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ABSTRACT

We describe a novel recursive �lter design technique for
multi-scale \pyramid" transforms. The recursion in the de-
sign technique follows that of the pyramid construction, and
allows us to solve a reduced design problem at each step.
We demonstrate the use of this technique by designing �l-
ters of various orientation bandwidths for use in a \steerable
pyramid" image transform.1

1. INTRODUCTION

Recursive multi-scale transforms (e.g., wavelets) are now a
standard tool in signal and image processing. The steerable
pyramid is a particular variant of this type of transform
which has been found useful in a variety of image process-
ing applications [1, 2, 3, 4]. In this linear decomposition,
an image is subdivided into a collection of subbands local-
ized in scale (they have octave bandwidth) and orientation
(they have orientation bandwidths of 2�=m, m an integer).
The transform is computed recursively using convolution
and decimation operations, and it is \self-inverting".2 The
advantages of this representation are that the subbands are
translation- and rotation-invariant.

The �lters used in constructing the steerable pyramid are
highly constrained. The radial component of their Fourier
transforms must obey a recursive system diagram, which
we describe below. The angular (orientation) tuning of the
�lters is constrained by the property of steerability [1]. A
set of �lters form a steerable basis if (1) they are rotated
copies of each other, and (2) a copy of the �lter at any
orientation may be computed via a linear combination of
the basis �lters. The simplest example of a steerable basis
is a set of n+1 nth-order directional derivatives of a circular-
symmetric function. For the purposes of this paper, we limit
ourselves to steerable �lters that are directional derivatives.

Given these constraints, proper �lter design is important
to produce a usable transform. In the following sections, we

1Source code and �lter kernels for the steerable pyramid are
available via anonymous ftp from ftp.cis.upenn.edu in direc-

tory pub/eero/steerpyr.tar.Z
2By this, we mean that the matrix corresponding to the in-

verse transformation is equal to the transpose of the forward

transformation matrix. In the wavelet literature, such a trans-
form is called a tight frame [5].
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Figure 1. Idealized depiction of the single-stage
�rst derivative (i.e., two orientation band) steerable
pyramid transform.

describe in detail the design constraints, develop a design
algorithm, and use it to construct three sets of �lters with
di�erent orientation bandwidths.

2. FILTER CONSTRAINTS

The decomposition is best de�ned in the Fourier domain,
where the subbands are (ideally) polar-separable. The fre-
quency tiling of the single-stage subband decomposition is
shown in �gure 1, for the case of n = 1. fBk(~!)jk = 0; 1g
are band-pass oriented �lters, H0(~!) is a non-oriented high-
pass �lter, and L1(~!) is a narrowband low-pass �lter. The
system diagram for a single stage of the steerable pyramid
is illustrated in �gure 2. Recursion is implemented by in-
serting the portion of the diagram enclosed in the dashed
box at the location of the �lled circle.

Analysis of the system of �gure 2 shows that the recon-
structed image in the frequency domain is:

X̂(~!) =
�
jH0(~!)j

2 (1)

+jL0(~!)j
2(jL1(~!)j

2 +

nX
k=0

jBk(~!)j
2)
	
X(~!) + a:t :

where a.t. indicates the aliasing terms. To ensure elimina-
tion of the aliasing terms, the L1 �lter should be constrained
to have a zero response for frequencies higher than �=2 in
both !x and !y. Furthermore, to avoid amplitude distor-
tion the transfer function of the system should be equal
to one. We describe these constraints, and the steerability
constraint in more detail in the following sections.
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Figure 2. System diagram for a �rst derivative steerable pyramid. The image is initially divided into high and low-
pass portions using �lters H0(~!) and L0(~!). The low-pass branch is then further divided into low-pass and oriented
band-pass portions using �lters L1(~!) and Bk(~!). A recursive pyramid is constructed by inserting the portion of the
diagram enclosed in the dashed box at the location of the �lled circle.

2.1. Perfect Reconstruction Constraints

From the above, the constraints for perfect reconstruction
are:

1. Unity system response amplitude:

jL0(~!)j
2

"
jL1(~!)j

2 +

nX
k=0

jBk(~!)j
2

#
+ jH0(~!)j

2 = 1:

(2)

2. Recursion relationship. The low-pass branch of the di-
agram must be una�ected by insertion of the recursive
portion of the system (see caption of �gure 2):

jL1(~!=2)j
2

"
jL1(~!)j

2 +

nX
k=0

jBk(~!)j
2

#
= jL1(~!=2)j

2:

(3)

3. Aliasing cancellation (for a circular symmetric �lter):

L1(~!) = 0; for j~!j > �=2: (4)

2.2. Angular Constraints

The angular constraint on the band-pass �lters Bk(~!) is
derived from the condition of steerability [1]. This condition
for derivative steerable �lters can be expressed as:

Bk(~!) = B(~!) [�j cos(�� �k)]
n ; (5)

where � = arg(~!), �k = �k=(n+1) for k 2 f0; 1; : : : ng, and

B(~!) =

vuut nX
k=0

jBk(~!)j2:

The constraint in equation (5) states that Bk(~!) is the nth-
order directional derivative, in direction �k, of the function
B(~!)=j~!jn.

3. FILTER DESIGN

In previous work, we have found that weighted least-
squares frequency-domain designs are suitable for steer-
able �lters [6]. This approach is not directly applicable in

the current context since the recursion constraint of equa-
tion (3) and the system response of equation (2) lead to
an error function that is not quadratic in the �lter taps.
In our experience, direct attempts to iteratively minimize
a weighted combination of the constraints given in equa-
tions (2) through (5) did not converge.

We thus introduce further assumptions to simplify the
design process. We �rst note the similarity of equations (2)
and (3). During recursion, L1(~!=2) plays the role of
the initialization �lter L0(~!). We enforce this by setting
L0(~!) = L1(~!=2).

This restriction suggests a recursive design procedure, as
illustrated in the 
ow graph of �gure 3. We begin by �xing
the number of orientation bands, n, and the size of all �lter
kernels, and choosing an initial L0(~!). We then design �l-
ters L1(~!) and Bk(~!) with error criterion a weighted sum of
the maximum absolute errors of each of the constraints (3),
(4), and (5). The resulting �lter L1(~!) is then decimated
to produce a new L0(~!) �lter, and the process is repeated.
At each recursive step, the �lter L0(~!) = L1(~!=2) is used
as a frequency-weighting function in the design of L1(~!)
and Bk(~!), as indicated in the constraint of equation (3).
Note that if the procedure converges, we may design H0(~!)
at the end to satisfy the power-complementary condition in
equation (2). In practice, we have found that the recur-
sive procedure convergences quickly (typically after three
iterations).

To initialize the design procedure, we solve for �lter ker-
nels that minimize the weighted sum of the mean square
errors of the constraints given in equations (3), (4) and (5).
Within the recursive design procedure we use a minimax
error function (i.e., a weighted sum of the maximum abso-
lute errors in the constraints). The recursion constraint (3)
was given twice the weight of the other two constraints.

At each recursive step of the procedure illustrated in �g-
ure 3, the numerical optimization of the �lters L1(~!) and
Bk(~!) is carried out using the BFGS method with cubic
and quadratic line searches. This method has been found to
be very e�cient for spaces with high dimensionality. In the
�rst derivative case, the dimensionality of the space for a
17�17 �lter L1 and 9�9 �lters Bk is 60. We have assumed
linear phase �lters, and taken full advantage of symmetry
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Figure 3. Flowgraph of the steerable pyramid �lter
design algorithm.

wherever possible. In particular, the two band-pass �lters
are exact rotated copies of each other, and thus we need
only optimize over the independent coe�cients of one of
them.

3.1. Higher-order steerable pyramid �lter design

In �gures 1 and 2, we show the frequency tiling and the
system diagram for the �rst derivative steerable pyramid.
Higher derivative �lters are necessary when we require �ner
orientation tuning of the �lters (i.e., higher angular reso-
lution). In particular, consider the third derivative case,
in which the number of band-pass �lters is 4. The axis
of symmetry for �lter Bk is oriented at 45k degrees. The
combination of a rectangular sampling lattice and this set
of �lter orientations introduces a practical problem in the
design: �lter B1 cannot be obtained from B0 by simple ro-
tation of the �lter kernel by 45 degrees. Note, however, that
B2 and B0 di�er by a 90 degree rotation, as do B3 and B1.
Thus, we must include independent coe�cients for two of
the four band-pass �lters in our optimization function.

Because of this signi�cant increase in the dimensional-
ity of our optimization space (as compared with the �rst
derivative case), the �rst-derivative design algorithm would
be impractical in terms of design time and the reliability of
the solution. To remedy the above problems we �xed �lter
L1 (and therefore �lter L0 which is subsampled version of
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Figure 4. Fourier spectra of a set of zeroth deriva-
tive steerable pyramid �lters plotted over the range
[��; �]�[��; �]. (a) Low-pass �lter L0(~!). (b) High-
pass H0(~!). (c) Low-pass L1(~!). (d) Band-pass �l-
ter L0(~!)B0(~!).
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Figure 5. Fourier spectra of a set of �rst deriva-
tive steerable pyramid �lters plotted over the range
[��; �]�[��; �]. (a) Low-pass �lter L0(~!). (b) High-
pass H0(~!). (c) Low-pass L1(~!). (d) Band-pass �l-
ter L0(~!)B0(~!). (e) Band-pass �lter L0(~!)B1(~!).

L1) to be the one derived in the �rst derivative case. We
then carried out the optimization for the B0 and B1 �lters
only.

4. EXAMPLE FILTERS

We have designed steerable pyramid �lters using the tech-
nique described above for n = 0, n = 1, and n = 3. In
�gures 4, 5 and 6, we show two-dimensional images of the
spectra of the steerable �lter sets for these cases. The �lter
sizes are 9� 9 for Bk(~!) and L0(~!), and 17� 17 for L1(~!).

Given the above �lters, a �rst derivative pyramid decom-
position of a synthetic \zone plate" test image (cos(r2)) is
shown in �gure 7. In �gure 8 we illustrate a third deriva-
tive pyramid decomposition of this image. Reconstruction
errors in both cases are quite small (see �gure captions).
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Figure 6. Fourier spectra of a set of third deriva-
tive steerable pyramid �lters, plotted over the range
[��; �] � [��; �]. (a) Initial low-pass L0(~!). (b)
High-pass H0(~!). (c) Low-pass L1(~!). (d)-(g) Band-
pass �lters L0(~!)Bk(~!).

Figure 7. Image decomposition of the \zone-plate"
using the �rst-derivative steerable pyramid �lters.
Shown are the two orientation bands at three di�er-
ent scales and the �nal low-pass band. In the lower
right is the original image. The high-pass band is
not shown. Reconstruction error for this image is
� 47dB.

 

Figure 8. Image decomposition of the \zone-plate"
using the third-derivative steerable pyramid �lters.
Shown are the four orientation bands at three di�er-
ent scales and the �nal low-pass band. The high-pass
band is not shown. Reconstruction error for this im-
age is � 40dB.

5. CONCLUSION

We have presented a recursive �lter design technique for
the construction of steerable pyramid image transforma-
tions. For each cycle of the algorithm, the low-pass �l-
ter from the previous cycle is decimated and used as a
frequency weighting function in designing the next set of
low-pass/band-pass �lters. We have used this technique
to design zeroth-order (non-oriented), �rst-order (two ori-
entation bands) and third-order (four orientation bands)
steerable pyramid �lters.
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