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Abstract

A number of researchers have proposed models of early motion sensing based on
direction�selective� spatiotemporal linear operators� Others have formalized the problem
of measuring optical �ow in terms of the spatial and temporal derivatives of stimulus
intensity� Recently� the spatiotemporal �lter models and the gradient�based methods
have been placed into a common framework� In this chapter� we review that framework
and we extend it to develop a new model for the computation and representation of
velocity information in the visual system� We use the model to simulate psychophysical
data on perceived velocity of sine�grating plaid patterns� and to simulate physiological
data on responses of simple cells in primary �striate� visual cortex�
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� Introduction

More than forty years ago� Gibson ������ ����� noted that visual motion perception is
essential for an observer	s ability to explore and interact with his
her environment� As
an observer moves and explores the environment� the visual stimulation in his
her eye
is constantly changing� Somehow he
she is able to perceive the spatial layout of the
scene� and to discern his
her movement through space� Imagine� for example� that you
are watching a scene from a movie that was shot with the camera in motion� The visual
stimulation in your eye is an array of light that changes over time� yet you experience a
sense of moving through a three dimensional space�

Since Gibson	s initial work� perception of motion has been studied extensively by re�
searchers in the elds of visual psychophysics� visual neurophysiology� and computational
vision� It is now well�known that the visual system has mechanisms that are specically
suited for analyzing motion �see Nakayama ����� for review�� and that human observers
are capable of recovering accurate information about the world �e�g�� three�dimensional
trajectory� relative distance� shape� from visual motion �e�g�� Wallach and O	Connell
����� Johansson ����� Warren and Hannon ����� ������

The rst stage of motion perception is generally believed to be the measurement of
optical �ow� Optical �ow is a eld of two�dimensional velocity vectors� indicating the
speed and direction of motion for each small region of the visual eld�

A number of machine vision algorithms have been developed for measuring optical
�ow elds from sequences of �e�g�� video� images� At the same time� psychophysicists
and neurophysiologists have performed experiments to study the manner by which peo�
ple and animals sense velocity� Little e�ort� however� has gone into integrating the
results from the three disciplines of computational vision� visual psychophysics� and
visual neurophysiology�

In this chapter� we describe a model for the computation and representation of veloc�
ity information in the primate visual system that accounts for a variety of psychophysical
and physiological observations� We use the model to simulate psychophysical data on
perceived velocity of sine�grating plaid patterns� and to simulate physiological data on
responses of simple cells in primary �striate� visual cortex�

� The Model

In this section� we review two algorithms for measuring �ow elds� the gradient�based
methods and the spatiotomporal ltering methods� Following Adelson and Bergen
������� and Simoncelli and Adelson �����a� ����b�� we show that these two methods
can be expressed in a common mathematical framework� Finally� we introduce some
extensions to this framework to develop our new model of biological motion sensing�

�



��� Gradient�Based Methods

Researchers �Horn and Schunk ����� Lucas and Kanade ����� Nagel ����� and others�
have proposed algorithms that compute �ow from the spatial and temporal derivatives
of intensity	 Following the standard gradient formulation
 we assume that the stimulus is
shifted �locally translated� over time
 and that the shifted intensity values are conserved	
This intensity conservation assumption is expressed as follows�

f�x� y� t� � f�x  v�� y  v�� t ��� ���

where f�x� y� t� is stimulus intensity as a function of space and time
 and v � �v�� v�� is
velocity	 Note that this intensity conservation assumption is only approximately true in
practice	 For example
 it ignores possible changes in intensity due to lighting changes	

We further assume that the time�varying stimulus intensity is well approximated by
a �rst�order Taylor series expansion�

f�x v�� y  v�� t �� � f�x� y� t�  v�fx�x� y� t�  v�fy�x� y� t�  ft�x� y� t��

where fx
 fy
 and ft are the spatial and temporal derivatives of stimulus intensity	
Substituting this approximation into equation ��� gives�

v�fx�x� y� t�  v�fy�x� y� t�  ft�x� y� t� � �� ���

This equation relates the velocity
 at one point in the visual �eld
 to the spatial and
temporal derivatives of stimulus intensity	 We refer to equation ��� as the gradient

constraint	

Combining Constraints� It is impossible to recover velocity
 given the gradient
constraint at only a single position
 since equation ��� o�ers only one linear constraint
to solve for the two unknown components of velocity	 Gradient�based methods solve
for velocity by combining information over a spatial region	 The di�erent gradient�
based methods use di�erent combination rules	 A particularly simple rule for combining
constraints from two nearby spatial positions is��

fx�x�� y�� t� fy�x�� y�� t�
fx�x�� y�� t� fy�x�� y�� t�

� �
v�
v�

�


�
ft�x�� y�� t�
ft�x�� y�� t�

�
� �� ���

where the two coordinate pairs �xi� yi� correspond to the two spatial positions	 Each
row of equation ��� is the gradient constraint for one spatial position	 Solving this
equation simultaneously for both positions gives the velocity that is consistent with
both constraints	

Lucas and Kanade ������ suggested combining constraints from more than just two
spatial positions
 by squaring and summing�

R�v�� v�� �
X
x�y

�v�fx�x� y� t�  v�fy�x� y� t�  ft�x� y� t��
�� ���
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Each squared term in the summation is a constraint on the �ow from a di�erent �nearby�
position� The summation is taken over a local spatial region� e�g�� in a Gaussian weighted
window� Since there are now more constraints than unknowns� there may not be a
solution that satis�es all of the constraints simultaneously� In other words� R�v�� v�� will
typically be non�zero for all �v�� v��� The choice of �v�� v�� that minimizes R�v�� v�� is
the least squares estimate of velocity�

Least Squares Estimate� One way to �nd the minimumof R�v�� v�� is to evaluate
the function at a number of points �say� on a �xed square grid� and to pick the smallest
result� Figure 	 shows some examples� Figures 	�a� and �b� depict sine�grating plaid
stimuli� The component gratings in the two stimuli have di�erent orientations and
spatial frequencies� but the speeds of the component gratings were chosen so that both
plaids moved rightward with the same velocity� Figures 	�c� and �d� show R�v�� v�� for
�a� and �b�� respectively� Each point in �c� and �d� corresponds to a di�erent velocity�
with the center of each image corresponding to zero velocity� Brightness at each point
is inversely proportional to R�v�� v��� and the locations of the peaks correspond to the
velocity estimates� The peaks correspond to the correct velocity in both cases� despite
of the di�erence in the spatial structures of the two stimuli��



 Figure 	 About Here 



Since equation ��� is a quadratic expression� there is a simple analytical expression
for the velocity estimate� The solution is derived by taking derivatives of equation ���
with respect to v� and v�� and setting them equal to zero�

�R�v�� v��

�v�

X
xy

�v��fx�
� � v��fxfy� � �fxft��  �

�R�v�� v��

�v�

X
xy

�v��fy�
� � v��fxfy� � �fyft��  �

These equations may be rewritten as a single equation in matrix notation�

M � v � b  ��

where

M 
�
m�� m��

m�� m��

�
� b 

�
b�
b�

�
�

and where

m�� 
X

�fx�
�

m�� 
X

�fy�
�

m�� 
X

�fxfy�

b� 
X

�fxft�

b� 
X

�fyft��
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The least�squares solution is then given by

�v � �M��b� ���

presuming that M is invertible�

Aperture Problem� When the matrix M in equation ��� is singular �or ill�
conditioned�� there are not enough constraints to solve for both unknowns� This sit�
uation corresponds to what has been called the aperture problem� For some patterns
�e�g�� a very gradual curve� there is not enough information in a local region �small
aperture� to disambiguate the true direction of motion� For other patterns �e�g�� an
extended grating or edge� the information is insu	cient regardless of the aperture size�

The latter case is illustrated in 
gure ��a�� The diagonal line indicates the locus of
velocities compatible with the motion of the grating� At best� we may extract only one of
the two velocity components� Figure ��b� shows how the motion is disambiguated when
there is more spatial structure� The plaid pattern illustrated in 
gure ��b� is composed
of two moving gratings� The lines give the possible motion of each grating alone� Their
intersection is the only shared motion�

�� Figure � About Here ��

Combining the gradient constraints according to the summation in equation �� is
related to the intersection of constraints rule depicted in 
gure �� The gradient con�
straint� equation ���� is linear in both v� and v�� Given measurements of the derivatives�
�fx� fy� ft�� there is a line of possible solutions for �v�� v��� analogous to the constraint line
illustrated in 
gure ��a�� For each di�erent position� there will generally be a di�erent
constraint line� Equation �� gives the intersection of these constraint lines� analogous
to 
gure ��b��

Prior Bias� To deal with the aperture problem� we could consider combining con�
straints over a larger spatial area �e�g�� Horn and Schunk ������ Instead� we add a slight
prior preference for slower speeds� The resulting velocity estimate is approximately equal
to the normal �ow� the component of motion parallel to the spatial intensity gradient�

The prior preference is implemented by adding a small o�set to each of the diagonal
entries of M� Elsewhere �Simoncelli� Adelson� and Heeger� ������ we formally prove
that adding this o�set gives a Bayesian estimate for velocity� The Bayesian estimator
incorporates a prior likelihood for each possible velocity� The o�set is the �inverse�
variance of this prior probability distribution� Adding the o�set yields a slight bias
toward lower speeds� The bias is greater for low contrast stimuli� i�e�� when the entries
of M are small�
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�� Figure � About Here ��

Figure � illustrates the e�ect of the prior� Figure ��a� shows �R�v�� v��� from equa�
tion �	�� for a drifting sine grating stimulus� Since the velocity of the grating is am�
biguous �due to the aperture problem�� there is no peak in the distribution� Rather
the distribution is shaped like a ridge� Any velocity along this ridge is an equally good
interpretation of the stimulus
 motion� Figure ��b� shows that including the prior gives
a distribution with a broad peak� The location of the peak corresponds approximately
to the normal �ow� but at a very slightly slower speed�

��� Space�Time Filtering Methods

In this section� we reformulate the gradient�based �ow algorithm� this time in terms of
biological mechanisms� We �rst review the spatiotemporal linear model of biological
motion sensing� Then we relate that model to the gradient method�

Space�Time Orientation A number of authors have proposed models of biolog�
ical motion sensing based on direction selective� spatiotemporal linear operators �Fahle
and Poggio ��� Watson and Ahumada ���� ���� Adelson and Bergen ���� van
Santen and Sperling ���� Heeger ���� ���� Grzywacz and Yuille ����� � These
authors have explained that visual motion is like orientation in space�time� and that
spatiotemporally�oriented� linear operators can be used to detect and measure it�

�� Figure 	 About Here ��

Figure 	 shows a simple example� Figure 	�a� depicts a vertical bar moving to the
right over time� Imagine that we �lm a movie of this stimulus and stack the consecutive
frames one after the next� We end up with a three�dimensional volume �space�time cube�
of intensity data like that shown in �gure 	�b�� Figure 	�c� shows an x�t slice through this
space�time cube� The slope of the edges in the x�t slice equals the horizontal component
of the bar
s velocity �change in position over time�� Di�erent speeds correspond to
di�erent slopes�

Spatiotemporal Linear Operators� The response of a linear operator is ex�
pressed as a weighted sum� over local space and recently past time� of the stimulus
intensities� Speci�cally� the response� L�t�� is the inner product in space and the con�
volution in time of a stimulus� f�x� y� t�� with the spatiotemporal weighting function of
the operator� g�x� y� t��

L�t� �
Z Z Z

�

��

g�x� y� � �f�x� y� � � t� dx dy d�� ���
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The triple integral in the above equation is simply a weighted sum of the stimulus
intensities over space and time�

The linear operators that we consider in this chapter have weighting functions with
positive and negative subregions� The positive and negative weights are balanced� so the
operators give no output for a constant intensity stimulus� Rather� their responses are
proportional to stimulus contrast� for stimuli that vary in intensity over space and�or
time�

The spatiotemporal weighting function of a linear operator determines its selectivity
�e�g�� for orientation or direction of motion�� A linear operator is direction selective
if its subregions are tilted along an oblique axes in space�time� For example� �gure
��c� illustrates the weighting function of a direction selective operator� that responds
preferentially to rightward motion�

A spatial array of identical linear operators �sampling the entire visual �eld� can be
thought of as a linear �lter that performs a convolution �over both space and time� with
the stimulus�

g�x� y� t� � f�x� y� t� 	
Z Z Z

�

��

g��� �� � �f�� � x� � � y� � � t� d� d� d��

where � means convolution�

Space�time Filters and the Gradient Method� Following Adelson and Bergen
�
���� and Simoncelli and Adelson �
��
a� 
��
b�� we now show that the gradient�
based solution can be expressed in terms of the outputs of a set of space�time oriented
linear operators� To this end� note that the derivative operators may be written as
convolutions� Furthermore� we can pre�lter the stimuli to extract some spatiotemporal
subband� and perform the analysis on that subband� Consider� for example� pre�ltering
with a space�time Gaussian function� Abusing the notation somewhat� we de�ne�

fx�x� y� t� �
�

�x
�g�x� y� t� � f�x� y� t�� 	 gx�x� y� t� � f�x� y� t��

where � is convolution and gx is the x�derivative of a Gaussian� In words� we compute
fx by convolving with gx� a spatiotemporal linear �lter� We compute fy and ft similarly�

Note also that derivatives in oblique space�time orientations can be expressed as
linear sums of fx� fy� and ft� For example� the derivative of a Gaussian in a diagonal
spatial orientation is given by�

gp 	 �gx � gy��

where gp is a diagonally oriented derivative operator� Finally� note that products of
derivatives in the x�� y�� and t� directions can be written as combinations of the obliquely
oriented derivatives� For example�

�fxfy 	 �fx � fy�
�
� �fx � fy�

�

	 ��gx � gy� � f �� � ��gx � gy� � f ���

�



Now we rewrite the entries of M and b in terms of a set of squared linear �lter
outputs�

m�� �
X

�fx�
� ���

m�� �
X

�fy�
�

m�� � �

�

X
��fx � fy�

�
� �fx � fy�

�	

b� � �

�

X
��fx � ft�

�
� �fx � ft�

�	

b� � �

�

X
��fy � ft�

�
� �fy � ft�

�	�

In primary visual cortex
 there are no cells with receptive �elds that behave like products
of derivatives �e�g�
 fxfy�� Thus
 rewriting the solution as in equation ��� brings us closer
to a model of the physiology� Each linear �lter in equation ��� is orientation tuned
 with
oriented spatial subregions� Four of the operators are direction selective with weighting
functions that are tilted obliquely in space�time
 e�g�
 �gx� gt� and �gx� gt� are selective
for leftward and rightward motion�

The linear operators in equation ��� are
 therefore
 similar to the receptive �elds of
cortical cells� There are
 however
 some important dierences� As we shall see �Section
����
 higher order derivative operators are a better model of cortical receptive �elds�

��� Using Higher Order Derivatives

In this section
 we extend the spatiotemporal �lter method to use higher order derivative
operators�

Consider using gxx
 gxy and gyy as pre�lters and writing three gradient constraint
equations
 in terms of derivatives of each these pre�lters�

v�fxxx � v�fxxy � fxxt � � ���

v�fxxy � v�fxyy � fxyt � �

v�fxyy � v�fyyy � fyyt � ��

where fxxx should be interpreted as f � gxxx
 and likewise for the other derivatives�
Equation ���
 written in terms of third derivatives
 gives three constraints on velocity�

The gradient constraint
 equation ���
 is based on the intensity conservation assump�
tion� i�e�
 it assumes that the stimulus intensity shifts �locally translates� from location
to location over time� The third derivative constraints
 equation ���
 are based on con�
servation of the second spatial derivatives of intensity
 i�e�
 that �fxx� fxy� fyy� shifts over
time�

An advantage of using higher order derivatives is that
 in principle
 there are enough
constraints at a single spatial position� Even so
 there are stimuli for which there will
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not be enough constraints locally� There is still a need� therefore� to combine constraints
over a local spatial region�

Combining constraints over a local spatial region gives�

R�v�� v�� �
X

x�y

�v�fxxx � v�fxxy � fxxt	
�

�
X

x�y

�v�fxxy � v�fxyy � fxyt	
�

�
X

x�y

�v�fxyy � v�fyyy � fyyt	
�

The least
squares estimate of velocity� minimizing this expression is

�v � �M��
b�

where M and b are now de�ned as�

m�� �
X

��fxxx�
� � �fxxy�

� � �fxyy�
�	

m�� �
X

��fxxy�
� � �fxyy�

� � �fyyy�
�	

m�� �
X

��fxxx��fxxy� � �fxxy��fxyy� � �fxyy��fyyy�	

b� �
X

��fxxx��fxxt� � �fxxy��fxyt� � �fxyy��fyyt�	

b� �
X

��fxxy��fxxt� � �fxyy��fxyt� � �fyyy��fyyt�	�

Note the similarity with equation ��� The solutions using �rst and third derivates are
essentially the same� The main di�erences are� ��� that the third derivative solution
uses a greater number of linear operators� and ��� that the third derivative operators
are more narrowly tuned �with more subregions� for spatiotemporal orientation�

As with �rst derivatives� each element of M and b may be rewritten as a sum
of squared outputs of spatiotemporally
oriented operators� As above� we rewrite the
products� e�g��

�fxxx��fxxt� �
�

�
��fxxx � fxxt�

�
� �fxxx � fxxt�

�	�

For the third derivative operators� we also rewrite the spatial cross
derivatives �e�g�� fxxy
and fxyy� in terms of spatially oriented operators� To this end� we de�ne gp and gq to
be to be derivative operators in diagonal orientations�

gp � gx � gy

gq � gx � gy�

The third derivatives in the diagonal orientations are�

gppp � gxxx � �gxxy � �gxyy � gyyy

gqqq � gxxx � �gxxy � �gxyy � gyyy �

��



Spatial cross�derivative operators may then be expressed in terms of the oriented oper�
ators�

gxxy � �

�
�gppp � gqqq � �gyyy �

gxyy � �

�
�gppp � gqqq � �gxxx��

Using a set of identities like these� we can express the velocity estimate in terms of the
squared outputs of a set of spatiotemporally�oriented operators	 Figure 
 shows the
spatiotemporal weighting functions of a representative set of those operators	

On the other hand� we have no a priori theoretical basis for choosing Gaussian
third derivatives	 Other operators could be used just as well �e	g	� third or fourth
derivatives of some smooth� unimodal� non�Gaussian function�	 One set of operators or
another may provide a stronger constraint on velocity in dierent situations� depending
on the local image structure	 For machine vision applications� we advocate using several
pre�lters� with dierent preferences for spatial frequency �scale�� dierent orientation
tuning widths� and dierent �e	g	� even and odd� phases	

��� Normalization and Recti�cation

The model that we advocate in this chapter is an extension of the spatiotemporal �lter
method described above	 In this section� we brie�y describe two additional steps in
the computation of the model � normalization and recti�cation	 Both extensions are
needed for a realistic model of physiological data	

Recti�cation� The linear model of simple cell physiology is attractive because the
response of a linear operator can be completely characterized with a relatively small
number of measurements	 Unfortunately� the linear model falls short of a complete
account of simple cell responses	 One major fault with the linear model is that cell �ring
rates are by de�nition positive� whereas linear operators can have positive or negative
outputs	

A linear cell with a high maintained �ring rate could encode the positive and negative
values by responding either more or less than the maintained rate	 Cells in primary visual
cortex� however� have very little maintained discharge so they can not truly act as linear
operators	

Rather� the positive and negative outputs can be encoded by two halfwave�recti�ed
operators	 One mechanism encodes the positive outputs of the underlying linear op�
erator� and the other one encodes the negative outputs	 These two mechanisms are
complements of one another� that is� the positive weights of one weighting function are
replaced by negative weights in the other	 Due to the recti�cation� only one of the two
has a non�zero response at any given time	
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In this chapter� we consider half�squaring as an alternative form for the recti�cation�
The output of a half�squared linear operator is given by�

A�t� � bL�t�c� � �	�

where bxc � max�x� 
� is halfwave�recti�cation� and L�t� is the linear response de�ned
in equation ����

Normalization� A second major fault with the linear model of simple cells is the
fact that cell responses saturate at high contrasts� The responses of ideal linear operators�
on the other hand� increase proportionally to stimulus contrast over the entire range of
contrasts� To explain response saturation� several researchers �Robson� �	� Bonds�
�		� Heeger� �		�a� have suggested that cells in primary visual cortex mutually inhibit
one another� e�ectively normalizing their responses with respect to stimulus contrast�

Normalization of striate cell responses is also motivated from a theoretical point of
view� It is commonly believed that information about a visual stimulus� other than its
contrast� is represented as the relative responses of collections of cells� For example�
the orientation of a grating might be represented as the ratio of the responses of two
cells� each with a di�erent orientation tuning� Indeed physiologists have found that the
ratio of a cell�s responses to two stimuli is largely independent of stimulus contrast �see
Section ����� But cortical cells� unlike linear operators� have a limited dynamic range�
their responses saturate for high contrasts� Normalization makes it possible for response
ratios to be independent of stimulus contrast� even in the face of response saturation�

Consider a collection of half�squared linear operators with various receptive �eld
centers �covering the visual �eld� and with various spatiotemporal frequency tunings�
Let Ai�t� be the squared output of mechanism i� Normalization is achieved by dividing
each output by the sum of all of the outputs�

Ai�t� �
Ai�t�

�� �
P

i Ai�t�
� ��
�

where �� is called the semi�saturation constant� As long as � is nonzero� the normalized
output will always be a value between 
 and �� saturating for high contrasts�

The underlying linear operators can be chosen so that they tile the frequency do�
main� i�e�� the sum of their squared frequency responses is the unit constant function
�everywhere equal to one�� In that case� summing the squared outputs over all spatial
positions and all frequencies gives the total Fourier energy of the stimulus� The normal�
ization can also be computed �locally� by summing over a limited region of space and a
limited range of frequencies�

There is a problem with normalization� as it has been presented thus far� Equations
�	� and ��
� express the normalization in a feed�forward manner� First� the half�squared
outputs are computed� using equation �	�� Then the half�squared outputs are combined
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to give the normalized outputs� using equation ����� However� the unnormalized outputs
can not be represented by mechanisms with limited dynamic range �e�g�� neurons�� The
solution is to use a feedback network to do the normalization so that the unnormalized
outputs need not be explicitly represented as cell output �ring rates �see Heeger ���	a�
for details��

� Results

In the previous section� we describe a model for computing velocity from visual stimuli�
In this model� velocity estimates are computed from the outputs of a set of normalized�
half
squared� linear operators� The normalized outputs are summed to get the entries
of M and b� In addition� a small o�set �the prior� is added to the diagonal entries of
M� Finally� the velocity estimate is given �M��b�

This section reports on simulations of both physiological and psychophysical experi

ments� We show that our model explains a variety of experimental results�

��� Simple Cell Physiology

For over thirty years� physiologists have been measuring response properties of simple
cells in primary �striate� visual cortex� A longstanding view of simple cells is that their
responses can be characterized as a weighted sum �over local space� of the intensity values
in a visual stimulus �Hubel and Wiesel� ���	 Campbell et al�� ����� ������ A currently
popular model of simple cells is that they act like halfwave
recti�ed� spatiotemporal
linear operators� However� some experiments have revealed blatant violations of linearity�

The model that we advocate is based on spatiotemporal linear operators� but with two
important modi�cations� First� the outputs of the linear operators are half
squared �not
halfwave
recti�ed�� Second� the responses are normalized� Heeger ����	a� ���	b� has
demonstrated that this new model� with half
squaring and normalization� is qualitatively
consistent with a signi�cantly larger body of physiological data�

In this section� we review some measurements of simple cell responses� First� we com

pare physiological data with the Gaussian third derivative operators� We conclude that
the third derivative operators are a reasonable model for the linear weighting functions
that underlie simple cells responses� Then� we demonstrate that response saturation can
be explained by the nonlinearities �half
squaring and normalization� in the model�

Responses to Impulses� Many researchers have used impulses ��ashed spots or
bars� and white noise stimuli to map simple cell weighting functions �e�g�� Hubel and
Wiesel� ���	 Heggelund� ���� Jones and Palmer� ���� McLean and Palmer� ����

��



Shapley et al� ������ Here� we compare physiological data with the weighting functions
of the third derivative operators�

Hubel and Weisel ������ discovered that simple cells have clearly de	ned excitatory
and inhibitory spatial subregions� Bright �brighter than the mean intensity� light in an
excitatory region or dim �darker than the mean� light in an inhibitory region enhances
the cell
s response� whereas bright light in an inhibitory region or dim light in excita�
tory region inhibits its response� These results are readily explained by the model� The
underlying linear stage of the model predicts that excitation to a bright light is comple�
mented by inhibition to a dim light� Due to recti	cation� the inhibition can be measured
only by 	rst driving the operator to a nonzero response with an excitatory stimulus�

According to the model� cells are direction selective because of the underlying linear
stage� McLean and Palmer ������ and Shapley et al� ������ measured full D spa�
tiotemporal weighting functions of simple cells using white�noise stimuli� They found
some simple cells with weighting functions tilted along an oblique axis in space�time�
like that illustrated in 	gure ��c�� The model predicts that these cells be direction se�
lective� that is� that they prefer motion in one direction over the other� In fact� since a
spatiotemporal linear operator is completely characterized by its impulse response� the
model allows one to predict a cell
s preferred direction and speed of motion from the
cell
s spatiotemporal weighting function� When McLean and Palmer ������ measured
simple cell responses to moving bars� they could� for most cells� correctly predict the
preferred bar motion from the weighting function�

�� Figure � About Here ��

McLean and Palmer ������ and Shapley et al� ������ also found some simple cells
with space�time separable weighting functions� Space�time separable functions can be
expressed as the product of a spatial function multiplied by a temporal function� In the
model� the direction selective linear operators are constructed by summing space�time
separable operators� For example� �gxxx � gxxt� is a third derivative operator that is
selective for leftward motion� This operator is constructed by summing the outputs
of two linear operators� gxxx and gxxt� Figure � shows space�time slices through the
weighting functions of each of these three operators� Although gxxx and gxxt are each
space�time separable� their sum is tilted in space�time �not space�time separable���

�� Figure � About Here ��

Figure � shows examples of other linear operators used in the model� The top row
shows spatial slices through the weighting functions� and the bottom row shows space�
time slices through the weighting functions� The operators depicted in 	gure � are
representative of all of the operators used in the model� Some of these operators are
Gaussian third derivatives �like gxxx and gxxt�� while others are constructed by summing
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third derivatives �like gxxx�gxxt�� The outputs of these operators �and others like them�
there are a total of ��� are half�squared� normalized� and then summed to give the entries
of M and b�

For the most part� these linear operators resemble physiological measurements of
simple cell weighting functions� such as those measured by McLean and Palmer �	
�
��
Shapley et al� �	

	�� and others� First� all of the operators in �gure � are spatially ori�
ented� with two or more spatial subregions� Second� some of the operators are direction
selective �they are tilted in space�time�� while others are not direction selective �they
are space�time separable�� Third� the operators have temporal responses that are either
monophasic �like gxxx� or biphasic �like gxxt or gxxx � gxxt�� And fourth� there is quite a
lot of variability in the models weighting functions��

There are� however� some di�erences between the model operators and simple cell
weighting functions� First� some of the operators have irregular spatial structure �e�g��
second and third from the left in �gure ��� Second� some of the operators have impulse
responses that rotate slightly over time� For example� the operator farthest to the right
in �gure � has an impulse response that rotates �rst clockwise by ��� radians� and then
counter�clockwise by the same amount� Simple cells with this property have not been
reported in the literature�

Responses to Gratings� The response of a spatiotemporal linear operator� to a
drifting grating� varies sinusoidally over time with the same temporal frequency as that
of the stimulus� A halfwave�recti�ed linear operator responds over only half of each cycle�
remaining silent during the other half�cycle� A half�squared operator also responds over
only half of each cycle� but the shape of the response waveform is distorted� Simple
cells� like recti�ed linear operators� also respond over approximately half of each cycle
�Movshon et al�� 	
��� Andrews and Pollen� 	
�
� Kulikowski and Bishop� 	
�	b��

Spatiotemporal linear operators� like the linear operators in the model� respond pref�
erentially to gratings with certain orientations� spatial frequencies� and temporal fre�
quencies� In other words� the linear operators are tuned for spatial frequency� temporal
frequency� and orientation� The tuning curves of the operators can be computed by
taking the Fourier transform of the operators weighting functions� In this section� we
compare simple cell tuning curves with those of �rst and third derivative operators�
In contrast with the third derivative operators� the �rst derivative operators are not a
satisfactory model of simple cell weighting functions for two reasons�

	� There are two few spatial subregions in the �rst derivative operators� In other
words� they are too broadly tuned for orientation and spatial frequency�

�� Researchers have found that a simple cells spatial frequency tuning �measured
with gratings drifting only in one direction� is largely independent of the stimulus
temporal frequency� This is not the case for the �rst derivative operators� but it
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is very nearly true for the third derivative operators�

�� Figure � About Here ��

Figure ��a� shows a series of spatial frequency tuning curves� measured from a simple
cell �data replotted from Hamilton et al�� ��	��� Note that the shape of the spatial
frequency curves are largely independent of temporal frequency� Other physiologists
�Tolhurst and Movshon� ���
� Holub and Morton�Gobson� ��	�� Ikeda and Wright� ���
�
Foster et al�� ��	
� have noted this same result� that spatial frequency and temporal
frequency tuning curves �measured with gratings drifting only in one direction� are
independent of one another��

Figure ��b� shows an analogous series of spatial frequency tuning curves for one
of the models third derivative operators� Like the simple cell data� these simulated
tuning curves are largely independent of temporal frequency� Figure ��c�� on the other
hand� shows a series of tuning curves for one of the �rst derivative operators� The
spatial frequency tuning of the �rst derivative operator is much broader and it shifts
systematically as a function of temporal frequency�

�� Figure 	 About Here ��

Figure 	�a� shows the orientation�direction tuning of a simple cell �data replotted
from Movshon et al�� ��	��� Figure 	�b� shows an analogous tuning curve for one of
the models third derivative operators� Although there are some di�erences �the model
operator responds slightly to motion in the non�preferred direction�� the shape of the
tuning curve is quite similar� Figure 	�c�� on the other hand� shows that for a �rst
derivative operator� the tuning curve is much broader�

Responses to Plaids� Movshon et al� ���	�� also measured direction tuning
curves for sine�grating plaid patterns� Figure ��a� shows an example of their results� for
a typical cell in primary visual cortex� The plaid stimuli consisted of a pair of orthogonal
gratings� each of the cells preferred spatial and temporal frequency� For each di�erent
stimulus condition� the entire plaid pattern was rotated so that it moved in a di�erent
direction� Figure ��b� shows an analogous tuning curve for one of the third derivative
operators� and �gure ��c� shows the tuning curve for a �rst derivative operator� The
�rst derivative operator is so broadly tuned that it does not respond independently to
the two component gratings�

�� Figure � About Here ��

Movshon et al� ���	�� classi�ed cells into two types �component��ow and pattern�
�ow� by observing their responses to sine�grating plaid stimuli� Component��ow cells
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respond independently to each of the component gratings� Pattern��ow cells do not
respond independently to the components� According to this classi�cation� the third
derivative operator would be classi�ed as a component��ow cells� and the �rst derivative
operator would be classi�ed as a pattern��ow cell� Movshon et al�� however� found that
all cells in primary visual cortex are of the component��ow type� Pattern��ow cells were
found in a di�erent area of primate visual cortex� area MT�

Figure � raises some doubt about the interpretation of these experimental results�
Movshon et al��s 	
��� argued that pattern��ow cells respond to the direction of motion
of the plaid as a whole� i�e�� to the intersection of constraints direction� The result in
�gure �	c suggests that this might not be the case� The �rst derivative operator is
not solving for the intersection of constraints� Rather since it is very broadly tuned
for orientation�direction� the �rst derivative operator responds to the average of the
two component directions� Moreover� Movshon et al� 	
��� did not �nd a sharp di�
chotomy between component� and pattern��ow cells� It might be that the continuum of
component�pattern types re�ects a continuum of orientation tuning widths�

Response Saturation� The contrast�response function is a plot of response as a
function of contrast� typically measured using sine�grating stimuli� Here� we demonstrate
that contrast�response of simple cells can be explained by the nonlinearities 	divisive
normalization and half�squaring in our model�

�� Figure 
� About Here ��

Figure 
�	a plots typical experimental contrast�response data� and �gure 
�	b
shows results of model simulations� The simulated responses saturate with increased
contrast because of normalization�

The hyperbolic ratio function�

R � Rmax

cn

�n � cn
�M� 	



has been used to �t contrast�response data� for cells in both cat and primate 	Albrecht
and Hamilton� 
���� Chao�yi and Creutzfeldt� 
���� Sclar et al�� 
���� R� in equation


 is the evoked response� c is the contrast of the test grating�M is maintained discharge�
n is a constant exponent� �n is the semi�saturation constant� and Rmax is the maximum
attainable response� From the �ts� experimenters have found that the exponent� n� is �
on average 	Albrecht and Hamilton� 
���� Sclar et al�� 
����

The contrast�response of a model cell is given exactly by the hyperbolic ratio with
parameters n � � and M � �� This is easily demonstrated by recalling that the summa�
tion�

P
Ai	t� in the denominator of equation 	
� is proportional to c�� The exponent

is � in the model because of half�squaring�
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In addition� it can be shown that the contrast�response curve of a model cell shifts
mostly downward �on log�log axes� if the orientation or frequency of the test grating
is non�optimal �see Heeger� ����a for details�� This downward shift is again due to
divisive normalization in the model� Downward shifts of contrast�response have been
measured physiologically in several labs� Albrecht and Hamilton ���	��� for example�
measured contrast�response curves for stimuli of non�optimal spatial frequency� Their
data is replotted in 
gure ���a�� and 
gure ���b� shows the contrast�response curves of
a model cell� For both model cells and real cells� the curves shift mostly downward�

This downward shift of contrast�response has important consequences� Consider the
response of a linear operator when presented with two di�erent stimuli� If both stimuli
are multiplied by the same factor then the ratio of the responses to the two stimuli
remains unchanged� The downward shift in 
gure �� demonstrates that this is also true
for normalized operators and for real cells� In spite of saturation� the response ratio to
two di�erent stimuli is largely independent of stimulus contrast� In this way� information
about a visual stimulus� other than its contrast� is represented as the relative responses
of a collection of cells�

��� Perceived Velocity of Plaids

The perceived velocity of a moving pattern depends on its spatial structure� Adelson and
Movshon ���	�� conducted psychophysical experiments to study this dependence using
sine�grating plaid patterns� Since then� a number of other psychophysicists have measure
human velocity judgements using plaids� Stone et al� ������� in particular� measured
the e�ect of contrast on perceived direction� By varying the relative contrasts of the
two component gratings� they found that the plaid motion direction is biased away from
the intersection of constraints rule �illustrated in 
gure �b�� toward the higher contrast
grating� In this section� we show that our model is consistent with their data�

The nominal stimulus in this experiment was a sine�grating plaid made up of two
component gratings with equal contrasts and temporal frequencies� This plaid stimulus
appeared to move directly upward �in accordance with the intersection of constraints
rule�� Stone et al� varied both the relative contrast and the relative temporal frequency
of the two gratings� These stimuli �with di�erent contrasts or temporal frequencies�
appeared to move either slightly right of vertical or slightly left of vertical� The subjects
task was to indicate� for each stimulus presentation� whether the plaid appeared to move
rightward or leftward�

The total contrast of the plaid was also varied �total contrast was de
ned by Stone
et al� to be the sum of the contrasts of the two components�� For each total contrast�
Stone et al� varied the contrast ratio of the two components� For each contrast ratio�
they adjusted the relative temporal frequency �in a staircase procedure� until the pattern
appeared to move directly upward� In other words� they varied the relative temporal
frequency to compensate for the bias introduced by the relative contrast di�erence�
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Figure ���a� shows data from Stone et al� ����� averaged over four subjects� Each curve
is the inferred bias� for a �xed total contrast� as a function of contrast ratio�

		 Figure �� About Here 		

There are two parameters in the model� the semi
saturation constant for the nor

malization� and the prior� Both of the parameters in the model contribute to deviations
from the intersection of constraints rule� If the normalized responses are small relative
to the prior� then there is a large bias� If the normalized responses are large� then there
is a small bias� For appropriate values of the two parameters the model behaves like
human observers� as shown in �gure ���b��

On the other hand� there are di�erences between the simulation results and the actual
data� At the highest total contrast ���� and for small contrast ratios� the human
observers often saw the the plaid motion direction biased toward the lower contrast
grating� This is evident in �gure ���a� where the �� curve dips below zero bias� For
all of the conditions that we have simulated� the model predicts a bias toward the higher
contrast grating�

� Summary

This chapter presents a model for the computation and representation of velocity in

formation in the primate visual system that accounts for a variety psychophysical and
physiological observations� The �rst stage of the model uses spatiotemporal linear op

erators to compute a linear sum of the stimulus intensities over a local region of space
and recently past time� The outputs of the linear operators are half
squared and then
normalized� A slight prior preference for slower speeds is introduced by adding a small
o�set to two of the normalized outputs� The normalized outputs are then combined�
according to a simple formula� to give �nal velocity estimates�

Our model is consistent with recent psychophysical experiments by Stone et al�
������ on the perception of sine
grating plaid velocities� When the component grat

ing contrasts are unequal� the velocity estimated by the model is biased toward the
higher contrast grating� The bias occurs in the model because the model includes a
slight prior �preference� for slower speeds� For appropriate values of the model�s two
parameters� the model behaves like human observers ��gure ����

Ferrera and Wilson ������ ����� have also measured perceived speed and direction
of plaids� We are currently working toward explaining their psychophysical results with
the same model �Simoncelli and Heeger� ������

Our model is also consistent with physiological data on responses of simple cells in
primary �striate� visual cortex� In this chapter� simple cells are modeled as normalized�
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half�squared linear operators� We consider two sets of linear operators� �rst and third
spatiotemporal derivatives of a Gaussian� Although somewhat more cumbersome be�
cause of the larger number of �lters� the third derivative operators are a better model
of simple cells than the �rst derivative operators� The third derivative operators are
consistent with a variety of physiological results�

� According to the model� a simple cell�s selectivity is due to an underlying spa�
tiotemporal� linear stage� There are a variety of physiological results that are
consistent with the linear hypothesis �see Heeger� �		
b for review�� McLean and
Palmer ��	�	�� in particular� were able to predict a cell�s preferred speed and di�
rection of motion from measurements of its underlying spatiotemporal weighting
function�

� The third derivative operators in the model resemble simple cell weighting func�
tions ��gures  and ��� First� all of the operators are spatially oriented� with two
or more spatial subregions� Second� some of the operators are direction selective
�they are tilted in space�time�� while others are not direction selective �they are
space�time separable�� Third� the operators have temporal responses that are ei�
ther monophasic or biphasic� And fourth� there is quite a lot of variability in the
model�s weighting functions�

� Researchers �e�g�� Hamilton et al�� �		�� have found that spatial frequency and
temporal frequency tuning curves are largely independent of one another� This is
approximately true of the third derivative operators as well ��gure ���

� The third derivative operators have orientation tuning curves that resemble those
of real cells ��gure ���

� The third derivative operators are su�ciently narrowly tuned for orientation� so
that they act like �component��ow� cells ��gure 	�� responding independently to
each component of a sine�grating plaid stimulus�

� Responses of both model cells and real cells saturate at high contrasts� according
to the hyperbolic ratio function ��gure ����

� The contrast�response curve� for either a model cell or a real cell� shifts mostly
downward for non�optimal stimuli ��gure ���� In other words� the ratio of responses
produced by two di�erent stimuli is largely invariant with respect to stimulus
contrast� In this way� information about a visual stimulus� other than its contrast�
is represented as the relative responses of a collection of cells�

Our model has also been used to compute optical �ow �elds from image sequences
�Simoncelli� Adelson� and Heeger �		��� It is important to keep in mind� however�
that the gradient constraint� equation �
�� is only approximately valid� The constraint
is based on the intensity conservation assumption� that changes in intensity are due
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only to local translation� This ignores possible changes in lighting and re�ectance�
Moreover� the assumption of local translation is not valid near motion boundaries nor
for transparent motions� The gradient constraint is also based on a planar approximation
to the �pre�ltered� intensity values� The velocity estimated by the model is in error when
these assumptions are not satis�ed�

In our future research� we plan to extend the model to make it more robust with
respect to these assumptions� We also plan to use the model to explain further exper�
imental results� From our point of view� �tting psychophysical or physiological data is
not� by itself� a satisfactory goal of computational modeling� The model must also give
reliable velocity estimates� Although primates do not always perceive velocity veridically
�e�g�� �gure ���� we do quite well for most stimuli�
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Footnotes

�� Some algorithms do not always compute the correct velocity for sine grating plaid
patterns� In particular� models proposed by Watson and Ahumada ������� by
Heeger ����	�� and by Grzywacz and Yuille ����
� give the wrong solution unless
the spatial frequencies of the gratings equal the preferred spatial frequency of the
�lters� Grzywacz and Yuille ����
� claim that their method does not depend on
the spatial frequency content of the stimulus� but in fact that claim is not true for
sine grating stimuli�

�� Watson and Ahumada ����� ����� and Adelson and Bergen ������ proposed
the quadrature model of direction selectivity� in which direction selective linear
operators are constructed by summing the outputs of two space�time separable
subunits� These subunits are related to one another by a quadrature phase shift
both in space and in time� In our model� the direction selective operators are also
constructed by summing the outputs of two space�time separable subunits� but the
subunits are not quadrature pairs�

� An extension of the model would predict even greater variability in the weighting
functions� The model operators need not be Gaussian derivatives� Other operators
could also be used �e�g�� third or fourth derivatives of some smooth� unimodal� non�
Gaussian function�� Moreover� di�erent pre�lters could be used at di�erent spatial
positions� At a given position� the operators must all be derivatives of a common
pre�lter� but the pre�lters at di�erent spatial positions need not be the same�

�� Figure 	 demonstrates that spatial and temporal frequency tuning curves �mea�
sured with gratings drifting only in one direction� are largely independent of one
another� Some researchers have summarized this result by saying that the spa�
tiotemporal frequency tuning is �space�time separable�� Note� however� that this
is di�erent from requiring space�time separability of an operator�s weighting func�
tion� The spatiotemporal frequency tuning �for gratings drifting only in one direc�
tion� can be separable even if the weighting function is inseparable� The frequency
domain measurements �in �gure 	� are separable only when considering one di�
rection of motion� The full spatiotemporal frequency tuning �for gratings drifting
in all directions� is space�time separable if and only if the weighting function is
space�time separable �i�e�� nondirection selective��
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Figure Captions

Figure �� Distributed representations of velocity for rightward moving plaid stimuli�
�a� and �b� Plaid stimuli made from pairs of gratings� Both plaids moved right�
ward with the same velocity� �c� and �d� Distributed representations corresponding
to stimuli in �a� and �b�� respectively� Each point corresponds to a di�erent ve�
locity �center corresponds to zero velocity�� Brightness at each point is inversely
proportional to R�v�� v�� in equation ���� Locations of the peaks correspond to the
correctly perceived velocities�

Figure �� �a� Single moving grating� The diagonal line indicates the locus of velocities
compatible with the motion of the grating� �b� Plaid composed of two moving grat�
ings� The lines give the possible motion of each grating alone� Their intersection
is the only shared motion�

Figure �� Distributed representations of velocity for a vertical grating stimulus moving
to the right� �a� Since the velocity is ambiguous� there is no peak in the distri�
bution� �b� Responses are biased slightly by adding a small o�set to the diagonal
elements ofM� This corresponds to a broad prior probability distribution centered
at zero� Including the prior gives a broad peak in the distribution�

Figure �� Orientation in space�time �based on an illustration by Adelson and Bergen�
�	
��� �a� A vertical bar translating to the right� �b� The space�time cube of
stimulus intensities corresponding to motion of the vertical bar� �c� An x�t slice
through the space�time cube� Orientation in the x�t slice is the horizontal com�
ponent of velocity� Motion is like orientation in space�time� and spatiotemporally
oriented �lters can be used to detect and measure it�

Figure �� Space�time slices through weighting functions of third derivative operators�
�a� gxxx� the third spatial derivative of a Gaussian� is monophasic and space�time
separable� �b� gxxt is biphasic and space�time separable� �c� �gxxx  gxxt� is tilted
in space�time �not space�time separable�� and selective for leftward motion�

Figure �� Spatial slices �top row� and space�time slices �bottom row� through weight�
ing functions of linear operators representative of the �� operators used in the
model� Some of these operators are Gaussian third derivatives� while others are
constructed by summing third derivatives� The operators resemble physiological
measurements of simple cell weighting functions�

Figure �� �a� Spatial frequency tuning of a simple cell� measured with sine�grating
stimuli drifting in the cell�s preferred orientation �data replotted from Hamilton
et al�� �	
	�� Each curve is for a di�erent stimulus temporal frequency� and each
was shifted vertically for ease of viewing� Spatial frequency tuning is largely inde�
pendent of temporal frequency� �b� Spatial frequency tuning for third derivative
operator �gxxx  gxxt� is likewise independent of temporal frequency� �c� Spatial
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frequency tuning for �rst derivative operator �gx � gt� is much broader and varies
systematically with temporal frequency�

Figure �� �a� Orientation�direction tuning of a simple cell� measured with sine�grating
stimuli of preferred spatial and temporal frequency �data replotted from Movshon
et al�� 	
���� Direction of motion is represented by the angular coordinate and
relative response is plotted radially� �b� Orientation�direction tuning for third
derivative operator �gxxx � gxxt� is similar� �c� Orientation�direction tuning for
�rst derivative operator �gx � gt� is much broader�

Figure �� �a� Direction tuning of a simple cell� measured with sine�grating plaid stimuli
�data replotted from Movshon et al�� 	
���� Direction of motion of the plaid
pattern is represented by the angular coordinate and relative response is plotted
radially� �b� Plaid direction tuning for third derivative operator �gxxx � gxxt� is
similar� �c� Plaid direction tuning for �rst derivative operator �gx� gt� is so broad
that it does not respond independently to the two component gratings�

Figure ��� Response versus contrast as the spatial frequency� �� of the stimulus is
varied� �a� Data replotted from Albrecht and Hamilton �	
��� �b� Model sim�
ulation� For both model cells and real cells� the contrast�response curve shifts
mostly downward in the log�log plot if the spatial frequency of the test grating is
non�optimal�

Figure ��� Bias of human velocity judgements for sine�grating plaids� as a function of
contrast ratio of the two component gratings� �a� Data averaged from four subjects�
replotted from Stone et al� �	

��� Each curve is for a di�erent total contrast�
Relative temporal frequency was varied to compensate for the bias introduced
by the relative contrast di�erence� Inferred bias plotted on the vertical axes is
directly related to relative temporal frequency� Inferred bias is the direction that
would be seen for that relative temporal frequency �according to the intersection
of constraints rule� if both gratings had the same contrast� �b� Results from model
simulations� The two parameters of the model were chosen to give the best �least�
squares� �t to the data� For these parameter values the model behaves like human
observers�

�



References

��� E H Adelson and J R Bergen� Spatiotemporal energy models for the perception of
motion� Journal of the Optical Society of America A� ����	
���� �����

��� E H Adelson and J R Bergen� The extraction of spatiotemporal energy in human
and machine vision� In Proceedings of IEEE Workshop on Motion� Representation
and Analysis� pages ���
���� Charleston� S Carolina� �����

��� E H Adelson and J A Movshon� Phenomenal coherence of moving visual patterns�
Nature� �������������
���� �����

�	� D G Albrecht and D B Hamilton� Striate cortex of monkey and cat� Contrast
response function� Journal of Neurophysiology� 	�����
���� �����

��� B W Andrews and D A Pollen� Relationship between spatial frequency selectivity
and receptive �eld pro�le of simple cells� Journal of Physiology �London�� �������

���� �����

��� A B Bonds� Role of inhibition in the speci�cation of orientation selectivity of cells
in the cat striate cortex� Visual Neuroscience� ��	�
��� �����

��� F W Campbell� G F Cooper� and C EnrothCugell� The angular selectivity of
visual cortical cells to moving gratings� Journal of Physiology �London�� �������

���� �����

��� F W Campbell� G F Cooper� and C EnrothCugell� The spatial selectivity of visual
cells of the cat� Journal of Physiology �London�� �������
���� �����

��� Li Chaoyi and O Creutzfeldt� The representation of contrast and other stimulus
parameters by single neurons in area �� of the cat� P�ugers Archives� 	�����	
��	�
���	�

���� M Fahle and T Poggio� Visual hyperacuity� spatiotemporal interpolation in human
vision� Proceedings of the Royal Society of London� B� ����	��
	��� �����

���� V P Ferrara and H R Wilson� Perceived direction of moving twodimensional pat
terns� Vision Research� ������
���� �����

���� V P Ferrara and H R Wilson� Perceived speed of moving twodimensional patterns�
Vision Research� ������
���� �����

���� K H Foster� J P Gaska� M Nagler� and D A Pollen� Spatial and temporal frequency
selectivity of neurons in visual cortical areas V� and V� of the macaque monkey�
Journal of Physiology �London�� �������
���� �����

��	� J J Gibson� The Perception of the Visual World� Houghton Mi�in� Boston� �����

��



���� J J Gibson and E J Gibson� Continuous perspective transformations and the per�
ception of rigid motions� Journal of Experimental Psychology� ��	�
����� �����

���� N M Grzywacz and A L Yuille� A model for the estimate of local image velocity by
cells in the visual cortex� Proceedings of the Royal Society of London A� 
�	�
������
�����

���� D B Hamilton� D G Albrecht� and W S Geisler� Visual cortical receptive �elds in
monkey and cat	 spatial and temporal phase transfer function� Vision Research�

�	�
������� �����

���� D J Heeger� Model for the extraction of image �ow� Journal of the Optical Society
of America A� �	���������� �����

���� D J Heeger� Optical �ow using spatiotemporal �lters� International Journal of
Computer Vision� �	
����
� �����

�
�� D J Heeger� Normalization of cell responses in cat striate cortex� Visual Neuro�
science� �	in press� ���
a�

�
�� D J Heeger� Half�squaring in responses of cat simple cells� Visual Neuroscience� in
press� ���
b�

�

� P Heggelund� Receptive��eld organization of simple cells in cat striate cortex�
Experimental Brain Research� �
	������ �����

�
� R A Holub and M Morton�Gibson� Response of visual cortical neurons of the
cat to moving sinusoidal gratings	 Response�contrast functions and spatiotemporal
integration� Journal of Neurophysiology� ��	�
����
��� �����

�
�� B K P Horn and B G Schunk� Determining optical �ow� Arti�cial Intelligence�
��	����
�� �����

�
�� D Hubel and T Wiesel� Receptive �elds� binocular interaction� and functional
architecture in the cat�s visual cortex� Journal of Physiology �London�� ���	����
���� ���
�

�
�� H Ikeda and M J Wright� Spatial and temporal properties of �sustained� and �tran�
sient� neurones in area �� of the cat�s visual cortex� Experimental Brain Research�


	���� �����

�
�� G Johansson� Visual motion perception� Scienti�c American� 

	������ �����

�
�� J P Jones and L A Palmer� The two�dimensional spatial structure of simple receptive
�elds in cat striate cortex� Journal of Neurophysiology� ��	������
��� �����

�
�� J J Kulikowski and P O Bishop� Linear analysis of the response of simple cells in
the cat visual cortex� Experimental Brain Research� ��	������� ����a�


�



���� B D Lucas and T Kanade� An iterative image registration technique with an ap�
plication to stereo vision� In Proceedings of the �th International Joint Conference
on Arti�cial Intelligence� pages �	
��	�� Vancouver� ���

��� J McLean and L A Palmer� Contribution of linear spatiotemporal receptive �eld
structure to velocity selectivity of simple cells in area 	 of cat� Vision Research�
����	���	�� ����

���� J A Movshon� E H Adelson� M S Gizzi� and W T Newsome� The analysis of
moving visual patterns� In C Chagas� R Gattass� and C Gross� editors� Experimental
Brain Research Supplementum II� Pattern Recognition Mechanisms� pages 	���
Springer�Verlag� New York� ����

���� J A Movshon� I D Thompson� and D J Tolhurst� Spatial summation in the receptive
�elds of simple cells in the cat�s striate cortex� Journal of Physiology �London��
�������		� �	��

��
� H H Nagel� On the estimation of optical �ow� relations between di�erent approaches
and some new results� Arti�cial Intelligence� ���������
� ��	�

���� K Nakayama� Biological image motion processing� A review� Vision Research�
����������� ����

���� J G Robson� Linear and nonlinear operations in the visual system� Investigative
Opthalmology and Visual Science Supplement� ���	� ����

��	� G Sclar� J H R Maunsell� and P Lennie� Coding of image contrast in central visual
pathways of the macaque monkey� Vision Research� ������ ����

���� R Shapley� R C Reid� and R Soodak� Spatiotemporal receptive �elds and direction
selectivity� In M Landy and J A Movshon� editors� Computational Models of Visual
Processing� pages ����� MIT Press� Cambridge� MA� ���

���� E P Simoncelli and E HAdelson� Computation of optical �ow� Relationship between
several standard techniques� Technical Report ��� Vision and Modeling Group�
MIT Media Lab� ��a�

�
�� E P Simoncelli and E H Adelson� Relationship between gradient� spatio�temporal
energy� and regression models for motion perception� Investigative Opthalmology
and Visual Science Supplement� ������� ���

�
� E P Simoncelli� E H Adelson� and D J Heeger� Probability distributions of optical
�ow� In Proceedings of Computer Vision and Pattern Recognition� pages ������
Mauii� HI� June ���

�
�� E P Simoncelli and D J Heeger� A computational model for perception of two�
dimensional pattern velocities� Investigative Opthalmology and Visual Science Sup�
plement� ��� in press� ����

��



���� L S Stone� A B Watson� and J B Mulligan� E�ect of contrast on the perceived
direction of a moving plaid� Vision Research� ��	
����
��� 
����

���� D J Tolhurst and J A Movshon� Spatial and temporal contrast sensitivity of striate
cortical neurons� Nature� ���	������ 
����

���� J P H van Santen and G Sperling� Elaborated Reichardt detectors� Journal of the
Optical Society of America A� �	������
� 
����

��� H Wallach and D N O�Connell� The kinetic depth e�ect� Journal of Experimental

Psychology� ��	�����
�� 
����

���� W H Warren and D J Hannon� Direction of self�motion is perceived from optical
�ow� Nature� ��	
��
�� 
����

���� W H Warren and D J Hannon� Eye movements and optical �ow� Journal of the

Optical Society of America A� �	
��
�� 
����

���� A B Watson and A J Ahumada� A look at motion in the frequency domain� In J K
Tsotsos� editor�Motion� Perception and representation� pages 
�
�� Association for
Computing Machinery� New York� 
����

���� A B Watson and A J Ahumada� Model of human visual�motion sensing� Journal

of the Optical Society of America A� �	�������� 
����

��



Figure �� Distributed representations of velocity for rightward moving plaid stimuli� �a�
and �b� Plaid stimuli made from pairs of gratings� Both plaids moved rightward with the
same velocity� �c� and �d� Distributed representations corresponding to stimuli in �a� and
�b�� respectively� Each point corresponds to a di�erent velocity �center corresponds to
zero velocity�� Brightness at each point is inversely proportional to R�v�� v�� in equation
���� Locations of the peaks correspond to the correctly perceived velocities�
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Figure �� �a� Single moving grating� The diagonal line indicates the locus of velocities
compatible with the motion of the grating� �b� Plaid composed of two moving gratings�
The lines give the possible motion of each grating alone� Their intersection is the only
shared motion�
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Figure �� Distributed representations of velocity for a vertical grating stimulus moving
to the right� �a� Since the velocity is ambiguous� there is no peak in the distribution�
�b� Responses are biased slightly by adding a small o�set to the diagonal elements ofM�
This corresponds to a broad prior probability distribution centered at zero� Including
the prior gives a broad peak in the distribution�
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Figure �� Orientation in space�time �based on an illustration by Adelson and Bergen�
���	
� �a
 A vertical bar translating to the right� �b
 The space�time cube of stimulus
intensities corresponding to motion of the vertical bar� �c
 An x�t slice through the
space�time cube� Orientation in the x�t slice is the horizontal component of velocity�
Motion is like orientation in space�time� and spatiotemporally oriented �lters can be
used to detect and measure it�





Figure �� Space�time slices through weighting functions of third derivative operators� �a�
gxxx� the third spatial derivative of a Gaussian� is monophasic and space�time separable�
�b� gxxt is biphasic and space�time separable� �c� �gxxx�gxxt� is tilted in space�time �not
space�time separable�� and selective for leftward motion�

	




Figure �� Spatial slices �top row� and space�time slices �bottom row� through weighting
functions of linear operators representative of the �� operators used in the model� Some
of these operators are Gaussian third derivatives� while others are constructed by sum�
ming third derivatives� The operators resemble physiological measurements of simple
cell weighting functions�
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Figure �� �a� Spatial frequency tuning of a simple cell� measured with sine�grating stim�
uli drifting in the cell�s preferred orientation �data replotted from Hamilton et al�� 	
�
��
Each curve is for a di�erent stimulus temporal frequency� and each was shifted verti�
cally for ease of viewing� Spatial frequency tuning is largely independent of temporal
frequency� �b� Spatial frequency tuning for third derivative operator �gxxx gxxt� is like�
wise independent of temporal frequency� �c� Spatial frequency tuning for �rst derivative
operator �gx  gt� is much broader and varies systematically with temporal frequency�
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Figure �� �a� Orientation�direction tuning of a simple cell� measured with sine�grating
stimuli of preferred spatial and temporal frequency �data replotted from Movshon et al��
	
���� Direction of motion is represented by the angular coordinate and relative response
is plotted radially� �b� Orientation�direction tuning for third derivative operator �gxxx�
gxxt� is similar� �c� Orientation�direction tuning for rst derivative operator �gx � gt� is
much broader�
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Figure �� �a� Direction tuning of a simple cell� measured with sine�grating plaid stimuli
�data replotted from Movshon et al�� ��	
�� Direction of motion of the plaid pattern
is represented by the angular coordinate and relative response is plotted radially� �b�
Plaid direction tuning for third derivative operator �gxxx � gxxt� is similar� �c� Plaid
direction tuning for �rst derivative operator �gx�gt� is so broad that it does not respond
independently to the two component gratings�
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Figure ��� Response versus contrast as the spatial frequency� �� of the stimulus is varied�
�a� Data replotted from Albrecht and Hamilton ���	
�� �b� Model simulation� For both
model cells and real cells� the contrast�response curve shifts mostly downward in the
log�log plot if the spatial frequency of the test grating is non�optimal�

��



43210
-5

5

15

25

5%
10%
20%
40%

Log Contrast Ratio

B
ia

s 
(d

eg
)

43210
-5

5

15

25

5%
10%
20%
40%

Log Contrast Ratio

B
ia

s 
(d

eg
)

Figure ��� Bias of human velocity judgements for sine�grating plaids� as a function of
contrast ratio of the two component gratings� �a� Data averaged from four subjects�
replotted from Stone et al� ����	�� Each curve is for a di
erent total contrast� Relative
temporal frequency was varied to compensate for the bias introduced by the relative
contrast di
erence� Inferred bias plotted on the vertical axes is directly related to relative
temporal frequency� Inferred bias is the direction that would be seen for that relative
temporal frequency �according to the intersection of constraints rule� if both gratings
had the same contrast� �b� Results from model simulations� The two parameters of the
model were chosen to give the best �least�squares� �t to the data� For these parameter
values the model behaves like human observers�
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