

) ≡
m∑

i=1

pTN ,i(− log pTN ,i −HN)2.

If mN ≡ m = o(N1/2), and

lim inf
N→∞

N1−ασ2
N > 0

for some α > 0, then ( N
σ2

N
)1/2(Ĥ −HN) is asymptotically standard normal.

The following lemma is the key to the proof of Theorem 2, and is inter-

esting in its own right:

Lemma 4. If m = o(N), then Ĥ → HN a.s.

Note that σ2
N in the statement of the CLT (Theorem 3) is exactly the

variance of the sum in expression (1.6), and corresponds to the asymptotic

variance derived originally in [Basharin, 1959] (by a similar local expan-

sion). We also point out that σ2
N has a specific meaning in the theory of

data compression (where σ2
N goes by the name of “minimal coding vari-

ance”); see [Kontoyiannis, 1997] for more details.

We close this section with some useful results on the variance of Ĥ. We

have, under the stated conditions, that the variance of Ĥ is of order σ2

N
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asymptotically (by the CLT), and strictly less than Clog(N)2

N
for all N , for

some fixed C (by the result of [Antos and Kontoyiannis, 2001]). It turns out

that we can “interpolate,” in a sense, between the (asymptotically loose but

good for all N) p-independent bound and the (asymptotically exact but bad

for small N) p-dependent Gaussian approximation. The trick is to bound

the average fluctuations in Ĥ when randomly replacing one sample, instead

of the worst-case fluctuations, as in McDiarmid’s bound. The key inequality

is due to Steele [Steele, 1986]:

Theorem (Steele’s inequality). If S(x1, x2, . . . , xN) is any function of

N i.i.d. random variables then

var(S) ≤ 1

2
E

N∑

j=1

(S − Si)
2,

where Si = S(x1, x2, . . . , x
′
i, . . . , xN) is given by replacing the xi with an

i.i.d. copy.

For S = Ĥ, it turns out to be possible to compute the right-hand side

explicitly; the details are given in the appendix. It should be clear even

without any computation that the bound so obtained is at least as good as

the Clog(N)2

N
guaranteed by McDiarmid; it is also easy to show, by the linear

expansion technique employed above, that the bound is asymptotically tight

under conditions similar to those of Theorem 3.

Thus σ(p)2 plays the key role in determining the variance of Ĥ. We know

σ2 can be zero for some p, since V ar(− log pi) is zero for any p uniform on
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any k points, k ≤ m. On the other hand, how large can σ2 be? The

following proposition provides the answer; the proof is in the appendix.

Proposition 5.

max
p

σ2 ∼ (log m)2.

This leads us to define the following bias-variance balance function, valid

in the N >> m range:

V/B2 ≈ N(log m)2

m2
;

if V/B2 is large, variance dominates the mean-square error (in the “worst-

case” sense), and bias dominates if V/B2 is small. It is not hard to see that

if m is at all large, bias dominates until N is relatively huge (recall Figure

1.1). (This is just a rule of thumb, of course, not least because the level of

accuracy desired, and the relative importance of bias and variance, depend

on the application. We give more precise — in particular, valid for all values

of N and m — formulae for the bias and variance in the following.)

To summarize, the sieve method is effective and the asymptotic behavior

of Ĥ is well understood for N >> m. In this regime, if V/B2 > 1, classical

(Cramer-Rao) effects dominate, and the three most common estimators

(ĤMLE, ĤMM , and ĤJK) are approximately equivalent, since they share

the same asymptotic variance rate. On the other hand, if V/B2 < 1, bias

plays a more important role and estimators which are specifically designed

to reduce the bias become competitive; previous work has demonstrated

that ĤMM and ĤJK are effective in this regime [Panzeri and Treves, 1996,
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Strong et al., 1998]. We turn in the next section to a regime which is much

more poorly understood, the (not uncommon) case when N ∼ m. We will

see that the local expansion becomes much less useful in this regime, and a

different kind of analysis is required.

1.5 The N ∼ m range: consequences of symmetry

The main result of this section is as follows: if N/m is bounded, the bias of

Ĥ remains large while the variance is always small, even if N → ∞. The

basic idea is that entropy is a symmetric function of pi, 1 ≤ i ≤ m, in that

H is invariant under permutations of the points {1, . . . ,m}. Most common

estimators of H, including ĤMLE, ĤMM , and ĤJK , share this permutation

symmetry (in fact, one can show that there is some statistical justifica-

tion for restricting our attention to this class of symmetric estimators; see

the appendix). Thus, the distribution of ĤMLE(pN), say, is the same as

that of ĤMLE(p′N), where p′N is the rank-sorted empirical measure (for con-

creteness, define “rank-sorted” as “rank-sorted in decreasing order”). This

leads us to study the limiting distribution of these sorted empirical mea-

sures (Fig. 1.2). It turns out that these sorted histograms converge to the

“wrong” distribution under certain circumstances. We have the following

result:

Theorem 6 (Convergence of sorted empirical measures; inconsis-

tency). Let P be absolutely continuous with respect to Lebesgue measure
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on the interval [0, 1], and let p = dP/dm be the corresponding density. Let

SN be the m-equipartition of [0, 1], p′ denote the sorted empirical measure,

and N/m→ c, 0 < c <∞. Then:

a) p′
L1,a.s.→ p′c,∞, with ||p′c,∞ − p||1 > 0. Here p′c,∞ is the monotonically

decreasing step density with gaps between steps j and j + 1 given by
∫ 1

0

dte−cp(t) (cp(t))j

j!
.

b) Assume p is bounded. Then Ĥ −HN → Bc,Ĥ(p) a.s., where Bc,Ĥ(p)

is a deterministic function, nonconstant in p. For Ĥ = ĤMLE,

Bc,Ĥ(p) = h(p′)− h(p) < 0,

where h(.) denotes differential entropy.

In other words, when the sieve is too fine (N ∼ m), the limit sorted

empirical histogram exists (and is surprisingly easy to compute) but is not

equal to the true density, even when the original density is monotonically

decreasing and of step form. As a consequence, Ĥ remains biased even

as N → ∞. This in turn leads to a strictly positive lower bound on the

asymptotic error of Ĥ over a large portion of the parameter space. The

basic phenomenon is illustrated in Figure 1.2.

We can apply this theorem to obtain simple formulae for the asymptotic

bias B(p, c) for special cases of p: for example, for the uniform distribution

U ≡ U([0, 1]),

Bc,ĤMLE
(U) = log(c)− e−c

∞∑

j=1

cj−1

(j − 1)!
log(j);
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Bc,ĤMM
(U) = Bc,ĤMLE

(U) +
1− e−c

2c
;

Bc,ĤJK
(U) = 1 + log(c)− e−c

∞∑

j=1

cj−1

(j − 1)!
(j − c) log(j).

To give some intuition on these formulae, note that Bc,ĤMLE
(U) behaves

like log(N) − log(m) as c → 0, as expected given that ĤMLE is supported

on [0, log(N)] (recall the lower bound of Proposition 1); meanwhile,

Bc,ĤMM
(U) ∼ Bc,ĤMLE

(U) +
1

2

and

Bc,ĤJK
(U) ∼ Bc,ĤMLE

(U) + 1

in this c → 0 limit. In other words, in the extremely undersampled limit,

the Miller correction reduces the bias by only half a nat, while the jackknife

only gives us twice that. It turns out that the proof of the theorem leads to

good upper bounds on the approximation error of these formulae, indicating

that these asymptotic results will be useful even for small N . We examine

the quality of these approximations for finite N and m in section 1.7.

This asymptotically deterministic behavior of the sorted histograms is

perhaps surprising, given that there is no such corresponding deterministic

behavior for the unsorted histograms (although, by the Glivenko-Cantelli

theorem [van der Vaart and Wellner, 1996], there is well-known determin-

istic behavior for the integrals of the histograms). What is going on here?

In crude terms, the sorting procedure “averages over” the variability in the

unsorted histograms. In the case of the theorem, the “variability” at each
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bin turns out to be of a Poisson nature, in the limit as m,N →∞, and this

leads to a well-defined and easy-to-compute limit for the sorted histograms.

To be more precise, note that the value of the sorted histogram at bin k

is greater than t if and only if the number of (unsorted) pN,i with pN,i > t

is at least k (remember that we are sorting in decreasing order). In other

words,

p′N = F−1
N ,

where FN is the empirical “histogram distribution function,”

FN(t) ≡ 1

m

m∑

i=1

1(pN,i < t),

and its inverse is defined in the usual way. We can expect these sums of

indicators to converge to the sums of their expectations, which in this case

are given by

E(FN(t)) =
1

m

∑

i

P (pN,i < t);

finally, it is not hard to show that this last sum can be approximated by

an integral of Poisson probabilites (see appendix for details). Something

similar happens even if m = o(N); in this case, under similar conditions

on p, we would expect each pN,i to be approximately Gaussian, instead of

Poisson.

To compute E(Ĥ) now, we only need note the following important fact:

each Ĥ is a linear functional of the “histogram order statistics”

hj ≡
m∑

i=1

1(ni = j),
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where

ni ≡ NpN,i

is the unnormalized empirical measure. For example,

ĤMLE =
N∑

j=0

aĤMLE ,j,Nhj,

where

aĤMLE ,j,N = − j

N
log

j

N
,

while

aĤJK ,j,N = NaĤMLE ,j,N −
N − 1

N

(
(N − j)aĤMLE ,j,N−1 + jaĤMLE ,j−1,N−1

)
.

Linearity of expectation now makes things very easy for us:

E(Ĥ) =
N∑

j=0

aĤ,j,NE(hj)

=
∑

j

m∑

i=1

aj,NP (ni = j)

=
∑

j

aj,N

∑

i

(
N

j

)
pj

i (1− pi)
N−j. (1.12)

We emphasize that the above formula is exact, for all N , m, and p; again,

the usual Poisson or Gaussian approximations to the last sum lead to useful

asymptotic bias formulae. See the appendix for the rigorous computations.

For our final result of this section, let p and SN be as in the statement

of Theorem 6, with p bounded, and N = O(m1−α), α > 0. Then some

easy computations show that P (∃i : ni > j) → 0 for all j > α−1. In
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other words, with high probability, we have to estimate H given only 1 +

α−1 numbers, namely {hj}0≤j≤α−1 , and it is not hard to see, given (1.12)

and the usual Bayesian lower bounds on minimax error rates (see, e.g.,

[Ritov and Bickel, 1990]), that this is not enough to estimate H(p). We

have, therefore:

Theorem 7. If N ∼ O(m1−α), α > 0, then no consistent estimator for H

exists.

By Shannon’s discrete formula, a similar result holds for mutual infor-

mation.

1.6 Approximation theory and bias

The last equality — expression (1.12) in the previous section — is key to

the rest of our development. Letting B(Ĥ) denote the bias of Ĥ, we have:

B(Ĥ) = (
N∑

j=0

aj,N

m∑

i=1

(
N

j

)
pj

i (1− pi)
N−j)− (

m∑

i=1

−pi log(pi))

= (
∑

i

pi log(pi)) +
∑

i

∑

j

aj,N

(
N

j

)
pj

i (1− pi)
N−j

=
∑

i

(pi log(pi) +
∑

j

aj,N

(
N

j

)
pj

i (1− pi)
N−j).

If we define the usual entropy function

H(x) = −x log x
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and the binomial polynomials

Bj,N(x) ≡
(

N

j

)
xj(1− x)N−j,

we have

−B(Ĥ) =
∑

i

(H(pi)−
∑

j

aj,NBj,N(pi)).

In other words, the bias is the m-fold sum of the difference between the

function H and a polynomial of degree N ; these differences are taken at

the points pi, which all fall on the interval [0, 1]. The bias will be small,

therefore, if the polynomial is close, in some suitable sense, to H. This

type of polynomial approximation problem has been extensively studied

[Devore and Lorentz, 1993], and certain results from this general theory of

approximation will prove quite useful.

Given any continuous function f on the interval, the Bernstein approxi-

mating polynomials of f , BN(f), are defined as a linear combination of the

binomial polynomials defined above:

BN(f)(x) ≡
N∑

j=0

f(j/N)Bj,N(x).

Note that, for the MLE,

aj,N = H(j/N);

that is, the polynomial appearing in (1.12) is, for the MLE, exactly the

Bernstein polynomial for the entropy function H(x). Everything we know

about the bias of the MLE (and more) can be derived from a few sim-
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ple general facts about Bernstein polynomials. For example, we find the

following result in [Devore and Lorentz, 1993]:

Theorem ([Devore and Lorentz, 1993]: 10.4.2). If f is strictly con-

cave on the interval, then

BN(f)(x) < BN+1(f)(x) < f(x), 0 < x < 1.

Clearly, H is strictly concave, and BN(H)(x) and H are continuous, hence

the bias is everywhere nonpositive; moreover, since

BN(H)(0) = H(0) = 0 = H(1) = BN(H)(1),

the bias is strictly negative unless p is degenerate. Of course, we already

knew this, but the above result makes the following, less well-known propo-

sition easy:

Proposition 8. For fixed m and nondegenerate p, the bias of the MLE is

strictly decreasing in magnitude as a function of N .

(Couple the

local expansion, equation (1.6), with [Cover and Thomas, 1991], Chapter

2, Problem 34, for a purely information-theoretic proof.)

The second useful result is given in the same chapter:

Theorem ([Devore and Lorentz, 1993]: 10.3.1). If f is bounded on

the interval, differentiable in some neighborhood of x, and has second deriva-

tive f ′′(x) at x, then

lim
N→∞

N(BN(f)(x)− f(x)) = f ′′(x)
x(1− x)

2
.
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This theorem hints at the desired generalization of Miller’s original result

on the asymptotic behavior of the bias of the MLE:

Theorem 9. If m > 1, N mini pi →∞, then

lim
N

m− 1
B(ĤMLE) = −1

2
.

The proof is an elaboration of the proof of the above theorem 10.3.1

of [Devore and Lorentz, 1993]; we leave it for the appendix. Note that the

convergence stated in the theorem given by [Devore and Lorentz, 1993] is

not uniform for f = H, because H(x) is not differentiable at x = 0; thus,

when the condition of the theorem is not met (i.e., mini pi = O( 1
N

)), more

intricate asymptotic bias formulae are necessary; as before, we can use the

Poisson approximation for the bins with Npi → c, 0 < c < ∞, and an

o(1/N) approximation for those bins with Npi → 0.

1.6.1 BUB estimator

Theorem 9 suggests one simple way to reduce the bias of the MLE: make

the substitution

aj,N = − j

N
log

j

N
→ aj,N −H ′′(

j

N
)

j
N

(1− j
N

)

2N

= − j

N
log

j

N
+

(1− j
N

)

2N
. (1.13)

This leads exactly to a version of the Miller-Madow correction, and gives

another angle on why this correction fails in the N ∼ m regime: as discussed

above, the singularity of H(x) at 0 is the impediment.
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A more systematic approach towards reducing the bias would be to

choose aj,N such that the resulting polynomial is the best approximant of

H(x) within the space of N -degree polynomials. This space corresponds

exactly to the class of estimators that are, like Ĥ, linear in the histogram

order statistics. We write this correspondence explicitly:

{aj,N}0≤j≤N ←→ Ĥa,N ,

where we define Ĥa,N ≡ Ĥa to be the estimator determined by aj,N , accord-

ing to

Ĥa,n =
N∑

j=0

aj,Nhj.

Clearly, only a small subset of estimators have this linearity property;

the hj-linear class comprises an N + 1-dimensional subspace of the mN -

dimensional space of all possible estimators. (Of course, mN overstates the

case quite a bit, as this number ignores various kinds of symmetries we

would want to build into our estimator (see Propositions 19 and 20), but

it is still clear that the linear estimators do not exhaust the class of all

reasonable estimators.) Nevertheless, this class will turn out to be quite

useful.

What sense of “best approximation” is right for us? If we are inter-

ested in worst-case results, uniform approximation would seem to be a good

choice: that is, we want to find the polynomial that minimizes

M(Ĥa) ≡ max
x
|H(x)−

∑

j

aj,NBj,N(x)|.
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(Note the the above: the best approximant in this case turns out to be

unique [Devore and Lorentz, 1993], although we will not need this fact be-

low.) A bound on M(Ĥa) obviously leads to a bound on the maximum bias

over all p:

max
p
|B(Ĥa)| ≤ mM(Ĥa).

However, the above inequality is not particularly tight; we know, by

Markov’s inequality, that p can not have too many components greater

than 1/m, and therefore the behavior of the approximant for x near x = 1

might be less important than the behavior near x = 0. Therefore, it makes

sense to solve a weighted uniform approximation problem: minimize

M∗(f, Ĥa) ≡ sup
x

(f(x)|H(x)−
∑

j

aj,NBj,N(x)|),

where f is some positive function on the interval. The choice f(x) = m,

thus, corresponds to a bound of the form

max
p
|B(Ĥa)| ≤ c∗(f)M∗(f, Ĥa),

with the constant c∗(f) equal to one here. Can we generalize this?

According to the discussion above, we would like f to be larger near

zero than near one, since p can have many small components but at most

1/x components greater than x. One obvious candidate for f , then, is

f(x) = 1/x: it is easy to prove that

max
p
|B(Ĥa)| ≤M∗(1/x, Ĥa),
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i.e., c∗(1/x) = 1 (see appendix). However, this f gives too much weight to

small pi; a better choice is

f(x) =





m x < 1/m,

1/x x ≥ 1/m.

For this f , we have

Proposition 10.

max
p
|B(Ĥa)| ≤ c∗(f)M∗(f, Ĥa)), c∗(f) = 2.

See the appendix for the proof.

It can be shown, using the above bounds combined with a much

deeper result from approximation theory [Devore and Lorentz, 1993,

Ditzian and Totik, 1987], that there exists an aj,N such that the maximum

(over all p) bias is O( m
N2 ). This is clearly better than the O(m

N
) rate offered

by the three most popular Ĥ. We even have a fairly efficient algorithm

to compute this estimator (a specialized descent algorithm developed by

Remes [Watson, 1980]). Unfortunately, the good approximation properties

of this estimator are a result of a delicate balancing of large, oscillating

coefficients aj,N , and the variance of the corresponding estimator turns out

to be very large. (This is predictable, in retrospect: we already know that

no consistent estimator exists if m ∼ N1+α, α > 0.) Thus, to find a good es-

timator, we need to minimize bounds on bias and variance simultaneously;
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we would like to find Ĥa to minimize

max
p

(Bp(Ĥa)
2 + Vp(Ĥa)),

where the notation for bias and variance should be obvious enough. We

have

max
p

(Bp(Ĥa)
2 + Vp(Ĥa)) ≤ max

p
Bp(Ĥa)

2 + max
p

Vp(Ĥa)

≤ (c∗(f)M∗(f, Ĥa))
2 + max

p
Vp(Ĥa),(1.14)

and at least two candidates for easily computable uniform bounds on the

variance. The first comes from McDiarmid:

Proposition 11.

V ar(Ĥa) < N max
0≤j<N

(aj+1 − aj)
2.

This proposition is a trivial generalization of the corresponding result of

[Antos and Kontoyiannis, 2001] for the MLE; the proofs are identical. We

will make the abbreviation

||Da||2∞ ≡ max
0≤j<N

(aj+1 − aj)
2.

The second variance bound comes from Steele; see the appendix for the

proof (again, a generalization of the corresponding result for Ĥ):

Proposition 12.

V ar(Ĥa) < 2c∗(f) sup
x

∣∣∣∣f(x)

( N∑

j=2

j(aj−1 − aj)
2Bj,N(x)

)∣∣∣∣.
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Thus we have our choice of several rigorous upper bounds on the max-

imum expected error, over all possible underlying distributions p, of any

given Ĥa. If we can find a set of {aj,N} that makes any of these bounds

small, we will have found a good estimator, in the worst-case sense; more-

over, we will have uniform conservative confidence intervals with which to

gauge the accuracy of our estimates. (Note that Propositions 10, 11, and

12 can be used to compute strictly conservative errorbars for other hj-linear

estimators; all one has to do is plug in the corresponding {aj,N}.)

Now, how do we find such a good {aj,N}? For simplicity, we will base

our development here on the McDiarmid bound (Proposition 11), but very

similar methods can be used to exploit the Steele bound. Our first step is

to replace the above L∞ norms with L2 norms; recall that

M∗(f,Ha)
2 = ||f(H −

∑

j

aj,NBj,N)||2∞.

So to choose aN,j in a computationally feasible amount of time, we minimize

the following:

c∗(f)2||(f)(H −
∑

j

aj,NBj,N)||22 + N ||Da||22. (1.15)

This is a “regularized least-squares” problem, whose closed-form solution

is well-known; the hope is that the (unique) minimizer of expression (1.15)

is a near-minimizer of expression (1.14), as well. The solution for the best

aj,N , in vector notation, is

a = (X tX +
N

c∗(f)2
DtD)−1X tY, (1.16)
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where D is the difference operator, defined as in Proposition 11, and X tX

and X tY denote the usual matrix and vector of self- and cross-products,

< Bj,Nf,Bk,Nf > and < Bj,Nf,Hf >, respectively.

As is well-known [Press et al., 1992], the computation of the solution

(1.16) requires on the order of N3 time steps. We can improve this to an

effectively O(N)-time algorithm with an empirical observation: for large

enough j, the aN,j computed by the above algorithm look a lot like the

aN,j described in expression (1.13) (data not shown). This is unsurprising,

given Devore and Lorentz’s theorem 10.3.1; the trick we took advantage of

in expression (1.13) should work exactly for those j for which the function

to be approximated is smooth at x = j
N

, and H( j
N

) becomes monotonically

smoother as j increases.

Thus, finally, we arrive at an algorithm: for 0 < k < K << N , set

aN,j = − j
N

log j
N

+
(1− j

N
)

2N
for all j > k, and choose aN,j, j ≤ k to minimize

the least-squares objective function (1.15); this entails a simple modification

of (1.16):

aj≤k =

(
X tXj≤k +

N

c∗(f)2
(DtD + I t

kIk)

)−1(
X tYj≤k +

Nak+1

c∗(f)2
ek

)
,

where Ik is the matrix whose entries are all zero, except for a one at (k, k),

ek is the vector whose entries are all zero, except for a one in the k-th

element, X tXj≤k is the upper-left k × k submatrix of X tX, and

X tYj≤k =< fBj,N , f(H −
N∑

j=k+1

aj,NBj,N) > .
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Last, choose aN,j to minimize the true objective function (1.14) over all K

estimators so obtained. In practice, the minimal effective K varies quite

slowly with N (for example, for N = m < 105, K ≈ 30); thus the algorithm

is approximately (but not rigorously) O(N). (Of course, once a good {aj,N}

is chosen, Ĥa is no harder to compute than Ĥ.) We will refer to the resulting

estimator as ĤBUB, for “best upper bound”; matlab code implementing this

estimator is available at http://www.cns.nyu.edu/∼liam.

Before we discuss ĤBUB further, we note several minor but useful modi-

fications of the above algorithm. First, for small enough N , the regularized

least-squares solution can be used as the starting point for a hill-climbing

procedure, minimizing expression (1.14) directly, for slightly improved re-

sults. Second, f , and the corresponding c∗(f)−2 prefactor on the variance

(DtD) term, can be modified if the experimenter is more interested in re-

ducing bias than variance, or vice versa. Finally, along the same lines,

we can constrain the size of a given coefficient ak,N by adding a Lagrange

multiplier to the regularized least-square solution as follows:

(X tX +
N

c∗(f)2
DtD + λkI

t
kIk)

−1X tY,

where Ik is as defined above. This is useful in the following context: at

points p for which H(p) is small, most of the elements of the typical empiri-

cal measure are zero; hence the bias near these points is≈ (N−1)a0,N+aN,N ,

and λ0 can be set as high as necessary to keep the bias as low as desired near

these low entropy points. Numerical results show that these perturbations
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have little ill effect on the performance of the estimator; for example, the

worst-case error is relatively insensitive to the value of λ0 (see Figure 1.7).

The performance of this new estimator is quite promising. Figure 1.3

indicates that, when m is allowed to grow linearly with N , the upper bound

on the RMS error of this estimator (the square root of expression (1.14))

drops off approximately as

max
p

((E(ĤBUB −H)2)1/2) <∼ N−α, α ≈ 1/3.

(Recall that we have a lower bound on the worst-case error of the three

most common Ĥ:

max
p

((E(Ĥ −H)2)1/2) >∼ BĤ(N/m),

where BĤ(N/m) is a bias term that remains bounded away from zero if N/m

is bounded.) For emphasis, we codify this observation as a conjecture:

Conjecture. ĤBUB is consistent as N →∞ even if N/m ∼ c, 0 < c <∞.

This conjecture is perhaps not as surprising as it appears at first glance;

while, intuitively, the nonparametric estimation of the full distribution p

on m bins should require N >> m samples, it is not a priori clear that

estimating a single parameter, or functional of the distribution, should be

so difficult. Unfortunately, while we have been able to sketch a proof of the

above conjecture, we have not yet obtained any kind of complete asymptotic

theory for this new estimator along the lines of the consistency results of
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section (1.4); we hope to return to this question in more depth in the future

(see section 1.8.3).

From a nonasymptotic point of view, the new estimator is clearly supe-

rior to the three most common Ĥ, even for small N , if N/m is small enough:

the upper bounds on the error of the new estimator are smaller than the

lower bounds on the worst-case error of ĤJK for N/m = 1, for example, by

N ≈ 1000, while the crossover point occurs at N ≈ 50 for m = 4N . (We

obtain these lower bounds by computing the error on a certain subset of

the parameter space on which exact calculations are possible; see section

1.7. For this range of N and m, ĤJK always had a smaller maximum error

than ĤMLE or ĤMM .) For larger values of N/m or smaller values of N ,

the figure is inconclusive, as the upper bounds for the new estimator are

greater than the lower bounds for ĤJK . However, the numerical results in

the next section indicate that in fact ĤBUB performs as well as the three

most common Ĥ even in the N >> m regime.

1.7 Numerical results and applications to data

What is the best way to quantify the performance of this new estimator

(and to compare this performance to that of the three most common Ĥ)?

Ideally, we would like to examine the expected error of a given estimator

simultaneously for all parameter values. Of course, this is only possible

when the parameter space is small enough; here, our parameter space is
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the (m− 1)-dimensional space of discrete distributions on m points, so we

can directly display the error function only if m ≤ 3 (Figure 1.4). For

larger m, we can either compute upper bounds on the worst-case error, as

in the previous section (this worst-case error is often considered the most

important measure of an estimator’s performance if we know nothing about

the a priori likelihood of the underlying parameter values), or we can look at

the error function on what we hope is a representative slice of the parameter

space.

One such slice through parameter space is given by the “central lines”

of the m-simplex: these are the subsets formed by linearly interpolating

between the trivial (minimal entropy) and flat (maximal entropy) distri-

butions (there are m of these lines, by symmetry). Figure 1.4 shows, for

example, that the worst-case error for the MLE is achieved on these lines,

and it seems plausible that these lines might form a rich enough class that

it is as difficult to estimate entropy on this subset of the simplex as it is

on the entire parameter space. While this intuition is not quite correct (it

is easy to find reasonable estimators whose maximum error does not fall

on these lines), calculating the error on these central lines does at least

give us a lower bound on the worst-case error. By recursively exploiting

the permutation symmetry and the one-dimensional nature of the problem,

we constructed a fast algorithm to exactly compute these central line error

functions — explicitly enumerating all possible sorted histograms for a given

(m,N) pair via a special recursion, computing the multinomial probability
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and estimating the Ĥ(p′) associated with each histogram, and obtaining the

desired moments of the error distribution at each point along the central

line. The results are shown in Figures 1.5 and 1.6.

Figure 1.5 illustrates two important points. First, the new estimator

performs quite well; its maximum error on this set of distributions is about

half as large as that of the next best estimator, ĤJK , and about a fifth

the size of the worst-case error for the MLE. In addition, even in the small

region where the error of Ĥ is less than that of ĤBUB — near the point at

which H = Ĥ = 0 — the error of the new estimator remains acceptably

small. Second, these exact computations confirm the validity of the bias

approximation of Theorem 6, even for small values of N . Compare, for

example, the bias predicted by the fixed m, large N theory [Miller, 1955],

which is constant on the interior of this interval. This figure thus clearly

shows that the classical asymptotics break down when the N >> m condi-

tion is not satisfied, and that the N ∼ m asymptotics introduced in section

1.5 can offer a powerful replacement. Of course, neither approximation is

strictly “better” than the other, but one could argue that the N ∼ m situ-

ation is in fact the more relevant for neuroscientific applications, where m

is often allowed to vary with N .

In figure 1.6, we show these central line error curves for a few additional

(N,m) combinations. Recall Figure 1.3: if N is too small and N/m is too

large, the upper bound on the error of ĤBUB is in fact greater than the lower
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bound on the worst-case error for ĤJK ; thus the analysis presented in the

previous section is inconclusive in this (N,m) regime. However, as Figure

1.6 indicates, the new estimator seems to perform well even as N/m becomes

large; the maximum error of ĤBUB on the central lines is strictly less than

that of the three most common estimators for all observed combinations

of N and m, even for N = 10m. Remember that all four estimators are

basically equivalent as ni →∞, where the classical (Cramer-Rao) behavior

takes over and variance dominates the mean-square error of the MLE. In

short, the performance of the new estimator seems to be even better than

the worst-case analysis of section 1.6.1 indicated.

While the central lines are geometrically appealing, they are certainly

not the only family of distributions we might like to consider. We examine

two more such families in Figure 1.7 and find similar behavior. The first

panel shows the bias of the same four estimators along the flat distributions

on m′ bins, 1 ≤ m′ ≤ m, where as usual only m and N are known to the

estimator. Note the emergence of the expected log-linear behavior of the

bias of Ĥ as N/m becomes small (recall the discussion following Theorem 6).

The second panel shows the bias along the family pi ≃ iα, for 0 < α < 20,

where similar behavior is evident. This figure also illustrates the effect of

varying the λ0 parameter: the bias at low entropy points can be reduced to

arbitrarily low levels at the cost of relatively small changes in the bias at the

high-entropy points on the m-simplex. As above, the Steele bounds on the
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variance of each of these estimators was comparable, with ĤBUB making a

modest sacrifice in variance to achieve the smaller bias shown here.

One could object that the set of probability measures examined in Fig-

ures 1.5, 1.6, and 1.7 might not be relevant for neural data; it is possible,

for example, that probability measures corresponding to cellular activity lie

in a completely different part of parameter space. In the next figure, there-

fore, we examined our estimators’ behavior over a range of p generated by

the most commonly used neural model, the integrate-and-fire (IF) cell. The

exact calculations presented in the previous figures are not available in this

context, so we turned to a Monte Carlo approach. We drove an IF cell with

i.i.d. samples of Gaussian white noise, discretized the resulting spike trains

in binary fashion (with discretization parameters comparable to those found

in the literature), and applied the four estimators to the resulting binned

spike trains.

Figure 1.8 shows the bias, variance, and RMS error of our four estimators

over a range of parameter settings, in a spirit similar to that of Figure 1.5;

the critical parameter here was the mean firing rate, which was adjusted

by systematically varying the DC value of the current driving the cell.

(Because we are using simulated data, we can obtain the “true” value of

the entropy simply by increasing N until Ĥ is guaranteed to be as close

as desired to the true H, with probability approaching one.) Note that

as the DC current increases, the temporal properties of the spike trains
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changes as well; at low DC, the cells are essentially noise-driven, and have a

correspondingly randomized spike train (as measured, e.g., by the coefficient

of variation of the inter-spike interval distribution), while at high DC the

cells fire essentially periodically (low ISI coefficient of variation). The results

here are similar to those in the previous two figures: the bias of the new

estimator is drastically smaller than that of the other three estimators over

a large region of parameter space. Again, when H(p) → 0 (this occurs in

the limit of high firing rates — when all bins contain at least one spike

— and low firing rates, where all bins are empty), the common estimators

outperform ĤBUB, but even here, the new estimator has acceptably small

error.

Finally, we applied our estimators to two sets of real data (Figs. 1.9

and 1.10). The in vitro data set (Fig. 1.9) was recorded in the lab of

Alex Reyes: in a rat cortical slice preparation, we obtained double whole-

cell patches from single cells. We injected a white-noise current stimulus

via one electrode while recording the voltage response through the other

electrode. Recording and data processing followed standard procedures;

see [Paninski et al., 2003c] for more detail. The resulting spike trains were

binned according to the parameters given in the figure legend, which were

chosen, roughly, to match values which have appeared in the literature.

Results shown are from multiple experiments on a single cell; the standard

deviation of the current noise was varied from experiment to experiment

to explore different input ranges and firing rates. The in vivo dataset
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(Fig. 1.10) was recorded in the lab of John Donoghue: we recorded si-

multaneously from multiple cells in the arm representation of the primary

motor cortex while a monkey moved its hand according to a stationary,

two-dimensional, filtered Gaussian noise process. We show results for 11

cells, simultaneously recorded during a single experiment (Fig. 1.10); note,

however, that we are estimating the entropy of single-cell spike trains, not

the full multi-cell spike train. See [Paninski et al., 1999, Paninski, 2003b]

for more details on the experimental procedures.

With real data, it is of course impossible to determine the true value of

H, and so the detailed error calculations performed above are not possible

here. Nevertheless, the behavior of these estimators seems to follow the

trends seen in the simulated data: we see the consistent slow increase in our

estimate as we move from ĤMLE to ĤMM to ĤJK , and then a larger jump as

we move to ĤBUB. This is true even though the relevant time scales (roughly

defined as the correlation time of the stimulus) in the two experiments

differed by about three orders of magnitude. Similar results were obtained

for both the real and simulated data using a variety of other discretization

parameters (data not shown). Thus, as far as can be determined, our

conclusions about the behavior of these four estimators, obtained via the

analytical and numerical techniques described above, seem to be consistent

with results obtained using physiological data.

In all, we have that the new estimator performs quite well in a uniform

sense. This good performance is especially striking, but not limited to,
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the case when N/m is O(1). We emphasize that even at the points where

H = Ĥ = 0 (and therefore the three most common estimators perform well,

in a trivial sense), the new estimator performs reasonably; by construction,

ĤBUB never exhibits blowups in the expected error like those seen with

ĤMLE, ĤMM , and ĤJK . Given the fact that we can easily tune the bias

of the new estimator at points where H ≈ 0, by adjusting λ0, ĤBUB ap-

pears to be a robust and useful new estimator. We offer matlab code, at

http://www.cns.nyu.edu/∼liam, to compute the exact bias and Steele vari-

ance bound for any Ĥa, at any distribution p, if the reader is interested in

more detailed investigation of the properties of this class of estimator.

1.8 Directions for future work

We have left a few important open problems. Below, we give three some-

what freely defined directions for future work, along with a few preliminary

results.

1.8.1 Bayes

All of our results here have been from a minimax, or “worst-case,” point

of view. As discussed above, this approach is natural if we know very little

about the underlying probability measure. However, in many cases, we do

know something about this underlying p - we might know that the spike

count is distributed according to something like a Poisson distribution, or
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that the responses of a neuron to a given set of stimuli can be fairly well

approximated by a simple dynamical model, such as an integrate-and-fire

cell. How do we incorporate this kind of information in our estimates?

The fields of parametric and Bayesian statistics address this issue explic-

itly. We have not systematically explored the parametric point of view —

this would entail building a serious parametric model for spike trains and

then efficiently estimating the entropy at each point in the parameter space

— although this approach has been shown to be powerful in a few select

cases. The Bayesian approach would involve choosing a suitable a priori

distribution on spike trains and then computing the corresponding MAP or

conditional mean estimator; this approach is obviously difficult as well, and

we can only give a preliminary result here.

Wolpert and Wolf [Wolpert and Wolf, 1995] give an explicit formula for

the Bayes’ estimate of H and related statistics in the case of a uniform prior

on the simplex. We note an interesting phenomenon relevant to this estima-

tor: as m increases, the distribution on H induced by the flat measure on the

simplex becomes concentrated around a single point, and therefore the cor-

responding Bayes’ problem becomes trivial as m → ∞, quite the opposite

of the situation considered in the current work. ([Nemenman et al., 2002]

independently obtained a few interesting results along these lines.) The

result is interesting in its own right; its proof shares many of the features

(concentration of measure and symmetry techniques) of our main results in

the preceding sections. More precisely:
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We consider a class of priors determined by the following “sort-

difference” procedure: fix some probability measure P on the unit interval.

Choose m − 1 independent samples distributed according to P ; sort the

samples in ascending order, and call the sorted samples {xi}0<i<m. Define

q1 = x1, qm = 1 − xm−1, and qi = xi − xi−1 for all other i. This pro-

cedure therefore generates random probability measures q on m bins; in

different language, the sort-difference procedure induces a prior on the m-

simplex. (If P is the uniform density on the interval, for example, this

prior is uniform on the m-simplex; this is the main case considered in

[Wolpert and Wolf, 1995].) The prior on q induces a prior on H, and this

prior on H, in turn, happens to have a surprisingly small variance, for rea-

sons quite similar to the reasons Ĥ has a surprisingly small variance: the

entropy functional H(p) is a symmetric and fairly smooth functional of p.

So, let the prior on H, P (H), be generated by this sort-difference proce-

dure, and assume for technical simplicity that the interval measure P [0, 1]

has a density component, p. We have the following crude but interesting

result:

Theorem 13. If p is bounded away from zero, then H is normally concen-

trated with rate m1/3; that is, for fixed a,

p(|H − E(H)| > a) = O(e−Cm1/3a2

),

for any constant a > 0 and some constant C.

In fact, it is possible to prove much more: the uniform measure on the
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simplex (and more generally, any prior induced by the sort-difference proce-

dure, under some conditions on the interval measure P ) turns out to induce

an asymptotically normal prior on H, with variance decreasing in m. We

can calculate the asymptotic mean of this distribution by using linearity of

expectation and symmetry techniques like those used in section 1.5. In the

following, assume for simplicity that P is equivalent to Lebesgue measure

(that is, P is absolutely continuous with respect to Lebesgue measure, and

vice versa); this is a technical condition which can be relaxed at the price

of slightly more complicated formulae. We have the following:

Theorem 14. P(H) is asymptotically normal, with

V ar(H) ∼ 1

m

and asymptotic mean calculated as follows.

Let q be the sorted, normalized density corresponding to a measure drawn

according to the prior described above; define

Fp(v) ≡
∫ v

0

du

∫ 1

0

dtp(t)2e−up(t),

and

q′∞ ≡ F−1
p ,

where the inverse is taken in a distributional sense. Then

||q − q′∞||1 → 0

in probability and

E(H)→ h(q′∞) + log(m),
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where h(.) denotes differential entropy.

Fp above is the cumulative distribution function of the p-mixture of

exponentials with rate p(t)−1 (just as p′c,∞ in Theorem 6 was defined as the

inverse c.d.f. of a mixture of Poisson distributions). If P is uniform, for

example, we have that ||q − q′∞||1 → 0 in probability, where

q′∞(t) = − log(t),

and

H(q)→ h(q′∞) + log(m) = log m +

∫ 1

0

dt log(t) log(− log(t))

in probability.

1.8.2 Adaptive partitioning

As emphasized in the introduction, we have restricted our attention here

to partitions, “sieves,” S and T , which do not depend on the data. This

is obviously a strong condition. Can we obtain any results without this

assumption?

As a start, we have the following consistency result, stated in terms of

the measure of the richness of a partition introduced by Vapnik and Cher-

vonenkis, ∆N(AF) (the shatter coefficient of the set of allowed partitions,

defined in the appendix; m is, as in the preceding, the maximal number of

elements per partition, F ; [Devroye et al., 1996]):
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Theorem 15. If log ∆N(AF) = o( N
(log m)2

) and F generates σx,y a.s., Î

is consistent in probability; Î is consistent a.s. under the slightly stronger

condition
∑

∆N(AF)e
−N

(log m)2 <∞.

Note the slower allowed rate of growth of m. In addition, the conditions

of this theorem are typically harder to check than those of Theorem 2. For

example, it is easy to think of reasonable partitioning schemes which do

not generate σx,y a.s.: if the support of P is some measurable proper subset

of X × Y , this is an unreasonable condition. We can avoid this problem

by rephrasing the condition in terms of σx,y restricted to the support of

P (this, in turn, requires placing some kind of topology on X × Y , which

should be natural enough in most problems).

What are the benefits? Intuitively, we should gain in effi-

ciency: we are putting the partitions where they do the most good

[Darbellay and Vajda, 1999]. We also gain in applicability, since in practice

all partition schemes are data-driven to some degree. The most important

application of this result, however, is to the following question in learning

theory: how do we choose the most informative partition? For example,

given a spike train and some behaviorally relevant signal, what is the most

efficient way to encode the information in the spike train about the stimu-

lus? More concretely: all things being equal, does encoding temporal infor-

mation, say, preserve more information about a given visual stimulus than
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encoding spike rate information? Conversely, does encoding the contrast

of a scene, for example, preserve more information about a given neuron’s

activity than encoding color? Given m codewords, how much information

can we capture about what this neuron is telling us about the scene? See,

e.g., [Victor, 2000b] for recent work along these lines.

The formal analog to these kinds of questions is as follows (see

[Tishby et al., 1999] and [Gedeon et al., 2003] for slightly more general for-

mulations). Let F and G be classes of “allowed” functions on the spaces

X and Y . For example, F and G could be classes of partitioning operators

(corresponding to the discrete setup used here), or spaces of linear projec-

tions (corresponding to the information-maximization approach to ICA).

Then, given N i.i.d. data pairs in X × Y , we are trying to choose fN ∈ F

and gN ∈ G in such a way that

I(fN(x); gN(y))

is maximized. This is where results like Theorem 15 are useful; they allow

us to place distribution-free bounds on

P ( sup
f∈F ,g∈G

I(f(x); g(y))− Î(fN(x); gN(y)) > ǫ), (1.17)

i.e., the probability that the set of codewords that looks optimal given

N samples is actually ǫ-close to optimal. Other (distribution-dependent)

approaches to the asymptotics of quantities like (1.17) come from the the

theory of empirical processes; see, e.g., [van der Vaart and Wellner, 1996].
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More work in this direction will be necessary to rigorously answer the bias

and variance problems associated with these “optimal coding” questions.

1.8.3 Smoothness and other functionals

We end with a slightly more abstract question. In the context of the sieve

method analyzed here, are entropy and mutual information any harder to

estimate than any other given functional of the probability distribution?

Clearly, there is nothing special about H (and by extension I) in the case

when m and p are fixed; here, classical methods lead to the usual N−1/2

rates of convergence, with a prefactor that only depends on m and the

differential properties of the functional H at p; the entire basic theory goes

through if H is replaced by some other arbitrary (smooth) functional.

There are several reasons to suspect, however, that not all functionals

are the same when m is allowed to vary with N . First, most obviously,

Ĥ is consistent when m = o(N) but not when m ∼ N ; simple exam-

ples show that this is not true for all functionals of p (for example, many

linear functionals on m can be estimated given fewer than N samples,

and this can be extended to weakly nonlinear functionals as well). Sec-

ond, classical results from approximation theory indicate that smoothness

plays an essential role in approximability; it is well-known, for example,

that the best rate in the bias polynomial approximation problem described

in section 1.6 is essentially determined by a modulus of continuity of the

function under question [Ditzian and Totik, 1987], and moduli of continu-
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ity pop up in apparently very different functional estimation contexts as

well [Donoho and Liu, 1991, Jongbloed, 2000]. Thus, it is reasonable to ex-

pect that the smoothness of H, especially as measured at the singular point

near 0, should have a lot to do with the difficulty of the information estima-

tion problem. Finally, basic results in learning theory [Devroye et al., 1996,

van der Vaart and Wellner, 1996, Cucker and Smale, 2002] emphasize the

strong connections between smoothness and various notions of learnability.

For example, an application of Theorem II.2.3 of [Cucker and Smale, 2002]

gives the exact rate of decay of our L2 objective function (1.15) in terms of

the spectral properties of the discrete differential operator D, expressed in

the Bernstein polynomial basis; however, it is unclear at present whether

this result can be extended to our final goal of a useful asymptotic theory

for the upper L∞ bound (1.14).

A few of the questions we would like to answer more precisely are as

follows. First, we would like to have the precise minimax rate of the infor-

mation estimation problem; thus far, we have only been able to bound this

rate between m ∼ o(N) (Theorem 2) and m ∼ N1+α, α > 0 (Theorem 7).

Second: how close does ĤBUB come to this minimax rate; indeed, does this

estimator require fewer than m samples to learn the entropy on m bins, as

Figure 1.3 seems to indicate? Finally, how can all of this be generalized for

other statistical functionals? Is there something like a single modulus of

continuity that controls the difficulty of some large class of these functional

estimation problems?
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1.9 Conclusions

Several practical conclusions follow from the results presented here; we have

good news and bad news. First, the bad news.

• Past work in which N/m was of order 1 or smaller was most likely

contaminated by bias, even if the jackknife or Miller correction was

used. This is particularly relevant for studies in which multiple bin-

ning schemes were compared to investigate, e.g., the role of temporal

information in the neural code. We emphasize for future studies that

m and N must be provided for the reader to have confidence in the

results of entropy estimation.

• Error bars based on sample variance (or resampling techniques) give

very bad confidence intervals if m and N are large; that is, confidence

intervals based on the usual techniques do not contain the true value

of H or I with high probability. Previous work in the literature often

displays error bars that are probably misleadingly small. Confidence

intervals should be of size

∼ B(Ĥ,N/m) + N−1/2 log(min(m,N)),

where the bias term B can be calculated via techniques described in

section 1.5.

Now the good news:
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• This work has given us a much better understanding of exactly how

difficult the information estimation problem is, and what we can hope

to accomplish using nonparametric techniques, given physiologically

plausible sample sizes.

• We have obtained rigorous (and surprisingly general) results on bias,

variance, and convergence of the most commonly employed estima-

tors, including the best-possible generalization of Miller’s well-known

1
N

bias rate result. Our analysis clarifies the relative importance of

minimizing bias or variability depending on N and m, according to

the bias-variance balance function introduced at the end of section

1.4.

• We have introduced a promising new estimator, one which comes

equipped with built-in, rigorous confidence intervals. The techniques

used to derive this estimator also lead to rigorous confidence intervals

for a large class of other estimators (including the three most common

Ĥ).

Appendix A: Additional results

A.1 Support

One would like to build an estimator which takes values strictly in some

nice set around the true H, say an interval containing H whose length

72



shrinks as the number of samples, N , increases. This would give us strong

“error bars” on our estimate of H - we would be absolutely certain that

our estimate is close to the true H. The MLE for entropy has support on

[0, log(min(N,m))]. A simple variational argument shows that any estima-

tor, T , for H on m bins is inadmissible if T takes values outside of [0, log m].

Similarly, any estimator, T , for I on mS×mT bins is inadmissible if T takes

values outside of [0, log(min(mS,mT ))]. It turns out that this is the best

possible, in a sense: there do not exist any nontrivial estimators for entropy

which are strictly greater or less than the unknown H. In fact, the following

is true:

Proposition 16. There is no estimator T and corresponding a, b, 0 < a <=

1, 1 <= b <∞, such that the support of T is the interval [aH, bH], for all

values of the entropy, H.

Proof. Suppose such an a > 0 exists. If so, T (ω) must be nonzero for all

possible values of the data, ω (the data can be represented as an N -sequence

of integers, 1 ≤ ω(i) ≤ m). But then there must exist some ω0, with

p(ω0) > 0, such that T (ω0) > 0. By choosing H such that 0 < H < T (ω0),

we force a contradiction. The proof for b is similar.

A similar result obviously holds for mutual information.
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A.2 Bias

It turns out that no unbiased estimators for H or I exist in the discrete

setting. This fact seems to be known among information theorists, but we

have not seen it stated in the literature. The proof is quite short, so we

provide it here.

Proposition 17. No unbiased estimator for entropy or mutual information

exists.

Proof. For any estimator T of the entropy of a multinomial distribution, we

can write down the mean of T :

E(T ) =
∑

ω∈{1,...,m}N

P (ω)T (ω),

where {1, ...,m}N is the sample space (i.e, each ω, as above, corresponds to

an m-ary sequence of length N). Since ωj is drawn i.i.d. from the discrete

distribution p, P (ω) is given by

P (ω) =
N∏

j=1

pωj
,

and so the mean of T is a polynomial function of the multinomial proba-

bilities pi. The entropy, on the other hand, is obviously a nonpolynomial

function of the pi. Hence no unbiased estimator exists. The proof for I is

identical.

The next (easy) proposition provides some more detail. The proof is

similar to that of Proposition 16 and is therefore omitted.
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Proposition 18. a. If T is a nonnegatively biased estimator for the entropy

of a multinomial distribution on m bins, with T (ω) ∈ [0, log(m)] ∀ ω ∈

{1, ...,m}N , then

T (ω) = log(m) ∀ ω ∈ {1, ...,m}N .

b. If T is a nonpositively biased estimator for the mutual infor-

mation of a multinomial distribution on mS,mT bins, with T (ω) ∈

[0, log(min(mS,mT ))], then

T (ω) = 0 ∀ ω ∈ Ω.

c. If T is a nonnegatively biased estimator for the mutual infor-

mation of a multinomial distribution on mS,mT bins, with T (ω) ∈

[0, log(min(mS,mT ))], then

T (ω) = log(min(mS,mT )) ∀ ω ∈ Ω.

A.3 Minimax properties of σ-symmetric estimators

Let the error metric D(T, θ) be nice — convex in T , jointly continuous in T

and θ, positive away from T = θ, and bounded below. (The metrics given

by

D(T, θ) ≡ (T − θ)p, 1 ≤ p <∞

are good examples.) The following result partially justifies our focus

throughout this paper on estimators which are permutation-symmetric (de-

noted σ-symmetric in the following).
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Proposition 19. If the error metric D is nice, then a σ-symmetric mini-

max estimator exists.

Proof. Existence of a minimax estimator (see also [Schervish, 1995]): when-

ever maxθ Eθ(D) is a continuous function of the estimator T , a minimax

estimator exists, since T can be taken to vary over a compact space (namely,

[0, log m]m
N
). But max θ(Eθ(D)) is continuous in T whenever E(D) is

jointly continuous in T and θ. This is because E(D) is uniformly con-

tinuous in θ and T , since, again, θ and T vary over compact spaces. E(D)

is jointly continuous in θ and T by the continuity of D and the fact that

E(D) is defined by a finite sum.

Existence of symmetric minimax estimator: this is actually a special

case of the Hunt-Stein theorem [Schervish, 1995]. Any asymmetric minimax

estimator, T , in the current setup achieves its maximum, maxθ(Eθ(D)), by

the arguments above. However, the corresponding symmetrized estimator,

Tσ(ω) = (1/|σ|) ∑
σ T (σ(ω)) has expected error which is less than or equal

to maxθ(Eθ(D)), as can be seen after a rearrangement and an application of

Jensen’s inequality. Therefore, Tσ is minimax (and obviously symmetric).

A.4 Insufficiency of symmetric estimators

The next result is perhaps surprising.

Proposition 20. The MLE is not sufficient. In fact, the empirical his-
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tograms are minimal sufficient; thus, no σ-symmetric estimator is sufficient.

Proof. A simple example suffices to prove the first statement. Choose as a

prior on p:

P (p(1) = ǫ; p(2) = 1− ǫ) = .5

P (p(1) = 0; p(2) = 1) = .5,

for some ǫ > 0. For this P , H(p) → Ĥ → {ni} does not form a Markov

chain; the symmetry of Ĥ discards information about the true underlying

H (namely, observation of a 1 tells us something very different than obser-

vation of a 2). This property is clearly shared by any symmetric estimator.

The fact that the empirical histograms are minimal sufficient follows,

e.g., from Bahadur’s Theorem [Schervish, 1995] and the fact that the em-

pirical histograms are complete sufficient statistics.

In other words, any σ-symmetric estimator necessarily discards infor-

mation about H, even though H itself is σ-symmetric. This indicate the

importance of priors; the nonparametric minimax approach taken here (fo-

cusing strictly on symmetric estimators for a large part of the work, as

justified by Proposition 19 above) should only be considered a first step.

To be more concrete, in many applications it is natural to guess that the

underlying measure p has some continuity properties; therefore, estimators

which take advantage of some underlying notion of continuity (for example,
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by locally smoothing the observed distributions before estimating their en-

tropy) should be expected to perform better (on average, according to this

mostly-continuous prior) than the best σ-symmetric estimator, which nec-

essarily discards all topological structure in the underlying space X . See,

e.g., [Victor, 2002] for recent work along these lines.

Appendix B: Proofs

We collect some deferred proofs here; to conserve space, we will omit some of

the more easy-to-verify details. The theorems are restated for convenience.

B.1 Consistency

Statement (Theorem 2). If mS,NmT,N = o(N) and σSN ,TN
generates

σX,Y , then Î → I a.s. as N →∞.

Theorem 2 is a consequence of the following lemma:

Statement (Lemma 4). If m = o(N), then Ĥ → HN a.s.

Proof. First, by the exponential bound of Antos and Kontoyiannis (ex-

pression (1.4)) and the Borel-Cantelli lemma, ĤN → HN a.s. if the (non-

random) function E(ĤN) ↑ HN . This convergence in expectation is a con-

sequence of the local expansion for the bias of the MLE (expression (1.7))

and proposition 1 of section 1.4.
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Proof of Theorem 2. First, some terminology: by Î → I a.s., we mean that,

if I =∞, p((ÎN < c) i.o.) = 0 ∀c <∞, and if I <∞, p((|ÎN−I| > ǫ) i.o.) =

0 ∀ǫ > 0. (“I.o.” stands for “infinitely often.”) In addition, we call the given

σ-algebra on X × Y (the family of sets on which the probability measure

P (X,Y ) is defined) σX,Y , and the sub-σ-algebra generated by S and T σS,T .

Now, the proof: it follows from Shannon’s formula for mutual informa-

tion in the discrete case that

|Î(SN , TN)−I(SN , TN)| ≤ |Ĥ(S)−H(S)|+|Ĥ(T )−H(T )|+|Ĥ(S, T )−H(S, T )|.

Thus, the lemma gives

ÎN → I(SN , TN) a.s.

whenever mSmT /N → 0.

It only remains to show that the (non-random) function I(SN , TN)→ I;

this follows from results in standard references such as [Billingsley, 1965,

Kolmogorov, 1993], if either:

σS1,T1 ⊆ σS2,T2 ⊆ ... ⊆ σSN ,TN
⊆ ...

and

σX,Y = ∪NσSN ,TN
,

or

sup
A∈σSN ,TN

,B∈σX,Y

ρ(A,B)→ 0,
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where

ρ(A,B) ≡ P (ABc ∪ AcB).

If either of these conditions holds, we say that σSN ,TN
generates σX,Y .

B.2 CLT

Statement (Theorem 3). Let

σ2
N ≡ V ar(− log pTN

) ≡
m∑

i=1

pTN ,i(− log pTN ,i −HN)2.

If mN ≡ m = o(N1/2), and

lim inf
N→∞

N1−ασ2
N > 0

for some α > 0, then ( N
σ2

N
)1/2(Ĥ −HN) is asymptotically standard normal.

Proof. The basic tool, again, is the local expansion of HMLE, expression

(1.6). We must first show that the remainder term becomes negligible in

probability on a
√

N scale, that is,

√
NDKL(pN ; p) = op(1).

This follows from the formula for Ep(DKL(pN ; p)), then Markov’s inequality

and the nonnegativity of DKL.

So it only remains to show that dH(p; pN − p) is asymptotically normal.

Here we apply a classical theorem on the asymptotic normality of double

arrays of infinitesimal random variables:
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Lemma. Let {xj,N}, 1 ≤ N ≤ ∞, 1 ≤ j ≤ N be a double array of rowwise

i.i.d. random variables with zero mean and variance σ2
N , with distribution

p(x,N) and satisfying σ2
N = 1/N for all N . Then

∑N
j=1 xj,N is asymp-

totically normal, with zero mean and unit variance, iff {xj,N} satisfy the

Lindeberg (vanishing tail) condition: for all ǫ > 0,

N∑

j=1

∫

|x|>ǫ

x2dp(x,N) = o(1). (1.18)

The conditions of the theorem imply the Lindeberg condition, with

{xj,n} replaced by 1√
Nσ2

(dH(p; δj − p) − H). To see this, note that the

left hand side of equation (1.18) becomes, after the proper substitutions,

1

σ2

∑

pj :(Nσ2)−
1
2 |(log pj)−H|>ǫ

pj log2 pj,

or

1

σ2
(

∑

pj :pj>eǫ(Nσ2)
1
2 +H

pj log2 pj +
∑

pj :pj<eH−ǫ(Nσ2)
1
2

pj log2 pj).

The number of terms in the sum on the left is less than or equal to

e−ǫ(Nσ2)
1
2 −H ;

since the summands are bounded uniformly, this sum is o(1). On the other

hand, the sum on the right has at most m terms, so under the conditions of

the theorem, this term must go to zero as well, and the proof is complete.

We have proven the above a.s. and
√

N consistency theorems for ĤMLE

only; the extensions to ĤMM and ĤJK are easy and are therefore omitted.
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B.3 Variance bounds a lá Steele

For the σ-symmetric statistic Ha({xj})) =
∑

j aj,Nhj,N , Steele’s inequality

reads:

V ar(Ha) ≤
N

2
E((Ha({xj})−Ha(x1, . . . , xN−1, x

′
N))2),

where x′
N is a sample drawn independently from the same distribution as

xj. The linear form of Ha allows us to exactly compute the right hand side

of the above inequality. We condition on a given histogram, {ni}i=1,...,m:

E

(
(Ha({xj}) − Ha(x1, . . . , xN−1, x

′
N))2

)

=
∑

{ni}
p({ni})E

(
(Ha({xj})−Ha(x1, . . . , xN−1, x

′
N))2|{ni}

)
.

Now we rewrite the inner expectation on the right-hand side:

E((Ha({xj})−Ha(x1, . . . , xN−1, x
′
N))2|{ni}) = E((D− + D+)2|{ni}),

where

D− ≡ anxN
−1,N − anxN

,N

is the change in
∑

j aj,Nhj,N that occurs when a random sample is removed

from the histogram {ni}, according to the probability distribution {ni}/N ,

and D+ is the change in
∑

j aj,Nhj,N that occurs when a sample is randomly

(and conditionally independently, given {ni}) added back to the xN -less

histogram {ni}, according to the true underlying measure pi.

The necessary expectations are as follows. For 1 ≤ j ≤ N , define

Dj ≡ aj−1 − aj.
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Then

E(D2
−|{ni}) =

∑

i

ni

N
D2

ni
,

E(D2
+|{ni}) =

∑

i

pi(
ni

N
D2

ni
+ (1− ni

N
)D2

ni+1),

and

E(D+D−|{ni}) = E(D+|{ni})E(D−|{ni})

= −(
∑

i

ni

N
Dni

)(
∑

i

pi(
ni

N
Dni

+ (1− ni

N
)Dni+1)).

Taking expectations with respect to the multinomial measure p({ni}), we

have

E(D2
−) =

∑

i,j

j

N
D2

jBj(pi), (1.19)

E(D2
+) =

∑

i,j

(
j

N
D2

j + (1− j

N
)D2

j+1)piBj(pi),

and

E(D+D−) = −
∑

i,i′,j,k

j

N
Dj(

k

N
Dk + (1− k

N
)Dk+1)pi′Bj,k(pi, pi′),

where Bj and Bj,k denote the binomial and trinomial polynomials, respec-

tively:

Bj(t) ≡
(

N

j

)
tj(1− t)N−j;

Bj,k(s, t) ≡
(

N

j, k

)
sjtk(1− s− t)N−j−k.

The obtained bound,

V ar(Ha) ≤
N

2

(
E(D2

−) + 2E(D−D+) + E(D2
+)

)
,
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may be computed in O(N2) time. For a more easily computable (O(N))

bound, note that E(D2
−) = E(D2

+) and apply Cauchy-Schwartz to obtain

V ar(Ha) ≤ 2NE(D2
−).

Under the conditions of Theorem 3, this simpler bound is asymptotically

tight to within a factor of two. Proposition 12 is proven with devices iden-

tical to those used in obtaining the bias bounds of Proposition 10 (note the

similarity of equations 1.12 and 1.19).

B.4 Convergence of sorted empirical measures

Statement (Theorem 6). Let P be absolutely continuous with respect to

Lebesgue measure on the interval [0, 1], and let p = dP/dm be the cor-

responding density. Let SN be the m-equipartition of [0, 1], p′ denote the

sorted empirical measure, and N/m→ c, 0 < c <∞. Then:

a) p′
L1,a.s.→ p′c,∞, with ||p′c,∞ − p||1 > 0. Here p′c,∞ is the monotonically

decreasing step density with gaps between steps j and j + 1 given by

∫ 1

0

dte−cp(t) (cp(t))j

j!
.

b) Assume p is bounded. Then Ĥ −HN → Bc,Ĥ(p) a.s., where Bc,Ĥ(p)

is a deterministic function, nonconstant in p. For Ĥ = ĤMLE,

Bc,Ĥ(p) = h(p′)− h(p) < 0,

where h(.) denotes differential entropy.
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Proof. We’ll give only an outline. By
L1,a.s.→ , we mean that ||p−pN ||1 → 0 a.s.

By McDiarmid’s inequality, for any distribution q,

||q − pN ||1 → E(||q − pN ||1) a.s.,

Therefore, convergence to some p′ in probability in L1 implies almost sure

convergence in L1. In addition, McDiarmid’s inequality hints at the limiting

form of the ordered histograms: we have

sort(
ni

N
)→ E(sort(

ni

N
)), a.s., ∀1 ≤ i ≤ m.

Of course, this isn’t quite satisfactory, since both sort(ni

N
) and E(sort(ni

N
))

go to zero for most i.

Thus we only need to prove convergence of sort(ni

N
) to p′ in L1 in proba-

bility. This follows by an examination of the histogram order statistics hn,j.

Recall that these hn,j completely determine pn. In addition, the hn,j satisfy

a law of large numbers:

1

m
hn,j →

1

m
E(hn,j) ∀j ≤ k,

for any finite k. (This can be proven, e.g., using McDiarmid’s inequality.)

Let us rewrite the above term more explicitly:

1

m
E(hn,j) =

1

m

m∑

i=1

E(1(ni = j)) =
1

m

m∑

i=1

(
N

j

)
pj

i (1− pi)
N−j.

Now we can rewrite this sum as an integral:

1

m

m∑

i=1

(
N

j

)
pj

i (1− pi)
N−j =

∫ 1

0

dt

(
N

j

)
pn(t)j(1− pn(t))N−j, (1.20)
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where

pn(t) ≡ mpmax(i|i<t)

is the discretized version of p. As the discretization becomes finer, the

discretized version of p becomes close to p:

pn → p [µ],

where [µ] denotes convergence in Lebesgue measure on the interval [0, 1]

(this can be seen using approximation in measure by continuous functions

of the almost surely finite function p). Since N/m → c and the integrand

in equation (1.20) is bounded uniformly in N , we have by the dominated

convergence theorem that

∫ 1

0

dt

(
N

j

)
pn(t)j(1− pn(t))N−j →

∫ 1

0

dt
cj

j!
p(t)je−cp(t). (1.21)

From the convergence of hn,j it easily follows that pn → p′ in L1 in

probability, where p′ is determined by E(hn,j) in the obvious way (since

pn → p′ except perhaps on a set of arbitrarily small p′-measure). Since

lim
hN,0

m
>

∫ 1

0
dtI(p = 0), ||p− p′||1 is obviously bounded away from zero.

Regarding the final claim of the theorem, the convergence of the Ĥ to

E(Ĥ) follows by previous considerations. We only need prove that h(p′) <

h(p); after some rearrangement, this is a consequence of Jensen’s inequality.
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B.5 Sum inequalities

For f(p) = 1/p, we have the following chain of implications:

sup
p
|f(p)

p
| = c

⇒ |f(p)| ≤ cp

⇒
m∑

i=1

f(i) ≤ c
∑

p(i) = c.

For the f described in section 1.6.1,

f(p) =





m p < 1/m,

1/p p ≥ 1/m,

we have

sup
p
|f(p)g(p)| = c⇒

∑

i

g(i) ≤ 2c,

since
∑

i

g(i) =
∑

i:im≥1

g(i) +
∑

i:im<1

g(i);

the first term is bounded by c, by the above, and the second by cm 1
m

= c.

This last inequality gives a proof of Proposition 5.

Statement (Proposition 5).

max
p

σ2 ∼ (log m)2.

Proof. We have maxp σ2(p) = O(log(m)2): plug in g = p log(p)2 and take

the maximum of fg on the interval. To see that in fact maxp σ2(p) ∼

(log(m)2), simply maximize σ2(p) on the central lines (section 1.7).
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B.6 Asymptotic bias rate

Statement (Theorem 9). If m > 1, N mini pi →∞, then

lim
N

m− 1
B(ĤMLE) = −1

2
.

Proof. As stated above, the proof is an elaboration of the proof of theorem

10.3.1 of [Devore and Lorentz, 1993]. We use a second-order expansion of

the entropy function:

H(t) = H(x) + (t− x)H ′(x) + (t− x)2(
1

2
H ′′(x) + hx(t− x)),

where h is a remainder term. Plugging in, we have

−t log t = −x log x + (t− x)(−1− log x) + (t− x)2(
1

2

−1

x
+ hx(t− x)).

After some algebra,

(t− x)2hx(t− x) = t− x + t log
x

t
+

1

2

1

x
(t− x)2.

After some more algebra (mostly recognizing the mean and variance formu-

lae for the binomial distribution), we see that

lim
N

N(BN(H)(x)−H(x)) = H ′′(x)
x(1− x)

2
+ RN(x),

where

RN(x) ≡ 1− x

2
−N

N∑

j=0

Bj,N(x)
j

N
log

j

Nx
.

The proof of theorem 10.3.1 in [Devore and Lorentz, 1993] proceeds by

showing that RN(x) = o(1) for any fixed x ∈ (0, 1). We need to show that
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RN(x) = o(1) uniformly for x ∈ [xN , 1 − xN ], where xN is any sequence

such that

NxN →∞.

This will prove the theorem, because the bias is the sum of

BN(H)(x)−H(x)

at m points on this interval. The uniform estimate essentially follows from

the delta method (somewhat like Miller and Madow’s original proof, except

in one dimension instead of m): use the fact that the sum in the definition

of RN(x) converges to the expectation (with appropriate cutoffs) of the

function t log t
x

with respect to the Gaussian distribution with mean x and

variance 1
N

x(1 − x). We spend the rest of the proof justifying the above

statement.

The sum in the definition of RN(x) is exactly the expectation of the

function t log t
x

with respect to the Binomial(N, x) distribution (in a slight

abuse of the usual notation, we mean a binomial random variable divided

by N , that is, rescaled to have support on [0, 1]). The result follows if

a second-order expansion for t log t
x

at x converges at an o(1/N) rate in

BinN,x-expectation, i.e., if

EBinN,x
N [t log

t

x
− (t− x)− 1

2x
(t− x)2] ≡ EBinN,x

gN,x(t) = o(1),

for x ∈ [xN , 1 − xN ]. Assume, wlog, that xN → 0; in addition, we will

focus on the hardest case and assume xN = o(N−1/2). We break the above
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expectation into four parts:

EBinN,x
gN,x(t) =

∫ axN

0

gdBinN,x+

∫ xN

axN

gdBinN,x+

∫ bN

xN

gdBinN,x+

∫ 1

bN

gdBinN,x,

where 0 < a < 1 is a constant and bN is a sequence we will specify below.

We use Taylor’s theorem to bound the integrands near xN (this controls the

middle two integrals) and use exponential inequalities to bound the binomial

measures far from xN (this controls the first and the last integrals). The

inequalities are due to Chernoff ([Devroye et al., 1996]): let B be BinN,x,

and let a, b, and xN be as above. Then

P (B < axN) < eaNxN−NxN−NxNa log a (1.22)

P (B > bN) < e
NbN−NxN−NbN log

bN
xN . (1.23)

Simple calculus shows that

max
t∈[0,axN ]

|gN,x(t)| = gN,x(0) =
Nx

2
.

We have that the first integral is o(1) iff

aNxN −NxN −NxNa log a + log(NxN)→ −∞.

We rearrange:

aNxN−NxN−NxNa log a+log(NxN) = NxN(a(1−log a)−1)+log(NxN).

Since

a(1− log a) < 1, ∀a ∈ (0, 1),
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the bound follows. Note that this is the point where the condition of the

theorem enters; if NxN remains bounded, the application of the Chernoff

inequality becomes useless and the theorem fails.

This takes care of the first integral. Taylor’s bound suffices for the

second integral:

max
t∈[axN ,xN ]

|gN,x(t)| < | max
u∈[axN ,xN ]

(t− x)3

−6u2
|,

from which we deduce

|
∫ xN

axN

gdBinN,x| <
N((1− a)xN)4

−6(axN)2
= o(1),

by the assumption on xN .

The last two integrals follow by similar methods, once the sequence bN is

fixed. The third integral dies if bN satisfies the following condition (derived,

again, from Taylor’s theorem):

N(bN − xN)4

−6x2
N

= o(1),

or equivalently,

bN − xN = o(
x

1/2
N

N1/4
);

choose bN as large as possible under this constraint, and use the second

Chernoff inequality, to place an o(1) bound on the last integral.
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B.7 Bayes concentration

Statement (Theorem 13). If p is bounded away from zero, then H is

normally concentrated with rate m1/3; that is, for fixed a,

p(|H − E(H)| > a) = O(e−Cm1/3a2

),

for any constant a > 0 and some constant C.

Proof. We provide only a sketch. The idea is that H almost satisifies the

bounded difference condition, in the following sense: there do exist points

x ∈ [0, 1]m such that
m∑

i=1

(∆H(xi))
2 > mǫ2

m,

say, where

∆H(xi) ≡ max
xi,x′

i

|H(x1, . . . , xi, . . . xm)−H(x1, . . . , x
′
i, . . . xm)|,

but the set of such x — call the set A — is of decreasing probability. If we

modify H so that H ′ = H on the complement of A, and let H ′ = E(H|pi ∈

Ac) on A, that is,

H ′(x) =





H(x) x ∈ Ac,

1
P (Ac)

∫
Ac P (x)H(x) q ∈ A,

then we have that

P (|H ′ − E(H ′)| > a) < e−a2(mǫ2m)−1

,
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and

P (H ′ 6= H) = P (A).

We estimate P (A) as follows:

P (A) ≤
∫

[0,1]m
1(max

i
∆H(xi) > ǫm)d

m∏

i=1

p(xi)

≤
∫

1(max
i

(xi+2 − xi) > ǫm)dpm(xi)

∼
∫

dtelog p−ǫmpm. (1.24)

The first inequality follows by replacing the L2 norm in the bounded differ-

ence condition with an L∞ norm; the second follows from some computation

and the smoothness of H(x) with respect to changes in single xi. The last

approximation is based on an approximation in measure by nice functions

argument similar to the one in the proof of theorem 6, along with the well-

known asymptotic equivalence (up to constant factors), as N →∞, between

the empirical process associated with a density p and the inhomogeneous

Poisson process of rate Np.

We estimate |E(H)− E(H ′)| with the following hacksaw:

|E(H)− E(H ′)| = |
∫

A

p(x)(H(x)−H ′(x)) +

∫

Ac

p(x)(H(x)−H ′(x))|

= |
∫

A

p(x)(H(x)−H ′(x)) + 0|

≤ P (A) log m.

If p > c > 0, the integral in (1.24) is asymptotically less than ce−mǫmc;

the rate of the theorem is obtained by a crude optimization over ǫm.
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The proof of the CLT (Theorem 14) follows upon combining pre-

vious results in this paper with a few powerful older results; again,

to conserve space, we give only an outline. The asymptotic normal-

ity follows from McLeish’s martingale CLT [Chow and Teicher, 1997] ap-

plied to the martingale E(H|x1, ...xi); the computation of the asymp-

totic mean follows by methods almost identical to those used in the

proof of Theorem 6 (sorting and linearity of expectation, effectively),

and the asymptotic variance follows upon combining the formulae of

[Darling, 1953] and [Shao and Hahn, 1995] with an approximation-in-

measure argument similar, again, to that used to prove Theorem 6. See

also [Wolpert and Wolf, 1995] and [Nemenman et al., 2002] for applications

of Darling’s formula to a similar problem.

B.8 Adaptive partitioning

Statement (Theorem 15). If log ∆N(AF) = o( N
(log m)2

) and F generates

σx,y a.s., Î is consistent in probability; Î is consistent a.s. under the slightly

stronger condition
∑

∆N(AF)e
−N

(log m)2 <∞.

The key inequality, unfortunately, requires some notation; we follow

the terminology in [Devroye et al., 1996], with a few obvious modifications.

We take, as usual, {xj} as i.i.d random variables in some probability space

Ω,G, P with empirical measure PN . Let F be a collection of partitions of Ω,
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with P denoting a given partition. 2P denotes, as usual, the “power set” of

a partition, the set of all sets which can be built up by unions of sets in P .

We introduce the class of sets AF , defined as the class of all sets obtained

by taking unions of sets in a given partition, P . In other words,

AF ≡ {A : A ∈ 2P ,P ∈ F}.

Finally, the Vapnik-Chervonenkis “shatter coefficient” of the class of sets

AF , ∆N(AF), is defined as the number of sets which can be picked out of

AF using N arbitrary points ωj in Ω:

∆N(AF) ≡ max
{ωj}∈ΩN

|{ωj} ∩ A : A ∈ A|.

The rate of growth in N of ∆N(AF) provides a powerful index of the richness

of the family of partitions AF , as the following theorem (a kind of uniform

LLN) shows; p here denotes any probability measure and pN , as usual, the

empirical measure.

Theorem (Lugosi and Nobel, ‘93). Following the notation above, for

any ǫ > 0,

P (sup
P∈F

∑

A∈P
|pN(A)− p(A)| > ǫ) ≤ 8∆N(AF)e−Nǫ2/512.

Thus this theorem is useful if ∆N(AF) does not grow too quickly with N ;

as it turns out, ∆N(AF) grows at most polynomially in N under various,

easy-to-check conditions. Additionally, ∆N(AF) can often be computed

using straightforward combinatorial arguments, even when the number of
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distinct partitions in F may be uncountable. See [Devroye et al., 1996] for

a collection of instructive examples.

Proof. Theorem 15 is proven by a Borel-Cantelli argument, coupling the

above VC inequality of Lugosi and Nobel with the following easy inequality,

which states that the entropy functional H is “almost L1 Lipshitz”:

|H(p)−H(q)| ≤ H2(2||p− q||1) + 2||p− q||1 log(m− 1),

where

H2(x) ≡ −x log(x)− (1− x) log(1− x)

denotes the usual binary entropy function on [0, 1]. We leave the details to

the reader.
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Figure 1.1: Evolution of sampling distributions of MLE: fixed m, increasing N .

True value of H indicated by asterisk at bottom right corner of each panel. Note

the small variance for all N , and the slow decrease of the bias as N →∞.

97



0 0.5 1
0

1

2

3

4

5
m=N=100

20 40 60 80 100
0

1

2

3

4

0 0.5 1
0

2

4

6
m=N=1000

200 400 600 800 1000
0

1

2

3

4

5

n

0 0.5 1
0

2

4

6

sorted, normalized p

m=N=10000

2000 4000 6000 8000 10000
0

2

4

6

unsorted, unnormalized i

Figure 1.2: “Incorrect” convergence of sorted empirical measures. Each left panel

shows an example unsorted m-bin histogram of N samples from the uniform

density, with N/m = 1 and N increasing from top to bottom. Ten sorted sample

histograms are overlaid in each right panel, demonstrating the convergence to a

nonuniform limit. The analytically derived p′c,∞ is drawn in the final panel, but

is obscured by the sample histograms.
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several different values of N/m.

99



0

0.05

0.1

0.15

0.2

0.25

0.3
(1,0,0)

(0,1,0)

(0,0,1)
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drawn in black.
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Figure 1.5: Example of error curves on the “central lines” for four different

estimators (N = 50, m = 200; λ0 = 0 here and below unless stated otherwise).

The first panel shows the true entropy, as p1 ranges from 1 (i.e., p is the unit mass

on one point) to 1
m (where p is the flat measure on m points). Recall that on

the central lines, pi = 1−p1

m−1 ∀i 6= 1. The solid black lines overlying the colored

(dashed or dotted) lines in the bias panel are the biases predicted by Theorem 6;

these predictions depend on N and m only through their ratio, N/m. The black

dash-asterisk denotes the variance predicted by the CLT, σ(p)N−1/2.
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Figure 1.6: “Central line” error curves for three different values of N/m; notation

as in Figure 1.5. Note that the worst-case error of the new estimator is less than

that of the three most common Ĥ for all observed (N, m) pairs, and that the

error curves for the four estimators converges to the CLT curve as N/m→∞.
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Figure 1.8: Error curves for simulated data (integrate and fire model, driven by

white noise current), computed via Monte Carlo. N = 100 i.i.d. spike trains,

time window T = 200 ms, binary discretization, bin width dt = 20 ms, thus,

m = 210; DC of input current varied to explore different firing rates. Note the

small variance and large negative bias of Ĥ over a large region of parameter space.

The variance of ĤBUB is slightly larger, but this difference is trivial compared to

the observed differences in bias.
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Figure 1.9: Estimated entropy of spike trains from a single cell recorded in vitro.

Cell was driven with a white noise current. Each point corresponds to a sin-

gle experiment, with N = 200 i.i.d. trials; the standard deviation of the input

noise was varied from experiment to experiment. Spike trains were 120 ms long,

discretized into 10 ms bins of 0 or 1 spike each; m = 212.
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Figure 1.10: Estimated entropy of individual spike trains from 11 simultane-

ously recorded primate motor cortical neurons. Single units were recorded

as monkey performed a manual random tracking task [Paninski et al., 1999,

Paninski, 2003b]; N here refers to the number of trials (the stimulus was drawn

i.i.d. on every trial). Each point on the x-axis represents a different cell; spike

trains were 300 ms long, discretized into 50 ms bins of 0, 1, 2, or > 2 spikes each;

m = 46.
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CHAPTER 2

Convergence properies of some

spike-triggered analysis techniques

2.1 Introduction

Systems-level neuroscientists have a few favorite problems, the most promi-

nent of which is the “what” part of the neural coding problem: what makes

a given neuron in a particular part of the brain fire? In more technical

language, we want to know about the conditional probability distributions

P (spike|X = x), the probability that our cell emits a spike, given that some

observable signal X in the world takes value x. Because data is expensive,

neuroscientists typically postulate a functional form for this collection of

conditional distributions, and then fit experimental data to these functional

models, in lieu of attempting to directly estimate P (spike|X = x) for each

possible x. Clearly, to interpret the results of this kind of statistical analy-
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sis, we must have a good understanding of the bias and variance properties

of the estimation procedure in question. This is especially true in the case

of high-dimensional data (e.g., natural sensory signals or complex motor

behavior), for which direct visualization is often impossible.

In this paper, we analyze the statistical properties of a phenomenological

model whose popularity in the natural signal community seems to be on the

rise [Theunissen et al., 2001, Brenner et al., 2001, Schwartz et al., 2002,

Ringach et al., 2002]:

p(spike|~x) = f(< ~k1, ~x >,< ~k2, ~x >, . . . , < ~km, ~x >). (2.1)

Here f is some arbitrary [0, 1]-valued function, and {ki} are some lin-

early independent elements of (the dual space of) some vector space, X

— the space of possible “input signals.” Interpret f as a regular condi-

tional probability. This model says, then, the neuron projects the signal

~x onto some m-dimensional subspace spanned by {~ki}1≤i≤m (call this sub-

space K), then looks up its probability of firing based only on this pro-

jection. This model is often called a “linear-nonlinear,” or “LN,” cascade

model; it is a probabilistic analog of what are called “Wiener cascade”

models [Hunter and Korenberg, 1986] in the system identification litera-

ture. (Note that this model is not the same as a Volterra series model

[Marmarelis and Marmarelis, 1978]; these two classes of systems have very

different approximation properties.)

The LN model has two important features which recommend it for com-
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plex natural signal data. First, the spike trains of the cell are given by a

conditionally (inhomogeneous) Poisson process given ~x; that is, there are

no dynamics in this model beyond those induced by ~x and K. This makes

the LN cell a simple starting point for more detailed modeling. Second,

equation (2.1) implies:

p(spike|~x) = p(spike|~x + ~y) ∀ y ⊥ K. (2.2)

In other words, the conditional probability of firing is constant along (hy-

per)planes in the input space. This model thus separates the quite difficult

nonparametric problem of learning p(spike|~x) into two much simpler pieces:

learning K and learning f . For example, if f is known, the problem of

learning K reduces to a fairly standard parametric estimation problem (for

which, say, maximum likelihood methods are generally efficient); conversely,

if K is known, learning f entails the nonparametric estimation of a density,

about which, again, much is known (see e.g. [Devroye and Lugosi, 2001]).

The semiparametric problem of estimating K without a priori knowledge

of f seems to be much less well-understood; we focus primarily on this

problem here.

Before we get to the heart of this paper, which is about estimating the

parameters of this LN model, we should emphasize the model’s phenomeno-

logical nature. As with all statistical models of nervous function, we are

not attempting to describe the mechanism underlying a given cell’s response

properties, but rather to approximate this behavior with a model which is
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both tractable from an estimation point of view, as emphasized above, and

which also, we hope, provides some insight into the basic input-output prop-

erties of the cell. As others have argued, the LN model provides this type of

tractable and understandable approximation in many different systems. We

should also mention that the LN model can be justified, somewhat, using

crude mechanistic ideas; for example, we could think of the nonlinearity as

having to do with the spiking process, and the linear filtering as occurring

in the dendrites, where we might hope that linearity might be a usable ap-

proximation. However, to date the statistical arguments for the model have

tended to be much stronger than the mechanistic arguments (as, perhaps,

the above “justification” demonstrates).

More generally, there are at least two goals of such a non-mechanistic

analysis. First, most obviously, the more precise one’s phenomenological

description of a given system, the fewer choices one will have among mech-

anisms to explain the given behavior; thus statistical modeling can lead

naturally into more detailed, mechanistic modeling (and vice versa). Sec-

ond, statistical characterizations of a given system can be powerful even

without deeper mechanistic understanding; for example, if one is interested

not in how a message is encoded in the brain but rather in how well we

can decode the message (this viewpoint is natural in the field of neural

prosthetics [Serruya et al., 2002], for example), then good statistical theo-

ries are more valuable than mechanistic theories per se. In either case, it

is essential to know the strengths and limitations of the statistical methods
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used to estimate and model the properties of such systems, and this brings

us back to the present work.

The main goal of this paper is to describe the convergence proper-

ties of three different types of K-estimator: 1) techniques based on the

spike-triggered average [Theunissen et al., 2001]; 2) techniques based on

the spike-triggered covariance [Brenner et al., 2001]; and 3) a new, more

general technique based on a probabilistic distance measure between the

spike-triggered and “no spike”- triggered distributions. We were motivated

by two basic questions. First, when do these estimators work (in the sense

of “consistency,” that is, given enough data, do they provide us with an

accurate estimate of K [Schervish, 1995])? Second, when the estimator is

consistent, what is the statistical rate of convergence (that is, how much

data do we need to be close to the correct K)? Our first main result is

that the first two K-estimators often do not work, even given infinite data.

More precisely, the conditions for consistency of these estimators turn out

to be surprisingly stringent; for example, these conditions are typically not

satisfied by natural signal stimulation paradigms. Our second main re-

sult provides an antidote of sorts: the novel estimator we introduce here

converges under very general conditions to the correct K. Finally, we pro-

vide various results on the rate of convergence of these three classes of

K-estimator. Together, these results serve to put the growing subfield of

LN statistical modeling on a more solid theoretical foundation.
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2.2 Notation; outline

The basic semiparametric model space we’ll work in is defined as follows.

An LN model is completely specified by knowledge of K and f , plus the

stimulus distribution p(~x); thus, LN models take values in the space

(p,K, f) ∈ µ(X)× Gm(X)× L[0,1](ℜm),

where µ(X) denotes the space of all probability measures on X, Gm(X)

the space of all m-dimensional subspaces of X, and L[0,1](ℜm) the space

of measurable functions on ℜm taking values in [0, 1]. In most cases, p is

held fixed and/or presumed known, and we discuss only (K, f) instead of

(p,K, f); this should be clear from context. Note that K, the main param-

eter of interest, is finite dimensional, while f , the “nuisance” parameter in

statistical jargon, is infinite dimensional.

Let N denote the number of available samples, drawn i.i.d. from p(~x).

We assume throughout this paper that p(~x) has zero mean and finite second

moments; the first assumption obviously entails no loss of generality, and

the second seems entirely reasonable on physical grounds. Then our basic

results will take the following form:

E

(
Error(K̂)

)
≈ αN−γ + β, (2.3)

as N becomes large. The estimator K̂ is a map taking N observations of

stimulus and spike data (where spikes are binary random variables, condi-

tionally independent given the stimulus) into an estimate of the true un-
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derlying K:

K̂ : (X × {0, 1})N → Gm(X)

(~xN , sN) → K̂(~xN , sN),

where (~xN , sN) denotes the N -sample data; the natural error metric, then,

is the geodesic distance on Gm(X) (the “canonical angle”) between the true

subspace K and the estimated subspace K̂,

Error(K̂) ≡ cos−1

(
s(P t

KPK̂)

)
,

where PV denotes the projection operator corresponding to the subspace

V and s(A) denotes the smallest singular value of the operator A. For

notational ease, we will mostly work in the m = 1 case; here the metric

takes the explicit form

Error(K̂) ≡ cos−1 < K̂,~k1 >

||K̂||2||~k1||2
.

The scalar terms γ, α, and β in (2.3) each depend on f , K, and p(~x); γ is

a constant giving the order of magnitude of convergence (usually, but not

always, equal to 1/2), α gives the precise convergence rate, and β gives the

asymptotic error. We will be mostly concerned with giving exact values

for α, and simply indicating when β is zero or positive (i.e., when K̂ is

consistent in probability or not, respectively).

Most of the remainder of the paper will be devoted to deriving repre-

sentation (2.3), including the constants α, β, and γ, for the three classes of
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K-estimator mentioned in the introduction. We carry out this program for

the spike triggered average and the spike-triggered covariance technique in

sections 2.3 and 2.4, respectively. Section 2.5 contains perhaps the central

results of this paper; here we give details on the analysis and computation

of a new, universally consistent estimator. In section 2.6, we present some

simulation results comparing the performance of the three estimators, and

applications of the new estimator to real physiological data. We provide

a few lower bounds on the convergence rate of any possible LN estimator

in section 2.7; these bounds provide rigorous measures of the difficulty of

the K-estimation problem. Finally (section 2.8), we close with a brief dis-

cussion of a few important areas for future research. Proofs appear in an

appendix.

2.3 Spike-triggered averaging

The first estimator, the spike-triggered average, is classical and very intu-

itive. We define

K̂STA ≡
1

Ns

Ns∑

i=1

~xi, (2.4)

where ~xi is the i-th stimulus for which a spike occurred and Ns denotes

the total number of spikes observed (N and Ns are of course roughly pro-

portional, with constant p(spike) =
∫

X
p(~x)f(K~x)). As is well-known,

K̂STA is simply the sample mean of the spike-conditional stimulus dis-

tribution p(~x|spike); since the spike signal is binary-valued, this is the

114



same as the cross-correlation between the spike and the stimulus sig-

nal. We will also consider the following linear regression-like modification

[Theunissen et al., 2001]:

K̂RSTA ≡ AK̂STA,

where A is an operator chosen to “rotate out” correlations in the stimulus

distribution p(~x) (A is typically the (pseudo-) inverse of the stimulus cor-

relation matrix, which we will denote as σ2(p(~x)). In this section and the

next, we assume that σ2(p(~x)) is known; this assumption seems fair because

either: 1) p(~x) is chosen by the experimenter, or, 2), in the natural signal

paradigm, a sufficient number of samples from the natural distribution are

available that σ2(p(~x)) can be estimated to arbitrary accuracy; i.e., the

experimenter has access to many more examples than N , the number of

samples seen by the neuron. At any rate, even if σ2(p(~x)) is unknown, the

basic analysis presented here still works, although slightly worse constants

are obtained).

We begin with necessary and sufficient conditions for consistency. As

usual, we say p(~x) is radially symmetric if p(B) = p(UB) for all measur-

able sets B and all unitary transformations (rotations) U ; examples in-

clude the standard multivariate Gaussian density, or the uniform density

on the sphere. (Note that if p(~x) has this radial symmetry property, then

K̂STA = K̂RSTA.) Finally, since K̂RSTA clearly returns a single vector, that

is, a one-dimensional subspace of X, assume for the moment that K = ~k1
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(i.e., K is a one-dimensional subspace). Then we have the following:

Theorem 21 (Consistency: β(K̂STA)). If p(~x) (resp. p(A1/2~x)) is ra-

dially symmetric and E(< ~x,~k1 > |spike) 6= 0, then β(K̂STA) = 0 (resp.

β(K̂RSTA) = 0); that is, the spie-triggered average estimator is consistent.

Conversely, if p(~x) is radially symmetric and E(< ~x,~k1 > |spike) = 0,

then β > 0, and if p(~x) is not radially symmetric, then there exists an f for

which β > 0.

In other words, spike-triggered averaging techniques always work (given

enough data) if the input distribution p is radially symmetric, and if the

neuron’s tuning f is sufficiently asymmetric, in the sense that |E(< ~x,~k1 >

| spike)| > 0; conversely, it is not hard to find examples for which these

conditions are not met and the spike-triggered average fails to recover ~k1.

The above sufficiency conditions are fairly well-known; for example, most

of the sufficiency statement appeared (albeit in somewhat less precise form)

in [Chichilnisky, 2001] (see also [Ringach et al., 1997] and references therein

for related results; [Bussgang, 1952] seems to be the earliest). The condition

on E(< ~x,~k1 > | spike) is discussed in more depth below. Note the lack

of restrictions on f ; this function is not required to be smooth, or even

continuous.

On the other hand, the converse is novel, to our knowledge, and is

perhaps surprisingly stringent: without a highly restrictive symmetry con-

dition on p(~x), spike-triggered averaging methods often remain biased,
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even given infinite data; thus, these estimators will typically converge,

but not necessarily to the correct ~k. As is well known, distributions

of natural signals tend to lack this symmetry property [Simoncelli, 1999,

Ruderman and Bialek, 1994]; thus, spike-triggered average analyses of nat-

ural signal data must be interpreted with caution. The first part of the ne-

cessity statement will be obvious from the following discussion of α(K̂RSTA)

(and in fact appears implicitly in [Chichilnisky, 2001]). The second part,

while perhaps unsurprising given the analysis of [Chichilnisky, 2001], is a

little harder, and seems to require characteristic function (Fourier trans-

form) techniques. The proof proceeds by showing that a distribution is

symmetric iff it has the property that the conditional mean of ~x is zero on

all planar “slices” (i.e., E(< ~u, ~x > | < ~v, ~x >∈ B) = 0 for all ~u⊥~v ∈ X ′

and real measurable sets B).

Next we have the rate of convergence, to give a rough idea of how many

samples is “enough”:

Theorem 22 (Convergence rate: α(K̂STA)). Assume p(~x) is inde-

pendent normal, with standard deviation σ(p). If β(K̂STA) = 0, then

N
1/2
s (K̂STA−K) is asymptotically independent normal with mean zero (con-

sidered as a distribution on the tangent plane of Gm(X) at the true under-

lying value K), and scale

σ(p)

E(< ~x,~k1 > |spike)
.
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Thus,

α(K̂STA) =
σ(p)

|E(< ~x,~k1 > |spike)|
√

dim X − 1.

Thus the performance of the spike-triggered average scales directly with

the dimension of the ambient space and inversely with |E(< ~x,~k1 > |spike)|,

a measure of the asymmetry of the spike-triggered distribution along k1.

The standard example of a neuron for which |E(< ~x,~k1 > |spike)| is small

is a complex cell in V1, whose responses are roughly symmetric with respect

to sign inversion. The theorem serves to quantify the well-known result that

spike-triggered averaging works poorly, if at all, for neurons with this kind

of response symmetry.

The proof follows by applying the multivariate central limit theorem

to the sample mean of Ns random vectors drawn i.i.d. from the spike-

conditional stimulus distribution, p(~x|spike). The proof also supplies the

asymptotic distribution of Error(K̂STA) (a noncentral F), which might be

useful for hypothesis testing. The details are easy once the mean of this dis-

tribution is identified (as in [Chichilnisky, 2001], under the above sufficiency

conditions).

Note that we stated the result under stronger-than-necessary conditions

(i.e., p(~x) is Gaussian instead of just symmetric), in order to simplify the

statement. (In this case, the form of α becomes quite simple under these

stronger assumptions; α depends on the nonlinearity f only through E(<

~x,~k1 > |spike). The general case is proven by identical methods but results
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in a slightly more complicated, f -dependent, term in place of σ(p).) This

pattern of stating non-optimal results in the text, then giving the stronger,

more general results in the appendix, will reappear without comment below.

One final note: in stating the above two results, we have assumed that

K is one-dimensional. Nevertheless, the two theorems extend easily to

the more general case, after Error(K̂STA) is redefined to measure angles

between m− and 1−dimensional subspaces. (Of course, now E(K̂STA) de-

pends strongly on the input distribution p(~x), even for radially symmetric

p(~x); see, e.g., [Schwartz et al., 2002] for an analysis of a special case of this

effect.)

2.4 Covariance-based methods

The next estimator was introduced in an effort to extend spike-triggered

analysis to the m > 1 case (see, e.g., [de Ruyter and Bialek, 1988,

Brenner et al., 2001, Schwartz et al., 2002]). Where K̂STA was based on

the first moment of the spike-conditional stimulus distribution p(~x|spike),

K̂CORR is based on the second moment. We define

K̂CORR ≡ (σ2(p))−1eig(∆̂σ2),

where eig(A) denotes the significantly non-zero eigenspace of the opera-

tor A, and ∆̂σ2 is some estimate (typically the usual sample covariance
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estimate) of the “difference-covariance” matrix ∆σ2, defined by

∆σ2 ≡ σ2(p(~x))− σ2(p(~x|spike)).

Again, we start with β:

Theorem 23 (β(K̂CORR)). If p(~x) is Gaussian and

V arp(~x|spike)(< ~k, ~x >) 6= V arp(~x)(< ~k, ~x >) ∀~k ∈ EK ,

for some orthogonal basis EK of K, then β(K̂CORR) = 0. Conversely, if

p(~x) is Gaussian and the variance condition is not satisfied for f , then

β > 0, and if p(~x) is non-Gaussian, then there exists an f for which β > 0.

As before, the sufficiency is fairly well-known (see the thesis of Odelia

Schwartz for a proof, or [Brenner et al., 2001] for a sketch), while the ne-

cessity appears to be novel and relies on characteristic function arguments.

It is perhaps surprising that the conditions on p for the consistency of this

estimator are even stricter than for the spike-triggered average. The es-

sential fact here turns out to be that a distribution is normal iff, after a

suitable change of basis, the conditional variance on all planar “slices” of

the distribution is constant.

We have, with Odelia Schwartz, developed a striking inconsistency ex-

ample which is worth mentioning here:

Example (Inconsistency of K̂CORR). There is a nonempty open set of

nonconstant f and radially symmetric p(~x) such that K̂CORR is asymptot-
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ically orthogonal to K almost surely as N → ∞. (In fact, the f and p in

this set can be taken to be infinitely differentiable.)

The basic idea is that, for nonnormal p, the spike-triggered variance of

< ~v, ~x > depends on f even for ~v⊥~k; thus, one can find f for which

|V arp(~x|spike)(< ~k, ~x >)− V arp(~x)(< ~k, ~x >)|

is small but

|V arp(~x|spike)(< ~v, ~x >)− V arp(~x)(< ~v, ~x >)|, ~v⊥~k,

is large. We leave the details to the reader.

We can derive a similar rate of convergence for these covariance-based

methods. To reduce the notational load, we state the result for m = 1

only; in this case, we can define λ∆σ2 to be the (unique and nonzero by

assumption) eigenvalue of ∆σ2.

Theorem 24 (α(K̂CORR)). Assume p(~x) is independent normal. If

β(K̂CORR) = 0, then N
1/2
s (K̂CORR −K) is asymptotically independent nor-

mal with mean zero and

α =
σ(p)

√
σ2(p)− λ∆σ2

|λ∆σ2|
√

dim X − 1.

(Again, while λ∆σ2 will not be exactly zero in practice, it can often

be small enough that the asymptotic error remains prohibitively large for

physiologically reasonable values of Ns.) The proof proceeds by applying the

multivariate central limit theorem to the covariance matrix estimator, then
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examining the first-order Taylor expansion of the eigenspace map at ∆σ2.

It is also worth emphasizing that the asymptotics in the above theorem

(and indeed, in all of the results in this paper) are in N only; the theorem

is not valid if dim X grows as well. (See, e.g., [Everson and Roberts, 2000,

Johnstone, 2000] and references therein for some useful asymptotic results

on eigenspace analysis in the case that dimX is of order N .)

2.5 φ-divergence techniques

We have seen that the two most common K-estimators are not consistent

in general; that is, the asymptotic error β is bounded away from zero for

many (non-pathological) combinations of p(~x), f , and K. In particular,

we have to place very strong conditions on p to guarantee that K̂RSTA and

K̂CORR will converge to the correct K. We now introduce a new class of

estimator which is consistent (β = 0) in great generality.

The basic idea is that K~x is in a sense a sufficient statistic for ~x: ~x —

K~x — spike forms a Markov chain. Let us give a few definitions. Given a

continuous, strictly convex real function φ on [0,∞], with φ(1) = 0, define

the φ-divergence (following [Csiszar, 1967]) between two measures µ and ν

as:

Dφ(µ; ν) ≡
∫

dνφ(
dµ

dν
) =

∫
dµφ̃(

dν

dµ
),

where φ̃(t) = tφ(t−1) and the densities dµ and dν are interpreted as likeli-

hood ratios. The best-known φ-divergence is the Kullback-Leibler diver-
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gence (φ(t) = t log t). The main property of φ-divergences we need is

the so-called data-processing inequality [Cover and Thomas, 1991]: for any

Markov morphisms S and T ,

Dφ(S(µ); T (ν)) ≤ Dφ(µ; ν),

with equality only if S and T are sufficient. The above inequality is named

for the following special case: µ is p(x, y), the joint distribution of some r.v.’s

X and Y , and ν the product p(x)p(y) of their marginals. Then, for any

Markov chain X — Y — Z, Dφ(p(x, y); p(x)p(y)) ≥ Dφ(p(x, z); p(x)p(z)),

with equality iff X — Z — Y (i.e., iff Y (Z) is sufficient for X).

Thus, if we identify the random variable spike with X in the above

Markov chain, ~x with Y , and < K,~x > with Z, it is clear from (2.1) that

< K,~x > is sufficient for ~x with respect to spike, and the data processing

inequality states that

Mφ(V ) ≡ Dφ

(
p(< V, ~x >, spike); p(< V, ~x >)p(spike)

)
,

considered as a function of vector spaces V of dimension dim K, reaches a

maximum on K, and this maximum is unique under certain weak condi-

tions. (When dim V > dim K, the maximum will no longer be unique, but

it is easy to show that the maximizers still contain K.)

The basic idea is that < V, ~x > is equivalent to < K,~x > plus some

noise term that does not affect the spike process (more precisely, this noise

term is conditionally independent of spike given < K,~x >); this noise term
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is obviously 0 for V = K, and the larger this noise, the smaller Mφ(V ).

Another way to put it is that Mφ(V ) measures how strongly < V, ~x > mod-

ulates the firing rate of the cell: for V near K, the conditional measures

p(spike| < V, ~x >) are on average very different from the prior measure

p(spike), and Mφ(V ) is designed to detect exactly these differences; con-

versely, for V orthogonal to K, the conditional measures p(spike| < V, ~x >)

will appear relatively “unmodulated” (that is, p(spike| < V, ~x >) will tend

to be much nearer the average p(spike)), and Mφ(V ) will be comparatively

small.

This all suggests that we could estimate K by maximizing Mφ,N(V ),

some estimator of the function Mφ(V ). The rest of this section is devoted

to describing the mathematical and computational properties of this type

of estimator, for several different forms of Mφ,N(V ). The precise choice of

φ here seems not to matter much for the asymptotic analysis, as long as

φ is smooth enough; for mathematical and computational convenience, we

choose φ(t) = t2 − 1. For this φ, a little algebra shows that

Mφ(V ) =
V ar(p(spike = 1| < V, ~x >))

p(spike = 1)p(spike = 0)

(where in a slight abuse of notation, p(spike = 1) serves as a random

variable — a function of < V, ~x > — in the numerator, and as a fixed

probability in the denominator); this is a reasonably intuitive measure of

firing rate modulation in the LN model. Originally, we chose this function

because of the nice properties of φ and tφ̃(t) near zero, as previous work on
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the estimation of mutual information [Paninski, 2003b] indicated that the

smoothness of these functions plays a critical role in the estimability of Dφ;

other advantages of this choice will become clear as we progress.

Before we move on to our main results, it is worth noting the recent

work of [Sharpee et al., 2003], who independently presented an estimator

based on maximizing the mutual information between < V, ~x > and spike;

this corresponds, in our notation, to maximizing Mφ(V ), with φ(t) = t log t.

While the methods and analysis presented below are somewhat more de-

tailed than and differ in several important respects from those described

in [Sharpee et al., 2003], it is worthwhile consulting their work for another

illustration of the improved performance of this kind of estimator. We hope

to undertake a more thorough comparison of the statistical and computa-

tional efficiency of the two estimators in the future.

2.5.1 Asymptotics

We will start by defining Mφ,N(V ) more precisely. The simpest idea would

be to let Mφ,N(V ) be a “plug-in” kernel or histogram estimator, that is,

Mφ,N(V ) ≡ Dφ

(
p̂N(< V, ~x >, spike); p̂N(< V, ~x >)p̂N(spike)

)
,

where p̂N , in turn, is an estimate of the underlying measure, either by kernel

(that is, p̂N is obtained by filtering the empirical measure

pN ≡
1

N

N∑

i=1

δi
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according to some linear, shift-invariant kernel), or histogram (that is, X is

partitioned into a countable number of bins, and p̂N is simply the discrete

measure induced by pN). We denote such an estimator of K by

K̂φ ≡ argmaxV Mφ,N(V ).

We assume that the chosen kernel or histogram partition is roughly

isotropic, and that the data has been pre-whitened, so that the global scale

of the data is roughly the same for every V ; this helps to reduce the bias

induced by the somewhat arbitrary scale imposed by the kernel width or

average bin size. Fancier versions of these estimators adjust to the local

scale as well (e.g., adaptive kernels or histograms), but for computational

simplicity we will stick to nonadaptive estimators of the density for now.

Obviously, for either type of estimator, we will have to let the kernel or bin

width decrease with N ; it is easy to come up with examples for which fixed

bin width estimators fail (basically, because if the bin width is bounded

from below, there exist f which are “averaged over” by the kernel or his-

togram). Thus much of the labor in the analysis of these estimators is in

dealing with shrinking bin sizes.

Our first result is a general consistency result for the kernel estimator.

A nearly identical result holds for the histogram estimator.

Theorem 25 (β(K̂φ)). If p has a nonzero density with respect to Lebesgue

measure, f is not constant a.e., and the kernel width goes to zero more

slowly than N r−1, for some r > 0, then β = 0 for the kernel estimator.
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In other words, this new estimator K̂φ works for very general neurons

f and stimulus distributions p; in particular, K̂φ is suitable for application

to natural signal data. Clearly, the condition on f is minimal; we ask only

that the neuron be tuned. The condition on p is quite weak (and can be

relaxed further); we are simply ensuring that we are sampling from all of

X, and in particular, the part of X on which the cell is tuned.

Things get more complicated when it comes to computing the rate of

convergence. The rough picture is as follows: for each V , Mφ,N(V ) converges

to Mφ(V ), with an error that depends on N , V , the kernel width aN , and

the parameters of the LN model (K, f, p). We have to choose aN in such a

way as to minimize the effect of these errors on K̂φ. The error can be split

up into a bias term and a variance term. It turns out that the variance

term doesn’t depend very strongly on aN , so we ignore this for now. The

bias term can be split up further into an approximation bias and a sample

bias: the approximation bias measures the difference between Mφ(V ) and

its kernel- (or histogram-) smoothed version, defined in the obvious way,

while the sample bias is the average difference between Mφ,N(V ) and this

smoothed version of Mφ(V ). It is intuitively clear that these two types of

bias behave differently as a function of aN ; if aN goes to zero too slowly, the

approximation bias will go to zero slowly but the sample bias will die quickly

(roughly, because larger kernels or histogram bins average over more data),

and vice versa. Thus, if we can compute the asymptotic approximation bias
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and sample bias as a function of aN , we have a well-defined optimization

problem: choose aN to minimize their sum, the total bias.

We carry out this program in the appendix; the final result, for m = 1,

for example, is that the sample bias behaves roughly like (NaN)−1, implying

that the naive estimator K̂φ converges somewhat slowly. The following

theorem follows from some simple algebra to obtain the optimal kernel

width for minimizing the bias in Mφ,N(V ), then a second-order expansion

of E(Mφ,N(V )) around K to obtain the corresponding behavior for the bias

of K̂φ.

Theorem 26 (Bias of K̂φ). If the approximation error is of order ar
N ,

then the optimal kernel width is of order N
−1
r+1 , corresponding to an optimal

bias in the kernel or histogram estimators which can be of order N
−r

2(r+1) .

Again, a similar conclusion holds for the histogram version of K̂φ. To

understand what this result means for a given set of parameters (f,K, p),

note that it is straightforward to show, using a Taylor expansion, that the

approximation error behaves like a2
N if p is well-behaved and f is, say,

uniformly twice differentiable; this corresponds to a convergence rate of

N−1/3 for K̂φ. As another example, step functions have an approximation

error that behaves like aN ; this leads to an even slower convergence rate,

N−1/4.

This slow bias behavior can be corrected using a standard statistical

trick: we replace the naive “plug-in” estimators for Mφ,N with their jack-
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knifed versions, where for any function of the data T (xN), we define the

jackknifed version of T to be

TJK = NT − N − 1

N

N∑

i=1

T−i,

where T−i is T computed using all but the i-th data sample. Simple compu-

tations prove that this procedure solves the bias problem (for simplicity, the

next three results in this section are stated under some weak smoothness

assumptions on f and p; see the appendix for details):

Proposition 27 (Jackknife bias). If the kernel (or bin) width goes to

zero more slowly than N r−1, r > 0, then the sample bias of the jackknifed

version of Mφ,N decays exponentially.

This is almost enough to establish an N−1/2 convergence rate for the es-

timator K̂φ given by maximizing the jackknifed kernel or histogram version

of Mφ,N , under suitable conditions on the smoothness of f . The last step

is to show that Mφ,N(V ) is asymptotically linear in N and smooth enough

in V , that is,

Mφ,N(V ) = Mφ(V ) + pNmV + op(N
−1/2), (2.5)

where op(N
−1/2) is a random variable which is negligible on an N1/2 scale,

and

pNmV ≡
1

N

N∑

i=1

mV (~xi, spikei)

denotes the “empirical process” associated

with some function mV (~x, spike), uniformly differentiable in V and with
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p(~x, spike)-mean zero. We leave the details behind representation (2.5) for

the appendix; basically, mV is computed as a derivative of Mφ,N(V ). Now,

the theory of empirical processes [van der Vaart and Wellner, 1996] states

that pNmV converges in a suitable sense to a Gaussian stochastic process

(this makes intuitive sense, given that for fixed V , pNmV is just a sam-

ple mean of N i.i.d. random variables with finite variance), and this leads,

finally, to the asymptotic representation for K̂φ:

Theorem 28 (γ and α for (K̂φ)). If the approximation error is of order

ar
N , r > 1, then the jackknifed kernel or histogram versions of K̂φ, with

bandwidth N s, −1 < s < −1/r, converge at an N−1/2 rate.

Moreover, N1/2(K̂φ −K) is asymptotically normal, with mean zero and

α(K̂φ) = (trace H−1JH−1)1/2,

where

H ≡ ∂2M(V )

∂V 2

∣∣∣∣
K

and

J ≡ Ep(~x,spike)

(
∂mV

∂V

∣∣∣∣
2

K

)
.

The methods follow, e.g., example

3.2.12 of [van der Vaart and Wellner, 1996] — basically, a generalization

of the classical theorem on the asymptotic distribution of the maximum

likelihood estimator in regular parametric families.

Numerical evidence indicates that α(K̂φ) is often smaller than α(K̂STA)

or α(K̂CORR) (that is, the φ-divergence estimator often converges faster than
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the spike-triggered average or covariance methods, even in the cases when

the latter two methods are known to converge to the correct K), but we have

so far been unable to obtain any general bounds on these quantities. Section

2.6 details a few of these numerical experiments, using both simulated and

real data; see also [Sharpee et al., 2003] for some simulations of a similar

estimator using natural image data.

2.5.2 Computation

We still haven’t mentioned how to actually compute K̂φ. Histogram meth-

ods for the evaluation of Mφ,N(V ) suffer from several problems: it is difficult

to non-adaptively place histogram partitions well for all V simultaneously,

for example, and attempts to place the histogram adaptively greatly com-

plicate hill-climbing algorithms for the maximization of MN(V ). Kernel

methods are more attractive, but require numerical integration of effectively

unconstrained nonlinear functions over m-dimensional spaces. A more effi-

cient approach is a “resubstitution” estimator: we replace numerical inte-

gration with a kind of Monte Carlo integration, using the observed samples

as our integration points. Thus, sticking with the example of φ(t) = t2− 1,

instead of computing the integral

∫
p̂(V ~x, spike)2

p̂(V ~x)p̂(spike)
=

∫
p̂(spike|V ~x)p̂(V ~x|spike),
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we compute the sum

1

Ns

∑

i∈S

p̂(spike = 1|V ~xi) +
1

N −Ns

∑

i∈Sc

p̂(spike = 0|V ~xi), (2.6)

where S is the set of stimuli which induced a spike, and c denotes the

set complement. The conditional measures p̂(spike|V ~x) are estimated via

kernel, as discussed above; again, the jackknife trick can be used to remove

the sample bias, and the asymptotic theory developed in the last section

goes through.

To compute K̂φ, now, we have to maximize Mφ,N(V ); unfortunately,

this function is non-convex in general, and no direct solution seems to ex-

ist. General iterative algorithms such as simulated annealing or gradient

ascent with repeated restarts may, of course, be applied to this problem, but

their convergence is extremely slow. We have developed a specialized ascent

algorithm for maximizing expression (2.6) that is much more efficient. This

algorithm makes use of several tricks which might be useful more generally

for maximizing empirical functionals on spaces of vector spaces; we describe

these ideas in turn below. We plan to make the algorithm publicly avail-

able at http://www.cns.nyu.edu/∼liam, in order to facilitate quantitative

evaluation on as large a variety of neural and synthetic data as possible.

The basic algorithm alternates between a local step and a global step

until a convergence criterion is satisfied. The local step is straightforward:

given the current V0, we compute the gradient of (2.6), using a smooth

(Gaussian, say) kernel; call the gradient ~e0⊥V0. The global step consists of
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finding the constrained maximum of (2.6), where V is allowed to vary only

over the circle

(1 + t2)−1/2(V0 + t~e0), t ∈ ℜ. (2.7)

The first, and most important, trick now is to compute Mφ,N(V ) using not

a smooth kernel, but rather a simple boxcar function. This allows us to

compute our function for all t very quickly (and therefore to find its global

maximum over all t very quickly (noniteratively) as well. The idea is simple:

for a boxcar kernel, Mφ,N(t) changes value a finite number of times, namely

at the points ti at which kernels centered on different points intersect. Since

precomputing these “crossing times” ti is simple trigonometry, we only need

to sort the times and keep track of the value of each change (this turns

out to be very simple as well, since (2.6) is a sum over the same index i)

to compute the full function. This mix of global and local maximizations

greatly increases the efficiency of the algorithm. This also obviates the need

for conjugate gradient ascent techniques [Press et al., 1992], as the boxcar

kernels make Mφ,N(V ) highly unsmooth (i.e., we don’t become trapped in

any long, smooth valleys).

Our other tricks do not have quite the same impact, but are helpful

nevertheless. The next two ideas are about choosing the search direction

~e0 intelligently when local maxima are encountered (i.e., when the circle

search described above returns V0 as the global maximum over t). First,

if we have kept a list of circles we have already searched over, we can use
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a self-avoiding procedure to choose our next search direction: basically, we

choose the next search to be in the direction ~e0 such that

~e0 = argmax~e⊥V0
max

z
D

(
Vz ⊕ ~ez, V0 ⊕ ~e0

)
,

where D() denotes geodesic distance and z indexes all past searches. This

prevents us from searching over ground we have already covered.

The second trick along these lines is a little more interesting, but re-

quires that at least dimX searches have already been made (roughly, we

will need the set of old search circles to span X before this method becomes

useful). The idea is that, with each search, we gain some information on

the global structure of Mφ,N(V ), beyond the simpler local structure we use

to choose gradients, do circle maximizations, and so on. If we can use

this global information to guide our choice of the next search direction, we

should gain in efficiency. The simplest way to do this is a variant of the

principal component analysis-style trick used by the spike-triggered covari-

ance estimator. We form two “covariance” matrices, U and V , as follows:

U is the covariance of a set of points ~yi sampled randomly from the set of

all previous search circles (this is a set of dim X-dimensional points, all of

length unity), and V is the covariance of the same set of points, with norm

scaled now by the value of Mφ,N(V ) at each point, i.e., Mφ,N(~yi)~yi. By

the unitary symmetry of Mφ,N(V ), we can hope that the “variance” of the

data Mφ,N(~yi)~yi should be largest near K, even if we haven’t searched (i.e.,

collected points ~yi) near K yet. Now our best guess at a good search direc-
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tion ~e0 solves the usual eigenvector problem associated with the Rayleigh

quotient corresponding to U and V .

Finally, we can use a few not-so-specialized tricks to help speed up con-

vergence. Most of these are some version of the coarse-to-fine idea. Since

the speed of the algorithm scales inversely with N , but the accuracy scales

proportionally with N , we can run the algorithm for a few iterations on

a subsampled data set (artificially reducing N) to get a rough estimate,

then gradually scale up N to refine our original coarse estimate. Similar

tricks can be played with the kernel width a and dim X, assuming f and

K, respectively, vary slowly enough that coarsening makes sense.

2.6 Application to simulated and real data

In this section we give examples of data sets, both simulated and real, for

which the novel estimator introduced in section 2.5 reveals structure that

is either undetected or contaminated by the usual estimators K̂STA and

K̂CORR. See, e.g., [?, Sharpee et al., 2003] for further numerical compar-

isons.

2.6.1 Numerical comparisons

Figures 2.1-2.3 present simple comparisons of the performance of K̂φ to that

of the standard estimators K̂STA and K̂CORR on simulated data. Simula-

tions here have the advantage, as usual, that we know the “right answer”;
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this allows us to rigorously quantify the distribution of error of these esti-

mators in simple, easy-to-understand situations, and to illustrate, in a less

technical way, some of the ideas presented in more mathematical language

in the preceding sections. Each point in each of these first three figures

corresponds to the error of the two estimators (K̂φ versus K̂STA in 2.1 and

2.2, and versus K̂CORR in Fig. 2.3), given N samples drawn i.i.d. from a

fixed distribution p(~x) and presented to an LN model whose parameters

were chosen randomly on each set of N trials. In each case, the LN model

is one-dimensional (m = 1), for simplicity.

In Fig. 2.1, we chose the input distribution p(~x) and the parameters of

the LN model to be entirely favorable to the performance of K̂STA: p(~x)

was chosen to be standard Gaussian to satisfy the conditions of Theorem 21

(implying that the spike-triggered average does not suffer from an asymp-

totic bias), while the nonlinearity f was chosen to be a simple Heaviside step

function (taking values zero and one), where the step position was chosen

randomly according to a standard normal as well (by Theorem 22, this form

of f implies that α(K̂STA) is always finite, and indeed fairly small with high

probability; the value of the linear filter ~k is irrelevant, by the symmetry

of p). Nevertheless, somewhat surprisingly, K̂φ significantly outperforms

K̂STA on average (p < .05, rank test).

We chose the LN model parameters randomly in Fig. 2.1, partly in

an effort to emulate physical reality, where we have no control over the

parameters, and partly to avoid picking an LN model that happened to
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confound either estimator to an abnormal degree. However, it is worth

showing an example of the estimators’ performance on a single, fixed model

and input distribution, both because single models are perhaps easier to

think about than a family of random models and in order to give a sense of

the variability involved in the above numerical experiment. Thus, in Fig.

2.2, we present an identical simulation, except with the position of the step

in the nonlinearity f (the only random parameter) fixed at 0. The results

are essentially identical, if anything favoring the new estimator even more.

In Fig. 2.3, we use a nonlinearity which is more suited to K̂CORR: f is

quadratic, of the form

f(t) = a(t− b)2,

with a, b chosen randomly (a > 0; we have in mind an energy-type model

for visual cortex cells; see, e.g., [Simoncelli and Heeger, 1998] and references

therein). For Gaussian input data, K̂CORR is competitive with K̂φ (data

not shown), as expected given theorem 23. To provide a physiologically

plausible example for which this is not the case, we took the input distri-

bution p(~x) to be uniform on a hypercube; this corresponds, for example,

to a temporal signal whose value is chosen independently and identically

distributed at each time step. The physical examples we have in mind

here are the full-field white visual flicker stimulus employed, for example,

in [Berry and Meister, 1998, Chander and Chichilnisky, 2001], or the ran-

dom “checkerboard” spatial stimulus used in cortical and thalamic studies
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(e.g., [Reid and Shapley, 2002] and references therein). Finally, we chose

the linear projection ~k randomly on the sphere for each new set of data;

the results did not depend strongly on the identity of the chosen filter (for

instance, the ratio Error(K̂CORR)/Error(K̂φ) was uncorrelated with the

smoothness of ~k; data not shown). Figure 2.3 shows that the new estimator

outperforms the covariance-based estimator by a wide margin, essentially

because of the asymptotic bias effects caused by the non-Gaussianity of the

data, as discussed in Theorem 23.

2.6.2 Retinal ganglion cell data

We turn now to a simple application to real data. We use a data

set described in detail in [Chander and Chichilnisky, 2001] (see also, e.g.,

[Schwartz et al., 2002, Pillow and Simoncelli, 2003]): in brief, salamander

retinal ganglion cells were recorded extracellularly in vitro while a white

binary full-field flicker visual signal (update rate = 33 Hz) was presented.

For this data set, it turns out that K̂φ and K̂STA are consistently highly

correlated (assuming K̂φ is allowed to search for only one vector; data not

shown), and therefore the performance of these estimators is quite similar.

More recently, interest has focused on less informative subspaces, specif-

ically on “suppressive axes” [Schwartz et al., 2002], which are, for example,

revealed by the secondary eigenstructure of K̂CORR, but not detected by

standard spike-triggered average analysis (these secondary axes are, by def-

inition, orthogonal to K̂STA). However, as discussed in section 2.4, K̂CORR
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can be heavily biased if the input distribution p(~x) does not satisfy certain

conditions (c.f. Theorem 23). The current distribution p(~x) is strongly non-

Gaussian, and therefore certainly does not satisfy these conditions (p(~x) is

not even elliptically symmetric, the weaker condition of Theorem 21). As we

show in Fig. 2.4 (and in Fig. 2.3, as well), this can cause some problems. The

left two panels here show p(< K̂CORR, ~x >) and p(spike | < K̂CORR, ~x >)

— the distribution of the raw data projected onto the secondary axis of

K̂CORR, and an estimate of the firing rate given this projection, respec-

tively — for a single ganglion cell.

We see in the bottom panel that K̂CORR has picked out a somewhat

bizarre-looking, nearly discrete projection of p(~x). What, exactly, do we

mean by “bizarre,” here? As discussed in [Diaconis and Freedman, 1984],

random projections of high-dimensional data are nearly Gaussian with

high probability (given the right definitions of “random projection,”

“high-dimensional,” and“nearly Gaussian,” of course, and under cer-

tain weak conditions which happen to be satisfied by the independent

binary p(~x)); therefore, when an ostensibly physical projection, which

should average over many independent time bins, and which should there-

fore (speaking roughly) qualify for consideration under the theorem of

[Diaconis and Freedman, 1984], looks this non-Gaussian, it can be taken

as a sign that something is wrong. In fact, this phenomenon was predicted

by Theorems 21 and 23 (see also [Chichilnisky, 2001]): K̂CORR is being

pulled in the directions of the “corners” of the hypercube from which p(~x)
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is sampling, and is thus strongly biased away from the physically relevant

axes that are modulating the cell’s activity.

What happens when we estimate these secondary axes using K̂φ (con-

strained to return an axis orthogonal to K̂STA), instead of K̂CORR? Ac-

cording to the discussion in section 2.5, the new estimator should not be

susceptible to the artifacts biasing K̂CORR, and as far as we can tell without

objective knowledge of the “true” underlying suppressive axes for this cell,

this appears to be the case. In the right panels of Fig. 2.4, we see that

p(< K̂φ, ~x >) looks much more Gaussian than p(< K̂CORR, ~x >), for ex-

ample. More directly, K̂φ captures significantly (≈ 50%) more information

about the cell’s firing behavior than does K̂CORR, despite the fact that K̂φ

was trained on only 10% of the data provided to K̂CORR. Thus, K̂φ appears

to outperform K̂CORR on real data as well, at least in the not uncommon

case that the input distribution is non-Gaussian.

2.6.3 Motor cortical data

In the preceding, we provided some encouraging numerical comparisons

between K̂STA, K̂CORR, and the new estimator K̂φ. This last subsection

presents some preliminary results which are of interest more for their phys-

iological relevance than for methodological reasons.

We have begun to apply these new spike-triggered analysis tech-

niques to data collected in the primary motor cortex (MI) of awake,

behaving monkeys, in an effort to elucidate the neural encoding of
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time-varying hand position signals in MI. This analysis has led to sev-

eral interesting findings on the encoding properties of these neurons,

with immediate applications to the design of neural prosthetic devices

[Paninski et al., 2002, Shoham et al., 2003]. The monkeys are performing a

random drawing task, designed roughly to mimic everyday (for humans, but

perhaps not monkeys in the wild) manual movement (for methodological de-

tails, see [Paninski et al., 1999, Fellows et al., 2001, Paninski et al., 2003a,

Serruya et al., 2002]); the “stimulus” space X in this context is the fairly

high-dimensional space of time-varying hand position signals.

One novel and surprising result of this analysis is that the relevant K

for MI cells appear to be one-dimensional. In other words, the conditional

firing rate of these neurons, given a specific time-varying hand path, is well

captured by the following model (Fig. 2.5): p(spike|~x) = f(< ~k1, ~x >),

where ~x represents the two-dimensional hand position signal in a tempo-

ral neighborhood of the current time, ~k1 (in a slight abuse of notation)

is a cell-specific affine functional, and f(t) is a scalar nonlinearity which

turns out to be relatively cell-independent. There is no reason to have

assumed MI cells would have this kind of one-dimensional tuning — for

example, it is easy to find V1 cells which are notably multidimensional (e.g.

[Touryan et al., 2002, Rust et al., 2003]) — but it is not hard to see that

our observations are consistent with and extend the classical “cosine” model

of MI tuning [Georgopoulos et al., 1986, Moran and Schwartz, 1999].

We support the qualitative one-dimensional picture in Fig. 2.5 with

141



two somewhat more quantitative results. First, we could find no two-

dimensional parametric model which fit the nonlinearity (in a likelihood

sense) better than a simple one-dimensional model in any of the cells

we examined (after suitable correction for differences in dimensionality

[Schwarz, 1978]). Second, the mutual information in the second most mod-

ulatory axis I(spike; < ~k2, ~x >) is not significantly different from zero

(according to a Monte Carlo test constructed by simulating spike trains

from a one-dimensional model whose parameters were matched and whose

inputs were identical to those of the real cell, then estimating K and

I(spike; < ~k2, ~x >) for this model, repeating the procedure often enough to

construct a nonparametric estimate of the null distribution to test against).

Further details on ~k1, f , and this information analysis will be presented else-

where [Paninski et al., 2002, Shoham et al., 2003, Paninski et al., 2003b].

2.7 Lower bounds

Our final mathematical results are lower bounds on the convergence rates of

any possible K-estimator; these kinds of bounds provide rigorous measures

of the difficulty of a given estimation problem, or of the efficiency of a given

estimator. The first lower bound is local, in the sense that we assume that

the true parameter is known a priori to be in some small neighborhood of

parameter space. Recall that the Hellinger metric between any two densities

is defined as (half of) the L2 distance between the square roots of the
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densities.

Theorem 29 (Local (Hellinger) lower bound). For simplicity, let p be

standard normal. For any fixed differentiable f , uniformly bounded away

from 0 and 1 and with a uniformly bounded derivative f ′, and any Hellinger

ball F around the true parameter (f,K),

lim inf
N→∞

N1/2 inf
K̂

sup
F

E(Error(K̂)) ≥
(

σ(p)(Ep(
|f ′|2

f(1− f)
))1/2

)−1√
dim X − 1.

The second infimum above is taken over all possible estimators K̂.

The right-hand side plays the role of the inverse Fisher information

in the Cramer-Rao bound and is derived using a similarly local anal-

ysis; see [Jongbloed, 2000] for details on the Hellinger technique, or

[Gill and Levit, 1995] on the Bayesian Cramer-Rao technique.

Global bounds are more subtle. We want to prove something like:

lim inf
N→∞

aN inf
K̂

sup
F(ǫ)

E(Error(K̂)) ≥ C(ǫ),

where F(ǫ) is some large parameter set containing, say, all K and all f

for which some relevant measure of tuning is greater than ǫ, aN is the

corresponding convergence rate, and C(ǫ) plays the role of α(K̂) from the

previous sections. So far, our most interesting results in this direction are

negative:

Theorem 30 (φ-divergences are poor indices of K-difficulty). Let

F(ǫ) be the set of all (K, f) for which the φ-divergence “information” be-
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tween ~x and spike is greater than ǫ, that is,

Dφ(p(K~x, spike); p(spike)p(K~x)) > ǫ.

Then, for ǫ > 0 small enough, for any putative convergence rate aN ,

lim inf
N→∞

aN inf
K̂

sup
F(ǫ)

E(Error(K̂)) =∞.

In other words, strictly information-theoretic measures of tuning do not

provide a useful index of the difficulty of the K-learning problem; the in-

tuitive explanation of this result is that purely measure-theoretic distance

functions, like φ-divergences, ignore the topological and vector space struc-

ture of the underlying probability measures, and it is exactly this structure

that determines the convergence rates of any efficient K-estimator. To put

it more simply, the learnability of K depends on the smoothness of f , just

as we saw in the last section (c.f. Theorem 26), a common theme in non-

parametric statistics.

2.8 Conclusion and directions for future work

We have presented here a fairly detailed analysis of the statistical proper-

ties of the LN model (2.1). In particular, we have attempted to elucidate

when and why the common estimators for the LN model parameters work

well, or not. More importantly, we have provided a new estimator which is

guaranteed to recover the true parameters in much greater generality than

was previously possible. We hope that our results will find application in
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understanding the neural processing of naturalistic stimuli; as mentioned

briefly in section (2.6.3), these methods have already led to a better under-

standing of the neural coding of dynamic hand movement signals in primary

motor cortex.

We take this opportunity to outline one obvious avenue for future work:

how do we extend the basic LN model (2.1) in a way that allows us to

capture more of the details of the neural code, while at the same time

retaining some of the simplicity that allows us to estimate the model? We

discuss three such possible extensions below.

2.8.1 Non-Poisson effects

As noted in the introduction, model (2.1) generates spike trains which are

(conditionally inhomogeneous) Poisson processes (note that, even if the

stimulus ensemble is time-translation invariant, the spike train is not nec-

essarily a marginally homogeneous Poisson process); given the input signal

~x, the spikes in one time bin do not depend on those in any other nonover-

lapping bin. We can extend this model by allowing spikes which are close

to each other in time to be dependent (the importance of such an exten-

sion has been noted in several contexts; see, e.g, [Berry and Meister, 1998,

Brown et al., 2002, Pillow and Simoncelli, 2003]). Some natural questions

immediately arise. Does the standard spike-triggered analysis fail in this

case? If so, why? Can we correct for these non-Poisson effects? We can

give at least preliminary answers to all of these questions, at least in the
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following special case:

p(spike|~x, s−) = f(< ~k1, ~x >,< ~k2, ~x >, . . . , < ~km, ~x >)g(T (s−)). (2.8)

Here T is some arbitrary statistic of s−, the spike train up to the present

time (e.g., T could encode the time since the last spike); the “modulation

function” g maps the range of T into the half-interval [0,∞). The only

conditions on f and g are those necessary to make p(spike|~x, s−) a regular

conditional distribution (aside from measurability issues, it is sufficient that

f, g ≥ 0, fg ≤ 1 ∀(K~x, s−)).

To see why the memory effects displayed by (2.8) complicate the

analysis presented in the previous sections, recall the basic idea behind

Chichilnisky’s proof of the fact that, for model (2.1), whenever p(~x) is ra-

dially symmetric, E(K̂STA) lies in K (we are abusing notation slightly; K

here denotes the subspace generated by K, which is assumed to be one-

dimensional, as in section 2.3). We will write E(K̂STA) out and show the

essential point of the proof; then we will show why the memory effects seen

in (2.8) cause problems, and how these problems can be “fixed,” in some

suitable sense. We have

E(K̂STA) =

∫
p(~x|spike)~xd~x

=

∫
p(spike|~x)

p(~x)

p(spike)
~xd~x

=

∫
f(< ~K, ~x >)

p(~x)

p(spike)
~xd~x.

The first equality is Bayes, the second (2.1). The essential point is that the
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conditional probability of a spike given ~x depends only on < ~K, ~x > - the

proof that E(K̂STA) ∈ K follows immediately (after a suitable change of

basis). This key equality does not hold in general for (2.8):

p(spike|~x) =

∫
p(spike|~x, s−)p(s−|~x)ds−

=

∫
f(< ~K, ~x >)g(T (s−))p(s−|~x)ds−

= f(< ~K, ~x >)

∫
g(T (s−))p(s−|~x)ds−

= f(< ~K, ~x >)h(~x).

The first equality is (2.8), the second linearity; the last is by way of defini-

tion: h is an abbreviation for the conditional expectation of g(T (s−)) given

~x. If g ≡ 1 (as in (2.1)), then h(~x) ≡ 1, and we recover E(K̂STA) ∈ K.

However, in general, h is nonconstant in ~x: h depends on ~x not only through

its projection onto ~K, but also through its projection on all time-translates

of K to the left (i.e., all functions k−τ such that k−τ (t) = k(t+ τ), for some

k ∈ K and τ > 0). Most K, of course, are not time-translation invariant.

This breaks the proof and the result; indeed, it is easy to think of simple

(non-pathological) examples of f, g, and radially symmetric p(~x) for which

E(K̂STA) 6∈ K.

So we need to modify K̂STA somehow to bring its expectation back

into the desired subspace. Assume for simplicity that g is bounded below

away from zero and that g and T (s−) are known (the simultaneous esti-

mation of f, g, and K appears to be more difficult; no consistent estimator
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for (f, g,K) seems to be known, although attempts have appeared, e.g.,

[Berry and Meister, 1998]). [Aguera y Arcas et al., 2001] suggest ignoring

all spikes for which g(T (s−)) 6= 1: i.e., form

K̂STA∗ ≡ 1

Ns

∑

i∈S

δ(g(T (si−))− 1)~xi,

where S, again, indicates the set of stimuli corresponding to spikes, and δ

the usual Dirac functional. However, the above string of equations shows

that this procedure can actually make the situation worse: this effectively

sets g equal to zero at all of these points where g 6= 1, which in many

cases makes h more strongly ~x-dependent, not less. In addition, of course,

ignoring these “bad” spikes is expensive from a data collection point of

view. An obvious alternative would be to form

K̂STA∗
≡ 1

Ns

∑

i∈S

g(T (si−))−1~xi.

It is easy to see, from the above discussion, that E(K̂STA∗
) ∈ K.

More complete analysis of this kind of model and estimator would clearly

be useful.

2.8.2 Integrate-and-fire models and logconvexity

Here we analyze an integrate-and-fire version of the LN idea1. More pre-

cisely, consider a model for which the (dimensionless) subthreshold voltage

1Joint work with Jonathan Pillow.
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variable V evolves as

dV (t) =

(
~k ∗ ~x(t)− gV (t)

)
dt + N(t)− (1− Vreset)δ(V − 1), (2.9)

where g denotes the membrane conductance, Vreset < 1 the reset potential,

~k ∗ ~x the convolution of the input signal ~x(t) with the (single) kernel ~k,

and N an unobserved (hidden) noise process. The “leak” and “threshold”

potential here are set at 0 and 1, respectively; the cell emits a single spike

each time V = 1, and the voltage decays back to 0 in the absence of input.

This model, while clearly not completely satisfying from a biophys-

ical point of view, is at least a step away from the essentially phe-

nomenological realm of the LN model towards something more mechanistic

[Reich et al., 1998]. (It is not hard to show that this step is nontrivial in the

sense that the integrate-and-fire model does not fit into the LN framework;

more precisely, under weak conditions on the noise process N , the IF model

does not have the factored form of expression (2.1), or even of (2.8), for

any finite m.) See [Pillow and Simoncelli, 2003], [Paninski et al., 2003c],

and http://www.cns.nyu.edu/∼liam/adapt.html for further analysis of a

few of the interesting differences between integrate-and-fire and LN mod-

els; [Pillow and Simoncelli, 2003], in particular, discuss what is effectively

a zero-noise limit of the estimation problem we consider below.

The estimation problem for this model is identical to that considered

in our LN work: how do we learn ~k from samples of ~x, together with the

concurrent spike times? For the LN model, the difficulty is that we do not
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know f , the nonlinearity following the filtering stage. Here, in contrast,

the nonlinearity is completely determined by only a few parameters. The

obvious approach for estimating k and the parameters of the nonlinearity

is maximum likelihood; the usual asymptotic theory for the MLE applies

(consistency, asymptotic normality, and the asymptotic bias and variance

rates in the sample size N are all easily obtained via straightforward calcu-

lations using Fisher information, etc.). Thus the statistical problem here is

handled completely by standard techniques.

The computational problem, on the other hand, is more interesting. To

compute the MLE, we need to compute the likelihood and develop an algo-

rithm for maximizing it. Our main contribution here is that this likelihood

function is log-convex in the parameters if N is a Gaussian noise process,

independent of the input (see [Pillow et al., 2003] for details on efficient like-

lihood computations). This logconvexity, in turn, implies that any ascent

algorithm will converge to the MLE without getting trapped in any local

maxima. Thus the optimization problem inherent in computing the MLE

— and by extension, the construction of a computationally and statistically

efficient estimator — is tractable.

The likelihood function for this model is easily computed. Basically,

the likelihood is a product over spikes (by the obvious conditional renewal

property of the model); each multiplicand, in turn, is a Gaussian integral

over a certain set, namely, the probability that the Gaussian voltage process

induced by the (known) stimulus ~xi convolved with the (unknown) kernel
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~k and generated by the Brownian takes its value within the set Ci defined

as follows:

Ci =

{(
V (s) : V (s) < 1, 0 < s < ti

)
∩

(
V (ti) ≥ 1

)}
,

i.e., the set of voltage traces that stay subthreshold only until the time of

the spike, ti. Symbolically, then, define the likelihood as

p{~xi,ti}(
~k, g, σ, Vreset) =

∏

i

∫

Ci

G(~xi, ~k, σ, g, Vreset),

where G denotes the obvious Gaussian probability (see the appendix for

details), and the product is over all spikes. This likelihood is the object we

need to maximize as a function of the parameters (~k, σ, g, Vreset).

Our main result is the following. We say that a smooth function on

some Euclidean domain has no local extrema if the set of points at which

the gradient vanishes is connected and contains a global extremum; thus

all “local extrema” are in fact global, if a global extremum exists. (The

existence of a global maximum in our case is assured asymptotically by

standard results on the MLE [van der Vaart, 1998].)

Theorem 31. The likelihood p{~xi,ti}(
~k, g, σ, Vreset) has no local extrema in

(~k, g, σ, Vreset), for any data {~xi, ti}.

It is worth saying a few words about logconvexity and its relevance for

the MLE. The classical approach for establishing the nonexistence of local

extrema is convexity: convexity of a function on Euclidean space obviously
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precludes any local extrema. However, the basic idea can be extended

with the use of any invertible function: clearly, if f has no local extrema,

neither will g(f), for any strictly increasing real function g. The logarithm,

of course, is a natural choice for g in any probabilistic context in which

independence plays a role. So logconvexity buys us everything convexity

does, for less effort (since sums, as we will see in the proof, are much

easier to work with than products). Indeed, since convexity of a function

f is strictly stronger than logconvexity (as is easily demonstrated using

Jensen’s inequality), logconvexity is often a powerful tool even in situations

for which convexity is useless. This basic idea seems to be less well-known

than it should be.

We should also note that the proof extends without difficulty to some

other noise processes which generate logconcave densities (where white noise

has the standard Gaussian density); for example, the proof is nearly iden-

tical if N is allowed to be colored Gaussian noise with nonzero drift.

2.8.3 Network effects

The final extension is perhaps the simplest; for this reason, it might turn

out to be the most powerful. The basic idea is that the mathematics of the

LN model don’t care what the “inputs” ~x are; we already emphasized, for

example, that ~x could include either sensory or motor data. Therefore we

can also let ~x include neural data — either from different cells which might

have been recorded simultaneously on a multielectrode array, or from the
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same cell at positive leads or lags — without having to modify any of the

analytical techniques discussed above. More precisely, we modify (2.1) to

p(spike|~x0, ~n) = f(< ~k0, ~x0 > + < ~kn, ~n >),

where ~n denotes the side neural information (a possibly nonlinearly trans-

formed vector of spike counts from nearby cells, or some vector representa-

tion of the recent firing history of the cell in question, or some combination

thereof). The linear functional ~kn here could be thought of as an appendage

of the original kernel ~k1. Clearly, this model is still of LN form if we let

~k1 = ~k0 ⊗ ~kn and ~x = ~x0 ⊗ ~n. While this augmented model appears at first

sight to be a rather crude modification of (2.1), much of the rough intuition

used to be justify the LN model also applies unchanged here (recall the

brief discussion in the introduction).

Physical interpretation aside, the model is useful statistically: the inclu-

sion of these side neural effects can increase the predictability of some MI

neurons greatly, even given the full kinematic signal. We show an example in

Fig. 2.6; for this cell, inclusion of the population data significantly increased

the predictability of the spike train, as measured both by I(spike; < k̂0, ~x >)

versus I(spike; < k̂1, ~x >) and by the peak observed conditional firing rate.

We see a significant effect in the population summary data as well (Fig.

2.7, left). Note again that these nonlinearities and information values were

calculated using cross-validation, so we are not simply observing overfitting

to the extra parameters in ~x.

153



Finally, it is worth noting that observing the network activity gives

roughly the same amount of information as does observing the position

of the hand (Fig. 2.7, right), despite the fact that we are only observ-

ing a tiny fraction of the full MI network (5-25 cells observed simulta-

neously for these plots). It is interesting to compare this result to that

of [Tsodyks et al., 1999], who (implicitly) constructed a single-dimensional

neural-only LN model using simple spike-triggered averaging (without the

linear regression correction) for V1 cells, using voltage-sensitive dye images

instead of multineuronal recordings.

We are currently examining the implications of our results for the prob-

lem of decoding this population neural activity into an estimate of the ongo-

ing hand position signal, for applications to the design of neural prosthetics

[Paninski et al., 2002, Shoham et al., 2003].

Appendix A: Proofs

A.1 K̂STA

Consistency of K̂RSTA: sufficiency. By the strong law of large num-

bers, the proof comes down to a bias calculation, and Chichilnisky’s proof

[Chichilnisky, 2001] for K̂STA illustrates the source of this bias very nicely.

First, the conditional expectation E(< ~x,~k1 > |spike) exists by the finite-

variance assumption on p(~x). Then, for K̂RSTA, we have the following string
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of equalities:

E(K̂RSTA) = E(AK̂STA)

=

∫
A~xp(~x|spike)d~x

=

∫
A~x

p(spike|~x)

p(spike)
p(~x)d~x

=

∫
A~x

f(< ~K, ~x >)

p(spike)
p(~x)d~x

=

∫
A1/2~y

f(< ~K,A−1/2~y >)

p(spike)
p(A−1/2~y)|A|1/2d~y

=

∫
A1/2~y

f(< A−1/2 ~K, ~y >)

p(spike)
p(A−1/2~y)|A|1/2d~y

= A1/2

∫
~y
f(< A−1/2 ~K, ~y >)

p(spike)
p(A−1/2~y)|A|1/2d~y.

The first two equalities are by definition, the third Bayes, the fourth (2.1),

the fifth a linear change of coordinates y = A1/2x, the sixth by the sym-

metry of A−1/2, and the seventh by linearity. The rest of the proof follows

[Chichilnisky, 2001] (see also section 2.8.1).

Consistency of K̂STA: necessity. The claim is that if p is asymmetric,

then there exists some f and ~v for which

∫
~x

f(< ~v, ~x >)

p(spike)
p(~x)d~x 6= Cf,~v~v,

for some scalar Cf,~v. The claim is equivalent to the following: if

∫
~x

f(< ~v, ~x >)

p(spike)
p(~x)d~x = Cf,~v~v ∀f,~v, (2.10)
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then p is symmetric. It suffices to prove (2.10) for simple functions, that

is, f = 1 on some set B, and f = 0 everywhere else. Thus condition (2.10)

reduces to

∫

<~v,~x>∈B

< ~u, ~x > p(~x)d~x = 0 ∀B ∈ B, ~u⊥~v,

with B the class of all measurable sets. This, in turns, implies that the char-

acteristic function (Fourier transform) of p(~x), p̌(~s), satisfies the following

differential equation:

∂p̌(~s)

∂~t
= 0 ∀~s⊥~t.

Since p̌ is everywhere differentiable, by the finite-power assumption on p, the

above equation implies that p̌(~s) is radially symmetric in ~s, which, finally,

implies the symmetry of p.

Convergence rate α(K̂RSTA). Assume p is elliptically symmetric. By the

multivariate CLT and the computations above, K̂RSTA is asymptotically

normally distributed with mean

E(< ~x,~k1 > |spike)~k1

and covariance matrix

1

Ns

A2C,

with

< ~v,C~v >=

∫
< ~v, ~x >2 dp(~x|spike) ∀~v ∈ X ′.
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The asymptotic error behaves like the norm of this distribution orthogonal

to ~k1, normalized by the projection of the mean of the distribution onto ~k1.

The final result is

α =
(trace EtA2CE)1/2

|E(< ~x,~k1 > |spike)|
,

where E is any matrix whose columns are an orthonormal basis for the

subspace of X ′ orthogonal to K. This reduces to the quoted result when p

is Gaussian (in which case

EtA2CE = EtAE)

and white.

A.2 K̂CORR

Consistency of K̂CORR: necessity. The argument for K̂CORR is similar

to that for K̂STA. We want to prove that if p is non-Gaussian, then there

exists some f and ~u⊥~v for which
∫

< ~u, (~x− Ep(~x|spike)~x) >2 f(< ~v, ~x >)

p(spike)
dp(~x) 6=

∫
< ~u, ~x >2 dp(~x)

(recall we assumed that Ep(~x)~x = 0). Without loss of generality, we assume

that p is white, that is,
∫

< ~u, ~x >2 dp(~x) = 1 ∀~u : ||~u||2 = 1;

translating into the contrapositive, again, we reformulate the claim as fol-

lows: if
∫

< ~u, (~x− Ep(~x|spike)~x) >2 f(< ~v, ~x >)

p(spike)
dp(~x) = 1 ∀f, ~u⊥~v, (2.11)
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then p is Gaussian. The proof proceeds in two stages: first, we prove that

the above condition implies that p is symmetric (making use of the result for

K̂STA); then we prove that any symmetric p satisfying (2.11) is Gaussian.

Again, we may restrict our attention to simple functions f .

First the symmetry. Note that (2.11) can be written as a mixture of

conditional variances, given < ~v, ~x >. More formally, for simple f ,

∫
< ~u, (~x− Ep(~x|spike)~x) >2 f(< ~v, ~x >)

p(spike)
dp(~x)

=
1

p(spike)

∫

<~v,~x>∈B

< ~u, (~x− Ep(~x|spike)~x) >2 dp(~x);

in other words, (2.11) says that the conditional variance of < ~u, ~x >, given

< ~v, ~x >∈ B, is constant (for all vectors ~u⊥~v and all measurable sets B).

Now consider disjoint subsets of B, B1 and B2, B = B1 ∪ B2. It is clear

that the following “mixture” equation holds:

p(< ~u, ~x > |< ~v, ~x >∈ B)

=
1

p(< ~v, ~x >∈ B)

(
p(< ~v, ~x >∈ B1)p(< ~u, ~x > | < ~v, ~x >∈ B1)

+p(< ~v, ~x >∈ B2)p(< ~u, ~x > | < ~v, ~x >∈ B2)

)
.

Now, since the mixture of two densities with the same positive, finite vari-

ance but different means has strictly greater variance than either of the two

original densities, and each component in the above equation has the same
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variance, each component must also have the same mean. That is,

∫

<~v,~x>∈B

< ~u, ~x > p(~x)d~x =

∫

<~v,~x>∈B1

< ~u, ~x > p(~x)d~x

=

∫

<~v,~x>∈B2

< ~u, ~x > p(~x)d~x

= 0.

The above equations hold for all such B,B1, B2, and are equivalent to con-

dition (2.10), from the proof for K̂STA; thus p is symmetric.

Now, given that p is symmetric, we can write

p(~x) = g(||~x||22),

for some scalar function g; it turns out that (2.11) provides us with a simple

differential equation for p (and hence g) in Fourier space. For simple f and

symmetric p, (2.11) reduces to

∫

<~v,~x>∈B

< ~u, ~x >2 dp(~x) =

∫

<~v,~x>∈B

dp(~x) ∀B ∈ B, ~u⊥~v.

In the Fourier domain, this means that

∂2p̌

∂~t2
= −p̌(~s), ∀~s⊥~t : ||~t||2 = 1.

Applying this equation to g, we find that

∂ǧ(s)

∂s
= −ǧ/2,

i.e.,

ǧ(s) = ce−s/2,
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for some constant c; the proof is complete upon applying the inverse Fourier

transform and normalizing.

Convergence rate α(K̂CORR). Assume p is nondegenerate Gaussian. By

the multivariate CLT, ∆̂σ2 is asymptotically normal with mean ∆σ2 and

covariance

C ≡ E(∆̂σ2
ij −∆σ2

ij)(∆̂σ2
gh −∆σ2

gh) =
1

Ns

(σ2
s,ihσ

2
s,jg + σ2

s,igσ
2
s,jh),

where σs abbreviates the spike-triggered covariance matrix. Again, the

proof relies on an analysis of the (normalized) behavior of the estimate

on the orthogonal complement of K. This comes down to the usual local

analysis, as follows.

Let eig1 denote a top eigenvector map, that is, a map

eig1 : ℜ(dim X)2 → ℜdim X ,

taking a matrix to its (normalized) top eigenvector (in the case we will be

dealing with, this map is uniquely defined almost surely). We know that,

for Ns large enough,

eig1∆̂σ2 − eig1∆σ2 ≈ Deig1(∆σ2)(∆̂σ2 −∆σ2),

where Deig1(∆σ2) denotes the Jacobian matrix of eig1 at the point ∆σ2;

∆̂σ2 −∆σ2 is normally distributed with mean zero and covariance C, and

so we know everything we need to know about the asymptotic behavior of

∆̂σ2 if we can compute Deig1(∆σ2) on the (proper) subspace of ℜ(dim X)2 on
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which C is a positive definite operator (this subspace is clearly contained in

the space of all possible symmetric matrices, for example). The final result

is that

α(K̂CORR)N−1/2
s =

(
trace E(σ2)−1Deig1(∆σ2)CDeig1(∆σ2)t(σ2)−1Et

)1/2

.

The computation of the derivative turns out to be fairly straightforward.

We want to look at how much the symmetric perturbation ǫB, ǫ small,

affects the i-th component of the first eigenvector of the symmetric matrix

A = V DV t, with V orthonormal and D diagonal. This is not difficult if

V is the identity matrix; in this case, if D is zero everywhere but the first

element λ, say, then a little direct computation shows that

eig1(D + ǫB)− eig1D ≈
ǫ

λ
Z1B,

where Z1 is the operator mapping a matrix to its first column, after setting

the first element to zero. The general result now follows after a change of

basis or two:

eig1(A + ǫB)− eig1A ≈
ǫ

λ
V Z1V

tBV.

Plugging everything in, we get the stated result.

A.3 K̂φ

Consistency of K̂φ. We want to prove that

argmaxV MN(V )→ K
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almost surely. According to arguments like those leading to Corollary 3.2.3

of [van der Vaart and Wellner, 1996], it suffices to prove the following two

statements:

1) M(V ) has a well-separated, unique maximum at K;

2) supV |MN(V )−M(V )| → 0 almost surely.

When we say that M(K) is a “well-separated” maximum of M(V ), we mean

that

M(K) > sup
V ∈Oc

M(V ),

where O is any open set containing K.

Part 1) is fairly straightforward. Under the conditions of the theorem,

the sufficiency part of the data processing inequality ensures that K is a

unique maximum. To see that this unique maximum is well-separated we

need only note [van der Vaart and Wellner, 1996] that M(V ) is continuous

in V under the conditions of the theorem, with compact domain, and that

continuous functions on compact domains attain their suprema; thus, since

M(V ) attains its maximum on the compact set Oc, maxV ∈OcM(V ) must

be strictly less than the unique maximum M(K).

Part 2) requires a little more effort. Letting WaN
∗ g denote the con-

volution of the kernel WaN
with the function g, define the deterministic

sequence of functions

M∗
N(V ) ≡

∫

spike,X

(WaN
∗ p(spike, V ~x))2

p(spike)(WaN
∗ p(V ~x))

.

Then the proof splits into two parts:
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2a) supV |MN(V )−M∗
N(V )| → 0 a.s.;

2b) supV |M∗
N(V )−M(V )| → 0.

We handle part a) with probability inequalities on uniform devia-

tions of sample means from expectations (the standard VC inequali-

ties [van der Vaart and Wellner, 1996, Devroye et al., 1996] are sufficient);

since MN(V ) is continuous on compact subsets of Gm(X) in the topology

generated by uniform convergence and p is tight, the almost sure conver-

gence follows.

We prove b) by noting that M∗
N(V ) is uniformly continuous in kernel

width and V . Thus it is enough to prove pointwise convergence; this can be

done under standard conditions on W [Devroye and Lugosi, 2001], either

using Fourier transforms or by direct argument.

Bias of K̂φ. We need to quantify the rate of decay of MN(V )−M(V ). As

indicated in the proof of the consistency theorem, this error has two parts:

sample error and approximation error. The sample error, in addition, can be

broken up into a bias term and a variance term. The bias term is what will

cause us some problems, and it turns out that we can compute it explicitly.

We have

E(MN(V )−M(V )) = E

( ∫

X,spike

p̂(V ~x, spike)2

p̂(V ~x)p̂(spike)
−

∫

X,spike

p(V ~x, spike)2

p(V ~x)p(spike)

)

=

∫

X

(
E(

∑

spike

(
p̂(V ~x, spike)2

p̂(V ~x)p̂(spike)
))−

∑

spike

(
p(V ~x, spike)2

p(V ~x)p(spike)
)

)
,
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by definition, linearity, and Fubini.

Now we write out the expectation inside the integral. To simplify the

computations, we assume either that we are dealing with the histogram

estimator or that the kernel is a simple boxcar; this makes p̂ a constant

multiple of a binomial random variable. (The extension to more general

kernels is not conceptually difficult [van der Vaart and Wellner, 1996], but

precludes the direct calculations presented below.) Assume that N is large

enough to replace p̂(spike) with p(spike); this can be made rigorous with

the usual exponential (Chernoff) inequalities [Devroye et al., 1996]. Let

Wa(x) denote the m-dimensional cube of width a centered on x, p∗ the

smoothed version of p, as above, s the event (spike = 1), and B(i, N, p) the
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probability mass of a binomial with parameters N and p on count i; then

E (
∑

spike

(
p̂(V ~x, spike)2

p̂(V ~x)p̂(spike)
)) ≈ E(

∑

spike

(
p̂(V ~x, spike)2

p̂(V ~x)p(spike)
))

=
N∑

i=0

B(i, N,

∫

Wa(V ~x)

p(V ~x))
i∑

j=0

B(j, i, p∗(s|V ~x))

1
p(s)

( j
amN

)2 + 1
1−p(s)

( i−j
amN

)2

i
amN

=
N∑

i=1

B(i, N,

∫

Wa(V ~x)

p(V ~x))
1

iamN

[
1

p(s)

(
(ip∗(s|V ~x))2

+ ip∗(s|V ~x)(1− p∗(s|V ~x))

)

+
1

1− p(s)

(
(i(1− p∗(s|V ~x)))2 + ip∗(s|V ~x)(1− p∗(s|V ~x))

)]

=
1

amN

[ N∑

i=1

B(i, N,

∫

Wa(V ~x)

p(V ~x))i

(
p∗(s|V ~x)2

p(s)
+

(1− p∗(s|V ~x))2

1− p(s)

)

+p∗(s|V ~x)(1− p∗(s|V ~x))(
1

p(s)
+

1

1− p(s)
)(1− (1−

∫

Wa(V ~x)

p(V ~x))N)

]

=
∑

spike

(
p∗(V ~x, spike)2

p∗(V ~x)p(spike)
) + Bs(V ),

where we have abbreviated the sample bias in our estimate of M(V ) as

Bs(V ) ≡ 1

amN

∫

X

(
p∗(s|V ~x)(1− p∗(s|V ~x))

p(s)(1− p(s))
(1− (1−

∫

Wa(V ~x)

p(V ~x))N)

)
.

To get a sense of how this behaves, let p be bounded and continuous,

say; then the sample bias is roughly

1

amN

∫

X

(
p∗(s|V ~x)(1− p∗(s|V ~x))

p(s)(1− p(s))
(1− e−amNp(V ~x))

)
.

Now if p decays quickly enough (say it has compact support, to make things

obvious), then the final term in the integral above tends to unity and we
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are left with a bias in our estimate of M(V ) of order (amN)−1. In turn,

since the maximum of the above integral with respect to V is clearly not K

in general, we are left with a bias of size up to (amN)−1/2 in our estimate

of argmaxV M(V ), as is easy to see after expanding E(Mφ,N) about K. We

should note that most of the above can be generalized to other choices of

φ, using a second-order Taylor expansion.

If the sample bias for estimating M(V ) is of order (amN)−1, and the

approximation bias is of order ar, say, for r > 0, then if we equate the two

rates to minimize their sum we get that the optimal rate of decay in kernel

width is

a ∼ N
−1

r+m ,

corresponding to an optimal bias rate for M(V ) of

bias ∼ N
−r

r+m ,

which in turn means that the optimal bias for estimating argmaxV M(V ) is

of order N
−r

2(r+m) .

Bias of the jackknifed kernel estimator. We write out the bias of the
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jackknifed estimator, using the formula above:

ETJK = NET − N − 1

N

N∑

i=1

ET−i

= N
1

amN

∫

X

p∗(s|V ~x)(1− p∗(s|V ~x))

p(s)(1− p(s))
(1− (1−

∫

Wa(V ~x)

p(V ~x))N)

−N − 1

N

N

am(N − 1)

∫

X

p∗(s|V ~x)(1− p∗(s|V ~x))

p(s)(1− p(s))

(
1

− (1−
∫

Wa(V ~x)

p(V ~x))N−1

)

=
1

am

∫

X

p∗(s|V ~x)(1− p∗(s|V ~x))

p(s)(1− p(s))

(
(1−

∫

Wa(V ~x)

p(V ~x))N−1

− (1−
∫

Wa(V ~x)

p(V ~x))N

)

=
1

am

∫

X

(
p∗(s|V ~x)(1− p∗(s|V ~x))

p(s)(1− p(s))

(1−
∫

Wa(V ~x)

p(V ~x))N−1

∫

Wa(V ~x)

p(V ~x)

)

=

∫

X

(
p∗(s|V ~x)(1− p∗(s|V ~x))

p(s)(1− p(s))

(1−
∫

Wa(V ~x)

p(V ~x))N−1Wa ∗ p(V ~x)

)
.

Under the conditions stated above, this dies exponentially.

Convergence rates γ and α for K̂φ. Representation (2.5) follows from

a fairly classical first-order expansion; see, e.g., [Serfling, 1980] for back-

ground. pNmV is the Frechet differential (aka the “functional derivative”

to physicists) of Mφ,N(V ) at Mφ(V ) in the direction of pN − p; the repre-

sentation as a sum of i.i.d. random variables follows from the the linearity
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of the differential. We obtain

mV (~x, spike) = 2
p(spike|V ~x)

p(spike)
−

∑

spike

p(spike|V ~x)2

p(spike)
−

∫
dp(~x)

(
p(spike|V ~x)

p(spike)

)2

.

The random variable mV (~x, spike) is bounded, thus obviously has

finite variance. That the remainder term in (2.5) is op(N
−1/2) fol-

lows by computing its variance explicitly, roughly following the compu-

tation of the bias terms above. We skip the details. The convergence

rate and limit distribution is obtained by applying Theorem 3.2.10 of

[van der Vaart and Wellner, 1996] to pNmV .

A.4 Lower bounds

Local (Cramer-Rao / Hellinger) lower bounds. The basic idea be-

hind the proof is as follows. For any sufficiently regular finite-dimensional

statistical model, the Cramer-Rao bound gives a lower bound on the conver-

gence rate. The models we are dealing with are not finite-dimensional; nev-

ertheless, we can apply the bounds to finite-dimensional submodels within

the complete, infinite-dimensional family, and then try to make the bound

as large as possible by choosing the most difficult submodel. By “most

difficult” we mean, roughly: as close as possible to the true f,K, p in some

probabilistic sense, but as far away as possible in the sense of the error

metric (on the manifold Gm(X)). In other words, we want the models to be

as wrong as possible, but easily confusible with f,K, p.

The most obvious such submodel to try is obtained by keeping f fixed
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(we assume p is fixed), and simply rotating K around in G1(X). More

concretely, we define our family to be

F0 ≡
{

(q, g, V ) : q = p, g = f, V ∈ G1(X)

}
.

To apply Cramer-Rao to this family (under the stated conditions), we

need to define an orthonormal basis of the tangent space to G1(X) at K,

{ei}1≤i<m; this induces a natural coordinate chart of G1(X),

kǫ,i ≡ (1 + ǫ2)−1/2(k + ǫei).

The i-th component of the score vector when a spike occurs is given by

∂logfi

∂ǫ
=

f ′(K~x) < ei, ~x >

f(K~x)
;

plugging this into the asymptotic minimax form of the standard Cramer-

Rao bound [Gill and Levit, 1995], we have

lim inf
N→∞

N1/2 inf
K̂

sup
F

E(Error(K̂)) ≥ (trace IF0(p, f,K)−1)1/2,

where the Fisher information for F0 at the true model is given by

IF0(p, f,K) = Ep

(
< ei, ~x >< ej, ~x > f ′(< ~k, ~x >)2

f(< ~k, ~x >)(1− f(< ~k, ~x >))

)
.

This reduces to the quoted result when p is, e.g., standard normal.

A more systematic approach to the search for “hard” subfamilies re-

quires a more rigorous definition of the notion of “confusibility” between

probability measures. While the detailed theory is beyond the scope of this

paper, we mention that an appropriate measure of confusibility is given by
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the Hellinger distance between two probability measures; recall that this

distance is a kind of L2 norm between (the square roots of) probability

distributions, and can be written in our case as the square root of

H2
p (f,K; h, V ) ≡ 1

2

∫

X

(
f(K~x)1/2 − h(V ~x)1/2

)2

dp(~x).

For our purposes, it suffices to note that, for sufficiently close models (K, f)

and (V, h),

H2
p (f,K; h, V ) ∼

∫

X

(
(f(K~x)− h(V ~x))2

f(K~x)

)
dp(~x).

Simple computations with this asymptotic form of Hellinger distance indi-

cate a stronger subfamily:

F1 ≡
{

(q, g, V ) : q = p, V ∈ G1(X), g(t) = Ep(~x|<V,~x>=t)f(K~x)

}
.

The final result is

lim inf
N→∞

N1/2 inf
K̂

sup
F

E(Error(K̂)) ≥ (trace IF1(p, f,K)−1)1/2,

with

IF1(p, f,K) = Ep

(
< ei, ~y >< ej, ~y > f ′(< ~k, ~x >)2

f(< ~k, ~x >)(1− f(< ~k, ~x >))

)
,

where we have made the abbreviation

~y = ~x− Ep(~x|<k,x>)~x.

This inequality is in general stronger, but reduces to the first when p is,

say, elliptically symmetric.
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Global minimax lower bound. We mimic

[Ritov and Bickel, 1990] (Theorem 2). Let K0 and KN be separated by

a distance of aN . It suffices to put prior distributions πN on the space of ǫ-

tuned LN models supported on these two planes — that is, the conditional

distributions given by model (2.1), with K given by K0 or KN , such that

Dφ(p(K~x, spike); p(K~x)p(spike)) > ǫ

— such that the conditional error probability given N data samples of the

best hypothesis test between K0 and KN converges to 1/2 as N → ∞.

Since the best Bayesian test between two aN -separated subspaces has error

bounded away from zero, we have an order bound on the error of any

minimax estimator, and the claim is proven. The basic idea behind the

construction of the prior is to let “typical” functions (roughly, any function

contained in the support of πN) vary much more rapidly than the average

distance between the projected samples K~xi; this makes it impossible for

any hypothesis test to discern the direction of the underlying conditional

probability contour lines which run orthogonal to K. We skip the details,

which are easy to verify given [Ritov and Bickel, 1990].

A.5 Logconvexity for the integrate-and-fire model

Proof. The proof is built on the following basic result (see, e.g.,

[Bogachev, 1998]).

Theorem ([Rinott, 1976]). If p is a logconcave probability density func-
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tion on Euclidean space, then for any Borel sets A and B, for all t in [0, 1],

log p(tA + (1− t)B) ≥ t log p(A) + (1− t) log p(B),

that is, the corresponding measure is logconcave.

(For uniqueness of the global maximum, we would need the simple ex-

tension of this result that if p is strictly logconcave and A and B have

positive p-measure, then the inequality is strict for all t in the open unit

interval. To prove the nonexistence of local extrema, however, this is not

necessary.)

Our proof basically consists of translating this result into the terminol-

ogy of our problem. Let p be standard normal on Euclidean space (i.e.,

zero mean, identity covariance). Then p is obviously logconcave. Let C be

any Borel set (e.g., the set satisfying the LIF constraints). Let p~x,~k,σ,g,Vreset

denote the Gaussian probability density function induced by input ~x and

parameters (~k, σ, g, Vreset). The mean, µ, of this Gaussian is equal to the

solution of the noiseless version of the integrate-and-fire dynamics, on the

interval [0, ti]:

∂V (t)

∂t
=< ~k, ~xi(t) > −gV (t),

with initial data

V (0) = Vreset,

that is:

V (t) = Vresete
−gt+ < ~k, ~x > ∗e−gt.
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The covariance Γ, in turn, is given by Et
gEg, where Eg is the convolution

operator corresponding to e−gt. Then

p~x,~k,σ,g,Vreset
(C) = p(Γ−1/2(C − µ))

= p(Γ−1/2(C − Eg(Vresetδ(0)+ < ~k, ~x >)))

= p(σ−1((Eg)
−1C − (Vresetδ(0)+ < ~k, ~x >))).

Finally, for any fixed ~x, t, (~k0, σ0, g0, Vreset,0), (~k1, σ1, g1, Vreset,1), and Borel

C, define the sets

A = σ−1
0

(
(Eg0)

−1C − (Vreset,0δ(0)+ < ~k0, ~x >)

)

and

B = σ−1
1

(
(Eg1)

−1C − (Vreset,1δ(0)+ < ~k1, ~x >)

)
.

Our strategy now is to find some smooth, invertible parameterization

of (~k, g, σ, Vreset) for which the convex translation of A into B corresponds

to a convex line in the new parameter space; then we can use the theorem

from Bogachev to say that the likelihood (i.e., the integral of the Gaussian

process over the subthreshold spiking set C) given one piece of data is

logconcave (for any data) in the new parameter space. The form of this

parameterization should be clear enough: σ corresponds to a scale factor,

~k and Vreset translations, and g a rotation (Eg is unitary).

The rest is starightforward. Since the total loglikelihood function, given

a collection of x and corresponding spike times, is a sum of logs of logconcave
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functions (i.e., a sum of concave functions), the loglikelihood is concave and

therefore has no local extrema, as the sets

{x : f(x) >= y}

are convex for a concave function f and any scalar level y. (Note that

everything in sight is smooth, so our definition of local extrema in terms

of vanishing gradients corresponds exactly to the more usual definition.)

Now we only need to invert our parameterization of (~k, g, σ, Vreset); since

diffeomorphisms can neither create nor destroy zero-gradient points, and

the image of a convex set under a continuous map is connected, the proof

is complete.
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Figure 2.1: Plot of the error for K̂φ vs. that of K̂STA. p(~x) = Gaussian white

noise; f is a step function, where the step position is chosen randomly. Axes

index error in radian units. N = 80 and dimX = 3 here; these small values

were chosen for computational efficiency, but similar results are seen with larger

values (see Fig. 2.3, for example). The error of K̂φ is slightly (but significantly)

smaller than that of K̂STA for these parameter settings.
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Figure 2.2: Plot of the error for K̂φ vs. that of K̂STA; parameters as in Fig. 2.1,

except the step is always at zero. Conventions as in Fig. 2.1.
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Figure 2.3: Plot of the error for K̂φ vs. that of K̂CORR. p(~x) = uniform on

hypercube; ~k is chosen randomly; f is quadratic, with the center and scale chosen

randomly. N = 200 and dimX = 10 here; conventions as in Fig. 2.1.
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Figure 2.4: Comparison of second most informative axis in salamander retinal

ganglion cell data, as estimated by K̂CORR (left) and K̂φ (right). Top plots

show nonlinearity (expected firing rate given < ~k, ~x >), estimated via adaptive

histogram; bottom plots show raw marginal histograms p(< ~k, ~x >). K̂φ extracts

stronger tuning (≈ 50% greater peak firing rate; note difference in scales) by

avoiding the artifact encountered by K̂CORR (visible in left histogram).
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Figure 2.5: Example f̂(K̂~x) functions, computed from two different MI cells,

with rank K̂ = 2; the x- and y-axes index < k̂1, ~x > and < k̂2, ~x >, respectively,

while the color axis indicates the value of f̂ (the conditional firing rate given

K̂~x), in Hz. The scale on the x- and y-axes is arbitrary and has been omitted.

K̂ was computed using the φ-divergence estimator, and f̂ was estimated using

an adaptive kernel within the circular region shown (where sufficient data was

available for reliable estimates). Note that the contours of these functions are

approximately linear; that is, f̂(K̂~x) ≈ f0(< ~k1, ~x >), where ~k1 is the vector

orthogonal to the contour lines and f0 is a suitably chosen scalar function on the

line.
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Figure 2.6: Comparison of estimated tuning given kinematic data only

(p(spike| < k̂0, ~x >); left panels) versus kinematic data augmented with neu-

ral data recorded from adjacent electrodes (p(spike| < k̂1, ~x >); right). For this

cell, network effects increased I(spike| < k̂0, ~x >) by approximately 50%, with a

concurrent increase in observed peak conditional firing rate.

180



0.005 0.01 0.015 0.02 0.025

0.005

0.01

0.015

0.02

0.025

kin info

ki
n

 +
 n

e
u

r 
in

fo

2 4 6 8 10 12 14

x 10
−3

2

4

6

8

10

12

14

x 10
−3

pos info

n
e

u
r 

in
fo

Figure 2.7: Population comparison of information values (bits, measured in 10

ms bins) for full model, including network effects, vs. model given kinematic

data alone (left), and for neural model only vs. position only (right). Each point

represents a single cell; diagonal line indicates unity.
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CHAPTER 3

Information-theoretic design of experiments

3.1 Introduction

Many experiments are undertaken with the hope of elucidating some kind

of “input-output” relationship: the experimenter presents some stimulus to

the system under study and records the response. More generally, the exper-

imenter places some observational apparatus in some state — for example,

by pointing a microscope to a given location or selecting some subfield in a

database stream — and records the subsequent observation. If the system

is simple enough and enough observations are made, the resulting collec-

tion of data should provide a sufficiently precise description of the system’s

overall behavior.

Given this basic paradigm, in which the experimenter has some kind of

control over what stimulus is chosen or what kind of data is collected, how do

we design our experiments to be as efficient as possible? How can we learn
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the most about the system under study in the least amount of time? This

question becomes especially pressing in the context of high-dimensional,

complex systems, where each input-output pair typically provides a small

amount of information about the behavior of the system as a whole and

opportunities to record responses are rare and/or expensive. In such cases,

good experimental design can play an essential role in making the benefits

of the experiment worth the cost.

How can we precisely define this intuitive concept of the “efficiency”

of an experiment? First we have to define what exactly we mean by “ex-

periment.” We use the following simple model of experimental design here

(we have neurophysiological experiments in mind, but our results are all

completely general with respect to the identity of the system under study).

The basic idea is that we have some set of models Θ, where each model θ

indexes a given probabilistic input-output relationship. More precisely, a

model is a set of probabilistic “input-output relationships” — regular con-

ditional probability distributions p(y|x, θ) on Y , the set of possible output

responses, given any input stimulus x in some space X. Therefore, if we

know the identity of the model θ, we know the probability of observing

any output y given any input x. Of course, we don’t know θ precisely:

our knowledge of the system is summarized in the form of a prior proba-

bility measure, p0(θ), on Θ, and our goal is to reduce the uncertainty of

this distribution as much as possible. To put everything together, the joint
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probability of θ, x, and y is given by the following simple equation:

p(x, y, θ) = p0(θ)p(x)p(y|θ, x).

Now we can define the “design” of our experiment in a straightforward

way: on any given trial, the design is specified completely by the choice of

the input probability p(x), the only piece of the above equation over which

we have control. One common approach is to fix some p(x) at the beginning

of the experiment, then sample from this distribution in an i.i.d. manner

for all subsequent trials, independently of which input-output pairs might

have been observed on any previous trial. Alternatively, we could try to

design our experiment — choose p(x) — optimally in some sense, updating

p(x) on-line, on each trial, as more input-output data are collected and our

understanding of the system increases. One natural idea would be to choose

p(x) in such a way that we learn as much as possible about the underlying

model, on average. Information theory thus suggests we choose p(x) to

optimize the following objective function:

I({x, y}; θ) (3.1)

where I(.; .) denotes mutual information. In other words, we want to choose

p(x) adaptively, to maximize the information provided about θ by the pair

{x, y}, given our current knowledge of the model as summarized in the

posterior distribution given N samples of data:

pN(θ) = p(θ|{xi, yi}1≤i≤N).
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We will take this information-theoretic concept of efficiency as our start-

ing point here. We note, however, that similar ideas have seen application in

a wide and somewhat scattered literature: in statistics [Lindley, 1956], com-

puter vision: [Denzler and Brown, 2000, Lee and Yu, 2001], machine learn-

ing [Luttrell, 1985, Axelrod et al., , Cohn et al., 1996, Freund et al., 1997,

Mackay, 1992], conceptual psychology [Nelson and Movellan, 2000], psy-

chophysics [Watson and Pelli, 1983, Pelli, 1987,

Watson and Fitzhugh, 1990, Kontsevich and Tyler, 1999], medical appli-

cations [Parmigiani, 1998, Parmigiani and Berry, 1994], and neuroscience

[Sahani, 1997]. These references all discuss, to a greater or lesser de-

gree, the motivation behind various different design criteria, of which the

information-theoretic criterion is well-motivated but certainly non-unique.

For more general reviews of the theory of experimental design, see e.g.

[Chaloner and Verdinelli, 1995] and [Fedorov, 1972]. In addition, several

attempts have been made to devise algorithms to find the “optimal stim-

ulus” of a neuron, where optimality is defined in terms of firing rate

[Tzanakou et al., 1979, Foldiak, 2001, Nelken et al., 1994], but we should

emphasize that the two concepts of optimality are not related in general,

and turn out to be typically at odds (maximizing the firing rate of a cell

does not maximize the amount we can expect to learn about the cell; see

sections 3.3.1 and 3.3.2). Most recently, [Machens, 2002] proposed the max-

imization of the mutual information between the stimulus x and response

y; again, though, this procedure does not directly maximize the amount of

185



information we gain about the underlying system θ.

Somewhat surprisingly,

we have not seen any applications of the information-theoretic objective

function (3.1) to the design of neurophysiological experiments (although

see the abstract by [Mascaro and Bradley, 2002], who seem to have inde-

pendently implemented the same idea in a simulation study). One major

reason for this might be the computational demands of this kind of design

(particularly for real-time applications), although these problems certainly

do not appear to be intractable given modern computing power (see, e.g.,

[Kontsevich and Tyler, 1999] for a real-time application in which Θ is two-

dimensional); we hope to address these important computational questions

elsewhere.

The primary goal of this paper is to elucidate the asymptotic behavior

of the a posteriori density pN when we choose x according to the recipe

outlined above; in particular, we want to compare the adaptive case to

the more usual (i.i.d. x) case. Our main result (section 3.2) states that,

under acceptably weak conditions on the models p(y|x, θ), the information-

maximization strategy leads to consistent and efficient estimates of the true

underlying model, in a natural sense. We also give a few simple examples

to illustrate the applicability of our results 3.3, including a couple surpris-

ing negative examples that illustrate the nontriviality of our mathematical

results (section 3.4).
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3.2 Results

First, we note that the problem as posed in the introduction turns out to

be slightly simpler than one might have expected, because I({x, y}; θ) is

linear in p(x):

I({x, y} ; θ) =

∫

X

∫

Y

∫

Θ

p(x, y, θ) log
p(x, y, θ)

p(x, y)pN(θ)

=

∫

X

∫

Y

∫

Θ

p(x, y, θ) log
p(x)pN(θ)p(y|x, θ)

p(y|x)p(x)pN(θ)

=

∫

X

∫

Y

∫

Θ

p(x, y, θ) log
p(y|x, θ)

p(y|x)

=

∫

X

p(x)

∫

Y

∫

Θ

pN(θ)p(y|x, θ) log
p(y|x, θ)∫

Θ
pN(θ)p(y|x, θ)

.

This, in turn, implies that the optimal p(x) must be degenerate, concen-

trated on the points x where I is maximal. Thus, instead of finding optimal

distributions p(x), we need only find optimal inputs x, in the sense of max-

imizing the conditional information between θ and y, given a single input

x:

I(y; θ|x) ≡
∫

Y

∫

Θ

pN(θ)p(y|θ, x) log
p(y|x, θ)∫

Θ
pN(θ)p(y|x, θ)

.

(We will assume throughout the paper that this function attains its supre-

mum in X, and that some reasonable, though possibly non-deterministic,

tie-breaking stategy exists when this maximum is not unique.)

Our main result is a “Bernstein-von Mises” - type theorem

[van der Vaart, 1998]. The classical form of this kind of result says, ba-

sically, that if the posterior distributions are consistent (in the sense that
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pN(U) → 1 for any neighborhood U of the true parameter θ0) and the

likelihood ratios are sufficiently smooth on average, then the posterior dis-

tributions pN(θ) are asymptotic normal, with easily calculable asymptotic

mean and variance. We adapt this result to the present case, where x is

chosen according to the information-maximization recipe. It turns out that

the hard part is proving consistency (c.f. section 3.4); we give the basic

consistency lemma (interesting in its own right) first, from which the main

theorem follows fairly easily.

Lemma 32 (Consistency). Assume the following conditions:

1. The parameter space Θ is compact.

2. The loglikelihood log p(y|x, θ) is Lipschitz in θ, uniformly in (x, θ), and

y, with respect to some dominating measure.

3. The prior measure p0 assigns positive measure to any neighborhood of

θ0.

4. The maximal divergence supx DKL(θ0; θ|x) is positive for all θ 6= θ0.

Then the posteriors are consistent: pN(U) → 1 in probability for any

neighborhood U of θ0.

Theorem 33 (Asymptotic normality). Assume the conditions of

Lemma 32, stengthened as follows:
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1. Θ has a smooth, finite-dimensional manifold structure in a neighbor-

hood of θ0.

2. The loglikelihood log p(y|x, θ) is continuously differentiable in θ, uni-

formly in (x, θ), and y, with respect to some dominating measure.

Moreover, the Fisher information matrices

Iθ(x) =

∫

Y

(
ṗ(y|x, θ)

p(y|x, θ)

)t(
ṗ(y|x, θ)

p(y|x, θ)

)
p(y|θ, x),

where the differential ṗ is taken with respect to θ, are well-defined and

continuous in θ, uniformly in x, θ in some neighborhood of θ0.

3. The prior measure p0 is absolutely continuous in some neighborhood

of θ0, with a continuous positive density at θ0.

Then

||pN −N (µN , σ2
N)|| → 0

in probability, where ||.|| denotes variation distance and N (µN , σ2
N) denotes

the normal density with mean µN and variance σ2
N . Here

σ2
N =

( N∑

i=1

Iθ0(x)

)−1

,

and µN is asymptotically normal with mean θ0 and variance σ2
N .

Corollary 34. If, in addition, the prior p0 is absolutely continuous, with

density bounded on the parameter space Θ, then the maximum a posteriori

(MAP) estimator is consistent almost surely, with asymptotic distribution

N (θ0, σ
2
N).
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Corollary 35. If the determinant of the Fisher information matrices Iθ0(x)

has a unique maximum for some Iθ0(x)′, then

Nσ2
N → (Iθ0(x)′)−1.

Thus, under these conditions, the information maximization strategy

works, and works better than the i.i.d. x strategy (where the asymptotic

variance σ2 is inversely related to an average, not a maximum, over x, and

is therefore generically larger).

A few words about the assumptions are in order. Most should be fairly

self-explanatory: the conditions on the priors, as usual, are there to en-

sure that the prior becomes irrelevant in the face of sufficient posterior

evidence; the smoothness assumptions on the likelihood permit the local

expansion which is the source of asymptotic normality; and the condition

on the maximal divergence function supx DKL(θ0; θ|x) ensures that distinct

models θ0 and θ are identifiable. Finally, some form of monotonicity or

compactness on Θ is necessary here, mostly to bound the maximal diver-

gence function supx DKL(θ0; θ|x) and its inverse away from zero (the lower

bound, again, is to ensure identifiability; the necessity of the upper bound,

on the other hand, will become clear in section 3.4); also, compactness is

useful (though not necessary) for adapting certain Glivenko-Cantelli bounds

[van der Vaart, 1998] for the consistency proof.

It should also be clear that we have not stated the results as generally

as possible; we have chosen instead to use assumptions which are simple
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to understand and verify, and to leave the technical generalizations to the

interested reader. Our assumptions should be weak enough for most neuro-

physiological and psychophysical examples, for example, by assuming that

parameters take values in bounded (though possibly large) sets and that

tuning curves are not infinitely steep. The proofs of these three results

are basically elaborations on Wald’s consistency method and Le Cam’s ap-

proach to the Bernstein-von Mises theorem [van der Vaart, 1998], and will

be provided elsewhere.

3.3 Applications

3.3.1 Psychometric model

As noted in the introduction, psychophysicists have employed versions of

the information-maximization procedure for some

years [Watson and Pelli, 1983, Pelli, 1987, Watson and Fitzhugh, 1990,

Kontsevich and Tyler, 1999]. References in [Watson and Fitzhugh, 1990],

for example, go back four decades, and while these earlier investigators

usually couched their discussion in terms of variance instead of entropy, the

basic idea is the same. Our results above allow us to precisely quantify the

effectiveness of this stategy (note, for example, that minimizing entropy is

asymptotically equivalent to minimaizing variance, by our main theorem).

One general psychometric model is as follows. The response space Y is

binary, corresponding to subjective “yes” or “no” detection responses. Let f
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be “sigmoidal”: a uniformly smooth, monotonically increasing function on

the line, such that f(0) = 1/2, limt→−∞ f(t) = 0 and limt→∞ f(t) = 1

(this function represents the detection probability when the subject is

presented with a stimulus of strength t). Let fa,θ = f((t − θ)/a); θ

here serves as a location (“threshold”) parameter, while a sets the scale

(we assume a is known, for now, although of course this can be relaxed

[Kontsevich and Tyler, 1999]). Finally, let p(x) and p0(θ) be some fixed

sampling and prior distributions, respectively, both equivalent to Lebesgue

measure on some interval Θ.

Now, for any fixed scale a, we want to compare the performance of the

information-maximization strategy to that of the i.i.d. p(x) procedure. We

have by the corollary to theorem 33 that the most efficient estimator of θ

is asymptotically unbiased with asymptotic variance

σ2
info ≈ (N sup

x
Iθ0(x))−1,

while the usual calculations show that the asymptotic variance of any effi-

cient estimator based on i.i.d. samples from p(x) is given by

σ2
iid ≈ (N

∫

X

dp(x)Iθ0(x))−1.

The Fisher information is easily calculated here to be

Iθ =
(ḟa,θ)

2

fa,θ(1− fa,θ)
.

We can immediately derive two easy but important conclusions. First,

there is just one function f ∗ satisying the assumptions stated above
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for which the i.i.d. sampling strategy is as asymptotically efficient as

information-maximization strategy; for all other f , information maximiza-

tion is strictly more efficient. The extremal function f ∗ is the unique solu-

tion of the following differential equation:

df ∗

dt
= c

(
f ∗(t)(1− f ∗(t))

)1/2

,

where the auxiliary constant c =
√

Iθ uniquely fixes the scale a. After some

calculus, we obtain

f ∗(t) =
sin(ct) + 1

2

on the interval [−π/2c, π/2c] (and defined uniquely, by monotonicity, as 0 or

1 outside this interval). Since the support of the derivative of this function

is compact, this result is not independent of the sampling density p(x); if

p(x) places any of its mass outside of the interval [−π/2c, π/2c], then σ2
iid is

always strictly greater than σ2
info. This recapitulates a basic theme from the

psychophysical literature comparing adaptive and nonadaptive techniques:

when the scale of the nonlinearity f is either unknown or smaller than the

scale of the i.i.d. sampling density p(x), adaptive techniques are greatly

preferable.

Second, a crude analysis shows that, as the scale of the nonlinearity 1/a

shrinks, the ratio σ2
iid/σ

2
info grows approximately as a; this gives quantitative

support to the intuition that the sharper the nonlinearity with respect to

the scale of the sampling distribution p(x), the more we can expect the

information-maximization strategy to help.
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3.3.2 Linear-nonlinear cascade model

We now consider a model that has received a growing amount of attention

from the neurophysiology community (see, e.g., [Paninski, 2003a] for some

analysis and relevant references). The model is of cascade form, with a

linear stage followed by a nonlinear stage: the input space X is a compact

subset of d-dimensional Euclidean space (take X to be the unit sphere, for

concreteness), and the firing rate of the model cell, given input ~x ∈ X, is

given by the simple form

E(y|~x, θ) = f(< ~θ, ~x >).

Here the linear filter ~θ is some unit vector in X ′, the dual space of X (thus,

Θ is isomorphic to X), while the nonlinearity f is some nonconstant, non-

negative function on [−1, 1]. We assume that f is uniformly smooth, to

satisfy the conditions of theorem 33; we also assume f is known, although,

again, this can be relaxed. The response space Y — the space of possible

spike counts, given the stimulus ~x — can be taken to be the nonnega-

tive integers. For simplicity, let the conditional probabilities p(y|~x, θ) be

parametrized uniquely by the mean firing rate f(< ~θ, ~x >); the most con-

venient model, as usual, is to assume that p(y|~x, θ) is Poisson with mean

f(< ~θ, ~x >). Finally, we assume that the sampling density p(x) is uniform

on the unit sphere (this choice is natural for several reasons, mainly involv-

ing symmetry; see, e.g., [Chichilnisky, 2001, Paninski, 2003a]), and that the

prior p0(θ) is positive and continuous (and is therefore bounded away from
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zero, by the compactness of Θ).

The Fisher information for this model is easily calculated as

Iθ(x) =
(f ′(< ~θ, ~x >))2

f(< ~θ, ~x >)
P~x,θ,

where f ′ is the usual derivative of the real function f and P~x,θ is the pro-

jection operator corresponding to ~x, restricted to the (d − 1)-dimensional

tangent space to the unit sphere at θ. The corollary to theorem 33 does

not apply directly here, since det(Iθ(x)) is everywhere zero; nevertheless,

using the symmetry in the problem, it is not hard to modify the argument

to show that

σ2
info ≈

(
N max

t∈[−1,1]

f ′(t)2g(t)

f(t)

)−1

,

while

σ2
iid ≈

(
N

∫

[−1,1]

dp(t)
f ′(t)2g(t)

f(t)

)−1

,

where g(t) =
√

1− t2, p(t) denotes the one-dimensional marginal measure

induced on the interval by the uniform measure p(x) on the unit sphere,

and σ2 in each of these two expressions multiplies the (d − 1)-dimensional

identity matrix.

Clearly, the arguments of subsection 3.3.1 apply here as well: the ra-

tio σ2
iid/σ

2
info grows roughly linearly in the inverse of the scale of the

nonlinearity. The more interesting asymptotics here, though, are in d.

This is because the unit sphere has a measure concentration property

[Milman and Schechtman, 1986, Talagrand, 1995]: as d → ∞, the mea-

sure p(t) becomes exponentially concentrated around 0. In fact, it is easy
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to show directly that, in this limit, p(t) converges in distribution to the

normal measure with mean zero and variance d−2. The most surprising

implication of this result is seen for nonlinearities f such that f ′(0) = 0,

f(0) > 0; we have in mind, for example, symmetric nonlinearities like those

often used to model complex cells in visual cortex. For these nonlinearities,

σ2
info

σ2
iid

= O(d−2) :

that is, the information maximization strategy becomes infinitely more ef-

ficient than the usual i.i.d. approach as the dimensionality of the spaces X

and Θ grows.

3.4 Negative Examples

Our next two examples are more negative and perhaps more surprising: they

show how the information-maximation strategy can fail, in a certain sense,

if the conditions of the consistency lemma are not met. In each case, the

method can be fixed using ad hoc methods; it is unclear at present whether

a generally applicable modification of the basic information maximization

strategy exists.

3.4.1 Two-threshold model

Let Θ be multidimensional, with coordinates which are “independent” in a

certain sense, and the expected information obtained from one coordinate of
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the parameter remains bounded strictly away from the expected information

obtained from one of the other coordinates. Consider the following model.

p(1|x) =





.5 −1 < x ≤ θ−1,

f−1 θ−1 < x ≤ 0,

.5 0 < x ≤ θ1,

f1 θ1 < x ≤ 1

where 0 ≤ f−1, f1 ≤ 1,

|f−1 − .5| > |f1 − .5|,

are known and −1 < θ−1 < 0 and 0 < θ1 < 1 are the parameters we want

to learn.

Let the initial prior be absolutely continuous with respect to Lebesgue

measure; this implies that all posteriors will have the same property. Then,

using the inverse cumulative probability transform and the fact that mutual

information is invariant with respect to invertible mappings, it is easy to

show that the maximal information we can obtain by sampling from the left

is strictly greater than the maximal information obtainable from the right,

uniformly in N . Thus the information-maximization strategy will sample

from the left side forever, leading to a linear information growth rate (and

easily-proven consistency) for the left parameter and non-convergence on

the right. Compare the performance of the usual i.i.d. approach for choos-

ing x (using any Lebesgue-dominating measure on the parameter space),
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which leads to the standard root-N rate for both parameters (i.e., is strongly

consistent in posterior probability).

Note that this kind of inconsistency problem does not occur in the case

of sufficiently smooth p(y|x, θ), by our main theorem. However, the next

example shows that the lack of consistency is not necessarily tied to the

discontinuous nature of the conditional densities.

3.4.2 White noise models

We present two models of slightly different flavor; the basic mechanism of

inconsistency is the same in each case. The samples x take values on the

positive integers. The models live on the positive integers as well: θ is given

by standard discrete 1) normal and 2) binary white noise process (that is,

p(θ) is generated by an infinite sequence of standard normals and inde-

pendent fair coins, respectively). The conditionals are defined as follows.

For the first model, the observations y are Gaussian-contaminated versions

of θ(x), that is, y ∼ N (θ(x), 1). For the second model, let y be drawn

randomly from qθ(x), where q0 and q1 are nonidentical measures on some

arbitrary space.

Then it is not hard to show, for either model, that an experimenter

using the information-maximization strategy will never sample from any x

infinitely often. (For the second model, in fact, if the densities of q0 and

q1 with respect to some dominating measure are unequal almost surely,

then we will sample from each x just once, almost surely.) This again
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implies a lack of consistency of the posterior (although, as above, we have

a linear growth of information). The basic idea is that there will always be

a more informative part of the sample space X to measure from, and the

experimenter will never spend enough time in one place x to sufficiently

characterize θ(x).

As in the last section, the standard i.i.d. approach (using any mea-

sure which does not assign zero mass to any of the integers) is consistent

here. Note that, in contrast with the last example, the smoothness of the

conditionals p(y|x, θ) (in the Gaussian model) does not rescue consistency.

Nor is the inconsistency due to some pathology of differential entropy (the

measures qi can be discrete, even binary).
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Conclusion

Quantitative, systems-level neuroscience — by which we mean the sub-

field most directly concerned with this neural coding problem — has devel-

oped rapidly over the past couple decades, nourished in part by conceptual

and technical advances and in part by sustained growth of computing power

and funding opportunities. This explosion in neuroscience research has, in

turn, nourished a vigorous development of statistical methods for collect-

ing, analyzing, and modeling complex, high-dimensional neural data. This

thesis, we hope, adds to this literature. As such, the methods we present

were developed mainly with spike train data from extracellular recordings

in mind, but it should be clear that all of the techniques we have developed

here can be applied generally, without any neural context at all.

It is also worth noting that all the work presented here turns out to have

some information-theoretic flavor, although this unifying thread was not

imposed a priori. One could take this as another instance of the “rightness”

of information theory for questions in neural coding; while this statement

contains at least a kernel of truth — for example, we leaned rather heavily
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on the data processing inequality (chapters 1 and 2) and the source coding

interpretation of mutual information (chapter 3) — it is just as likely that

this merely reflects the author’s point of view.

Our overarching goal in all of this was to put these statistical methods,

and by extension any techniques that employ similar ideas as a “front end,”

on as firm a theoretical foundation as possible. Mathematical rigor has two

important consequences here. First, we obtain a much clearer picture of

when the methods can be expected to work and when they can be expected

to fail. When we deal with high-dimensional, complex data, which typically

cannot be viewed directly in any meaningful way, this kind of mathematical

control on the confidence we can place in our results is essential, in the

same way that error bars and significance levels are necessary ingredients

in the interpretation of the results of classical statistical analyses. Second,

we obtain a clearer picture of why the techniques work (or don’t). The

practical consequence, as we saw, is that we can systematically fix flaws we

find in the methods, to design new techniques with improved performance.

Some brief philosophical discussion might be in order here, as our goals

may seem somewhat abstruse from a physiological point of view. After

all, it is often considered bad form to spend more time discussing meth-

ods than results, as we do here. However, we feel that at this stage of

the development of systems neuroscience, where the physiological methods

are relatively quite mature (we can simultaneously image and record from

many neurons in almost any brain area of almost any kind of reasonably-
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sized animal, while presenting almost any stimulus and recording almost

any behavior), the development of reliable, powerful statistical techniques

for understanding this complex neural data is of utmost importance. We

view these statistical methods as a kind of technology, much like, say, the

tungsten electrode or calibrated monitor. It is easy to forget how fundamen-

tally our scientific views depend on available technology; as we emphasized

above, developments in statistical thinking have changed the neuroscience

community’s worldview more than once, and we are confident that statisti-

cal techniques will continue to have a deep influence on our understanding

of the nervous system.
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