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The local spatiotemporal pattern of light on the retina is often consistent with a single translational velocity which may also
be interpreted as a superposition of spatial patterns translating with different velocities. Human perception reflects such
interpretations, as can be demonstrated using stimuli constructed from a superposition of two drifting gratings. Depending
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gratings moving in different directions. Here, we propose a quantitative model that explains how and why such
interpretations are selected. An observer’s percept corresponds to the most probable interpretation of noisy measurements
of local image motion, based on separate prior beliefs about the speed and singularity of visual motion. This model accounts
for human perceptual interpretations across a broad range of angles and speeds. With optimized parameters, its
components are consistent with previous results in motion perception.
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Introduction

Visual perception has been described as a process by
which uncertain and ambiguous measurements are com-
bined with internal knowledge of the world in order to
arrive at a consistent interpretation of one’s surroundings
(Alhazen, 1040/2005; Helmholtz, 1866/2000). For some
visual stimuli, such as the well-known Necker Cube (Necker,
1832), the ambiguities cannot be uniquely resolved with
internal knowledge or assumptions. Such stimuli may
appear to switch back and forth between two bistable
states (Figure 1a). The visual system may also exhibit a
preference for a particular solution, based on a combina-
tion of stimulus cues and internal knowledge. A widely
studied example in the motion literature is a drifting
“grating” that has a spatial intensity pattern that varies
along a single direction and is constant in the orthogonal
direction. To a visual observer, the translational velocity of

such stimuli is not uniquely constrained, because the retinal
image contains no information about the component of
velocity parallel to the spatial stripes (Wallach, 1935;
Wuerger, Shapley, & Rubin, 1996), an ambiguity widely
known as the “aperture problem” (Fennema & Thompson,
1979; Marr & Ullman, 1981). In the absence of additional
contextual cues, the visual system seems to assume that
the unobservable component has a value of zero and, thus,
that the perceived velocity of the stimulus is generally in
the direction normal to the spatial stripes.
When two drifting gratings are superimposed (Figure 1b),

they either appear to fuse into a coherently moving
“plaid” pattern or appear to move independently, sliding
transparently past each other (Adelson & Movshon, 1982;
Wallach, 1935). Clearly, both interpretations are physi-
cally plausible scenarios. How does the visual system
choose? The answer depends on a variety of different
attributes of the stimulus (Adelson & Movshon, 1982;
Cropper, Mullen, & Badcock, 1996; Hupé & Rubin, 2003;
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Kim & Wilson, 1993; Kooi, Valois, Switkes, & Grosof,
1992; Krauskopf & Farell, 1990; Krauskopf, Wu, &
Farell, 1996; Movshon, Adelson, Gizzi, & Newsome,
1986; Smith, 1992; Stoner & Albright, 1992; Stoner,
Albright, & Ramachandran, 1990; Victor & Conte, 1992;
Welch & Bowne, 1990). In general, the transparent
interpretation becomes more likely with faster component
speeds, broader angles, and longer presentation times, as
well as with greater differences between the components’
attributes, including in speed, spatial frequency, contrast,
depth, or hue. The effects of these parameters have
generally been examined one at a time, and most proposed

models are tied to the specifics of these plaid stimuli and
are thus difficult to generalize to natural vision.
Here, we develop a normative model that operates by

combining three fundamental components using principles
of statistical estimation theory. The first component is a
set of orientation- and motion-selective measurements.
We assume that these measurements are noisy but provide
sufficient information to estimate the normal velocity of a
grating at any orientation and speed. The second compo-
nent is the distribution of visual speeds encountered
during normal vision, expressed as a prior probability
density (e.g., Simoncelli, 1993; Simoncelli & Heeger,
1992; Weiss, Simoncelli, & Adelson, 2002; Yuille &
Grzywacz, 1988). Lastly, the third component is the
frequency of occurrence of coherent motions relative to
incoherent motions, which is also expressed as a proba-
bility. The model combines these three elements to
compute the probability of a coherent percept, as well as
an estimate of the velocity of that percept.
We performed a simple psychophysical experiment to

validate this model, in which subjects reported whether
briefly presented plaid stimuli were perceived as coherent
or transparent. We measured the probability of coherent
percepts as a function of both grating speed and pattern
speed (adjusted by altering the angle between the plaid
directions). Although the data are lawful and reasonably
consistent across observers, they reveal somewhat unex-
pected behaviors with no apparent intuitive explanation.
We then fit the parameters of the model so as to best
explain the data of each subject. We find that the model
provides a remarkably accurate account of the data,
offering a significant improvement over previously pro-
posed explanations.
Furthermore, we find that the fitted components of

our model are in agreement with previous experimental
and modeling studies. Specifically, the recovered noise
characteristics and speed priors are consistent with previous
measurements of speed discrimination (Bruyn & Orbán,
1988; McKee, 1981; Orbán, de Wolf, & Maes, 1984;
Stocker & Simoncelli, 2006; Welch, 1989) and low-contrast
biases toward slower speeds (Stocker & Simoncelli, 2006;
Stone & Thompson, 1992; Thompson, 1982; Thompson,
Brooks, & Hammett, 2006). The speed priors exhibit the
preference for slow speeds, which has been previously
suggested as an explanation for the effects of contrast on
speed perception (Hürlimann, Kiper, & Carandini, 2002;
Stocker & Simoncelli, 2006) and the perceived speed and
direction of coherent plaids (Langley, 1999; Simoncelli,
1993; Simoncelli & Heeger, 1992; Stocker, 2006; Weiss
et al., 2002) in the context of a Bayesian observer model.
Finally, the recovered prior on coherent motion suggests
that the visual system prefers a single coherent velocity
interpretation over one with multiple velocities (Hildreth,
1984; Langley, 1999). Thus, our study not only introduces
and experimentally validates an optimal observer model
for the perception of a drifting plaid but also provides
compelling quantitative evidence for the ability of the

Figure 1. Perceptual ambiguity of visual stimuli. (a) A Necker
Cube, which can be interpreted in one of two ways: either the
green vertex appears closer, as if the cube is seen from above, or
the blue vertex appears closer, as if the cube is seen from below.
At any moment in time, human observers seem to perceive only
one of these, but this percept switches spontaneously over time.
(b) A plaid pattern, formed from the superposition of two drifting
square-wave gratings, also admits two interpretations. The plaid
can appear to be a singular rigidly moving pattern (blue vector) or
two transparent gratings sliding over one another (green vectors).
For any given plaid, humans tend to perceive one or the other
initially, but this percept is also known to spontaneously switch
over time (Hupé & Rubin, 2003; Wallach, 1935). (c) Illustration of
the velocity–space constraints on stimulus interpretation. The two
oblique vectors (green) represent the normal velocities of the two
gratings shown in (b). The motion of each component grating,
when viewed in isolation, is consistent with a set of translational
velocities that lie along a constraint line (dashed black), and the
point at which these lines intersect (blueVthe “intersection of
constraints,” or IOC (Adelson & Movshon, 1982)) is the unique
velocity that is consistent with the ambiguous motion of both
grating components and, thus, consistent with the rigid motion of
the combined plaid pattern.
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visual system to apply and generalize prior probabilities
across different perceptual tasks.

Bayesian observer model

We constructed an encoder–decoder model for the
selection of a visual motion interpretation, as illustrated
in Figure 2. The output of the encoder stage consists of
noisy measurements of the normal velocities of the two
gratings that constitute the plaid, denoted as {m̄1, m̄2}.
Physiologically, we assume that these correspond to the
responses of two distinct subsets of noisy orientation- and
speed-selective neurons, such as those found in primary
visual cortex. Given these noisy measurements, the
decoding portion of the model then uses the rules of
statistical decision theory to select one of the two
hypotheses, {Hcoh, Htran}, corresponding to coherent/
transparent percepts, respectively. Specifically, the model
selects the most probable of the two percepts by
comparing p(Hcoh|m̄1, m̄2) and p(Htran|m̄1, m̄2).
The probabilities for each percept are computed using

Bayes’ rule. The conditional probability of the coherent
percept may be written as:
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where we have assumed that the noise in the two
measurements is independent when conditioned on the
true velocity. The expression includes an integral, over all
possible two-dimensional velocities v̄ , of the probability
that the two normal velocity measurements could have
arisen from a single coherent velocity v̄ , multiplied by the
prior probability p(v̄ ).
In analogous fashion, we write the conditional proba-

bility for the transparent percept as:
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where we have used the fact that the prior probability of
the two percepts must sum to one (i.e., we assume that
these are the only two possible percepts). The expression

includes integrals over the two-dimensional velocities
consistent with the normal velocity measurements of each
grating individually, which are then multiplied (since they
represent independent probabilities). Note that we do not
need to include the normalizing factor, p(m̄1, m̄2), when
comparing these two percept probabilities, since it is the
same for both of them.

Figure 2. Illustration of the Bayesian observer model, responding
to a single presentation of a plaid. In the encoding stage (not
shown), an observer makes noisy measurements {m¯1, m

¯
2} of the

normal velocities of the two gratings. In the decoding stage, the
observer forms separate likelihood functions for the two compo-
nent motions based on their associated measurements. These
are combined with prior preferences (internal to the observer’s
visual system) in order to arrive at a percept. Internal preferences
are contained within the gray region and include a prior
distribution over velocity, p(v¯), and a prior probability of coherent
motion, p(H). For the coherent motion percept, both likelihoods
are multiplied together with the velocity prior, and this posterior
distribution is then integrated (left). For the transparent percept,
each likelihood is individually multiplied by the velocity prior and
integrated (right). The resulting scalar values are then multiplied
by the internal prior for coherence/transparency, yielding posterior
probabilities for each of the percepts. Finally, these are compared,
and the larger one is selected as the percept.
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The computation of Equations 1 and 2 relies on the
likelihood function, p(m̄ |v̄ ), which expresses the proba-
bility that the observed normal velocity measurement m̄
could have arisen from a stimulus moving with two-
dimensional velocity v̄ . Note that the likelihood is a
function of the conditioning variable v̄ and is, thus, not
the same function as the measurement noise distribution,
which is a function of the normal velocity m̄ (see
Appendix B for derivation). For a single grating, the
likelihood function lies along a ridge parallel to the
measured orientation of the grating (Figure 2), indicative
of the fact that the component of motion in this direction
cannot be inferred from the visual input (the aperture
problem, as described in the Introduction). The thickness
of this ridge corresponds to the uncertainty in the
measurements regarding the speed and the orientation of
the grating; as one follows the ridge from its center (i.e., the
point closest to the origin) outward, it fans out, correspond-
ing to the uncertainty in the measurements regarding the
grating direction.
The model is built from three fundamental components.

First, we must specify the distribution of the measurement
noise, which is used to generate the noisy measurements
and is also inverted to form the likelihood functions (see
Appendix B for details). This noise limits the ability of an
observer to discriminate both the speed and direction of
moving gratings. In previous literature, speed discrimi-
nation thresholds at low speeds have been reported as
approximately constant, whereas thresholds for moderate
speeds (1 deg/s to 10 deg/s) are proportional to grating
speed (Bruyn & Orbán, 1988; McKee, 1981; Orbán et al.,
1984; Stocker & Simoncelli, 2006; Welch, 1989). Direc-
tion discrimination is approximately constant (when
expressed in angular units; Nakayama, 1985). We capture
both of these discrimination behaviors with an additive
Gaussian noise model in the two-dimensional vector space
of normal velocities (see Appendix B and Figure B1). We
assume that this noise is separable (independent) in speed
and direction and that the variance in both of these
attributes grows proportional to the squared speed plus a
constant. Previous measurements also suggest that the
ratio of the two proportionality factors (for direction and
speed, respectively) is typically 1:3 (Nakayama, 1985). In
summary, the measurement noise is governed by three
parameters: a constant and a proportionality factor that
determine speed discriminability and a proportionality
factor between speed and direction discrimination.
Second, the prior probability density over velocity is

intended to represent the distribution of retinal velocities
that occur during normal vision. We assume that this is
circularly symmetric (i.e., a function only of speed), flat
for very slow speeds, and falls as a power-law function for
higher speeds:

p v¯ð Þ ¼ 1

ðkv¯k2 þ c24Þ
c5
; ð3Þ

where c4 determines the speed at which the prior
transitions from a constant regime to a power-law regime,
and c5 is an exponent that controls the rate of decay. This
parametric description is consistent with previous theoret-
ical proposals (Dong & Atick, 1995), with simulations of
graphical environments (Roth & Black, 2007) and with
perceptual prior models reverse-engineered from human
speed discrimination data (Stocker & Simoncelli, 2006).
Finally, the model includes a (scalar-valued) prior

probability that local motion on the retina is coherent
(i.e., arises from a single moving source). In addition to the
superposition of two transparent surfaces, there are a
variety of real-world situations in which retinal motion
can fail to be coherent. Examples include the boundaries of
shadows (in which the shadow can move independently
from the underlying surface), occlusion boundaries (in
which the motion on each side of the boundary can be
different), and non-translational motions (such as the
surface of water or swarms of insects). We might expect
that visual scenes are dominated by coherent motions, but
we know of no measurements of this probability, so we
treat this scalar values as a free parameter of the model.

Perceptual experiment

To validate our model, we performed a psychophysical
experiment to measure human perception of plaid coher-
ence. We constructed a set of 100 moving plaid stimuli by
additively superimposing pairs of drifting square-wave
gratings. The two gratings in each pair moved at the same
normal speed, sg, in directions deviating from vertical by
equal (but opposite) amounts. Thus, each stimulus is
determined by the grating speed and the angle between the
grating normal velocities and the vertical axis,Eg (an angle of
zero corresponds to an upward moving horizontal grating).
For presentation purposes, we reparameterize the stimuli in
terms of the grating speed and the pattern speed correspond-
ing to the unique translational velocity that is consistent with
the motion of the two gratings: sp = sg / cos(Eg). Figure 3a
shows the collection of stimuli that we used, plotted in terms
of these two speeds.

Model simulations and data

We simulated the model on the set of symmetric plaids
used in our experiments. For each combination of grating
and pattern speed, we generated 50 pairs of noisy
measurement samples. We then computed the probability
of coherent versus transparent for each and summarized
these using the fraction of trials on which transparency
was more probable than coherence. This fraction is then
plotted at the appropriate location in the stimulus space of
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Figure 3a, with the intensity value indicating the proba-
bility of coherent perception.
Figure 4 shows a set of these plots for different model

parameters. Consider the middle plot of the hexagonal
array shown in Figure 4c. Plaids with small angles, slow
pattern speeds, or fast component speeds are generally
perceived as coherent. Plaids with very slow component
speeds and large angles can also be perceived as coherent,
as indicated by the dark strip running up the left side of
many of the plots.
Figure 4c shows the effects of varying the three

likelihood parameters, as illustrated in Figure 4a. We
adjusted each parameter to lower/higher values roughly
matched to the range of behaviors seen in previous
literature. Reducing the likelihood width at low speeds (by
either reducing the slope or reducing the constant offset)
reduces the coherence of large-angle, slow-component-speed
plaids (i.e., the dark strip on the left side largely disappears).
Narrowing the angular extent of the likelihood also has this
effect, although it is weaker (at least for the parameter set
shown here). Figure 4d shows the effects of varying the
three prior parameters, as illustrated in Figure 4b. The main
effect seen here is that a shallower slope in the speed prior, or
an increase in the prior on coherence, shifts the entire plot
toward coherence.
We may understand these behaviors by considering the

fundamental elements of the model and the geometry of
plaid velocities. The pattern speed is always faster than
the normal speed of the two grating components, and this
ratio grows with increasing plaid angle. Since the prior
probability on speeds imparts a preference for slower
speeds, the fast-moving coherent pattern will generally be
considered less probable than the slower individual
components, thus favoring the transparent interpretation
(Farid & Simoncelli, 1994). This effect increases for
plaids with a larger ratio of pattern to grating speed
(“steep” plaids). For very slow speeds, the speed prior
becomes flat and no longer favors transparent percepts.
An additional influence at slow speeds is that the

measurement noise variance ceases to scale proportionally
with speed and becomes flat. As a result, the likelihood
ridge will become broader relative to the grating speed,
and it will “fan out” to cover a broader range of angles.
The net result of this is that the likelihoods for slow
component gratings in a plaid with a very large angle can
have significant overlap at slow pattern speeds and, thus,
can still appear coherent (dark strip on left side of plots).
In addition to these influences of the speed prior and

likelihood, two other properties of the model affect the
coherence/transparency percept. The model may be inter-
preted as performing a form of “Bayesian model selection,”
in which coherent and transparent motion models are
compared in terms of their ability to explain the measure-
ments. Such decision rules are known to naturally enforce a
form of Occam’s razor, by favoring solutions with smaller
numbers of parameters, for which the likelihood is more
“concentrated” (Jefferys & Berger, 1991). In our context,

Figure 3. Parameterization of experimental stimuli and psycho-
physical task. (a) Plaids were generated for 100 different
combinations of component and pattern speed (corresponding to
small squares in the plot). Four combinations of speeds are
highlighted (red squares) by showing a representative frame of
the corresponding stimulus. Adjacent to each of these frames is a
velocity–space diagram indicating the normal velocities of the two
components (green), as well as the pattern velocity (blue). For a
fixed component speed, increasing the pattern speed corre-
sponds to increasing the angle between the two gratings. Moving
along a ray emanating from the origin in the stimulus space
corresponds to proportionally increasing the speed of both
components and the plaid pattern, while maintaining a fixed
angle. For the four sample stimuli, the plaid angle is indicated (in
deg) for these four sample stimuli by numbers adjacent to gray
lines extending from the origin. Note that the region in the stimulus
space below the 45-deg diagonal is not physically realizable,
since the pattern speed of a plaid is always faster than the
component speeds. (b) Psychophysical protocol used for mea-
suring plaid perception. Each square-wave plaid was presented
for 1.5 s. This was followed by a 1-s response period during which
subjects indicated whether the plaid appeared coherent or trans-
parent by pressing a key. This was followed by a 1-s blank period,
after which the sequence was repeated.
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Figure 4. Model simulations for different parameter settings. (a) Illustration of seven different settings for the likelihood parameters. The
black line in the central log–log plot shows the default width of the speed likelihood as a function of speed. The inset plot shows the default
shape of the measurement distribution (see Figure B1a), thus illustrating the relationship between speed and direction uncertainty. Each
of the surrounding six log–log plots and insets shows a variation of one of the three likelihood parameters, as highlighted in red (default
values are redrawn from the center plot, in gray, for comparison). For example, the upper right and lower left plots show an increase or
decrease of the speed at which the transition occurs, c1, respectively. Left and right plots show a change in the proportionality factor at
high speeds, c2. Upper/lower plots show a change in the proportionality between the standard deviations for speed and direction, c3.
(b) Illustration of seven different settings for the prior parameters. The black line in the central log–log plot shows the speed prior. Inset pie
chart shows the prior for the two hypotheses (blue for coherent, green for transparent). Each of the surrounding six log–log plots and insets
shows a variation of one of the three prior parameters. The upper right and lower left plots show changes in the speed at which the prior
transitions from a constant regime to a power-law regime, c4. Upper/lower plots show a change in the rate of decay, c5. Left/right plots show
a change in the coherence prior, p(Hcoh). (c, d) Simulated “percepts” of the model, corresponding to parameter values indicated in (a) and
(b), respectively. For each of the grayscale plots, the individual squares correspond to plaid stimuli with different component and pattern
speeds (see Figure 3a), and the intensity of each square indicates the probability that the associated plaid stimulus is perceived as
transparent (black = 0%, white = 100%).
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the coherent solution is parameterized by a single pattern
velocity, whereas the transparent solution requires two
component velocities, and thus, our model embeds a natural
preference for coherency. Finally, the model includes a
scalar-valued prior probability for coherence/transparency
that can further adjust the preference for either interpretation.
We obtained data from four subjects, who were asked to

indicate whether the motion of briefly presented plaids
appeared coherent or transparent (Figure 3b). The top row
of Figure 5 shows the data for all four subjects. All four

subjects reported primarily coherent percepts for plaids
with shallow angles (although it is not clear whether this
is governed by the angle or by the component speed).
Three of the subjects (all but s3) showed coherent percepts
for stimuli with slow pattern speeds (bottom squares in the
data plots) and also for slow component gratings with a
large angle (i.e., fast pattern speeds, leftmost column of
squares in the data plots). The pattern of percepts seen in
all four subjects is qualitatively similar to that seen in our
model predictions (Figure 4).
To assess the ability of the model to explain the

human data, we optimized the six model parameters so as to
maximize the probability of each subject’s data (see
Appendix C). The second row of Figure 5 shows
simulations of the best-fitting Bayesian model, which is
seen to provide a close match to the individual data of
each of the subjects (Figure 5, top row).
We compared these simulations to those arising from

two other models that have been proposed. The “angle”
model is based on the hypothesis that plaid perception is a
monotonic function of the plaid angle (larger angles being
more transparent; Hupé & Rubin, 2003; Kim & Wilson,
1993). We implemented this model by assuming that the
proportion of “coherent” judgments for a stimulus with
grating/pattern speeds {sg, sp} could be expressed as

pðBcoherent[ksg; spÞ ¼ wðcosj1ðsg=spÞÞ; ð4Þ

where w(I) is a Weibull function with four parameters
controlling the angle and slope of the transition from
coherent to transparent and the saturating (min/max)
response levels on either side of the transition. For each
subject, we fit these four parameters by maximizing the
likelihood (Figure 5, third row). For three of the four
subjects (all but s3), this model does not provide a good
description of data. The subjects perceive large-angle
plaids with slow components as coherent, and in addition,
the boundary between the transparent and coherent
regions for larger component speeds does not appear to
lie along a straight line emanating from the origin.
We also considered a “speed” model, based on the

hypothesis that transparency arises because the visual
system prefers slow-speed interpretations of moving
stimuli and, thus, is most likely to occur for stimuli
combining fast pattern speeds with slow component
speeds (Farid & Simoncelli, 1994; Farid, Simoncelli,
Bravo, & Schrater, 1995). We implemented this model
by assuming that the proportion of “coherent” judgments
was determined by comparing both grating and pattern
speeds to an (unknown) reference speed and combining
these results separably:

pðBcoherent[ksg; spÞ ¼ wgðsgÞ I wpðspÞ; ð5Þ

where wg and wp are both four-parameter Weibull
functions, constrained to have the same transition speed

Figure 5. Perceptual data for four subjects, together with
simulated percepts of three models that were fit to the data. In
all plots, the intensity of each square indicates the probability that
the associated plaid stimulus is perceived as transparent (see
Figure 4).
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and the same saturating level for large values (i.e., in the
transparent region). We fit the six parameters of this
model to each subject by maximizing the likelihood of
their data (Figure 5, fourth row). For all four subjects, this
model does not provide as good of a description as the
Bayesian model.
We quantified the relative performance of these models

using a simple metric. For each subject, we computed the
mean log-probability of the psychophysical data for all
trials and for all stimuli. Since each subject has a different
amount of variability in their data, we normalized these
log-probability values to a scale ranging from the log-
probability obtained from a fully random “coin-flipping”
model (i.e., one that draws responses according to a fixed
probability, regardless of stimulus) to that of an “omnis-
cient” model in which responses for each stimulus are
drawn according to a stimulus-specific probability. The
coin-flipping model provides a lower bound on model
performance: it ignores the stimuli, flipping a biased coin
on each trial to determine a percept. The bias of the coin is
the only parameter of the model and is set (for each subject)
to the proportion of coherent judgments averaged over all
stimuli and all trials. The omniscient model provides an
upper bound on performance and has 100 parameters,
corresponding to the probability of a coherent percept for
each of the 100 stimulus conditions. For each subject, we
set these parameters to the values that maximize the
likelihood of observing the data, which simply correspond
to the proportion of coherent responses for each stimulus.
A comparison of the models, on this normalized log-

probability scale, is shown in Figure 6a. Note that error
bars are not shown, since bootstrapping our model-fitting
procedure, along with the normalization of the plotted
likelihoods, is computationally prohibitive. For all sub-
jects, the Bayesian model fits the psychophysical data
nearly as well as the omniscient model and better than the
other two models. For subject s3, the angle model
performs reasonably well, but it clearly fails to explain
the data of the other subjects (consistent with the
appearance of the predicted responses in Figure 5). The
speed model generally performs poorly, although it is
slightly better than the angle model for the fourth subject.
Perhaps more importantly, it is worth noting that both the
speed and angle models are merely descriptions of the
data for this particular experiment, and neither has an
obvious generalization to real-world stimuli.
One might be concerned that the poor fit of the angle

model is due to the fact that it has fewer parameters (four,
as compared to the six parameters of the Bayesian and
speed models), but this seems unlikely. As mentioned
previously, the shape of the subject data simply do not
adhere to an angular form. We can also attempt to
compensate for the differences in the number of free
parameters using a standard methodology for model
comparison, the Bayesian information criterion (BIC;
Schwarz, 1978), computed as nln(Ae

2) + kln(n), where n
is the number of stimulus conditions, Ae

2 is the variance of

the model error (across stimulus conditions), and k is the
number of free parameters in the model. The (negative)
BIC values for the models are plotted in Figure 6b. For all
subjects, the Bayesian model is seen to do a better job of
fitting the data, despite the penalty for having as many, or
more, free parameters.

Estimates of the observer
likelihood and priors

The Bayesian model is derived from a set of funda-
mental components, and these may be interpreted and
tested beyond the confines of the plaid coherence experi-
ment. As such, it is worth examining the form of the
likelihood and prior functions that we obtained by fitting

Figure 6. Quantitative comparison of models. (a) Normalized
mean log-probability of the psychophysical data of the four
subjects for the three different estimator models. These proba-
bilities are expressed on a scale that varies from the value
obtained for a random (“coin-flipping”) model to one that knows
the probability of coherent responses for each stimulus condition
(“omniscient”). (b) Negative of the Bayesian information criterion
of the same data for the same estimator models. The values for
the coin-flipping model for each subject are shown as horizontal
lines.
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our subjects’ data. The likelihood widths in our model are
parameterized by a function that is constant at low speeds,
transitioning to a linearly increasing behavior at higher
speeds. The fitted values for the width at low speeds and
the transition speed vary significantly across subjects
(Figure 7a). The transition for most subjects is around
1 deg/s, but s3 indicates a transition at roughly 0.02 deg/s.
This explains the fact that the data for this subject show
no ridge of coherence at the slowest component speed.
The likelihood widths of the other three subjects are
remarkably similar to those obtained for two subjects from
direct measurements of speed discriminability (Stocker &
Simoncelli, 2006; Figure 7a, black and dashed gray curves).
The speed priors that we estimated for our subjects are

shown as log–log plots in Figure 7b, with all curves
shifted vertically to match a common value at the leftmost
point. Our two-parameter model allows for a transition
from a flat prior at slow speeds to one that falls as a power
law at high speeds. All four subjects showed a transition
to power-law behavior at roughly 2 deg/s. Subjects 2 and
4 had relatively steep priors, and the other two were

shallower. This grouping also corresponds to similarities
in these subjects’ patterns of coherent percepts, with s1
and s3 showing a similar pattern, and s2 and s4 showing
the same. These prior distributions are similar to those
obtained by reverse-engineering a Bayesian speed estima-
tion model from speed discriminability data for two
subjects (Stocker & Simoncelli, 2006; Figure 7b, black
and dashed gray curves).
The values for the remaining two constants are plotted

in Figures 7c and 7d. The likelihood aspect ratio had a
mean value of 0.51 and was greatest for s3 and s2. The
value of the coherence prior had a mean value of 0.87 and
was relatively consistent across subjects, suggesting a
significant preference for coherent percepts by our
subjects’ visual systems.

Discussion

We have studied human perception of the coherence of
symmetric square-wave plaids over a range of different
speeds and angles and developed a model for the
perceptual interpretation of such stimuli. The model
determines which of the two interpretations is more
probable, given the sensory evidence and the observer’s
prior beliefs. Specifically, starting with noisy measure-
ments of the speed and direction of the constituent
gratings, the model arrives at a perceptual interpretation
by combining three fundamental ingredients according to
the rules of optimal statistical inference. These are: (1) a
probabilistic description of the noise in the measurements
(i.e., a likelihood function); (2) a prior probability over
speed; and (3) a prior probability for stimulus coherence.
The first two ingredients have been used in previous
Bayesian models for motion perception (Hürlimann et al.,
2002; Montagnini, Mamassian, Perrinet, Castet, &Masson,
2007; Simoncelli, 1993; Simoncelli & Heeger, 1992;
Stocker & Simoncelli, 2006; Weiss, 1998; Weiss et al.,
2002), which estimate speed or velocity from visual input.
The third ingredient has been suggested in the computer
vision literature (Hildreth, 1984; Weiss, 1998), and a
related preference for singular interpretations was used in
a model developed by Langley (1999) to account for
coherence/transparency of plaids. The overall structure of
our model is similar to a number of “Bayesian model
selection” formulations used to describe perceptual cue-
combination phenomena, in which the observer must
implicitly decide whether to interpret two cues as arising
from one or two sources (Körding et al., 2007; Natarajan,
Murray, Shams, & Zemel, 2009; Sato, Toyoizumi, &
Aihara, 2007; Yuille & Bülthoff, 1996).
We have fit parametric forms of all three ingredients to

perceptual coherence data, which result in an excellent
account of the data for each subject. The quality of the fits
relies on use of a likelihood whose width is proportional
to speed but flattens at low speeds, coupled with a speed

Figure 7. Model likelihoods and priors, optimized to fit each
subject’s coherence data. (a) Speed likelihood widths, as a
function of speed, shown in a log–log plot. These are flat for low
speeds and grow linearly for high speeds. (b) Speed priors,
shown in a log–log plot. These are flat for low speeds and fall as a
power law for high speeds. (c) The aspect ratios of the elliptical
measurement distributions (which govern the ratio of discrimina-
bility in speed and direction). Horizontal line indicates a value of
0.33 typical of previous studies (Nakayama, 1985). (d) The values
of the prior for the coherent interpretation, p(Hcoh), are centered
around 0.85, indicating that observers believe that singular
motions are more common.
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prior that falls as a power law (and also flattens at slow
speeds), both previously proposed to explain human speed
discrimination behaviors (Stocker & Simoncelli, 2006). In
particular, Gaussian priors and/or speed-independent like-
lihood functions, as used in earlier Bayesian models for
velocity (Hürlimann et al., 2002; Simoncelli, 1993; Weiss
et al., 2002), result in a poor account of the data (not
shown). Inter-subject differences are explained by pertur-
bations in the shape or magnitude of the model likelihood
widths or priors. Furthermore, we find that the fitted
likelihood widths and priors are generally consistent with
previously published estimates obtained from speed
discrimination measurements for single gratings (Stocker
& Simoncelli, 2006). We find this last point quite
remarkable, given that our experimental data provide no
direct measurement of our subjects’ perception of stim-
ulus speed.
The literature contains a number of studies of plaid

coherence that are of direct relevance. Hupé and Rubin
(2003) and Kim and Wilson (1993) each measured
perceptual coherence of plaids and concluded that the
angle was the primary determinant of the perceptual
interpretation. Direct comparison to these studies is
difficult because the stimuli differed from ours in many
ways (grating type, window size, eccentricity, contrast), as
did the subjective task. Nevertheless, we can see that the
behavior of each of our subjects (Figure 5) is consistent
with this description but only over a portion (or a one-
dimensional slice) of the speed/angle parameter space.
Three of the subjects (Figure 5, columns 1, 2, and 4) show
clear violations of an angle model, with coherent regions
that extend vertically on both the left side (very slow
component speeds, below 1 deg/s) and right side (fast
component speeds, above 3.5 deg/s) of their data plots.
Farid and Simoncelli (1994) examined the coherence of

square-wave plaids and explored the same parameter
space as the experiments reported here but over a different
range. They found that a primary determinant of coher-
ence was the pattern speed: plaids with pattern speeds
faster than a cutoff speed of roughly 5–6 deg/s were more
likely to be perceived as transparent. They also found that
subjects had trouble making coherence judgments when
the grating speed exceeded this speed. In a later study,
they concluded that these behaviors could arise because of
a preference for slower speed interpretations (Farid et al.,
1995). Our data are again broadly consistent with those
findings over some parameter ranges, but we see that, for
the extended range of conditions measured here, a simple
model based on pattern speed clearly fails to fit the data
(Figure 5, row 4).
Langley (1999) developed a model for coherent/

transparent motion perception based on spatiotemporal
gradient measurements, motivated by concepts similar to
those developed here. He incorporated two regularization
constraints that express preferences for slow speeds and
for a reduction in the degrees of freedom used to explain
the data. The latter can be interpreted as a preference for

coherence, since a coherently moving stimulus can be
explained using a single velocity. Perceptual transparency/
coherence predictions were made by computing a measure
of certainty that the data could be accounted for by a
unique translational velocity. These reported predictions
are aligned with human perception, although direct
comparisons to data were not provided in the paper.
In general, we can see that experimental support for the

models proposed in these previous publications was
limited by the range of stimulus parameters that were
examined. Our study, while covering a larger range of a
two-dimensional parameter space, is limited in this same
sense, and we cannot be sure that it will accurately predict
subject behavior for parameters that lie significantly
beyond the range we have tested. In order to pave the
way for future experimental investigation, we have
simulated the model (with parameter values set to the
mean of the best-fitting values for our subjects) over a
substantially larger stimulus set (Figure 8a). We see that
the fundamental behaviors of the original data (Figure 5)
extrapolate in a natural way and continue to support our
conclusions. In particular, the primary transition boundary
between transparent and coherent percepts continues to
curve upward, inconsistent with the angle model. In
addition, the ridge of coherence along the left side of the
plot continues to extend upward, with little sign of a
transition to transparency. We also computed predicted
percepts for asymmetric plaids, in which the two gratings
differ in speed by a fixed scale factor. Figure 8b shows
that the percepts for plaids with grating speeds in a ratio
of 1:3 are nearly the same as those for symmetric plaids.
Finally, we computed predictions for asymmetric plaids in
which the normal velocities of the gratings lie on the same
side of the pattern velocity (these are known as “type II”
plaids in the literature (Kim &Wilson, 1993)). Figures 8c–
8e show predictions for three different grating speed ratios
and show a range of behaviors.
For each of our human subjects, the fitted likelihood and

prior functions can also be used to directly predict their
performance in estimating or discriminating the speed or
direction of gratings. Since the prior preferences for slower
speeds in our recovered models are similar to those found
in Stocker and Simoncelli (2006), we would expect the
predictions of speed estimation and discrimination to be
consistent. Moreover, the likelihood and prior functions
can be combined to directly predict the perceived speed
and direction of plaids that are seen as coherent, as has
been done with previous Bayesian models (Hürlimann
et al., 2002; Simoncelli, 1993; Simoncelli & Heeger, 1992;
Weiss, 1998; Weiss et al., 2002). In addition to perceptual
predictions, the prior probability on speed could be
compared to the distribution of retinal speeds encountered
during natural vision. A power-law form for this distribu-
tion has been proposed based on theoretical studies (Dong
& Atick, 1995) and simulations of graphical environments
(Roth & Black, 2007), but it is difficult to measure directly
(since it requires properly accounting for body, head, and
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eye movements, including during fixation and pursuit).
Advances in portable eye-tracking equipment should even-
tually make this feasible (Eckert & Zeil, 2001). Similarly,
the coherence prior could be compared with the proba-
bility of a patch of the retinal image corresponding to a
single opaque surface in the world.
Our model uses simple parametric forms for likelihood

widths and priors, which allow it to be fully constrained
by the perceptual data. However, each of these ingredients
could be further elaborated to extend the model to a wider
variety of stimulus configurations. We assumed a rotation-
invariant noise model, for example, such that the
variability in measured grating speed and direction is
independent of the true direction. We also assumed a
rotation-invariant speed prior. Humans are known to
exhibit anisotropies in direction judgments, and plaids
with oblique IOC directions are more likely to appear
transparent than those with cardinal directions (Hupé &
Rubin, 2004). These inhomogeneities in direction could
be incorporated into the model through a direction-
dependent noise model and/or a direction-dependent prior.
Additional noise dependencies on stimulus attributes such

as contrast (as in Hürlimann et al., 2002), luminance,
spatial frequency (Smith, 1992), size, hue, and depth
could be incorporated, based on measurements of grating
speed discriminability as a function of those attributes (see
Stocker & Simoncelli, 2006). Ultimately, we desire a
likelihood model that predicts motion discriminability
for any spatial stimulus pattern. Note that in the current
model, the priors over speed and coherence should not be
affected by inclusion of any variables that are statistically
independent of speed and coherence in the natural
environment. Finally, our experiments were performed
using foveally presented stimuli. Peripherally viewed
stimuli are likely to exhibit different perceptual discrim-
inability, which could again be incorporated into the noise
description of the model. However, in addition, the
position of stimuli would likely require an elaboration of
the velocity prior, since the velocity of the retinal image
content in an active (fixating, pursuing) observer will
depend on location relative to the fovea.
The perceived coherence of plaids is also known to

depend on viewing duration, and with long viewing
durations (more than 20 s), the percept becomes bistable

Figure 8. Model predictions, computed using parameters averaged over those used to fit our subjects’ data. In all plots, the intensity of
each square indicates the probability that the associated plaid stimulus is perceived as transparent (see Figure 4). Insets indicate the
normal velocities and pattern velocity of a sample stimulus (corresponding to the red-outlined square in the coherence plot). (a) Coherence
of symmetric plaids, over an extended region of the parameter space. The green boundary encloses the stimulus parameters covered by our
experiments. (b) Coherence of asymmetric plaids, with normal speeds of the two gratings in a ratio of 1:3. The horizontal axis is the geometric
mean of the two grating speeds, and the vertical axis is the pattern (IOC) speed. Region enclosed by blue boundary at bottom right is
physically unrealizable. (c–e) Coherence of asymmetric one-sided plaids (also known as “Type II” plaids), in which the normal velocities are
both on the same side of the pattern velocity (see insets). The three panels are computed for three different normal speed ratios.
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(Hupé & Rubin, 2003; von Grünau & Dubé, 1993). Given
that our experiments were performed with short duration
stimulus exposures (1.5 s), it is unlikely that our subjects
would have experienced a transition from one state to the
other. Models of bistable percepts commonly posit a
competitive interaction between two subpopulations of
cells, each receiving a stimulus-driven input that governs
the relative strength of (or time spent in) each of the two
perceptual states (Moreno-Bote, Rinzel, & Rubin, 2007).
Thus, we can view the response of our model just before
the final decision stage as providing appropriate signals
for this purpose.
Finally, our model operates at an abstract computational

level, specifying what is to be computed rather than how
to compute it. Nevertheless, it is broadly consistent with
the known physiology of the mammalian motion pathway.
In particular, the measurements of the two normal motions
could be replaced by responses of a population of cells
selective for moving oriented components, such as those
found in primary visual cortex. In addition to providing a
physiological substrate for the computation, this interpre-
tation also provides a generalization of the model to
arbitrary visual stimuli.
The decoder stage must map the noisy responses of the

encoder population to a decision about the coherence/
transparency of the stimulus. This mapping might be
achieved explicitly, by computing likelihoods (e.g.,
Deneve, Latham, & Pouget, 1999; Jazayeri & Movshon,
2006; Ma, Beck, Latham, & Pouget, 2006; Zemel, Dayan,
& Pouget, 1998; Zhang, Ginzburg, McNaughton, &
Sejnowski, 1998), multiplying them with a prior (and
possibly with each other), integrating them, and compar-
ing the outputs to arrive at a decision. Alternatively, it
might be implemented more directly as a parametric
mapping from noisy measurements to estimates/decisions,
without an explicit physiological correlate for each
probabilistic ingredient (Fischer, 2010; Simoncelli, 2009;
Stocker & Simoncelli, 2006).
In either case, our current model is unrealistic in

assuming a deterministic decoding stageVvariability in
model responses is due entirely to the measurement noise,
which propagates through the decoder. Incorporating
noise into the decoding stage would provide a sort of
“pooling” or “decision” noise (e.g., Shadlen, Britten,
Newsome, & Movshon, 1996), while sacrificing some of
the optimality of the decoder. Some recent theories posit
that variable responses in populations should be inter-
preted as samples from the posterior distribution rather
than a representation of a deterministic estimate (Berkes,
Orbán, Lengyel, & Fiser, 2011; Fiser, Berkes, Orbán, &
Lengyel, 2010; Hoyer & Hyvärinen, 2003). Some Baye-
sian models for perception have also utilized posterior
sampling to account for response noise (e.g., Mamassian,
Landy, & Maloney, 2002), which results in “probability
matching” behavior (Herrnstein, Rachlin, & Laibson,
1997). In our model, drawing a binary sample from the

posterior (p(Hcoh|m̄1, m̄2)) would increase variability in
coherency/transparency judgments across all stimuli,
which seems inconsistent with regions of the stimulus
space in which subjects show no variation in interpretation
(e.g., where all trials are judged coherent). In conclusion,
the means by which probabilistic computations are
accomplished with neurons is a topic of many recent
theoretical studies. However, the full sequence of compu-
tations that underlies perceptual inference, including the
representation and learning of prior information, remains a
fundamental and unresolved topic for future investigation.

Appendix A

Psychophysical experiments

Four male subjects with normal or corrected-to-normal
vision participated in our psychophysical experiments.
Experimental procedures were approved by the New York
University Committee on Activities Involving Human
Subjects and all subjects signed an approved consent
form. Three of the subjects (1–3) were not aware of the
purpose of the study. Subjects were given brief instruc-
tions at the beginning of a block of trials. We reviewed the
temporal sequence of a single trial, by showing them the
diagram of Figure 3b. We explained that plaids can appear
to move in two different ways, but subjects were not told
anything about the stimulus parameters that would be
adjusted or how these might affect their percepts. We
allowed them to practice the task for a minute or two,
verifying that they reported having seen both percepts. All
subjects learned the task easily.
All stimuli were symmetric additive square-wave plaids

with an upward pattern motion direction. Component
gratings had a spatial frequency of 1.5 c/deg and contrast
of 0.4. The plaids were presented within a circular
aperture (5-deg diameter), with an edge profile following
a raised cosine function. The spatial windowing transi-
tioned to full contrast by the center of the aperture,
meaning it was at half-value at 1.25 deg from the edge.
Subjects viewed the monitor from a distance of 65 cm,
such that pixels subtended 0.031 deg. Stimuli were
presented at a refresh rate of 120 Hz for 1.5 s and were
temporally windowed with a squared cosine function. The
temporal window reached its maximum value at 15 ms
after onset (approximately two frames). A fixation mark,
composed of a small black circle within a white annulus,
was overlaid at the center of the aperture during stimulus
presentation. After each stimulus presentation, subjects
were given 1 s to indicate whether the plaid appeared to
move coherently or transparently by pressing a key. This
was followed by a 1-s blank period. Brief tones were
presented at the onsets of the test and response periods to
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assist subjects in timing their responses. This sequence is
illustrated in Figure 3b.
The stimulus set, as illustrated in Figure 3a, included

component grating speeds ranging from 0.5 to 5 deg/s in
0.5 deg/s increments. Pattern speeds ranged from 0.5 to
5 deg/s faster than the corresponding component speeds,
again in 0.5 deg/s increments. For example, plaids with
the slowest component speed of 0.5 deg/s were presented
with pattern speeds ranging from 1 to 5.5 deg/s. The angle
between the normal directions of the components was
twice the arccosine of the ratio of component to pattern
speed. For example, for a component speed of 0.5 deg/s,
the half-angles between the directions of the component
motions ranged from 60 to 84.8 deg. The sequence of
stimuli presented during the experiment was randomized,
with each stimulus presented at least six times.

Appendix B

Derivation of model likelihood function

Consider a grating, with normal orientation E, moving
rigidly with 2D velocity v̄ . The normal speed of the
grating is v̄ I ûE, where ûE = [cos(E), sin(E)], a unit vector
in the E direction. An observer makes a measurement, m̄ ,
of the 2D normal velocity of this grating that is corrupted
by 2D Gaussian noise, with standard deviation As(v̄ I ûE)
in speed and Ad(v̄ I ûE) in direction:

pðm̄ kE; v¯Þ ¼ exp½jðm¯ I ûE j v¯ I ûEÞ2=ð2A2
s ðv

¯ I ûEÞ2Þ&
' exp½jðm¯ I RûEÞ2=ð2A2

dðv
¯ I ûEÞ2Þ&

= 2:Asðv¯ I ûEÞAdðv¯ I ûEÞ; ðB1Þ

where R is a 2 ' 2 matrix that performs a rotation by :/2.
This measurement distribution is illustrated in Figure B1a.
We assume that standard deviations for speed and
direction, As(v̄ I ûE) and Ad(v̄ I ûE), are a function of
speed (Stocker & Simoncelli, 2006) and parameterized
them as:

AsðsÞ ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 þ c21Þ

q
AdðsÞ ¼ c3AsðsÞ: ðB2Þ

This function specifies a standard deviation that is
constant at low speeds and proportional to speed at high
speeds. The parameter c1 determines the speed at which
this transition occurs, and parameter c2 determines the
proportionality factor at high speeds. The standard devia-
tion of the distribution in terms of direction is proportional
to that in terms of speed, with parameter c3 controlling
this proportionality. A previous review has suggested that
c3 is approximately 0.33 (Nakayama, 1985), and we have

used 0.35 as an initial value from which to start the
optimization.
The full measurement probability distribution for a

pattern moving at velocity v̄ , with arbitrary spatial content,
is obtained by integrating this expression over directions:

pðm¯kv¯Þ ¼
Z

pðEÞpðmkE; v¯ÞdE: ðB3Þ

We assume that the prior distribution over orientations,
p(E), is uniform. The resulting measurement distribution is
illustrated in Figure B1b, corresponding to a probabilistic
version of the circle defining the set of normal velocities
consistent with a given pattern velocity (see Adelson and
Movshon, 1982, Figure 3). Finally, the likelihood function
is obtained by evaluating this measurement distribution as
a function of v̄ , for a particular measurement m̄ . The
result is a “ridge,” orthogonal to the measured normal
velocity (Figure B1c).

Appendix C

Fitting the Bayesian model to data

The model depends on six parameters, three controlling
the measurement noise (defined in Equation B2), two
controlling the velocity prior (defined in Equation 3), and
the last being the value of p(Hcoh). Let c̄ be a vector
containing these model parameters. We fit these parame-
ters to the psychophysical data of each subject by

Figure B1. Derivation of the likelihood function. (a) Gaussian
probability distribution of normal velocity measurements (gray-
scale), p(m¯|E, v¯), for a grating with normal velocity specified by
the green vector, but moving at physical velocity specified by the
blue vector. The constraint line (dashed green) of all translational
velocities consistent with the normal velocity of that grating is also
shown. (b) The distribution of normal velocity measurements
(grayscale), p(m¯|v¯), for an arbitrary spatial pattern moving with
the specified physical velocity (blue vector). This is computed by
integrating over all directions, E, as in Equation B3. (c) The
likelihood, a function of v¯, obtained by evaluating p(m¯|v¯) for a
particular normal velocity measurement m¯ (magenta vector)
drawn from the distribution in (a).
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maximizing the likelihood. These fitted parameter values
were then used to simulate trials of the experiment, in
order to generate the model plots shown in Figure 5
(second row).
For each stimulus s, the model operates by generating

two random measurements {m̄1, m̄2} and then deciding on
a percept by comparing the two posterior probabilities
p(Hcoh|m̄1, m̄2) and p(Htran|m̄1, m̄2). Although this
decision process is deterministic, the measurements are
stochastic (drawn from the measurement density of
Equation B1), and thus, repeated presentations of the same
stimulus produces “coherent” responses with a probability
denoted as ps(c̄ ). We wish to find the parameter vector c̄
that optimizes the log likelihood of the data:

Lðc¯Þ ¼
X

s

nslog psðc¯Þð Þ þ
"
Ns j ns

#
log 1 j psðc¯Þð Þ;

ðC1Þ

where ns denotes the number of “coherent” responses
given by the subject over a total of Ns trials in which
stimulus s was presented.
The model probabilities, ps(c̄ ), cannot be computed in

closed form and must instead be computed through
stochastic simulation. For this, we simulated 50 trials,
generating new random measurements for each accord-
ing to the noise parameters, then computing the
probabilities of Equations 1 and 2, and comparing them
to obtain an answer. Suppose that k of these simulated
trials produced a “coherent” response. A maximum
likelihood estimate of the model probability would be
p̂s(c̄ ) = arg maxp[p

k(1 j p)(50jk)] = k / 50. However, this
estimate is problematic when optimizing the log like-
lihood of Equation C1: If the simulated trials produce a
value of k = 0 (or k = 50), the estimated model probability
will be 0 (or 1), which can lead to an infinite log likelihood.
To avoid this, we used the mean estimate, p̂s(c̄ ) = X0

1 pk(1 j
p)(50jk)dp = (k + 1) / 52, whenever the simulated trials
produced k = 0 or k = 50.
Rather than performing a brute-force search over the

entire six-dimensional parameter space, we performed a
much more efficient and stable nested optimization. In the
outermost loop, we searched over the three noise parame-
ters (using “fminsearch,” in Matlab (version R2010a)),
which require the most substantial computational effort.
For each setting of these three parameters, we simulated
50 trials of measurements for each grating in each
stimulus condition, by drawing stochastic samples from
the associated measurement distributions (Equation B1).
For each of these measurements, we precomputed arrays
containing values of the associated likelihood functions
(Equation B3). Given these likelihood functions, we then
optimized the two parameters of the speed prior. For each
setting of these two parameters, we computed the prior
probabilities and the integrals in Equations 1 and 2,
reusing the precomputed likelihood functions (since they

depend only on the noise parameters). Finally, given
settings of the noise and speed prior parameters, the
values of the integrals were stored, and the last parameter,
p(Hcoh), was easily optimized because it appears only as a
multiplicative scale factor in the last step of computation
of the probabilities in Equations 1 and 2.
We used the same initial conditions for the six

parameters for all subjects: c1 = 1, c2 = 0.2, c3 = 0.35,
c4 = 1, c5 = 2.4, p(Hcoh) = 0.5. Integrals were computed
numerically, over a rectangular region of the velocity
plane covering vxZ [j16, 16] deg/s and vyZ [j12, 24] deg/s,
sampled at increments of 0.5 deg/s. We verified that this
plane was large enough, and of sufficiently fine spacing, to
accurately fit the parameters. For the integration required
to compute the likelihoods (Equation B3), we used 120
directional samples over an angle of : radians. We also
confirmed that this sampling was sufficiently dense, so as
not to significantly impact the behavior of the model.
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von Grünau, M., & Dubé, S. (1993). Ambiguous plaids:
Switching between coherence and transparency.
Spatial Vision, 7, 199–211.
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