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Abstract

Digital photographs are not random collections of pixels, but have strong struc-

tural and statistical regularity. Understanding the properties of natural image

signals allows the development of better algorithms for image processing appli-

cations. One important property of natural images is the presence of strongly

oriented features. In this thesis, I explore using measures of the local image

orientation for representing and modeling images.

I develop a novel nonlinear image representation based on multiscale local

orientation measurements. Specifically, an image is first decomposed using a

two-orientation Steerable Pyramid, a multiscale wavelet type transform where

the basis functions are derivative operators. Transforming these multiscale im-

age gradients into polar coordinates partitions the image data into local magni-

tudes and local orientations. I show that it is possible to reconstruct the original

image from only the orientation measurements. An algorithm for reconstructing

the original image is developed based on projection onto convex sets. Addition-

ally, I demonstrate the robustness of the representation to quantization of the

orientation measurements.

Following, I describe a pair of statistical models for images that explicitly

capture variations in local orientation and contrast. The first model describes
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patches of image coefficients as samples of a fixed Gaussian process that are

rotated and scaled by hidden variables controlling the local contrast and ori-

entation. The second introduces an additional hidden variable that mediates

adaptation to the orientedness of the local signal. I develop optimal Bayesian

least squares error estimators for these models that function by conditioning

upon and integrating over the hidden variables. The resulting denoising proce-

dures give results that are visually superior to those obtained with a Gaussian

scale mixture model that does not explicitly incorporate local orientation.

An alternate method for constructing a spatially adaptive denoising method

by combining two distinct local denoising methods is explored using machine

learning methodology. Interpolation between the two methods is controlled by

a spatially varying decision function that may be learned from example data.

I use weighted kernel ridge regression to solve this learning problem for the

Gaussian scale mixture and the orientation adapted Gaussain scale mixture

methods described above, yielding an improved performance “hybrid” denoiser.
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Chapter 1

Introduction

The term “Digital Image Processing” encompasses a large number of techniques

for compressing, restoring and otherwise manipulating images that are stored

numerically. Images may arise from familiar photographic sources such as a dig-

ital camera, or from a multitude of other sensor modalities such as infrared or

radar images, medical MRI images or astronomical data. Images from a partic-

ular type of source have strong underlying structural and statistical regularity,

and understanding these properties is important for designing effective image

processing methods.

Images must be represented numerically before they can be stored or pro-

cessed on a digital computer. Many image processing tasks can be viewed as

mathematical operations on the numerical coefficients that describe an image in

a certain fixed representation. Both the ease of expression and the performance

of image processing algorithms may depend strongly on the particular repre-

sentation used. The design of appropriate and effective image representations

is often motivated by understanding of underlying image structure. Conversely,
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however, descriptions of image statistical properties are often expressed in terms

of distributions of coefficients in some fixed representation. There are thus in-

timate connections between the design of image processing algorithms, image

representation and underlying image structural and statistical properties.

The space of all possible digital images of fixed resolution is astronomically

large. For example, the set of 300 x 500 greyscale images with 8 bit pixel values

between 0 and 255 has 256150000 elements. Only a fraction of these possible

images would look anything like a photographic image. For algorithms that

operate on photographic images, good performance is desired for the types of

images that one will encounter in practice, not for completely arbitrary patterns

of pixel intensities. In order to take advantage of the special structure of the

space of photographic images, one must be able to describe what this space is.

It is common to think of the set of “natural images”, images that could arise as

pictures of scenes in the world, as a distinct subset of the set of total possible

images. This concept is somewhat vague; though there have been attempts to

more precisely define what “natural” means in this context, it nonetheless is

widely used in the literature [60, 23]. Loosely speaking, any method for describ-

ing this subset of images may be called a “natural image model”. Two common

types of models are function space models and statistical models. Function

space models typically describe images as sets of functions from R2 to R that

satisfy certain regularity constraints such as piecewise continuity, piecewise Cα

or bounded variation [13]. Such models are often employed by the harmonic

analysis and function approximation community.

Statistical models seek to place a probability distribution on the set of pos-

sible images such that more “natural” images are assigned higher probability.
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Within such a framework, many image processing tasks may be interpreted as

statistical estimation problems. For example, restoration of an image with miss-

ing data can be thought of as estimating the “most likely” image consistent with

the known information. In the image denoising problem, one seeks to recover

a clean image that has been corrupted by noise. Intuitively, this problem may

be solved with an image probability model where one would take the corrupted

image and attempt to make it “more natural”. If one can assume or estimate

a statistical description of the noise process, one may use Bayesian inference

methods to approach this in a more principled way.

The earliest models of image statistics, originally developed by television

engineers in the 1950’s, were Gaussian power spectral models. These models

treat images as samples from a multivariate Gaussian density where the form of

the covariance matrix is constrained by assuming structural properties of nat-

ural images. The two key assumptions are translation invariance, often called

stationarity, and scale-invariance. Translation invariance asserts that the sta-

tistical dependencies between pixel values in the image depend only on their

relative displacements, and not on their absolute positions in the image. This

is essentially equivalent to asserting that two images that are simply translated

copies of each other occur with the same probability. Scale invariance may be

stated analogously, that two images related to each other via scaling by a sin-

gle parameter occur with equal probability. These assumptions are reasonable

to expect of a set of images taken by a camera at all possible viewpoints of a

three dimensional scene : all possible translations and scalings will be generated

as the camera moves throughout the scene. These two structural assumptions

are sufficient to determine the form of the model covariance. Translation in-
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variance implies that the covariance matrix will be diagonalized by the Fourier

transform, so that the model may be specified by the variance of each Fourier

coefficient. The magnitudes of the Fourier transform of a random process are

commonly referred to as the power spectrum of the process, which gives these

models their name. Scale invariance imposes a strong constraint on the Fourier

coefficient variances. It can be shown (see [52]) that the only power spectral

densities which are scale invariant are those where the variance of each Fourier

coefficient follows a power law, i.e.

|f̂(~w)| ∝
1

|~w|p

where f̂(~w) is the variance of the Fourier coefficient corresponding to the spatial

frequency ~w. This power-law decay of Fourier coefficient magnitudes of natural

images has been examined empirically; values for p between 1.8 and 2 have been

reported in the literature [62, 46].

Understanding of the properties of natural images is helpful for designing

useful image representations. The most straightforward way of representing

an image is as a rectangular array of pixel values. In this way one can think

of an m × n resolution greyscale image as a point in the high dimensional

linear space Rm×n. Any invertible linear transformation of this linear space

affords a different representation of the original image data. For many image

processing tasks it is more convenient to manipulate the image data in the space

of transform coefficients. The Discrete Fourier Transform, introduced above in

the context of power spectral models, is a classic example of such a “linear

image representation”. The basis functions of the Discrete Fourier Transform
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are global, with their support covering the entire image plane. However, a salient

feature of natural images is the presence of highly localized image features such

as edges and corners. This is problematic for applications such as image coding

where one typically seeks to represent an image with as few nonzero coefficients

as possible. The Fourier basis is able to represent local features with basis

functions of global extent only by careful superposition and cancellation, which

requires a large number of nonzero coefficients. Thresholding in such a basis

leads to undesirable artifacts such as Gibbs oscillations.

One method of avoiding basis functions with large support is by dividing the

image into smaller blocks and decomposing each block with the Fourier trans-

form. This method is employed by the JPEG compression standard which uses

the related Discrete Cosine Transformation applied to 8x8 blocks [39]. Image

processing using block-based transforms often suffers from artifacts introduced

by the block boundaries, as may be easily seen in a highly compressed JPEG

image. Another problem is that the introduction of homogenous blocks fixes a

single spatial scale for describing image content. Images evince statistical and

structural regularities across multiple scales, however, and block based methods

are unable to capture or take advantage of such regularity.

Representing image content uniformly across multiple scales requires the use

of basis functions with varying sizes. An early example of such a “multiscale

representation” is the Laplacian pyramid, formed by recursively encoding the

difference between the image and a lowpass filtered copy [7]. If the lowpass

filter is designed such that the smoothed copy may be subsampled without loss

of information, repeated cascading of this process results in an exact pyramid

representation where each level of the pyramid corresponds to image detail
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at a particular scale. Similar ideas are involved in the design of orthogonal

wavelet decompositions developed in the 1980’s and 1990’s, which represent

the signal as a sum of basis functions that are scaled and translated copies

of a small number of “mother wavelet” functions [12, 32, 34]. The ability to

represent image content simultaneously at multiple scales permitted the design

of algorithms which take advantage of the cross-scale statistical regularities

present in natural images.

Wavelet transforms may be viewed as linear maps that operate by taking

inner products of the original image against the wavelet basis functions. By

grouping the coefficients that are arise from translates of the same basis func-

tion, one can partition them into what are known as wavelet subbands. These

subbands are essentially filtered and downsampled copies of the original image,

and thus preserve some of the original spatial structure of the image. One can

plot the coefficients of a wavelet subband and clearly see the presence of features

from the original image. This may be contrasted with looking at a map of the

Fourier coefficients of an image, which will never show any spatial structure.

This property of wavelet coefficient subbands is important to recognize, as it

indicates that there are statistical interdependencies between nearby coefficients

that may be important to model.

The wavelet coefficients of natural images display a number of striking statis-

tical features that are distinct from coefficients of random signals such as white

noise. As the wavelet basis functions are localized, the coefficient magnitudes

form a measure of local signal power. Natural images typically have sparsely

distributed wavelet coefficients, where most of the coefficients are very close

to zero and much of the signal information is contained in a small number of
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large magnitude coefficients. This is certainly not the case in the original pixel

representation, where the signal information is spread evenly through all of the

pixel values. The Fourier representation does perform some signal compaction,

as more of the energy is present in the lower spatial frequencies. However, the

distribution of magnitudes of the Fourier coefficients are not especially sparse.

The sparsity of image wavelet coefficients is very important for image compres-

sion applications. A large volume of recent research in image coding is based

on using wavelet expansions, including the JPEG 2000 standard intended as a

successor to JPEG [58].

The sparsity property of image wavelet coefficients can also be seen by exam-

ining their marginal statistics. The marginal distributions of these coefficients

for natural images are symmetric around zero, as the wavelet filters are zero

mean. They have large peaks near zero and “heavy tails”, when in compared

Gaussian distributions. These wavelet marginal distributions are well fit by

so-called generalized Gaussian distributions of the form

p(x) ∝ e−|x
s
|α (1.1)

Values for α near 0.7 are typically observed. The tails of these distributions

decay slower than Gaussian, which is given by the expression when α = 2. Note

that these distributions are really characteristic of natural image signals. The

marginal statistics of wavelet coefficients of white noise images, for example, are

necessarily Gaussian.

While the marginal description of wavelet coefficients is informative, it com-

pletely disregards the spatial interactions of neighboring coefficients. These
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spatial regularities are important, and can be taken advantage of for modeling

and processing images. One very striking property is that large coefficients tend

to occur in clusters, i.e. nearby in scale and space to other large coefficients.

This behavior arises as images contain localized features. The clusters of large

magnitude coefficients occur as the support of several nearby coefficients will

overlap with each local image feature, yielding large coefficient values. This

regularity is exploited in zero-tree coding developed by Shapiro for image com-

pression. [51].

A key property of natural images that distinguishes them from random noise

is their spatial inhomogeneity. Intuitively speaking, natural images may have

very different local content in different spatial regions. A single image may

consist of smooth regions such as open sky or blank walls, strongly oriented

edge regions formed by object boundaries, and textured regions that may or

may not be oriented. One explicit measure of the local inhomogeneity in images

is the local signal power. This may be measured by taking the average of the

magnitudes of wavelet coefficients over a small neighborhood. The clustering

of high magnitude coefficients in localized regions implies that the local signal

power varies greatly across the image. Smooth regions will have low local power,

where edge and texture regions have higher power.

Another crucial feature of natural images is the presence of strongly oriented

local features. Often these arise from edges formed by the boundaries between

objects. Some types of texture regions, such the pattern formed by stems of

standing grass, may also be strongly oriented. Oriented features can occur at all

different angles throughout the image. It is possible to measure the orientation

at each location in an image by measuring the image gradient. The angle of the
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gradient vector defines the local orientation of the image at each point in space.

For most images, this local orientation is not constant but changes throughout

the image. This variation in local orientation is another source of local signal

inhomogeneity.

The assumption that image features are equally likely to occur at all orien-

tations is equivalent to stating that the ensemble of natural images are rotation

invariant. This rotation invariance assumption has important implications for

image representation. Orthogonal wavelets, while consistent with scale invari-

ance, do not respect this rotation invariance as their basis functions are not

formed from rotated copies of a single function. Simoncelli and Freeman devel-

oped an overcomplete, multiscale representation called the Steerable Pyramid

which is consistent with both scale, translation and rotation invariance [54, 53].

The basis functions used in the Steerable Pyramid are directional derivative

operators. The basis functions at each scale are not only rotated copies of each,

but generate rotationally invariant subspaces. Any filter rotated by an arbi-

trary angle may be written as a linear combination of the K derivative filters

at the same scale and location in space. The Steerable Pyramid thus provides

a good fundamental set of tools for measuring and manipulating local image

orientation.

Knowing the local orientation at a particular location in an image provides

significant information about the local signal content. In this thesis, I apply

this concept to both deterministic representation of images, and to stochastic

image modeling. For deterministic representation, the underlying question is

how much information is encoded in the local orientation. This work begins

with decomposing the image with the Steerable Pyramid representation with
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2 orientation bands. The basis functions of this transform are a set of first

order derivative operators in the x and y directions at multiple spatial scales.

These coefficients thus form a representation of the image gradient. Transform-

ing these multiscale gradient vectors into polar coordinates effectively splits the

image information into magnitude and orientation subbands at each scale. Per-

forming this separation raises the natural question of how much information is

carried by the orientation bands. I show that even if the gradient information

is discarded, it is possible to reconstruct the original image from the orientation

bands. This is interesting as it provides a nonlinear image representation in

terms of a purely geometrical quantity, the local orientation. The reconstruc-

tion algorithm is shown to perform projection onto convex sets, which provides

a proof that the algorithm converges. I also study the stability of this represen-

tation to quantization of the local orientation measurements, and show that the

reconstruction quality decays gracefully with increasingly coarse quantization.

In the second half of the thesis, I use the local orientation as a tool for

constructing stochastic image models that are appropriately adapted the local

signal content. These models describe small patches of wavelet coefficients, and

thus able to model local behavior and capture some of the dependencies between

nearby coefficients. Natural images are inhomogeneous, exhibiting significant

changes in local signal properties across space. This implies that stochastic

image models should be able to adapt their description to the current local

structure of the image. The models developed in this thesis are constructed

by using a set of spatially varying hidden variables that capture the essential

variations in local signal properties. They have the property that conditioned

on these local hidden variables, the signal description is a multivariate zero

10



mean Gaussian. The complete model is then realized as a Gaussian mixture,

where the covariance of each mixture component is parameterized by the hidden

variables.

Two of the most important aspects of this inhomogeneity are variations in

local signal power and local orientation. The first model developed uses a pair of

hidden variables (z, θ) that model the local power and local orientation. Under

this model, each patch is described as a sample from a single Gaussian process

that is then multiplied by
√

z and rotated by θ. This model is an extension of

the Gaussian Scale Mixture developed by Wainwright and Simoncelli [63] that

includes only the z hidden variable. As the novel model includes adaptation

by θ, it is called the Orientation Adapted Gaussian Scale Mixture (OAGSM)

model.

One shortcoming of the OAGSM is that it describes all signal locations as

oriented. Some portions of images, such as textured areas and junction regions

or corners, are not well described by the oriented signal model. This issue is

addressed by including an additional hidden variable that models whether or

not the current image signal is strongly oriented. This yields the OAGSM with

non-oriented component (OAGSM/NC) model, that is able to adapt to the local

signal power, orientation and orientedness.

As both a practical application of these models and a test of their descriptive

power, they are used for image denoising. Using the OAGSM and OAGSM/NC

as signal priors, I develop a Bayesian Least Squares optimal estimator for re-

moving additive Gaussian noise from images. The resulting denoising algorithms

show improvement in both visual quality and mean squared error over a similar

algorithm based on the original Gaussian Scale Mixture model.
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Chapter 2

Deterministic Representation of

Images

When we look at something, the optics of our cornea and lens gather light from

the outside world and focus it onto the retina at the back of the eye. The

subjective experience of “seeing” involves the subsequent processing and inter-

pretation by the brain of this spatial pattern of light intensities. A photograph

is an object which captures and later recreates the perception of viewing a par-

ticular scene. An image may thus be described as a two dimensional pattern of

intensity values, that when transformed by the optics of the eye gives a pattern

of retinal intensity values that mimic those arising from viewing an actual scene.

For an image without color, we can represent the intensity at each location by

a single real number. In this way one can think of an image as a real valued

function defined on some two dimensional domain D. Typically D will be a

rectangle.

Before an image can be stored or manipulated by a digital computer, the
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continuous intensity values must be sampled at discrete spatial locations and

quantized. This spatial sampling is typically done on a regular rectangular

lattice. This gives the “pixel representation” of an image, where the image

intensity is specified over each cell, or pixel, of a regular rectangular grid. In

a digital camera, for example, this discretization of the image is performed by

an array of light sensors. In order to display the image at its full resolution, we

need to know the intensity values for each pixel. The pixel representation may

be considered the canonical way of representing a digital image.

For many image processing or image analysis applications, however, the

original pixel representation is not the most natural or convenient representation

to work with. For image manipulation, the fundamental image attributes that

one wishes to alter may be related in a very complicated way to the original

pixel values. Likewise for image analysis, the underlying patterns in the image

signal that one is interested in may be difficult to detect directly from the

pixel values. However, the underlying patterns or attributes that one wishes to

measure or manipulate may become more apparent after some transformation

of the original pixel data. Different computations may be easier to perform

in different transform domains. For example, the power spectral density of

an image is complicated to express directly in terms of the pixel values but

is easily computed from the Fourier coefficients of the image. Conversely, the

image dynamic range is simple to compute in the pixel domain but difficult to

compute directly in the Fourier domain.

Taking an appropriate transform of the pixel data can make it easier to ex-

press certain image processing or analysis tasks. For image analysis problems

such as object recognition or image classification, it may not matter if the trans-
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form is invertible. For image processing applications, however, as the ultimate

output of any algorithm will be another image, it is crucial that the transform

used be invertible. In this case we say the transform gives a representation

of the image. Another way of saying this is that an image representation is a

set of measurements from which one may reconstruct the original image or an

approximation of the original image.

Given such a representation, one may manipulate images by first trans-

forming them, performing subsequent manipulations in the space of transform

coefficients, and then inverting the representation. There is thus a very tight

connection between the development of image processing algorithms and image

representations. A large amount of research has focused on developing novel

representations appropriate for various image processing applications.

Representations should be appropriate for the underlying signal class. For

example, one might not want to use the same representation for greyscale pho-

tographic images as for images of printed text, even though both are two dimen-

sional real-valued functions. There is thus a strong interplay between developing

appropriate signal representations and studying the structural and statistical

properties of the underlying signal. The design of an appropriate represen-

tation depends strongly upon both the desired task and the properties of the

underlying signal. For example, in image compression applications one typically

seeks a representation that will give a good approximation of the image signal

with only a small number of nonzero transform coefficients.

For other processing tasks, while the sparsity of the representation may be

less important, one may still motivate the design of a representation by seeking

to more explicitly represent structural properties of images that are important
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for perception. One of the most noticeable properties of natural images is that

they typically contain strongly oriented features such as edges and lines. There

has been much recent interest in image representations that are well suited for

capturing local geometry. Some authors have proposed sparse overcomplete

expansions that approximate the local geometry well e.g, [18]. The approach

of Taubman and Zakhor [57], and the more recent bandlet approach of Pennec

and Mallat construct a new local basis by resampling the image adaptively

according to the local orientation [40]. Mallat and Zhong [31] showed that an

image could be reconstructed with reasonable accuracy from knowledge of the

locations of multi-scale zero-crossings. The wedgelet scheme [17, 45] represents

image as using step edges parameterized by intensity value and orientation.

Li has developed explicit representations of the local phase structure around

edges [26]. A direct representation of images in terms of edges was proposed by

Elder, who extracted the orientation, slope and position of edges and showed

that this information was sufficient to reconstruct the original image [19].

Knowing that it is possible to reconstruct an image from a certain type of

measurement is also of theoretical interest, as it tells us that those measurements

are sufficient for capturing image structure. This can provide new ways of

thinking about what an image is.

In this chapter I present a novel nonlinear image representation based on

directly representing local image orientation. This orientation representation is

based on a linear wavelet type transform known as the Steerable Pyramid. The

steerable pyramid allows the representation of the image in terms of its gradient

at multiple scales. By transforming these gradient vectors at different locations

and scales into polar coordinates, the gradient is partitioned into magnitude
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and orientation information. I demonstrate that it is possible to discard the

magnitude information yet still recover the original image. This yields a rep-

resentation of the image in terms of the local orientation at different scales, a

purely geometric quantity.

The reconstruction algorithm works by employing alternating projections

onto two convex sets. Viewing the algorithm in this way gives a simple proof

of convergence to a fixed point. Uniqueness of the reconstructed image has not

been proven, but is always observed in practice. As a measure of the stability of

this representation, I study its behavior under quantization of the local orienta-

tions. After quantization, the reconstruction is no longer exact. However, I find

that the reconstruction performance decays gracefully with increasingly coarse

quantization. Even after extreme quantization to as few as three orientations,

reasonable quality images are reconstructed.

2.1 Steerable Pyramid Transform

The Steerable Pyramid (SP) is a multiscale linear image representation origi-

nally developed by Simoncelli et al [53, 54]. As the work presented in this thesis

uses the Steerable Pyramid extensively, a detailed description is given here.

The SP is a filter bank transform where the filters are derivative operators

at multiple spatial scales. The output of the transform is a set of subbands that

are produced by convolving the original image with each of the filters. The SP

decomposes an m×n pixel image into distinct orientation subbands at multiple

scales. The number of spatial scales J and orientations K may be chosen freely,

provided J < log2 (min(m,n))− 2. With J and K fixed, the SP decomposes the
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image into a highpass residual bank, J sets of K oriented bandpass bands, and a

lowpass residual band. Throughout this work, the number of “bands” of the SP

transform refers to the number of orientations, K, of the specified transform.

The SP filters are chosen in order to possess several important properties. In

particular the filters are designed to be polar separable in the Fourier domain,

to prevent spatial aliasing in each subband after downsampling, and to form

a tight frame. The filters corresponding to different orientation subbands also

have the key property that they are rotated copies of each other. In this way,

all of the bandpass filters can be formed as translated, scaled and rotated copies

of a single “mother” filter.

2.1.1 Filter Design

Denote the highpass filter by H(x, y), the bandpass filters by Bs,k(x, y) where

s and k indicate the scale and orientation of the filter, and the lowpass filter

by L(x, y). The dyadic scaling relationship between the bandpass filters can be

expressed as

Bs+1,k(x, y) = Bs,k(x/2, y/2) (2.1)

where s = 1 corresponds to the finest spatial scale and s = J the coarsest spatial

scale.

The filter design is easier to study in the Fourier domain. Let F [f ] denote

the discrete Fourier transform of f and F−1 [g] the inverse discrete Fourier

transform of g. By the convolution theorem one may write

I ⋆ Bs,k = F−1 [F [I] · F [Bs,k]] (2.2)
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where I is the original input image and · indicates pointwise multiplication.

The operation of each bandpass filter is equivalent to blurring with a radially

symmetric bandpass filter followed by taking the (K-1)th order derivative along

a specified direction. As the image signal lives on a discrete lattice, it is nec-

essary to specify what is meant by differentiation. Note that for a continuous

differentiable two dimensional function,

F
[

dK−1f(x, y)

dxK−1

]

= (iwx)
K−1f̂(wx, wy)

= (ir cos(θ))K−1f̂(wx, wy)

where r and θ are polar coordinates in the frequency domain. This property is

used to define differentiation for the SP filters.

The Fourier transform of the bandpass SP filter at scale s and orientation

band k can then be written in polar coordinates as

B̂s,k(r, θ) =
gs(r)

rK−1

(

ir cos

(

θ − (k − 1)π

K

))K−1

= iK−1gs(r) cosK−1

(

θ − (k − 1)π

K

)

(2.3)

where gs(r)
rK−1 is the Fourier transform of the radially symmetric blurring operator

at the sth scale, and the (K-1)th order derivative is taken in the (k−1)π
K

direction.

The dyadic scaling of the bandpass SP filters implies that

gs(r) = g
(

2(s−1)r
)

(2.4)

where g(r) is a “mother” function corresponding to the filters at the finest
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spatial scale.

The radial function g(r) may be chosen such that the SP transform is a tight

frame. Given two Hilbert spaces X and Y , a linear operator A : X → Y is a

tight frame if there is a constant c so that

c ||Ax||2Y = ||x||2X (2.5)

for all x ∈ X.

Letting X be the image space with standard inner product and Y the space

of undecimated SP coefficients, the tight frame condition (taking c = 1) implies

||I||2 =

(

∑

s,k

||I ⋆ Bs,k||2 + ||I ⋆ H||2 + ||I ⋆ L||2
)

(2.6)

By Plancharel’s relation, each of the norms in the above sum may be computed

in the Fourier domain. This implies that the filters must “tile” the Fourier

domain, i.e.
∑

s,k

|B̂s,k|2 + |Ĥ|2 + |L̂|2 = 1 (2.7)

This tiling condition, combined with the dyadic scaling, imposes strong con-

ditions on the mother radial function g. For values of r out of the domain of

support of the lowpass and highpass filters, 2.3, 2.4 and 2.7 imply

∑

s,k

g
(

2s−1r
)2
[

cos

(

θ − (k − 1)π

K

)]2(K−1)

= 1 (2.8)
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The powers of cosine tile over θ, due to the identity

K
∑

k=1

cos

(

θ − (k − 1)π

K

)2(K−1)

=
K

22(K−1)

(

2K − 2

K − 1

)

(2.9)

(see appendix A). Denote the r.h.s. of (2.9) by CK . Setting g(r) = ḡ(r)/
√

CK ,

ghigh(r) = Ĥ and glow(r) = L̂, the tiling constraint (2.7) is equivalent to

glow(r)2 + ghigh(r)
2 +

J
∑

s=1

ḡ(2s−1r)2 = 1 (2.10)

This design constraint may be satisfied by setting

ḡ(r) =































φ(r), if π
2
≤ r ≤ π;

√

1 − φ(2r)2 if π
4
≤ r ≤ π

2
;

0 otherwise.

(2.11)

where φ(r) is a monotonically decreasing function on [π
2
, π] with φ(π

2
) = 1 and

φ(π) = 0. The filters in this work are formed using

φ(r) = sin
(π

2

∣

∣

∣log2

( r

π

)∣

∣

∣

)

(2.12)

The residual lowpass and highpass filters are then determined by requiring

(2.7) to be satisfied, with glow(r) supported in [0, π
2J ] and ghigh(r) supported in

[π
2
, π]. See figure 2.1.1.

For the work in this thesis, the Steerable Pyramid was implemented by

multiplication in the Fourier domain. This implicitly implies circular boundary

handling.
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π

Figure 2.1: Radial functions for SP filters, for J=3 scales

2.1.2 Inverse SP Transform

As the SP transform is overcomplete, it maps a lower dimensional space into

a higher dimensional space. Written in matrix form, the SP would not be a

square matrix, and thus cannot have both a left and right inverse. It is possible

to find a left inverse, although it will not be unique. Again let X denote the

space of image pixels and Y the space of SP coefficients. Such a left inverse

would be a linear operator B : Y → X such that

BA = IX

where A is the SP transform operator and IX is the identity operator on the

space X.

As the SP is a tight frame, we may take B = A†. The adjoint A† corresponds

to convolving with the complex conjugate of the original SP filters. The SP
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Figure 2.2: Steerable pyramid filters in spatial domain, for 3 scales and 2 ori-
entation bands. Left: Residual Highpass filter Center: directional filters at
three spatial scales, from fine to coarse. Right: Residual Lowpass filter
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Figure 2.3: Steerable Pyramid bands. Left: Original Image. Right: SP bands
for 3 scales and 2 orientation bands, arranged from coarse to fine from top to
bottom. Very top is lowpass residual band, very bottom is highpass residual
band.
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transform may thus be inverted by convolving each output subband with the

complex conjugate of the filter originally used to form the subband, and then

adding the results.

2.1.3 Downsampling and overcompleteness

As gs(r) = 0 for r > π
2s−1 , the outputs of all of the filters at scale s have

their Fourier transforms supported within r ≤ π
2s−1 . This implies that these

filter output subbands may be subsampled by a factor of 2s−1 in the x and y

directions without any loss of information or introduction of any spatial aliasing.

While the filter design was explained using the unsampled transform, in practice

the SP transform is usually subsampled. The tight frame property still holds,

although the inner product on the space of subsampled SP coefficients must be

adjusted to account for subsampling.

An important property of the SP transform is that it is overcomplete. Even

after the above subsampling, there are more SP coefficients than original image

pixels. The amount of overcompleteness may be calculated in the limit of “large

J” by considering the sizes of the oriented bands. If the original image is of

size MxN, the highpass and finest oriented bands will be the same size. At

each coarser scale the size of each oriented band will be reduced by 2 in each

direction, so the number of coefficients will be reduced by a factor of 4. For a

transformation with K oriented bands, the number of coefficients will then be

MN × (1 + K + K/4 + K/42 + K/43 + ....) = MN × (1 +
4K

3
)

so the transform will be 1+ 4K
3

times overcomplete. The actual overcompleteness
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of a transform in practice will be slightly different due to using a finite number

of spatial scales and that the original image dimensions may not be powers of

two.

2.1.4 Steerability

The SP filters are “steerable”, meaning that a filter at an arbitrary orientation

can be produced by a finite linear combination of filters at fixed orientations.

For the K band SP transform, the dimension of this linear combination is K. A

filter at a particular location and scale, but arbitrary orientation may be written

as a linear combination of the K basis filters at the orientations θk = (k−1)π
K

.

This implies that the full set of oriented filters at a particular location and scale

span a rotationally invariant subspace.

The steerability property can be analyzed in the Fourier domain. From (2.3),

the Fourier transform of the SP filter at orientation φ and scale s is

iK−1gs(r) cosK−1 (θ − φ)

As the radial function gs(r) for filters at the same scale but different orientations

are the same, steerability will hold if there exist coefficients ck(φ) such that

cosK−1(θ − φ) =
K
∑

k=1

ck(φ) cosK−1

(

θ − (k − 1)π

K

)

(2.13)

This holds as the translated cosines form a linear space of dimension K.

Computation of the ck(φ) is discussed in appendix B.

As the filters act upon the input image data in a linear manner, the steer-
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ability of the filters implies the steerability of filter responses. Given an input

image I, the convolution of I with a filter at an arbitrary orientation φ can be

calculated as a linear combination of the convolutions of I with the K filters at

orientations θk = (k−1)π
K

.

2.2 Separation of Orientation and Magnitude

The two band (K=2) Steerable Pyramid transform gives a representation of

the input image in terms of the filter outputs of oriented filters in the x and

y directions. As these filters are first derivative operators, one can take them

to be components of the image gradient at multiple scales. In this way, the

two-band SP represents the image in terms of its gradient at multiple scales.

The nonlinear image representation described in this chapter is based upon

the orientation of these multiscale image gradient vectors. By transforming

the gradients into polar coordinates, one can define orientation and magnitude

bands for each scale. Specifically, for an input image I of dimension MxN pixels,

the output of the two band SP with J consists of the highpass, oriented bandpass

and lowpass subbands

H(m,n) : m = 1...M, n = 1...N

Bs,x(m,n) : m = 1...M/2s−1, n = 1...N/2s−1, s = 1...J

Bs,y(m,n) : m = 1...M/2s−1, n = 1...N/2s−1, s = 1...J

L(m,n) : m = 1...M/2J , n = 1...N/2J (2.14)

26



The orientation and magnitude bands are then computed as

Ms(m,n) =
√

Bs,x(m,n)2 + Bs,y(m,n)2

Θs(m,n) = arctan(Bs,y(m,n), Bs,x(m,n))

As the lowpass and highpass bands are scalar quantities and are not oriented,

no polar transformation is performed on them.

This transformation divides the information contained in the gradient bands

into two parts. The orientation band is a purely geometric quantity measuring

the local orientation of the image, while the magnitude band essentially mea-

sures the local signal power. One may ask whether the magnitude or orientation

bands are more important for representing the signal structure.

This question is similar in spirit to the classic work of Oppenheim and Lim

[38], who investigated the relative importance of the magnitudes and phases of

discrete Fourier transform coefficients for representing image structure. They

took the information in present in the Fourier transform of an image and par-

titioned it into magnitude and phase information. By performing numerical

experiments involving recombining Fourier magnitudes and phases from differ-

ent images, as well as with random information, Oppenheim and Lim showed

that image structure was more explicitly captured by phase information than

by magnitude information.

There are two key differences between the local orientation and magnitude

bands studied in this work and the Fourier magnitudes and phases. Firstly,

The Fourier coefficients are global quantities, with each coefficient depending

on the entire image. In contrast, the steerable pyramid coefficients, and thus the

27



local orientation and magnitude bands, are local measurements. Secondly, the

steerable pyramid is an overcomplete transformation while the Fourier transform

is not.

Some previous work has focused on recovering image signal from the magni-

tudes of oriented filter responses. Wundrich et.al. have show that images may

be represented keeping the magnitudes (e.g. discarding the phases) of responses

to a set of doubly overcomplete Gabor filters [67]. Shams and Von der Malsburg

likewise studied reconstructing image features from magnitudes of Gabor filters

used as a model of cortical complex cells [50]. However, for multiscale gradients

calculated using the steerable pyramid, I find the local orientation to be more

important than the magnitudes for representing image structure.

The relative importance of the local orientation information versus the mag-

nitudes is illustrated by three sets of numerical experiments involving hybrid

images. In each of these experiments, “true” orientation and magnitudes were

taken from actual images, and combined with “other” data to form hybrid im-

ages. For one experiment the “other” data were orientations and magnitudes

taken from a different image, while for the other two the “other” data were

either sampled randomly or chosen to be constant. For all of these experiments,

the original images were size 256x256 pixels. The steerable pyramid transforms

were computed using the maximum possible number of spatial scales, which is

6 for 256x256 size images.

The first experiment involved “swapping” the orientation and magnitudes

of two actual images. The magnitude and orientation bands were extracted

from two images I1 and I2 as described above. Hybrid images were formed by

swapping the two magnitude and orientation bands, and then inverting the SP
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(a) (b)

(c) (d)

Figure 2.4: Swapping orientation and magnitudes. Magnitudes and orientations
were extracted from original images (a) and (b). Hybrid image (c) was formed
using orientations from (a) and magnitudes from (b). Hybrid image (d) was
formed using orientations from (b) and magnitudes from (a).
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transform. As the scalar lowpass and highpass bands could not be treated in

this way, they were simply set to zero for the hybrid images. The results of this

hybridization are shown in figure 2.4.

Setting the lowpass bands to zero implies that the pixel values of hybrid

images will sum to zero, so these will necessarily have many negative pixel

values. To view these hybrid images it is necessary to rescale their dynamic

ranges. Setting the lowpass and highpass bands to zero is equivalent to bandpass

filtering the image. It may seem disturbing that this information is discarded

in this series of experiments. However if enough spatial scales are used in the

transform, nearly all of the image structure is contained in the bandpass bands.

For comparison purposes, the effects of removing the highpass and lowpass

bands are displayed in figure (2.5 b).

As can be seen, the hybrid images are much more similar to the image from

which the orientation was taken. Some residual effect of the magnitude band

can be seen as modulating the local contrast, such as the faint outline of the

bicycle in the hybrid image (d). However the image structure is clearly better

captured by the orientation information than by the magnitude information.

The second set of hybrid images demonstrating the relative importance of

orientation information was generated by combining authentic orientations and

magnitudes with randomly generated data. Given an original image I, the

magnitude and orientation bands were computed. A set of random orientations

were generated by sampled from the uniform distribution on [0, 2π]. The ran-

domly generated magnitudes at each scale were constrained to have the same

marginal statistics as the original magnitudes. This was done by first comput-

ing a sample histogram of the original magnitudes, and then drawing synthetic
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(a) (b)

(c) (d)

Figure 2.5: Random orientation and magnitudes. (a) Original image. (b) is
original image, with highpass and lowpass bands set to zero. (c) Image formed
with orientations extracted from (a) and random magnitudes. (d) Image formed
from magnitudes extracted from (a) and random orientations.
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magnitudes according to this distribution. Two hybrid images, one containing

original magnitudes and random orientations, the second containing original

orientations and random magnitudes, were formed. As before, the lowpass and

highpass bands were set to zero for the hybrid images. Results are displayed

in figure 2.5. While the hybrid image containing the true orientations appears

noisy and with poor contrast, it nonetheless manages to preserve much of the

original image structure. The hybrid containing random orientations, however,

is completely devoid of local structures such as lines and edges. While some

residual of the original boat image is visible, it is present as a modulation of the

contrast of what looks somewhat like 1/f spectrum noise. These images again

provide evidence that the image structure information is carried more explicitly

by the orientation information than by the magnitudes.

The third set of images was formed by combining orientation and magnitudes

from a real image with constant magnitude and orientation data. Setting the

magnitude data to be constant yields a similar result as “whitening” the image,

where one attempts to flatten the image power spectrum [24]. The results are

shown in figure 2.6. As would be expected, the image formed from original ori-

entations and constant magnitudes has nearly constant contrast. This results in

a “noisy” appearance in regions where the original image had low signal power,

such as the sky. However, much of the original image structure is preserved.

For the hybrid image with the original magnitudes, the constant synthetic

orientation was chosen to be θ = 0. Imposing this constant orientation has the

effect of rotating every image gradient vector to be horizontal. As can be seen

in the resulting image, only vertically oriented structure such as the mast of the

boat and the lighthouse can be represented. Of the two hybrid images, again
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(a)

(b) (c)

Figure 2.6: Constant orientation and magnitudes
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the one with the correct local orientations is more perceptually more similar to

the original image.

2.3 Reconstruction from Local Orientations

The three sets of hybrid images discussed earlier indicate that the structural

content of images is more saliently captured by the local orientation data than

by the magnitude data. While each of the hybrid images formed from authentic

orientations [figures 2.4 (c,d) 2.5 (c), 2.6 (b)] were somewhat similar to the

original image providing the orientation data, thus demonstrating that much

of the image structure is captured by the orientation information, they were

not good quality reproductions of the original. One can ask exactly how much

information about the image is encoded in the local multiscale orientations.

A natural way to answer this question is by image synthesis. If it is possible

to reconstruct a good quality image from a given set of measurements, this is

a demonstration that those measurements are sufficient to capture the image

information.

The method in which these hybrid images were synthesized was very simple.

This raises the natural question of whether it is possible to make better use of

the local multiscale orientation data, and through some possibly more sophis-

ticated procedure extract a more faithful version of the original image. This

section explains that this is possible and in fact the entire image may be com-

pletely recovered after discarding the magnitude information, if the highpass

and lowpass residual bands are kept.

The image produced in figure (2.5 c) was synthesized by combining the orig-
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inal orientation bands and random magnitude bands to yield a set of Steerable

Pyramid coefficients, and then inverting the SP transform. If this image is then

re-analyzed using the SP filters, its local orientations will generally not be the

same as the original orientation, because of the overcompleteness of the SP.

This discrepancy gives one the freedom to re-impose the original local orienta-

tion data, yielding a distinct set of SP coefficients, and reconstruct the image

again. The residual highpass and lowpass bands are also imposed. This process

is illustrated schematically in figure 2.7. The main result of this chapter is that

iterative application of this simple algorithm converges to the original image.

The magnitudes used to synthesize the image from figure (2.5) were sampled

to have the same marginal statistics as the original image magnitudes, which

relied on the availability of the original magnitudes. In order to demonstrate

the feasibility of reconstructing an image after the magnitude information is

discarded, the initial iterate should be chosen without any knowledge of the

original magnitudes. I chose to initialize the reconstruction algorithm using a

random Gaussian noise image with power spectrum proportional to 1/|f |, which

roughly mimics the power spectrum of natural images [46]. Using such an initial
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Figure 2.7: Schematic of reconstruction algorithm

35



image, the first several steps of the reconstruction algorithm are shown in 2.8.

The reconstruction algorithm is easier to understand when viewed entirely

in the space of pyramid coefficients. Before proceeding, it is helpful to introduce

the following notation. Let Im denote the space of image pixels, and W be the

space of steerable pyramid coefficients. Introduce the two-dimensional spaces

Wi = (xi, yi) of the x and y filter responses at the scale/space location i, where

i indexes different locations in space and scale. It will be convenient to write

W as the Cartesian product

W = H
⊗

(

Ni
⊗

i=1

Wi

)

⊗

L (2.15)

where the spaces H and L consist of the coefficients of the highpass and lowpass

residual bands.

As the steerable pyramid is overcomplete, dim(Im) < dim(W ). Let A :

Im → W be the steerable pyramid transform (the “analysis” operator). As A

is a tight frame, A† : W → Im satisfies A† ◦ A = IIm, where IIm is the identity

operator on Im (see appendix C). Applying A† is equivalent to inverting the

steerable pyramid transform.

Let U = A(Im) be the “image under A of the image space”. This is the

set of steerable pyramid coefficients that can be achieved as the transform of an

actual image. The operator A ◦ A† : W → W , which corresponds to inverting

and rebuilding the steerable pyramid, is not the identity operator on W . It is

in fact an orthogonal projection onto U , as shown in appendix C.

Let OΘ : W → W be the function that imposes the specified orientation and

highpass and lowpass bands. If WΘ ⊂ W is the set of pyramid coefficients
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(a) (b)

(c) (d)
Figure 2.8: Reconstruction from orientation data. For this series of iterates,
highpass and lowpass bands were imposed at each scale, average power was not
imposed and extrapolation was not used. (a) image used as starting point (b)
1 iteration (c) 5 iterations (d) 10 iterations
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(e) (f)

(g) (h)

Figure 2.8: Reconstruction from orientation data (cont). (e) 15 iterations (f)
20 iterations (g) 100 iterations (h) original image
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U = A(Im)

WΘ

H,
L

Figure 2.9: Geometry of reconstruction algorithm functioning by projection
onto the convex sets U and WΘ

consistent with the specified orientation, lowpass and highpass information,

then OΘ : W → WΘ can be viewed as a projection. I will defer briefly the

exact specification of this function as it is possible to impose the orientations in

more than one way. Given this notation, a single iteration of the reconstruction

algorithm, starting and ending in W , is equivalent to applying AA† ◦ OΘ. This

has the form of alternate projections, first onto the set WΘ, then onto U . This

is sketched in figure 2.9.

Both of these sets are convex. U is trivially convex as it is a linear subspace.

WΘ can be characterized as the positive linear combination of a set of vectors

corresponding to single orientation measurements, offset by a vector containing

the highpass and lowpass bands. Set vres ∈ W to have the specified highpass

and lowpass components, and be zero for all of the bandpass components. Let

the index i refer to different locations in space and scale and θi be the the

local multiscale orientation at location i. Set vi(θi) ∈ W to be zero in every

component except for the two corresponding to the x and y filter responses for

the ith particular scale and spatial location, which are cos(θi), sin(θi). Vectors
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x ∈ WΘ are then exactly those with the form

x = vres +
∑

Mivi(θi) (2.16)

where Mi are the positive magnitudes at space/scale location i. It is now

straightforward to show that WΘ is convex. Given two points x1 = vres +
∑

M1
i vi(θi) and x2 = vres +

∑

M2
i vi(θi), for any scalar λ ∈ [0, 1], one has

λx1 + (1 − λ)x2 = vres +
∑

(

λM1
i + (1 − λ)M2

i

)

vi(θi)

which is clearly in WΘ as λM1
i + (1 − λ)M2

i ≥ 0.

xi

yi

θi

Figure 2.10: Imposition of orientation (operator OΘ) by rotation or projection.
The dotted line represents a slice of WΘ, the set of coefficients having the correct
orientation.

The operator OΘ acts separately on the component spaces H,L and Wi. On

H and L, OΘ simply imposes the specified highpass and lowpass information.

On each two dimensional space Wi = (xi, yi), OΘ can impose the specified

orientation either by rotating the two-vector (xi, yi) to have orientation θi, or by

orthogonally projecting onto the line with orientation θi. These two possibilities
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are shown in figure 2.10.

In the rotation case, the behavior on Wi is defined by

OROT
Θ (xi, yi) = (ρi cos(θi), ρi sin(θi)) (2.17)

where ρi =
√

x2
i + y2

i . For the projection case, OPROJ
Θ projects the point (xi, yi)

onto the ray spanned by the unit vector (cos(θi), sin(θi). Care must be taken to

set points to zero that would project onto the diametrically opposing ray. This

can be done by setting

OPROJ
Θ (xi, yi) = ν [(cos(θi), sin(θi)) • (xi, yi)] (cos(θi), sin(θi))

where ν is the hinge function

ν(x) =















0, if x < 0

x, if x > 0

If OΘ is chosen to act by projection onto each component subspace Wi, it is

an orthogonal projection from the full space W onto WΘ. The reconstruction

algorithm then performs alternating orthogonal projection onto convex sets U

and WΘ. Such an algorithm is guaranteed to converge provided the convex sets

have nonzero intersection, by a basic result due to Cheney and Goldstein [10, 3].

By construction, WΘ ∩U must contain at least one point, namely the steerable

pyramid transform of the original image. This proves

Theorem 1 The reconstruction algorithm defined by iterating AA†OPROJ
Θ con-

verges to a fixed point in p ∈ W . There is an image y ∈ Im such that A(y) = p,
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and p has the imposed local multiscale orientations θi, as well as the residual

lowpass and highpass bands.

As the proof of this relied on the use of orthogonal projections, it does not

directly apply when the orientations are imposed by rotation. In practice, how-

ever, convergence is observed when using rotation and convergence is even faster

than for reconstruction based on projections. This behavior may be partly ex-

plained by noting that projection reduces the magnitudes of the coefficients

while these are preserved by rotation. After the first few steps of the algorithm

with projections, the coefficient magnitudes are greatly reduced in the bandpass

bands. Loosely speaking, these magnitudes are only slowly restored by informa-

tion “leaking” in from the imposed lowpass band. The reconstruction algorithm

based on imposing orientations by rotation suffers less from this effect. It should

also be noted that the rotation and projection methods converge in the limit of

small angle corrections, which occurs as the algorithm approaches a fixed point.

The method of alternating projections has been used before for a number

of image processing applications. Thao and Vetterli studied using alternating

projections to reconstruct bandlimited signals from quantized sample values

[59]. Goyal et. al have studied the more general problem of reconstructing

signals from quantized coefficients in an overcomplete linear representation [21].

Hirani and Totsuka employed alternating projections for the inpainting problem

of removing user-selected image objects [22].

The result presented in this thesis does not guarantee the uniqueness of

the reconstructed image. In practice, exact reconstruction to machine precision

has been observed for all images with normal power spectral properties. It is,
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however, relatively easy to generate images for which the given reconstruction

algorithm is not unique. Images which have been bandpass filtered such that

their SP transforms have exactly zero values for the lowpass and highpass bands

will not be uniquely constrained by the orientation information. This result

is easy to understand, as the orientation measurements are invariant under

multiplying the entire original image by a single global scalar. Typically, this

“free scalar” is determined by imposing the lowpass residual band. If the lowpass

band is exactly zero, however, imposing it does not constrain the overall scalar

multiplier. In fact, for such bandpass filtered images it was observed that the

algorithm would converge to a result that was simply a scalar multiple of the

original image, where the exact value of the scalar depended on the initial

starting point. It is unclear if this is the only type of example where uniqueness

of the reconstruction can fail. Later in this chapter, some conditions on the

orientation measurements are described which, if met, are sufficient to imply

uniqueness of the representation.

2.4 Acceleration of convergence

The iterative reconstruction algorithms described above converge, but quite

slowly. For a typical 512x512 image, beginning at a random noise starting point,

about 200 iterations of the rotation-based method are needed before the result

is visually indistinguishable from the original image. As alluded to above, the

amplitudes are encoded only implicitly in the representation, and their recovery

results from interactions between orientations at different positions and scales

as well as the lowpass band.
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A simple thought experiment reveals how surprising it is that the magnitudes

may be recovered. If the original image were multiplied by an overall scalar

multiple, none of the orientation measurements would be affected. This global

“free scalar” is only pinned down by imposing the scalar lowpass and highpass

bands, which are clearly not invariant under such scaling. This suggests that the

reconstruction may be accelerated by explicitly imposing this overall scale factor

that is only weakly implied by cross-scale interactions during reconstruction.

One reasonable way to do this is to include as part of the representation the

average power (sum of squares of magnitudes) of the pyramid coefficients at

each scale. This is then imposed at each step of the reconstruction algorithm

by rescaling by the magnitudes at each spatial scale.

Imposing the average power of each spatial scale greatly speeds the conver-
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Figure 2.11: Effects of imposing average power to accelerate convergence.
Curves are PSNR vs iteration for rotation and projection methods, with and
without imposing average power at each scale.
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U

WΘ
w1

w2

w3

w4

wex

Figure 2.12: Acceleration of convergence by extrapolation in pyramid domain

gence of the algorithm, as shown in figure 2.11. Note that imposing the average

power greatly reduces the difference in performance between the projection and

rotation methods. This is understandable, as the reason the projection method

performed worse was due to it reducing the magnitudes for large angle cor-

rections. Restoring the overall power at each step by rescaling mitigates this

effect.

A second method for accelerating the convergence by extrapolation is sug-

gested in figure 2.12. Given four successive points wi ∈ W , i = 1...4 generated

by alternating projection, one may form the line l1 passing through w1, w3 ∈ WΘ

and l2 passing through w2, w4 ∈ U . One can find the two points where these

lines are closest to each other (they will not intersect in general, in a high di-

mension space), and average them to define wex. The alternating projection

may then be started again with the point wex, which should be closer to the

intersection of U and WΘ.
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These lines may be parameterized by

l1(t) = w1 + t(w3 − w1) (2.18)

l2(s) = w2 + s(w4 − w2) (2.19)

Finding the points of closest intersection is equivalent to finding s and t mini-

mizing

E(s, t) = ||l1(t) − l2(s)||2W

= ||w1 − w2 + s(w3 − w1) + t(w2 − w4)||2W =
∣

∣

∣

∣

∣

∣~a + s~b + t~c
∣

∣

∣

∣

∣

∣

2

W
(2.20)

where ~a = w1 − w2, ~b = w3 − w1 and ~c = w2 − w4. E is a quadratic polynomial

in s and t and so has a unique minimum. Calculating partial derivatives gives

∂E

∂s
= 2

〈

~a + s~b + t~c,~b
〉

W
(2.21)

∂E

∂t
= 2

〈

~a + s~b + t~c,~c
〉

W
(2.22)

Setting these partial derivatives to zero yields a set of linear equations, solving

them gives







s

t






= −







<~b,~b >W <~b,~c >W

<~b,~c >W < ~c,~c >W







−1





< ~a,~b >W

< ~a,~c >W






(2.23)

The extrapolated point wex is then given by

wex =
1

2
(w1 + s(w3 − w1) + w2 + t(w4 − w2)) (2.24)
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Figure 2.13: Acceleration by extrapolation

Results of extrapolation are shown in figure 2.13. The extrapolation pro-

cedure operates using four successive points in the pyramid coefficient domain

which correspond to two complete iterations of the reconstruction algorithm.

Extrapolation could be performed every after two iterations, however it is ad-

vantageous to allow the reconstruction algorithm to “relax” for a few iterations

before extrapolating again. Performing extrapolation after every four complete

iterations (corresponding to 8 alternating projections) was empirically found to

give good results.

The benefits of imposing average power at each scale and performing ex-

trapolation are cumulative, so the fastest reconstruction algorithm uses both

techniques. Using this method, approximately 30 iterations are necessary be-

fore the resulting image is visually indistinguishable from the original.
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(a) (b)

(c) (d)

Figure 2.14: Reconstruction without highpass residual. (a) Original 256x256
pixel image. (b) Reconstruction from orientations without highpass band. (c)
Detail of original image (a). (d) Detail of image (b)
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2.5 Importance of residual scalar bands

While this chapter claims to present an image representation based on orien-

tation measurements, exact reconstruction depends on imposing the highpass

and lowpass residual bands which are not measurements of this type. It would

undermine my claim that this representation is based on purely geometric mea-

surements if a significant amount of the visual structure was represented simply

by imposing the residual bands. As the highpass band has the same number of

coefficients as original image pixels, imposition of this band is especially trou-

blesome.

However, for most natural images relatively little information is carried by

the highpass band. Natural images typically have power spectra that decay like

1
|ω|p

with p near 2, and often have little power at the spatial frequencies captured

by the highpass residual filters. Good quality images can be reconstructed from

the orientation representation without imposing the highpass residual. Instead

of imposing the highpass at each step, the operator OΘ leaves the highpass

unchanged, except for the very first iteration when the highpass is set to zero.

Letting highpass “float” in this way is equivalent to enlarging the set WΘ to

include the entire space H. The algorithm may still be understood as alternating

projection and still converges, although uniqueness is lost and the reconstructed

image will depend slightly on the starting point. Results are shown in figure

2.14. As can be seen, the image reconstructed without imposing the highpass

residual is almost indistinguishable from the original.

Imposing the lowpass band, however, is necessary for fixing the overall image

range. If the lowpass bands are allowed to “float” as described above, directly
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(a) (b)

Figure 2.15: Reconstruction without lowpass residual (a) Original (b) Recon-
struction from orientations without lowpass band - range rescaled

applying the reconstruction algorithm without imposing average power at each

scale will converge to an image whose dynamic range depends strongly on the

starting point. This dynamic range ambiguity can be removed by imposing the

average power at each spatial scale, however in this case the lowpass information

in the reconstructed image will still depend on the starting point. The visual

effect of having the lowpass band incorrect is much more noticeable, as can be

seen in figure 2.15.

The lowpass residual thus cannot be discarded for reconstructing good qual-

ity images. The number of scalar coefficients in the lowpass residual is small,

as few as 16, if the steerable pyramid is constructed to the maximum number

of possible spatial scales. The need to impose the lowpass band is thus less

troubling for the overall representation.
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(a)

(b) (c)

Figure 2.16: Reconstruction from quantized orientations. (a) Original Image
(b) Image reconstructed from orientations quantized to 3 orientations, with
imposing highpass (c) Same as (b), without imposing highpass
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2.6 Quantization of Orientations

The success of the alternating projection algorithm as described above relies

on the existence of a point of intersection of U and WΘ. While this is en-

sured for sets of orientations that arise from actual images, it may not be true

for sets of orientations that have been altered in some way. This could be

troubling for using this representation for image processing tasks in which one

would manipulate the orientations and then recover the processed image. If the

representation were not stable to perturbations in the orientations, this would

undermine its potential utility. As a method of exploring this, I have studied

the effects of quantization of the orientations, and found the representation to

be well behaved.

For quantization to Q values, the unit circle was divided into Q equal bins

of width 2π
Q

with bin centers at 2πq
Q

for q = 0...Q− 1. The quantized orientation

bands ΘQ
s (m,n) were formed by replacing the value of Θs(m,n) by the angle of

the center of its corresponding bin. When reconstructing from quantized orien-

tations, the orientation imposition step was modified to impose the quantization

bin, rather than the bin center value. At each step, orientations that lie within

2π
Q

of the quantized value are left unchanged, those that are outside are pushed

to the closest edge of the bin, either ΘQ
s (m,n) + π

Q
or ΘQ

s (m,n)− π
Q

. This may

still be interpreted as projection onto a convex subset WΘQ ⊂ W , but where

WΘQ is a Cartesian product of “wedges” rather than rays in W . With this mod-

ification to the reconstruction algorithm, as the orientations are quantized more

and more coarsely down to three orientations, image quality degrades gracefully,

as illustrated in Figure 2.17. Even at extremely course quantization down to
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Figure 2.17: Reconstruction quality (measured by PSNR) as a function of num-
ber of quantization levels

only three orientations, visually reasonable images can be reconstructed (Fig-

ure 2.16). Direct imposition of the quantization bin centers was also attempted,

but gave poor results at coarse quantization.

2.7 Imposition of Magnitudes

The previous sections have demonstrated the feasibility of reconstructing images

from local multiscale orientation measurements, and described several variations

on a practical algorithm for reconstruction. This work was motivated by several

numerical experiments that suggested that image structure was more explicitly

captured by orientations than by the magnitude information. These examples

do not conclusively show that image structure cannot be recovered from the

magnitudes, however. It is a natural question to ask what happens if one at-
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tempts to iterate a similar algorithm that instead imposes magnitude data at

each step. This is related to work of Shams and Von der Malsburg, who studied

reconstructing images from the magnitudes of an overcomplete set of Gabor

filters [50].

Defining the operator OM : W → W that imposes the specified highpass,

lowpass and magnitude information, the analogous “magnitude reconstruction”

algorithm is defined by iterating AA†OM . On each two dimensional space Wi,

the set of coefficients consistent with the specified magnitude Mi form a circle.

OM can be viewed as projecting onto a subset of M which is the direct product of

these circles, which is definitely not a convex set. The magnitude reconstruction

algorithm is thus not guaranteed to converge, and this failure to converge is

typically observed in practice.

When initialized with a random starting point, the iterates typically con-

verge in the image domain but not in the pyramid coefficient domain. After

a large number of iterations the algorithm produces an image x ∈ Im with

A†OMAx = x, but Ax 6= OMAx. Intuitively speaking, the algorithm gets

“stuck” and in the pyramid domain bounces between the two unequal points

OMAx and Ax. The resulting image produced is not unique and is highly de-

pendent on the initial starting point. Some results (in the image domain) are

shown in figure 2.18. While much of the visual structure such as edges are repre-

sented, the overall images are highly distorted. These images appear solarized,

where the contrast is inverted in a patchwork fashion across the image.

The implications of this behavior must be interpreted carefully. As the spec-

ified magnitude constraints are not satisfied by the images typically produced

by the magnitude reconstruction algorithm, one should not conclude that it is
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(a)

(b) (c)

Figure 2.18: Attempted reconstruction from magnitudes (a) Original Image
(b),(c) Reconstructed images, starting from different random initial points
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Figure 2.19: Reconstruction by imposing magnitudes with initial points succes-
sively further away in orientation domain, as described by equation 2.25. Each
curve corresponds to a different value of δ, evenly spaced from π

16
to π in incre-

ments of π
16

. The shift from convergence to failure to converge happens for δ∗

between 11π
16

and 12π
16

.

impossible to reconstruct or represent images from the coefficient magnitudes.

The failure to reconstruct the original image by imposing magnitudes in this

way may be viewed simply as a shortcoming of this particular reconstruction al-

gorithm. It may still be that there is only one unique image consistent with the

given magnitude data, but a more sophisticated algorithm that avoids getting

“stuck” is needed to find it.

Some partial evidence that the magnitude constraints may be sufficient to

constrain the image is provided by the following numerical experiment. If the

starting point xinit ∈ W of the magnitude imposition algorithm is chosen to be

“close” to p, the transform of the original image, then iterative imposition of

magnitudes was found to converge successfully to p. This implies the existence
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of a local “basin of attraction” in the pyramid domain where magnitude impo-

sition is successful. The initial point for these simulations were generated in the

following way. Let Mi and θi be the magnitudes and orientations for the original

image. The initial point was generated by keeping the original magnitudes and

perturbing the orientations by

θ0
i = θi + δni (2.25)

where ni ∈ [−1, 1] was a uniformly distributed random variable. δ controls the

width of the “orientation noise”. xinit was then generated using the Mi’s and

θ0
i ’s. By increasing δ the distance to p was changed. For small values of δ,

iterative imposition of magnitudes resulted in convergence to p. For a fixed

noise pattern ni, convergence is observed for δ below a critical value δ∗, above

which the algorithm did not converge to p. Typical values of δ∗ were around 2

radians.

The magnitude data would fail to represent an image uniquely if there ex-

isted a set of pyramid coefficients distinct from those of the original image that

had the same magnitudes and were consistent with the constraint of having

coming directly from an image, i.e. were in the subspace U . As the magnitudes

would be the same for such a set of coefficients, they could be described by

the parameterization implicit in 2.25 for some orientation noise sample. The

fact that a basin of attraction was observed thus indicates that the magnitudes

may uniquely specify the image. As the number of magnitudes is greater than

the number of degrees of freedom in the original image (by a factor or 4/3),

this is certainly possible. Nonetheless, the difficulty of this reconstruction from
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magnitudes should be contrasted with the relative ease of reconstructing from

orientation information. It is thus a fair claim to say the image structure is

more explicitly captured by the local orientations than by the magnitudes.

2.8 Analysis of convergence rate

The orientation imposition algorithm exhibits exponential convergence to its

fixed point. Close inspection of the PSNR vs iteration number curves in figure

2.11 reveal asymptotically linear behavior after an initial superlinear transient.

In the asymptotic region, linear increase in PSNR corresponds to exponential

decay of the distance between the current iterate and the ultimate fixed point.

As the SP transform is a tight frame and thus preserves distances, this decay

in error is identical in both the image domain and the coefficient domain.

For the algorithm based on projection without any additional acceleration,

a lower bound on this asymptotic convergence rate may be calculated directly

from the image data. This calculation relies on looking at the dynamics of the

alternating projection algorithm near the fixed point. The dynamics may first

be “homogenized” by translating the fixed point to the origin, after which the

orthogonal projections are linear operators. The decay in error at each step

is then bounded by a term depending on the largest eigenvalue of an operator

corresponding to two successive projections of the homogenized system. This

term also has a geometric interpretation, related to the minimum angle between

the two convex sets at the fixed point.
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Figure 2.20: Homogenized dynamics - orbits of alternating projection onto U
and V ∗ can be mapped onto orbits of alternating projection onto U and V

2.8.1 Homogenized Dynamics

Let the sets U and WΘ be as defined in section 2.3. The set U is a linear space.

As defined, WΘ is not a complete hyperplane as the magnitudes defining it in

equation 2.16 are non-negative. Define the set V ∗ to be the complete hyperplane

containing WΘ, i.e. V ∗ consists of x such that

x = vres +
m
∑

j=1

bjvj(θj) (2.26)

where bi ∈ R.

I will focus on the dynamics of alternating projection onto U and V ∗. Let

p ∈ W be the steerable pyramid coefficients corresponding to the transform of

the original image. By definition then p ∈ U ∩ WΘ. If none of the magnitudes

corresponding to the pyramid coefficients of p are exactly zero, then V ∗ and WΘ
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are identical in some neighborhood of p. The asymptotic rate of convergence for

alternating projections onto U and V ∗ will then be the same as for alternating

projections onto U and WΘ.

Let V = Span{vi(θi)} be the “homogenized” version of V ∗. V is a linear

space parallel to V ∗. As illustrated in figure 2.20, there is a one to one corre-

spondence between the orbits of alternating projections onto U and V ∗ and the

orbits of alternating projections onto U and V .

To see this, first introduce the following abuse of notation. Let {ui}n
i=1 be

a set of spanning vectors for the space U . Assume that the sets {ui} and {vj}

are orthonormal in W . Denote also by U and V the matrices

U = (u1, u2, ..., un) (2.27)

V = (v1, v2, ..., vm) (2.28)

formed by taking the spanning vector sets as columns, so U : Rn → W and

V : Rm → W .

Claim 1 : With this notation, orthogonal projection onto V ∗ may be com-

puted by

PV ∗x = V V †(x − p) + p (2.29)

Proof: As V ∗ = {V b+p : b ∈ Rm}, the orthogonal projection of x onto V ∗ is

given by V w + p where w ∈ Rm minimizes ||x − (V w + p)||W . This is the same

as w minimizing ||(x − p) − V w||W , which is the problem of projecting x−p onto

V . Orthogonal projection of x-p onto V is given by V V †(x − p) (see Appendix

C). So then V w = V V †(x − p) and so PV ∗x = V w + p = V V †(x − p) + p. �
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Orthogonal projection onto U is given by PUx = UU †x. Let φ(x) = x −

p. This map establishes the desired correspondence between orbits. Precisely

stated, this is

Claim 2: φ((PUPV ∗)x) = (PUPV )φ(x)

Proof : As p ∈ U , UU †p = p. Then compute

φ(PUPV ∗x) = UU †(V V †(x − p) + p) − p (2.30)

= UU †V V †(x − p) + UU †p − p

= UU †V V †(x − p)

= PUPV φ(x) �

After k iterations of the alternating projection algorithm, the residual error

is given by Ek =
∣

∣

∣

∣(PUPV ∗)kx − p
∣

∣

∣

∣

W
. According to the above calculations, this

is the same as
∣

∣

∣

∣(PUPV )k(x − p)
∣

∣

∣

∣

W
. Thus the decay in error is determined by

the dynamics of iterating the operator M = UU †V V †.

These dynamics are determined by the eigenvalue spectrum of the operator

M . As it is composed of projection operations, M cannot have eigenvalues

greater than 1. Let λ∗ be the largest magnitude eigenvalue of M , so that the

operator norm |M | = λ∗. Then

Ek+1 =
∣

∣

∣

∣MMk(x − p)
∣

∣

∣

∣

W
≤ |M |

∣

∣

∣

∣Mk(x − p)
∣

∣

∣

∣

W
= λ∗Ek (2.31)

from which it follows that Ek ≤ (λ∗)kE0. The signal to noise ratio for the kth
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iterate is given by

SNR(k) = 10 log10

(

||p||2W
E2

k

)

(2.32)

≥ 20 log10 (||p||W ) − 20 log10

(

(λ∗)kE0

)

≥ C − 20 log10(λ
∗)k

where C = 20 log10

(

||p||W
E0

)

. Thus a lower bound on the asymptotic slope of the

SNR versus iteration curve is given by −20 log10(λ
∗).

This bound is meaningless if λ∗ = 1. In fact, the presence of a unit eigenvalue

implies that convergence is not unique, i.e. that the homogenized sets U and V

intersect at more than one point.

Claim 3 : M has a unit eigenvalue if and only if U ∩ V is nontrivial.

Proof : Assume there exists such an eigenvector y with PUPV y = y. I wish

to show y ∈ U ∩ V . Clearly y ∈ U , so it suffices to show y ∈ V which will be

the case iff PV y = y. Writing PV y = y + w, I must show w = 0. Applying PU

to both sides of this shows PUPV y = PUy +PUw which reduces to y = y +PUw,

yielding PUw = 0. Applying PV to both sides of the same expression gives

PV PV y = PV y + PV w which reduces to PV y = PV y + PV w, yielding PV w = 0.

So w is perpendicular to U and V . But as w = PV y − y is a difference of two

vectors, one in V and one in U , W is in the span of U and V . These two

statements imply that w = 0, and so y ∈ U ∩ V .

Conversely, let y ∈ U ∩V be a nonzero vector. Then PUy = y and PV y = y,

so clearly PUPV y = y and so M = PUPV has an eigenvalue equal to one. �

If U and the homogenized hyperplane V intersect only at the origin, then U
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and V ∗ can intersect only at a single point, namely p. This follows as the map

x → φ(x) is a one to one map between U ∩ V ∗ and U ∩ V . Now, as WΘ ⊂ V ∗,

if U ∩ V ∗ is a single point then WΘ ∩ U can consist of at most one point. But

WΘ ∩U contains p, so it consists of exactly one point. All together, this proves

the following

Theorem 2 For a given image, if the operator M defined above has no eigenval-

ues equal to 1, then the representation by local multiscale orientations is unique.

If the largest eigenvalue has magnitude λ < 1, then the reconstruction algorithm

based on projections will have an asymptotic rate of convergence bounded below

by −20 log10(λ) dB / iteration.

2.8.2 Computation of eigenvalues

The problem of computing the eigenvalues of M = UU †V V † may be first re-

duced to computing the eigenvalues of the smaller matrix T = U †V V †U . This

follows from

Claim 4 : Any nonzero eigenvalue λ of M is also an eigenvalue of T .

Proof : Let y satisfying UU †V V †y = λy be an eigenvector of M . Then

x = U †V V †y satisfies

Tx = U †V V †U(U †V V †y) = U †V V †(UU †V V †y) (2.33)

= U †V V †λy = λx

so x is an eigenvector of T with eigenvalue λ, provided that x 6= 0. But if x = 0
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then U †V V †y = 0 and so applying U gives UU †V V †y = λy = 0, so λ = 0. But

by assumption λ is nonzero. �

The operator T is still an extremely large matrix. It is a square matrix

with dimensions equal to the number of image pixels in the original image.

For reasonable sized images, it is impossible to form T explicitly in computer

memory. Fortunately, it is straightforward to use the structure of T to compute

its action on any vector x without forming the full matrix in memory. The

largest magnitude eigenvalue can then be computed numerically by iterative

methods.

We have T = U †V V †U . The vectors vi(θi), the columns of V , are extremely

sparse and have only two nonzero entries corresponding to the x and y filter

locations for the ith space/scale location. Thus both V and V † can be applied

to vectors without allocating memory for their full size. The columns of U may

be taken to be the steerable pyramid basis functions for the bandpass bands,

so that applying U is equivalent to taking the partial SP transform (without

highpass and lowpass bands). As these columns are then orthonormal in W by

construction, U † corresponds to the partial inverse SP transform, again drop-

ping the highpass and lowpass contributions. These can be computed without

explicitly forming the matrices in memory, as described in section 2.1.

As an example, these eigenvalues were computed for the T matrices for a set

of 32 x 32 image patches extracted randomly from a set of natural test images.

The lower bound asymptotic convergence rates from theorem 2 were computed,

and compared against the convergence rates calculated by performing the ori-

entation reconstruction using the projection method. The measured asymptotic

convergence rates were calculated by a least squares linear fit to the SNR vs
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Figure 2.21: Measured asymptotic convergence rates for orientation reconstruc-
tion for 100 32x32 image patches versus predicted lower bound

iteration curves excluding the first 100 iterations to allow for decay of the ini-

tial superlinear transient. Results are shown in figure 2.21. As can be seen, the

predicted asymptotic rates fit the measured convergence rates extremely well.

Eigenvalues were computed using the MATLAB eigs routine, which is based

on the ARPACK library and implements an iterative method based on Arnoldi

iteration [25].
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Chapter 3

Stochastic Modeling of Images

Understanding the structural content of natural images is important both for

developing effective image processing methods and for the scientific study of

vision. Very generally speaking, one can view both biological visual systems

and image processing algorithms as systems that accept image signals as their

inputs. A key idea is that the input images presented to these systems are

typically not random signals, but some restricted subset of images with definable

statistical properties. Both man-made and natural systems can benefit from

adapting their design to fit the statistical and structural properties of the input

signals they receive. In designing image processing algorithms, this adaptation

is explicitly engineered. For biological systems, the appropriate adaptation has

been performed by evolution over millions of years. Better understanding of the

properties of natural images can thus provide insight into the organization of

biological visual systems, and guide the development of better image processing

algorithms.

When implementing a typical image processing task, such as compression
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or denoising, good performance is desired for the images that one is likely to

encounter in practice. If the input images are not completely arbitrary but have

some well defined structural and statistical properties, it is possible to adapt

the algorithm to take advantage of these signal properties. By concentrating on

performing well on a smaller, more relevant part of the input space of all possible

images, one can develop more effective processing algorithms. A simple example

of this idea is provided by coding and information theory. Imagine encoding 8 bit

greyscale images that were formed by drawing each pixel value randomly from

a uniform distribution. Results from information theory show that the number

of bits needed to encode such a signal exactly is equal to the entropy, which

in this case is maximal and equal to 8 bits per image pixel. However, lossless

compression algorithms operating on typical photographic images are able to

encode images with fewer than a third as many bits [65]. This is only possible as

the entropy of natural images are far lower than of completely random signals.

This statement is equivalent to saying that the signals of interest have specific

structural regularity that can be exploited.

In order to exploit the properties of natural images for image processing

tasks, one must have a quantitative description of what they are. Loosely

speaking, an image model is a way of answering the question “what is a nat-

ural image?”. Many image models can be described as either deterministic or

stochastic. Deterministic models essentially answer the question of whether a

given two dimensional function is a natural image with a yes or no answer. Many

deterministic models are based on function spaces, classifying images as func-

tions that have finite or small values of a particular norm. Common examples of

these models include the space of Bounded Variation (BV) functions and spaces
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based on the Mumford-Shah energy functional [47, 37]. Related deterministic

ideas include piecewise smooth models with differentiable boundary segments,

such as functions that are C2 except along twice-differentiable boundaries, and

“cartoon plus texture decomposition” models. [8, 35].

In contrast, stochastic image models are based on the idea that an image

may be treated as a random variable. In this framework, the act of taking a

photograph may be viewed as drawing a particular sample of a random process.

If one is considering discretized digital images of a fixed size with n image

pixels, the most general form of a stochastic model is a complete probability

distribution p(x) for x ∈ R
n. Here p(x) gives the probability that x will be

observed if one takes a photograph. Depending on the methods used, however,

building such a global probability distribution over the entire image space may

prove to be extremely difficult.

An alternative approach is to build stochastic models that focus on the local

statistical properties of images. A very common approach in signal modeling

is to describe the distribution not of the original pixel values, but rather the

statistics of the coefficients of some transform of the image. One can think of

splitting the construction of probability model p(x) for images into separately

answering the questions “what is x” and “what is p”. Choosing the space for x

typically implies picking a particular image transform to measure the statistics

of, and deciding the dimension of sets of coefficients to model. Once this space

is fixed, the functional form of the distribution p should be parameterized in a

manner that balances the ability to faithfully capture the behavior of the data,

but is also tractable.

Many of the models used in image processing may be described by the se-
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lection of these two components. The classical image power spectrum models

pick the space for x to be the coefficients of the Fourier transform of the image,

and p to be Gaussian. The Fourier basis is highly nonlocal, however, which

limits the power of processing algorithms based on these models. The discrete

cosine transformation (DCT), which may be viewed as performing the Fourier

transform on discrete image blocks, is a commonly used transform in image

processing. Image models based on describing the one-dimensional marginal

statistics of DCT coefficients using the generalized Gaussian distributions have

been studied since the early 1980’s [5, 44]. These generalized Gaussian distri-

butions take the form

p(x) ∝ e−|x
s
|α (3.1)

where s and α are free model parameters. This form gives the Gaussian dis-

tribution when α = 2 and the Laplacian distribution when α = 1. For these

models, DCT coefficients at distinct locations are treated independently and

the joint statistics are not captured.

While the models based on the DCT transform capture local information,

they describe the statistics of an image at a fixed spatial scale determined by

the image block sizes. However, natural images display strong scale-invariance

properties. As objects in the natural environment are just as likely to be pho-

tographed at any distance from the camera, to a good approximation individual

image features are likely to occur at a wide range of scales with equal probability.

A natural way of respecting the scale invariant statistical properties of im-

ages is by building the model in the space of coefficients of a multiscale trans-

form. Over the past 20 years, a variety of wavelet and related multiscale trans-
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forms such as steerable pyramids, curvelets, contourlets and bandlets have seen

widespread use for image processing. The basic idea underlying all of these

methods is that the image signal can be decomposed as a sum of individual

“atoms” or “basis functions” that are all scaled and translated versions of a

small number of “mother wavelet” functions. Typically, the scaling parameter

is sampled at powers of two, so that the basis functions at each spatial scale may

be grouped together into discrete subbands. Given such a multiscale transform

as a front end, modeling the statistics of each of the subbands in a uniform way

generates a scale-invariant image model.

A significant volume of research has studied image models based on the

marginal statistics of wavelet coefficients. It was observed early in the devel-

opment of wavelet theory that natural images display distinctively “sparse”

marginal statistics when decomposed with orthogonal wavelet transforms. In

this context, sparse marginal responses mean that most of the filter coefficients

are zero or very small, but occasionally very large coefficient values occur. Dis-

tributions characteristic of these responses have strong peaks at the origin but

have heavier tails as compared to the Gaussian distribution. Mallat described

these marginal histograms with generalized Gaussian functions and discussed

implications for image coding [32]. Similar models were discussed in the context

of image coding with biorthogonal wavelets by Antonini et al [1]. Moulin and

Liu studied the connection between denoising shrinkage functions implied by

using Maximum a Priori estimation with such generalized Gaussian priors and

those based on the minimum description length principle [36]. Marginal sta-

tistical models have also been used with overcomplete linear transformations.

Simoncelli and Adelson studied image denoising based on a generalized Gaussian
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description of marginal statistics of Steerable Pyramid coefficients [55].

While image models based on marginal statistics are appealing due to their

relative simplicity, they are inherently limited by their inability to capture sta-

tistical relationships between nearby coefficients in space and scale. Marginal

statistical models make the implicit assumption that different transform coeffi-

cients are independent. However, wavelet coefficients from nearby image regions

have strong statistical interdependencies that should not be ignored. A number

of authors have studied the joint statistics of pairs of wavelet coefficients and

found significant deviations from independence [23, 6, 2]. These effects arise due

to the localized features present in images. Image features leading to strong fil-

ter responses, such as edges and lines, tend to be localized and lie along oriented

contours. Intuitively speaking, the presence of a large amplitude coefficient in

a particular region indicates the presence of such a local image feature, which

will likely lead to large coefficient responses for filters nearby in space, scale and

orientation. This “clustering” of large magnitude coefficients near image signal

features cannot be described or exploited by models that assume independence

of different coefficient responses.

These dependencies are driven by the structure of the underlying image data

and not in general by the correlation of the wavelet filters themselves. Indeed,

orthogonal wavelet filters are uncorrelated and would therefore give completely

independent responses to white Gaussian noise inputs. It has also been ob-

served that for natural images, the responses to orthogonal wavelet filters are

empirically uncorrelated [20]. Zero correlation does not imply independence,

however, for random variables with non-Gaussian statistics. For models based

on overcomplete transformations such as the steerable pyramid, the filters will
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no longer be uncorrelated. In this case there is a mixture of statistical depen-

dence between filter responses arising from both the filter correlation and the

underlying signal structure.

Many modeling applications in image coding rely on making predictions of

the image signal based on previously observed information. Wavelet filter re-

sponses are zero mean, assuming both positive and negative values. While the

lack of correlation implies that models based on linearly predicting coefficients

based on their neighbors will fail, this is essentially due to the inability of pre-

dicting the sign of the coefficients. Taking the absolute values of the coefficients

removes this ambiguity. Attempting only to predict the absolute value of co-

efficients based on the absolute values of neighboring coefficients in space and

scale is feasible. Training such a predictive model is one implicit method of

representing the dependencies between nearby wavelet coefficients. This type

of predictive model of absolute values of coefficients has been used for image

coding, denoising and digital forensics applications [6, 9, 28].

Constructing image models that take advantage of the statistical dependen-

cies between neighboring transform coefficients in a principled way is a challeng-

ing problem. A major issue is the massive interconnectedness of neighboring

coefficients across the entire wavelet domain. One may attempt at first to

construct a model capturing the dependencies only between immediately neigh-

boring coefficients. However, the neighbors of one coefficient themselves have

neighbors. Following these connections, the statistical dependencies propagate

throughout the wavelet coefficient domain and one is led down the path of con-

structing a global model that may prove intractable to work with. This is one

example of the so-called “loopy graph” problem.
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Following these ideas naturally leads to the concept Markov random field

models [66]. These models are based on the notion of conditional independence

- the idea that a single field value is independent of other coefficients when

conditioned on some local neighborhood of data. Markov random fields may

be used to directly model image pixel intensities or transform coefficient values.

However, for many applications the random field consists not of the image data

directly, but some quantity representing the local image context. Malfait and

Roose develop a Markov random field model of this type where the random field

values indicate whether each wavelet coefficient is dominated by noise or by the

desired signal [30]. Markov random field models are commonly used for image

modeling, but can lead to very computationally intensive estimation methods.

Describing images stochastically offers several advantages for developing cer-

tain image processing techniques. Given a stochastic image model, a number of

image processing tasks can be tackled using the theoretical apparatus of statis-

tical estimation. One important example of this is the image denoising problem,

where one seeks to recover a clean version of an image that has been corrupted

with a noise signal. In this problem, it truly makes sense given the physics

of noise generation to view the noise as a random process. If the signal is also

modeled as random variable, then the whole problem can be treated in a unified

theoretical framework using probability theory. While denoising methods based

on deterministic models have certainly been studied, as noise is not a determin-

istic process they do not describe the two components of the corrupted signal on

the same footing. Other image processing tasks that can be based on statistical

estimation methods include image inpainting, where one seeks to estimate miss-

ing image data, and image super-resolution where one attempts to estimate a
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high resolution version of an image given lower resolution information. Stochas-

tic image models are also highly useful for image coding applications. For this

problem, the well developed field of information theory provides a tight link

between statistical signal models and coding performance. Strong theoretical

results on coding performance are based on the signal entropy, which depends

on the distribution of the input signal.

Another advantage of stochastic image models is their flexibility for describ-

ing different subtypes of image signals. There are many classes of images in

addition to natural photographic images that are relevant for specialized im-

age processing tasks. A large number of physical sensing systems produce data

in image form. Examples of different imaging modalities include long range

systems such as satellite data or synthetic aperture radar imaging to medical

technologies such as magnetic resonance imaging, x-ray computerized tomogra-

phy or ultrasound. Each of these types of images will have distinct properties

that one may wish to describe. Many signal models contain adjustable param-

eters that may be fit from image data. The probabilistic framework provides

well defined methods of fitting these parameters from data, such as by maxi-

mum likelihood estimation. This allows one to adapt such models to different

signal classes, or even to the statistics of an individual image, in a principled

way. This ability to “listen” to the image data itself is an important feature of

many stochastic signal models.

An important issue for stochastic signal models is the balance between im-

posing structural assumptions on the model and fitting from data. As men-

tioned earlier, adapting the model to the particular signal or subclass of signals

of interest is valuable. However, for most problems, some parametric structure
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must be imposed on the relevant probability density. For local stochastic image

models that consist of more than a very small number of dimensions, fitting

the probability density non-parametrically from data is infeasible due to the

so-called “curse of dimensionality”. This occurs as the number of data samples

required to fit the density function to a reasonable accuracy grows exponentially

in the number of data dimensions.

Such behavior is illustrated by straightforward histogram binning, perhaps

the simplest form of non-parametric density estimation. Given N samples of a

scalar random variable x taking values bounded on the bounded interval [a, b],

one may estimate the density of x by dividing the interval into a certain number

of bins, counting the number of times x falls within each bin, and computing

the sample histogram. As x is a random variable, repeating this process for

N different samples gives a different answer. For the calculation to provide

a useful answer, the variance of the sample histogram must be reduced to an

acceptable amount. In general the variance for each bin will scale inversely with

the expected number of data points falling into that particular bin. While this

simple discussion ignores the important issues involved in picking the bin sizes

and the bias/variance tradeoff involved, the general result is that the number

of data points required to achieve a fixed level of variance will scale linearly

with the number of histogram bins. For higher dimensional data, this scaling

is disastrous as the number of bins required to maintain a fixed maximum bin

diameter scales exponentially in the number of dimensions.

For these reasons, when modeling multidimensional image data some form

of parametric assumptions are necessary. Even in the scalar case, parametric

models are usually employed. The generalized Gaussian marginal models dis-
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Figure 3.1: A prototypical “natural scene”

cussed previously are a common example of this. Introducing a parametric form

for the density imposes constraints. While this is necessary to yield a model

that may actually be fit from the data, one should take care to avoid imposing

inappropriate constraints on the model. As a loosely stated general principle,

one should impose only the constraints that are believed to be present in natural

images, and allow the remaining model specification to be done by fitting to the

available data. There should be a clear connection between each aspect of the

functional form of the parameterized model and structural assumptions about

the properties of natural images.

Understanding of the structural properties of natural images should motivate

the development of image probability models. As an illustrative introduction to
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the image properties most relevant for the models developed in this chapter, con-

sider the lake image shown in figure 3.1. One of the most important properties

that distinguishes natural images from random noise is spatial inhomogeneity.

The local properties of the image signal in smooth regions such as the sky or

the still water on the lake are very different from strongly oriented edge regions,

like those along the horizon or the tree branches, or textured regions such as the

foreground bushes. One quantifiable aspect of this local inhomogeneity is vari-

ation in local signal power. Local signal power is measured by the magnitudes

of responses of localized zero mean filters, and is thus related to local contrast

not simply local pixel intensity. Smooth regions such as the sky and water have

low local signal power, while edge and texture regions have higher local power.

When images are expanded in a wavelet basis, these variations in local signal

power often appear through clusters of large magnitude coefficients near salient

image features. A second characteristic feature of natural images is that the

majority of these local features are strongly oriented. These can be seen in the

lake image as the edges formed between the sky and the treetops, between the

water and shore, and the borders of the tree trunks themselves. There are also

some texture regions that are strongly oriented, such as the patterns formed

by the tree branches and trunks near the horizon. Oriented features occur at a

variety of different orientations. If the image is analyzed using filters that mea-

sure the image gradient, one may compute the local orientation as a spatially

varying function. This variation in orientation across different spatial locations

is another significant aspect of local signal inhomogeneity.

Recognizing and accounting for the inhomogeneity in image signals is very

important for a wide variety of image processing algorithms. As the image
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signal is different in different spatial regions, behavior of an algorithm that is

appropriate in one region may be inappropriate in another. A large amount of

recent research in image processing has focused on developing spatially adaptive

algorithms. In the image coding literature, a number of algorithms based on

explicitly measuring the “image context” have been described [61, 58]. In these

works the “image context” refers to a set of spatially varying set of measure-

ments that attempt to describe the current image signal properties. The coder

will then modulate its behavior based on the current value of the image context.

The key point which enables this approach to be successful for coding is that

the local signal is simpler to describe when conditioned on the image context.

This idea may be extended to stochastic image modeling by parameterizing a

local probability function in terms of image context variables. Variables used for

the local image context should be able to describe the local image inhomogene-

ity. As mentioned above, two of the most important manifestations of image

variability are the changing local signal power and local orientation. In this

chapter, I use these ideas to develop a set of stochastic image models that can

describe explicit adaptation to the local signal power and orientation. For the

first such model, I explicitly parameterize the image context by a pair of hidden

variables that correspond to the local contrast and local orientation. When con-

ditioned on these local hidden variables, the signal description is Gaussian. In

this way a complete model is constructed as a mixture of Gaussian components

that each have a direct interpretation as representing specific local structural

properties of the image.

Another significant property of natural images is scale invariance. The mod-

els developed in this chapter describe patches of Steerable Pyramid coefficients.
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As the Steerable Pyramid is a multiscale transformation, the resulting model

naturally treats different image scales in a uniform manner, respecting the image

scale-invariance properties.

The work presented in this chapter is an extension of the Gaussian Scale

Mixture (GSM) model originally developed by Wainwright and Simoncelli [63].

The development of the GSM model was motivated by the desire to capture the

observed clustering behavior of large magnitude wavelet coefficients. This model

describes patches of wavelet coefficients as samples from a single multivariate

Gaussian that are then multiplied by a spatially varying hidden scalar variable

that controls the local signal power. As nearby wavelet coefficients are controlled

by the same hidden scalar variable, large values for the hidden variable in a given

location will yield a cluster of large coefficients. In this way the GSM model

can account for the observed correlations of coefficient magnitudes.

While the GSM model effectively describes variations in local signal power,

it does not explicitly model the local image orientation. The models described in

this chapter address this limitation of the original GSM. In this chapter I develop

the Orientation Adaptive Gaussian Scale Mixture Model (OAGSM), which is

similar in structure to the GSM but includes a hidden variable modeling local

orientation. The OAGSM may be viewed as a generative model where patches of

coefficients are first drawn from a single oriented multivariate Gaussian process.

The patches are multiplied by a scalar hidden variable and then rotated by a

hidden orientation variable. Much of the power of this model arises from the

fact that oriented signals at different orientations in different image regions may

be described by the same original oriented process. The GSM model without

the orientation hidden variable tends to mix the description of oriented features
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at different orientations, which is avoided with the OAGSM model.

Although the OAGSM model is a good model for wavelet patches from

oriented image regions, images also contain significant non-oriented regions.

Low power non-oriented regions such as constant sky regions could still be

modeled with an oriented process by simply setting the local magnitude close

to zero. However many images do contain regions with significant local power

but without a well defined local orientation, such as T-junctions or non-oriented

texture areas. The OAGSM as described is an inappropriate model for wavelet

patches coming from such regions. This problem is addressed by developing a

related model that includes a non-oriented signal component. By introducing

a third hidden variable that models the “orientedness” of the local patch, the

OAGSM with non-oriented component (OAGSM/NC) model can be treated in

a very similar framework as the original OAGSM. The general form of these

models and issues involved in fitting parameters from data are described in this

chapter. The primary application of the OAGSM model is for image denoising,

which is discussed in detail in chapter 4.

3.1 OAGSM model

The models presented in this chapter are all models for local patches of wavelet

coefficients. All of the work has been done using the Steerable Pyramid repre-

sentation, which was described in detail in section 2.1. While the basic structure

of the models could be used with any multiscale representation, many of the

solutions to issues arising in fitting the model parameters made extensive use

of the Steerability properties of the Steerable Pyramid. Throughout the rest of
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this chapter, the term “wavelet coefficients” will refer to the Steerable Pyramid

unless otherwise specified.

The exact geometry of the local wavelet patches may be chosen in a number

of different configurations. The Steerable Pyramid with K orientations produces

K orientation subbands at each spatial scale. The wavelet patches considered

in this chapter consist of coefficients that are “near” to a given central coeffi-

cient. The “nearby” coefficients need not be restricted to a single orientation

subband, however. Patches may include “parent” coefficients from a coarser

scale, “cousin” coefficients from different orientation bands at the same scale,

as well as “sibling” spatial neighbors from the same subband. These options

are illustrated in figure 3.2. As can be seen, there is a significant amount of

freedom available in choosing the so-called generalized wavelet neighborhood of

a single central coefficient. Including parent and cousin coefficients can allow

the OAGSM to capture some of the cross-scale and cross-subband dependencies

present in image data.

Selecting the appropriate size of the generalized wavelet patches is a model

selection problem which can only be resolved empirically. If the neighborhood

is too small, the model will fail to take advantage of the known statistical

dependencies between nearby coefficients. In the extreme case of shrinking the

neighborhood to a single coefficient, the OAGSM reduces to a wavelet marginal

statistical model, similar to [55]. On the other hand, making the neighborhood

too large will also lead to problems. The OAGSM is a local model based on the

assumption that the hidden variables capture the current signal properties, so

that when conditioned on these the signal may be described successfully with a

single multivariate Gaussian. If the neighborhood size is too large, it may begin
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Figure 3.2: Generalized wavelet neighborhood family. The diagram indicates
a possible generalized neighborhood for a coefficient at position (x) consisting
of sibling (s), cousin (c), parent (p) and auntie (a) coefficients, for a Steerable
Pyramid transform with three orientation subbands.

to contain signal with more than a single orientation, or with variations in power

within the patch, such that this assumption breaks down. Increasing the patch

size also increases the number of parameters that must be fit from the image

data. Choosing the generalized neighborhood geometry thus involves a tradeoff

between capturing the dependencies of neighboring coefficients, and between

the correctness and complexity of the model. In general, this should be resolved

empirically by choosing the model size that gives the best performance for the

current application. Much of the basic theory of the model and techniques for

fitting the parameters from data discussed in this chapter do not depend on

the exact neighborhood geometry. A more complete investigation of the effects

of neighborhood size will be investigated numerically in the context of image

denoising in Chapter 4.

The OAGSM model may be described by the following generative process.
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For each patch location, a pair of hidden variables z and θ are chosen according

to some fixed prior density. Each patch v is formed by drawing a sample from

a fixed multivariate Gaussian process, then rotating v by θ around the center

of the patch and scaling by
√

z. This may be written as

v =
√

zR(θ)u (3.2)

where R(θ) is an operator performing rotation about the center of the patch,

and u is a zero mean multivariate Gaussian with fixed covariance C0.

Both the patch rotation operator R(θ) and scaling by
√

z are linear opera-

tions. This implies that when conditioned on fixed values for the hidden vari-

ables, v is simply a linearly transformed Gaussian, and is thus itself Gaussian.

In this case v will have covariance

zC(θ) = zR(θ)C0R(θ)T (3.3)

which defines the “oriented covariances” C(θ) in terms of R and C0.

The hidden variables are assumed to be independent of u. Given their prior

p(z, θ), the density for v may be expanded as

p(v) =

∫∫

p(v|z, θ)p(z, θ)dzdθ (3.4)

=

∫∫

g(v; zC(θ))p(z, θ)dzdθ
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where I have introduced the notation

g(v; C) =
1

√

(2π)n|C|
exp

(

−1

2
vT C−1v

)

is the zero multivariate Gaussian density with covariance C.

In general, the overall probability is an infinite Gaussian mixture. If a dis-

crete density is chosen for the hidden variables z and θ, then it may reduce to a

finite Gaussian mixture. This reduction to a finite mixture will typically be done

when the model is used in practice. The form of the prior may be somewhat

constrained by assuming rotation invariance for the model. It is reasonable to

assume that orientations are equally likely to occur at any angle, and that there

is no systematic dependence between local orientation and local power. While

this rotation-invariance property may fail for certain classes of images, such as

pictures of buildings which may have a bias for perfectly horizontal and vertical

structures, it will be assumed here. This implies the use of a separable prior

p(z, θ) = p(z)p(θ) for the hidden variables, with p(θ) equal to the constant den-

sity on [0, 2π]. The density p(z) remains to be specified. The exact choice for

p(z) for denoising applications will be discussed in section 4.1.2.

Once the hidden variable priors are fixed, equation 3.3 shows that the re-

maining model parameters may be specified either by giving C0 and the exact

form of the patch rotation operator R(θ), or by specifying the oriented covari-

ances C(θ). While these two are formally equivalent, it is often more convenient

in practice to specify C(θ).

The OAGSM model is based on the idea that the spatial inhomogeneity ob-

served in natural image data can be explained by the action of the two scalar

84



-40 -20 0 20 40
Original Coefficient Value

L
o

g
 P

ro
b

ab
il

it
y

(a) (b)

Normalized Coefficient Value
-8 -6 -4 -2 0 2 4 6 8

L
o

g
 P

ro
b

ab
il

it
y

(c) (d)

Figure 3.3: Effects of divisive normalization. (a) Original subband (b) log-
histogram of marginal statistics for original subband (c) Subband normalized
by estimated ẑ at each location (d) log-histogram for normalized coefficients,
showing Gaussian behavior. Dashed line is parabolic curve fit to histogram, for
comparison.
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and rotator hidden variables. These spatially varying hidden variables are em-

ployed to modulate a single, homogenous Gaussian process, thereby producing

the observed local variations. It follows that one prediction of the model is

that if the action of these hidden variables could be “undone”, the subsequent

ensemble of transformed local image patches would appear to be more homoge-

nous and closer to Gaussian. This behavior is observed in the following pair of

numerical experiments which provide evidence for the validity of the OAGSM

model.

As the z hidden variable acts by multiplication to control local contrast,

undoing its action is equivalent to divisively normalizing local coefficients by an

estimate of local power. It has been observed by several authors that transform-

ing image data by divisive normalization yields marginal statistics that are closer

to Gaussian [63, 46]. This is illustrated in figure 3.3 for one Steerable Pyramid

subband. The original subband marginal statistics are far from Gaussian, as

can be seen from examining the log histogram. A true Gaussian distribution

would have an inverted parabola for its log histogram. The local estimate of

the hidden variable ẑ may be computed as follows. Temporarily ignoring the

θ hidden variable, each patch x may be viewed as a sample of the Gaussian

g(x; zC) with covariance zC. As will be explained later in the chapter, C may

be estimated for the entire band simply by taking the sample covariance of all

of the extracted overlapping coefficient patches. For each individual patch xi,

the maximum likelihood estimate of z is given by

ẑi = argmax
z

g(xi; zC) =
1

d
xT

i C−1xi (3.5)
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Figure 3.4: Left: Image with two strongly oriented patches indicated. Right:
coefficients for each patch at one scale of a two-band steerable pyramid, dis-
played as vector fields. Patches are similar up to rotation.

where d is the dimension of the patches.

Dividing each coefficient by the value of
√

ẑ computed using a neighbor-

hood centered around the coefficient gives the transformed subband shown in

figure 3.3 (c). As can be seen visually, the power of this normalized subband is

much more spatially homogenous than for the original subband. The marginal

statistics are also much closer to Gaussian, as may be seen by examining the

log-histogram, which is very close to an inverted parabola. Normalizing by local

contrast thus gives statistics that are closer to Gaussian.

Similar analysis may be performed for the rotator hidden variable θ. The

OAGSM model is based on the idea that differences in structure between co-

efficient patches in different oriented regions may be explained by the action
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of θ. Visual evidence for this can be seen in figure 3.4, where two patches of

two-band Steerable Pyramid coefficients for two different oriented regions are

shown. The coefficient patches are displayed as patches of gradient vectors, as

was discussed at length in Chapter 2. As can be seen from examining the two

gradient patches, the essential structure of the two patches are similar up to

rotation.

Attempting to describe the statistics of an ensemble of such patches without

accounting for the rotational relationship between them will result in mixing

structures at different orientations together. Such inappropriate data pooling

will result in a less powerful signal description as some of the structure will

have been averaged out. Conversely, taking advantage of this rotational re-

lationship between coefficient patches leads to a more homogenous, easier to

describe model. This statement can be made more precise by analyzing the

second-order covariance statistics for ensembles of coefficient patches. One can

“undo” the action of the rotator hidden variable by estimating the dominant

local orientation of each patch, and then rotating each patch around its center

by the estimated orientation. Performing this “orientation normalization” on

every patch of coefficient from a particular spatial scale gives an ensemble of

transformed patches with the same dominant orientation. The claim is that this

set of rotated patches are more homogenous, and therefore easier to describe

compactly, than the ensemble of raw original patches.

One simple measure of this is to perform Principle Components Analysis

(PCA) on both sets of patches. Let vraw
i and vrot

i denote the raw and rotated

patches extracted from one spatial scale of an image. The coefficients have been

“vectorized” so that we may consider both vrot
i and vrot

i as vectors in Rd where
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Figure 3.5: Normalized eigenvalues of covariance matrix estimated from co-
efficient patches drawn from single scale of the pyramid representation of an
example image (“peppers”). Dashed curve corresponds to raw patches, and
solid curve to patches rotated according to dominant orientation.

d is the dimension of the patch. The current calculation used 5x5 patches of

two-band coefficients not including any parent or cousin coefficients, so that

d = 50. PCA proceeds by first forming the sample covariance matrices

Craw =
∑

i

vraw
i

(

vraw
i

)T

Crot =
∑

i

vrot
i

(

vrot
i

)T

and then examining the eigenvalues and eigenvectors of these two covariance

matrices. If the eigenvalues are normalized by the trace of the covariance, then

they may be interpreted as giving the fraction of total signal variance that lies

along the direction of the corresponding eigenvector. Normalized eigenvalues for

Crot and Craw are plotted in decreasing order in Figure 3.5. For the rotated

patches a greater portion of the total variance is accounted for by a smaller num-
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ber of dimensions as compared to the raw patches. This “energy compaction” is

a concrete measure of how the ensemble of rotated patches is more homogenous

and therefore easier to describe.

3.2 Estimating Model Parameters

As mentioned earlier, the OAGSM model parameters can be specified by de-

termining the oriented covariance matrices C(θ). If a continuous mixture of θ

variables is used, then one must be able to specify the covariances for arbitrary

θ. However, if θ is sampled discretely it is only necessary to determine C(θ) for a

finite set of θ values. While the details of how the hidden variables are sampled

will depend on the application of the model, this point that C(θ) may only be

needed for a set of finite samples should be kept in mind. In this chapter I will

detail three distinct methods of obtaining the oriented covariances. The first of

these will be based on explicitly rotating patches of image data, similar to the

numerical experiment shown in Figure 3.5. While this “explicit patch rotation”

can give a very good signal description, the method is quite computationally

intensive to compute, and does not give an closed form expression for C(θ).

Realistically, it can only be computed for relatively coarsely sampled values for

θ.

The second two methods for obtaining the oriented covariances are based on

the idea that oriented image regions can be described as locally one-dimensional

functions, that are constant in directions transverse to the gradient and have

a particular profile moving parallel to the gradient. By assuming a particular

form for the “edge profile” and using knowledge of the Steerable Pyramid filters,
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it is possible to compute a closed form expression for the oriented covariances.

While this “explicit edge model” result is appealing, the resulting covariances

are not adapted to the image data. The structure of this explicit edge model

calculation shows that the elements of the oriented covariances matrices arise

from a samples of a set of one dimensional correlation functions that depend on

the power spectra of both the edge profile and the SP filters. For the original

explicit edge model, these correlation functions can be computed analytically.

However, this method can be made empirically adaptive by estimating these

underlying one dimensional correlation functions directly from image data. This

results in what I call the “1-d empirical” or “implicit rotation” method for

obtaining oriented covariances.

Both the explicit edge model and the 1-d empirical methods of obtaining

oriented covariances impose the constraint that the oriented signal is purely one

dimensional locally. The patch rotation method oriented covariances, on the

other hand, are formed from actual coefficient patches that are not purely one

dimensional. As a result, the explicit edge model and 1-d empirical covariances

perform very poorly when used on their own to model the signal content of the

entire image, as they are only appropriate for very strongly oriented regions.

However, they can be useful when used with the OAGSM model with non-

oriented component, which is discussed later.

3.2.1 Calculation of Neighborhood Orientation

The explicit patch rotation method for estimating oriented covariances relies on

estimating the dominant orientation for each neighborhood. This can be viewed
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as estimating the hidden variable θ at each spatial location. The two band

Steerable Pyramid transform provides a representation of the image gradient

which may be used to estimate the dominant orientation at each location in

space and scale. In this work distinct neighborhood orientations are computed

at each location in space and scale. Although there is a strong relationship

between the neighborhood orientation at different scales and at the same spatial

location, they are not constrained to be identical.

The dominant neighborhood orientation should be a robust measure of the

average orientation of the gradient vectors within a patch. Some care must be

taken in defining what exactly this measurement should be. One important

point is that the dominant neighborhood orientation used in this work is only

defined modulo π. Thus reversing the sign of the image intensity values will

not change the neighborhood orientation. Taking this equivalence modulo π is

important as the two band SP filters are bandpass filters and thus tend to have

oscillating responses to a fixed signal feature. The typical behavior of the two

band SP gradient vectors in oriented regions can be observed in the patches

displayed in Figure 3.4. As can be seen, the vectors tend to be parallel, are

all equal along the direction perpendicular to the gradient, and oscillate along

the direction parallel to the gradient. As this oscillation results in the gradient

vectors constantly changing their direction by π, it is unreasonable to expect to

define and robustly measure neighborhood orientation that does not have the

property of being defined only modulo π.

The following measure of neighborhood orientation is used. An m × m

neighborhood (without including parent) of two band SP coefficients may be

considered as a collection of m2 gradient vectors vi for i = 1...m2. Let k(φ) =
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Figure 3.6: orientation response curve S(φ)

(cos(φ), sin(φ))T be a unit vector, and let the “response” of the patch to this

unit vector

S(φ) =
m2

∑

i=1

(

k(θ)T vi

)2
. (3.6)

be the sum of squares of inner products of k(φ) and the patch vectors. I now

define the neighborhood orientation φ∗ to be

φ∗ = argmax
φ

S(φ), (3.7)

the angle of the unit vector producing maximum response to the patch. Note

that as S(φ) = S(φ + π), the neighborhood orientation is clearly only defined

modulo π.

It is instructive to rewrite the patch response as a quadratic form. As
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k(φ)T vi = vT
i k(φ), one may write

S(φ) =
m2

∑

i=1

k(φ)T viv
T
i k(φ)

= k(φ)T

(

m2

∑

i=1

viv
T
i

)

k(φ)

= k(φ)T Mk(φ) =
k(φ)T Mk(φ)

k(φ)T k(φ)
(3.8)

where M =
∑m2

i=1 viv
T
i defines the 2 × 2 “orientation response matrix” for the

patch. M is a symmetric positive-semidefinite matrix. The last equality above

follows as k(φ) is a unit vector. The expression 3.8 for S(φ) is a Rayleigh quo-

tient, from which it follows that k(φ∗) will be the eigenvector of M corresponding

to the largest eigenvalue.

Some manipulation with trigonometric identities will allow calculation of φ∗.

Introduce the notation

M =







Mxx Mxy

Mxy Myy






(3.9)

We may then expand

S(φ) = Mxx cos2(φ) + 2Mxy cos(φ) sin(φ) + Myy sin2(φ)

= Mxx
1 + cos(2φ)

2
+ Mxy sin(2φ) + Myy

1 − cos(2φ)

2

=
Mxx + Myy

2
+

Mxx − Myy

2
cos(2φ) + Mxy sin(2φ) (3.10)

94



To proceed, transform (Mxx−Myy

2
,Mxy) into polar coordinates (r, α) with

r =

√

(
Mxx − Myy

2
)2 + (Mxy)2 (3.11)

α = ∠(
Mxx − Myy

2
,Mxy) (3.12)

where ∠(·, ·) indicates the angle of the vector whose components are specified

by the two arguments. In addition, set E = Mxx+Myy

2
.

Substituting these expressions for E, r and α into 3.10 gives

S(φ) = E + r(cos(α) cos(2φ) + sin(α) sin(2φ))

= E + r cos(2φ − α) (3.13)

A representative plot of the orientation response is shown in figure 3.6. From

this expression, it is clear that the maximum of S(φ) is obtained at

φ∗ =
α

2
=

1

2
∠

(

Mxx − Myy

2
,Mxy

)

(3.14)

The three constants E, r and α are a reparameterization of the three degrees

of freedom present in the orientation response matrix M . The eigenvalues of

M are given by λ1 = E + r and λ2 = E − r. In addition to the neighborhood

orientation, these constants capture some additional local properties that may

be interpreted as measuring the neighborhood power and the degree to which

the patch is purely oriented. For perfectly oriented patches, all of the gradi-

ent vectors would be parallel. Picking a unit vector orthogonal to the gradient

vectors will give exactly zero response for S(φ). In this case the minimum eigen-
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value λ2 = 0. Conversely, for completely non-oriented patches the orientation

response S(φ) will be constant. In this case λ1 = λ2. The eigenvalues of the

orientation response matrix M can thus provide an ad-hoc measurement of the

“orientedness” of the patch. I define here the orientedness measure

dori =
λ1 − λ2

λ1 + λ2

=
r

E
(3.15)

which takes values between 0 (perfectly non-oriented) and 1 (perfectly oriented).

Lastly, note that the sum of the eigenvalues, equal to the trace of M , is also

equal to the sum of squares of the magnitudes of the patch gradient vectors vi.

In this way, the three degrees of freedom in the matrix M measure the power,

orientation, and orientedness of the coefficient patch.

The geometry of the patches of two band SP coefficients used to compute the

dominant local orientation at each space and scale location does not need to be

exactly the same as the geometry of the generalized coefficient neighborhoods

that are modeled by the OAGSM model. As will be seen, the OAGSM model

can be constructed for patches of SP coefficients using any number of orientation

bands. However, the dominant neighborhood orientations are always computed

using the two band SP transform. There is a tradeoff in the size of the patches

used to compute dominant orientation. Using larger patches will provide a more

robust measurement, especially in the presence of noise. Making the patch size

too large, however, will result in more of the patches mixing signal content at

different orientations. Throughout this work, neighborhood orientations were

measured using 5 × 5 patches without including parent coefficients.
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3.2.2 Rotation of Coefficient Patches

The OAGSM model is based on the idea of rotating a single uniform Gaussian

Scale Mixture process to produce signal content with spatially varying dominant

orientations. The model may be specified without the need for literally imple-

menting this forward rotation process, if the oriented covariance matrices C(θ)

have been determined. However, as the patch rotation method for estimating

C(θ) will rely on rotating coefficient patches, the details of the patch rotation

operator R(θ) must be specified.

Rotating coefficient patches will involve both resampling coefficients off of

the original sample grid, and then steering the coefficients as vector components.

The ability to do both of these relies on the translation-invariance and steer-

ability properties of the Steerable Pyramid representation. The patch rotation

procedure described in this work thus cannot be easily applied to traditional

orthogonal wavelet patches which suffer from spatial aliasing which prevents

interpolation off of the original sample lattice.

Rotating a patch of wavelet coefficients is equivalent to finding the coeffi-

cients that would arise if the underlying image signal was rotated around the

center of the patch. Ignoring the pixel sampling, the original image may be

viewed as a continuous function from R
2 to R. As this is a scalar function, it is

simple to define rotation around a single point in the image domain. It should

be noted that this defines patch rotation for Steerable Pyramid coefficients of

any order. While it is simpler to visualize the effect of patch rotation for the

two-band case when the coefficients can be interpreted as gradient vectors, as

in figures 3.4 and 3.7 , rotation of patches of SP coefficients of any order is well
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defined.

To explain these ideas more precisely, introduce the following notation. De-

note the space of functions from R
2 to R by Im, the model of the image domain.

Define the “patch measurement operator” T : Im → R
d, where d is the dimen-

sion of the coefficient patch, which calculates the a wavelet coefficient patch

centered at the origin in the image domain. Let i = 1...d index the different

coefficients of the patch. Each coefficient corresponds to a SP filter at a partic-

ular location, orientation and scale. If the generalized patch includes parents

or cousins, the orientation and scale of the filters in the same patch may be

different. It is also possible that distinct patch coefficients may be at the same

location in space but correspond to different filter orientations. To keep track

of these, let ~pi = (xi, yi) be the position of the filter for the ith coefficient, offset

from the center of the patch. Similarly, let φi be the orientation and si the scale

of the filter for the ith coefficient. Assume that the number of orientation bands

K for the SP has been fixed. Let Bs
φ(x, y) be the SP filter for this transform

centered at the origin with orientation φ at scale s.

Now, for any h ∈ Im, the ith coefficient of the measured patch is

(Th)i =

∫∫

h(x, y)Bsi

φi
(x − xi, y − yy)dxdy (3.16)

Let rθ : Im → Im be the operator that rotates the image domain about the

origin by θ. This is given by

(rθh)

((

x

y

))

= h

(

M−θ

(

x

y

))

(3.17)
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Figure 3.7: Definition of patch rotation. The above diagram commutes.

where

Mθ =







cos(θ) − sin(θ)

sin(θ) cos(θ)






(3.18)

The patch rotation operator R(θ) is then formally defined by requiring

R(θ)Th = T (r(θ)h) (3.19)

This is illustrated in figure 3.7.

The ith coefficient of the rotated patch is thus given by

(R(θ)Th)i =

∫∫

h

(

M−θ

(

x

y

))

Bsi

φi

((

x

y

)

−
(

xi

yi

))

(3.20)

This integral is invariant under rotating the (x, y) coordinate system by θ. This
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yields

(R(θ)Th)i =

∫∫

h

((

x

y

))

Bsi

φi

(

Mθ

(

x

y

)

−
(

xi

yi

))

(3.21)

=

∫∫

h

((

x

y

))

Bsi

φi

(

Mθ

((

x

y

)

− M−θ

(

xi

yi

)))

(3.22)

=

∫∫

h

((

x

y

))

Bsi

φi−θ

((

x

y

)

−
(

x′
i

y′
i

))

(3.23)

where
(

x′

i

y′

i

)

= M−θ

(

x
y

)

.

Thus the ith coefficient of the transformed patch is given by the response

to the orignal, unrotated image of the filter with orientation φi − θ at location

(x′
i, y

′
i). Using the steerability properties of the SP (see section 2.1.4), this can

be computed as a linear combination of the responses of the K filters with

the standard orientations (k−1)π
K

for k = 1...K, at the location (x′
i, y

′
i). So the

problem is reduced to finding the responses of the K standard filters at the

location (x′
i, y

′
i). In general this point will not lie on the original sample lattice.

However, as the SP filters are bandlimited, it is possible to interpolate their

values off of the original sample lattice. This is performed in practice by first

upsampling each of the K subbands by a factor of 2Uf in each direction by

padding the Fourier transform of the subband with zeros and taking the inverse

Fourier transform. I then perform bilinear interpolation from the four nearest

upsampled lattice points to find the filter response at the location off of the

sample grid. It was found by experiment that using Uf = 4 gave reasonable

quality results.

It should be noted that this method of rotating image patches actually uses

information outside of the dimensions of the original image patch. This occurs
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for two reasons. First of all, it is possible for the transformed sample point

(xi, yi) to lie outside of the original patch area due to the fact that the patches

cannot be perfectly circular, as they are formed by selecting square lattice loca-

tions. The “corners” of a rotated square patch may land outside of the original

patch, and thus rotating the square patch requires access to information out-

side of the original patch. Secondly, as the method of interpolating off of the

sample lattice is done by padding with zeros in the Fourier domain, it implicitly

uses all of the coefficients in the entire subband. As a result of this, coefficient

patches can only be rotated by the given method if one has access to some larger

surrounding area of coefficients. While this may seem to be a burdensome re-

striction, in practice one has access to the entire set of coefficients for the image

and thus may rotate any patch by using this method.

3.2.3 Estimating Oriented Covariances by Patch Rota-

tion

The patch rotation process described above may be used for estimating the

oriented covariance matrices for the OAGSM model. As one of the primary

applications the model was developed for is image denoising, I will discuss esti-

mating the oriented covariances from noisy image data. If the original image is

corrupted by additive Gaussian white noise, each subband will be corrupted by

filtered noise. The noise component in each wavelet patch will be a multivariate

Gaussian whose covariance may be calculated using knowledge of the SP filters.

Details of this will be deferred until Chapter 4.

101



The OAGSM describes each noisy patch w as

w =
√

zR(φ)u + n (3.24)

where n is a sample from the zero mean Gaussian filtered noise process with

known covariance Cn.

The primary impediment to computing the oriented covariances

C(θ) = E
[

R(θ)uuT R(θ)T
]

is that the hidden rotator variables are different for every patch. If one had ac-

cess to an ensemble of noisy patches w that were formed from a single fixed value

θ∗ of the hidden variable, then assuming the noise and signal are independent,

taking the sample outer product of w gives

E
[

wwT
]

= E
[

zR(θ∗)uuT R(θ∗)
]

+ E
[

nnT
]

= E[z]R(θ∗)E[uuT ]R(θ∗) + Cn = E[z]C(θ∗) + Cn (3.25)

from which computing C(θ) is straightforward assuming Cn and the distribution

for z are known.

While such an ensemble of patches drawn from a fixed value θ of the ro-

tator hidden variable is not immediately accessible, the patch rotation method

proceeds by producing such an ensemble by manipulating the patches present

in the given noisy image. The true values of the rotator hidden variables φ

are unknown, but are estimated by computing the dominant neighborhood ori-

entation φ∗ of the noisy patches, as described in 3.2.1. Given a set of noisy
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patches wi with measured neighborhood orientations φ∗
i , rotating each patch by

θ − φ∗ produces an ensemble of patches that is equivalent to one produced by

the OAGSM process with a fixed value θ for the rotator variable. This then

yields, following 3.25

E[(R(θ − φ∗
i )wi) (R(θ − φ∗

i )wi)
T = E[z]C(θ) + Cn (3.26)

Note that in the above expression, θ is a fixed constant while φ∗
i is different

for every patch. The oriented covariances are thus computed by forming the av-

erage outer product of patches rotated to θ beyond their dominant orientation.

The noise covariance is subtracted off and the result normalized by E[z]. This

computation must be repeated for every different value of θ for which C(θ) is

required. As mentioned earlier, this implies that the patch rotation method is

only practical if the OAGSM model will be used in a fashion such that θ may

be sampled at a relatively small number of values. As the oriented covariance

estimates are computed from data, it is possible that they lose positive definite-

ness after subtracting Cn. Positive definiteness is imposed by diagonalizing the

estimated covariances and replacing all negative eigenvalues by a small positive

constant.

As mentioned in section 3.2.2, patch rotation may be defined for SP coeffi-

cients of any order. This implies that the patch rotation method may be applied

to give oriented covariances for SP coefficients of any order. It should be kept in

mind that the dominant patch orientations φ∗
i are computed using the two-band

SP transform, even if the oriented covariances are computed for a SP transform

of higher order.
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Figure 3.8: In oriented regions, image signal is approximately locally one di-
mensional, and may be characterized by the transverse profile h(y)

3.2.4 Local one-dimensional signal based methods

An alternative framework for obtaining the oriented covariances arises from de-

scribing oriented image signal as locally one dimensional. In strongly oriented

regions such as occlusion boundaries, the image gradient is often large and lo-

cally consistent. Patches of 2-band steerable pyramid coefficients in such regions

consist of approximately parallel vector fields with a well defined local orienta-

tion. In such image regions the image intensities are approximately constant

moving transverse to the local orientation. The image intensities defined by

moving parallel to the local gradient orientation give the edge profile h(y) (see

fig 3.8).

Given a fixed edge profile h(y), an image with an edge with gradient orien-
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tation θ passing through the origin may be written as

eθ(x, y) = h(x cos(θ) + y sin(θ)) (3.27)

Note that the gradient orientation is perpendicular to the edge. These functions

formed from the edge profile form a model for oriented image content. To place

this in a consistent framework for the OAGSM, one must describe a model

for the same type of generalized wavelet coefficient patches as used above. I

describe the ensemble of coefficient patches with orientation θ as the response

to the oriented edge eθ where the center of the patch (x0, y0) is random. Taking

the sample outer product of this set of oriented patches then defines the oriented

covariances C(θ), which may then be used in the OAGSM model.

Once the edge profile h(y) is fixed, the oriented patches under this model are

a deterministic function of x0, y0. As the edge model signal eθ is invariant under

translation perpendicular to (cos(θ), sin(θ)), the oriented patches only depend

on θ and the perpendicular distance t = x0 cos(θ) + y0 sin(θ) from the center of

the patch to the edge. Let P (t, θ) ∈ R
d denote the vectorized coefficients of a

patch perpendicular distance t away from an edge function with orientation θ.

The “edge profile covariances” C(θ) are given by the average sample outer

product of this ensemble of oriented patches. This average is taken over patches

generated from all possible values of the perpendicular distance t. Defining this

average properly would require taking the average with respect to a well defined

probability density on t. However, for edge profiles with compactly supported

signal content, the patches P (t, θ) will decay to zero as t → ∞. Provided each

coefficient in the patches decays faster than t−1/2, then each term of the outer
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Figure 3.9: Definition of edge response function. Inner products are the same
for these two cases, and equal to fer(t, φ − θ)

product will be an integrable function of t. The “edge profile covariances” C(θ)

may then be defined as

C(θ) =

∫ ∞

−∞

P (t, θ)P (t, θ)T dt (3.28)

This expression takes the average over t using a constant density for t, but

without normalizing the average. Taking a properly normalized limit of average

outer products over a constant density for t ∈ [−R,R] and sending R → ∞ will

result in covariances equal to zero, as the above integral is finite and the nor-

malizing constant 2R goes to infinity. However, disregarding the normalization

constant will give a finite nonzero expression for the covariances. Accordingly,

the covariances given by (3.28) are really only meaningful modulo a global mul-

tiplicative constant. However, this is acceptable as they will be used in the

OAGSM model where they will be multiplied by the scalar hidden variable z.
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Each element of the right hand side of (3.28) may be computed from the

Fourier transforms of the edge profile h and of the Steerable Pyramid filters.

Each matrix element of C(θ) will involve an integral of the product of filter

responses of two filters spatially shifted by a displacement determined by the

patch geometry. The response of a filter with orientation φ scale s at location

(x0, y0) to the edge model signal through the origin with orientation θ is given

by
∫∫

Bs
φ(x − x0, y − y0)eθ(x, y)dxdy (3.29)

While for a fixed spatial scale s this expression appears to depend on the four

variables φ, θ, x0 and y0, there are in fact only two degrees of freedom. Rotating

the coordinate system in the integral (3.29) by −θ and translating perpendicular

to the edge gradient shows that

∫∫

Bs
φ(x − x0, y − y0)eθ(x, y)dxdy =

∫∫

Bs
φ−θ(x − t, y)e0(x, y)dxdy (3.30)

where t = x0 cos(θ) + y0 sin(θ) is the perpendicular distance from the SP filter

to the edge. This is diagrammed in figure 3.9. Let

f s
er(ϕ, t) =

∫∫

Bs
ϕ(x − t, y)e0(x, y)dxdy =

∫∫

Bs
ϕ(x − t, y)h(x)dxdy (3.31)

be the “edge response function” for the edge profile h.

This function is in fact separable in the two variables ϕ and t. This follows

from the property that the SP filters are polar separable in the Fourier domain.

f s
er is an inner product of a SP filter and the oriented edge signal. This inner
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product may be written as the two dimensional convolution

f s
er(ϕ, t) =

(

Bs
ϕ ⋆ ẽ0

)

[t, 0] (3.32)

where ẽ0(x, y) = e0(−x,−y). By the convolution theorem, we have

Bs
ϕ ⋆ ẽ0 = F−1

[

F
[

Bs
ϕ

]

F [ẽ0]
]

(3.33)

The Fourier transform of the SP basis functions are separable in the polar

domain. Recall from section 2.1.1

B̂s
ϕ(wx, wy) = iK−1 cosK−1(θ(wx, wy) − ϕ)gs(r(wx, wy)) (3.34)

where θ(wx, wy) = ∠(wx, wy) and r(wx, wy) =
√

w2
x + w2

y are the polar coordi-

nates in the Fourier domain.

The space-flipped oriented edge signal ẽ0(x, y) = h(−x) may be viewed as a

separable product of h(−x) a constant unit function in y. The Fourier transform

of this constant function is given by the delta function distribution. Reversing

the sign on the x axis results in taking the complex conjugate in the Fourier

domain. Accordingly, we have ê0 = ĥ∗(wx)δ(wy) so that

B̂s
ϕê0 = δ(wy)ĥ

∗(wx)i
K−1 cosK−1(θ(wx, wy) − ϕ)gs(r(wx, wy)) (3.35)

Because of the presence of δ(wy) in this expression, one may replace all other

occurrences of wy by 0 without changing its value. In particular, r(wx, 0) = |wx|
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and

θ(wx, 0) =















0 if wx > 0

π if wx < 0

which implies cos(θ(wx, 0) − ϕ) = cos(ϕ) wx

|wx|
.

Substituting these into 3.35 shows that

f s
er(ϕ, t) = (cos(ϕ))K−1F−1

[

δ(wy)ĥ(wx)i
K−1gs(|wx|)

(

wx

|wx|

)K−1
]

[t, 0] (3.36)

The terms inside the inverse Fourier transform no longer have any ϕ dependence.

It follows that f s
er(ϕ, t) is separable and we may write

f s
er(ϕ, t) = cosK−1(ϕ)F s(t) (3.37)

where

F̂ s(w) = iK−1ĥ∗(w)gs(|w|)
(

w

|w|

)K−1

(3.38)

Now reintroduce the notation from section 3.2.2. Let i and j index the

coefficients in the generalized patch, and let φi, si and ~pi = (xi, yi) be the

orientation, scale and offset from the center for the ith SP filter in the patch.

Set n(θ) = (cos θ, sin θ).

Using this notation, the ith coefficient of a patch that has its center per-

pendicular distance t from an oriented edge eθ will be f si
er(φi − θ, t + ~p · n(θ)).

Accordingly, the (i, j)th element of the edge model oriented covariance will be

given by

C(θ)i,j =

∫

f si
er (φi − θ, t + ~pi · n(θ)) f sj

er (φj − θ, t + ~pj · n(θ)) dt (3.39)
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Define dij(θ) = (~pi−~pj) ·n(θ). This gives the component of the displacement

between two coefficient locations parallel to the gradient of the edge model

signal. Substituting this and 3.37 into 3.39 gives

C(θ)i,j = cosK−1(φi − θ) cosK−1(φj − θ)

∫

F si(t)F sj(t − dij(θ))dt (3.40)

This expression splits into the “angle term” cosK−1(φi − θ) cosK−1(φj − θ) and

the correlation of the two functions F si and F sj evaluated at the point dij(θ).

The number of distinct correlation functions that must be computed will de-

pend on the number of different spatial scales that are present in the generalized

patch. If the patch contains only parent and child coefficients (and no “grand-

parents”), then there will be only three such correlation functions corresponding

to the child-child, parent-child and parent-parent interactions. Each entry of

the covariance matrix C(θ) will be formed by the product of an angle term, and

the appropriate correlation function sampled at the value di,j(θ).

In practice, these correlation functions may be computed in advance, and

used as a lookup table to compute the oriented covariances for any value of θ.

Set csi,sj(d) =
∫

F si(t)F sj(t − d)dt. Again using the convolution theorem, we

have

ĉsi,sj(w) = ˆF si (F sj)∗

= |h(w)|2gsi
(|w|)gsj

(|w|) (3.41)

The final remaining item to be specified in this calculation is the Fourier

transform of the edge profile, ĥ(w). In this thesis two simple “edge models”
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were used, corresponding to a step edge and a line edge. The step edge model

sets

hstep(x) =















1 if x > 0

−1 if x < 0

(3.42)

with Fourier transform ĥstep(w) = i
w
. The infinitesimally thin line edge model

has hline(x) = δ(x) with Fourier transform ĥline(w) = 1. Numerical computation

of the correlation functions c described by equation 3.41 are performed using

the 1-d Fast Fourier transform. Once these have been computed, each entry of

the oriented covariance matrices are given by

C(θ)i,j = cosK−1(φi − θ) cosK−1(φj − θ)csi,sj(di,j(θ)) (3.43)

3.2.5 Empirical 1-d Oriented Covariances

The edge model oriented covariance calculation described above constructs each

element of C(θ) using a set of correlation functions csi,sj that are calculated from

a fixed edge profile. However, oriented edges in real images are rarely pure step

edges or lines. As the correlation functions csi,sj depend on the underlying edge

edge content, it is natural to ask if they can be computed empirically from

image data. Such a model is appealing because the structural assumption that

oriented image content is locally one dimensional is imposed, but the remaining

parameters of the model are fit from actual data.

Equation 3.43 gives each entry of the oriented covariance matrices as a prod-

uct of an “angle term” and a sample from a particular correlation function. For

a Gaussian process, the covariance matrix is given by the average outer product
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of vectorized patches. Assume one has a set of patches vk ∈ R
d, for k = 1...N

that are taken from regions with measured neighborhood orientation θk. Com-

pute the corresponding angle terms Ai,j(θk) = cosK−1(φi − θk) cosK−1(φj − θk)

and perpendicular displacements di,j(θk) for every given patch.

The empirical 1-d method proceeds by undoing the effect of the angle term

in order to build up a set of correlation function values that are then averaged

to give the estimated correlation functions. For each patch k and for each pair

of patch coefficients (i, j), compute

fi,j,k =
(vk)i(vk)j

Ai,j(θk)

xi,j,k = di,j(θk) (3.44)

As the above expression involves dividing by the angle term Ai,j(θk), some

care must be taken when this term is close to zero. In practice, terms for when

the angle term is below some threshold A∗ are simply discarded. A typical

value for this threshold is A∗ = .05. The fi,j,k are then sorted into histogram

bins according to the values of the independent variable samples xi,j,k, and then

averaged over each bin. This procedure must be done separately for each of

the correlation functions (typically child-child, child-parent and parent-parent)

that need to be computed. Let (S1, S2) represent the spatial scales indicating

the desired correlation function.

Given a set of histogram bin edges x1...xN , the estimated correlation function

values are

c̃S1,S2

n =
1

Mn

∑

xn≤xi,j,k≤xn+1

fi,j,k (3.45)
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where Mn = #{xn ≤ xi,j,k ≤ xn+1}. Only (i, j) indices corresponding to the

desired correlation function are used in the sum, i.e. (i, j) ∈ {(i, j)|si = S1, sj =

S2}. It is not necessary that the same bin edges be used for the three different

correlation functions. Once these estimated correlation values are obtained,

they may be used as samples for the desired correlation cS1,S2 at the bin centers

dn = (xn + xn+1)/2. Intermediate values will be required when forming the

oriented covariances C(θ) from these estimated correlation functions; they may

be produced by either linear or cubic interpolation.

3.3 OAGSM with non-oriented component

The OAGSM model provides a good description of patches of wavelet coef-

ficients that arise from oriented image signal regions. Such oriented regions

are widespread in natural images, and are often very significant for perception.

However, not all image regions are well described by this oriented signal model.

Non-oriented regions with significant local power may include texture regions,

as well as areas where oriented structure at more than one orientation overlaps,

such as at T-junctions.

This shortcoming may be addressed by introducing a non-oriented signal

component into the model, yielding the OAGSM with non-oriented component

(OAGSM/NC). This non-oriented component consists of a Gaussian Scale Mix-

ture process described by a single covariance Cnor that does not depend on the θ

hidden variable. I introduce an additional binary hidden variable δ that controls

selection of either the oriented or non-oriented component. Given the hidden

variables (z, θ, δ), the patch v is drawn from an OAGSM process if δ = 1, or from
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a GSM process with covariance Cnor if δ = 0. The forward process generating

the patch v is

v =















zR(θ)u if δ = 1

zw if δ = 0

(3.46)

where u is a sample from a Gaussian with covariance C0 and w is a sample from

a Gaussian with covariance Cnor.

It follows that the probability distribution for v when conditioned on the

hidden variables is

p(v|z, θ, δ) = g (v; δzC(θ) + (1 − δ)zCnor) (3.47)

The above expression gives the signal covariance as a function of the hidden

variables x, θ and δ. While z and θ are permitted to take on continuous values,

the model described here has the “orientedness” variable δ constrained to be

binary. This constraint may seem overly restrictive, as patches may show more

graded variations in how strongly oriented they are. Additionally, the right

hand side of expression (3.47) does give well defined covariance matrices for val-

ues of δ between 0 and 1. The restriction to binary values for δ is nonetheless

made here as it makes the model easier to interpret as switching between two

distinct stochastic processes. The OAGSM is able to describe inhomogeneous

signals by transforming a single process by rotation and scalar multiplication.

It would be appealing to be able to account for inhomogeneities in orientedness

through a similar type of transformation. However, it is unclear how to define

a continuous, single parameter family of operations that change the oriented-

ness of image coefficient patches. For this reason, orientedness is modeled by
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switching between distinct stochastic processes with a binary hidden variable.

Studying the construction of models employing continuous hidden variables to

model the orientedness would be an interesting possible future extension of this

work.

The OAGSM/NC model still has the fundamental structure of a Gaussian

mixture, where each of the hidden variables determining the mixture covari-

ances has a direct interpretation in terms of image structure. Note that while

the forward generating process makes a binary decision as to sample from the

oriented or non-oriented components of the model, these are mixed together for

describing a signal patch provided that the prior density on δ does not put all

of the weight on either 0 or 1.

A separable hidden variable prior probability p(z, θ, δ) = p(z)p(θ)p(δ) is as-

sumed. The priors for z and θ will be taken to be the same as in the OAGSM

model, and will be specified in detail in chapter 4. As δ is a binary variable, the

prior p(δ) is just a discrete density on two points and is completely specified by

its weight for either component. To fix notation, let β = p(δ = 1), the prob-

ability that each patch is drawn from the oriented process. The OAGSM/NC

distribution is then given by

p(v) =

∫

g (v; δzC(θ) + (1 − δ)zCnor) p(z)p(θ)p(δ)

= β

∫

g (v; zC(θ)) p(z)p(θ)dzdθ + (1 − β)

∫

g (v; zCnor) p(z)dz (3.48)

This expression makes it clear that as β varies between 0 and 1, the OAGSM/NC

model interpolates between the GSM and the OAGSM models.
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3.3.1 Estimating OAGSM/NC model covariances

The model parameters for the OAGSM/NC are the same as for the OAGSM,

with the addition of the non-oriented covariance Cnor and β. Either of the

three OAGSM covariance calculations described in section 3.2 (patch rotation,

edge model, or the related empirical 1-d method) may be used to obtain the

oriented covariances C(θ). The non-oriented component covariance Cnor may

be calculated in the same way as in Portilla’s original GSM work, by simply

taking the average outer product of the raw, non-rotated coefficient patches. If

these must be fit from noisy data, the noise covariance is then subtracted and

any negative eigenvalues corrected as described previously.

Using this way of computing Cnor in tandem with the patch rotation method

for computing C(θ) may seem strange, as the same coefficient patches are used

to compute both the oriented and non-oriented covariances. This is somewhat

inconsistent with the forward OAGSM/NC generative model which describes

each patch as a sample from either the oriented or the non-oriented process.

Intuitively, one should compute the oriented covariances using oriented patches,

and the non-oriented covariances using non-oriented patches.

One way of performing this separation is by “winnowing” the patches by a

measure of their orientedness before performing the above calculations. As de-

scribed in section 3.2.1, one can use the eigenvalues of the Orientation Response

Matrix measured at each location in space and scale to define the orientedness

measure dori. The same calculation provides a measure of the local power E of

the patch. The winnowing method selects patches to use in the calculation of

C(θ) or Cnor by simple thresholding according to these orientedness and local
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power measurements. C(θ) will be computed using patches with orientedness

and local power above certain threshold values, namely dori > dhigh
ori and E > E∗.

The patches used for computing Cnor will satisfy dori < dlow
ori , but still have the

same minimum power requirement E > E∗. This local power condition is in-

cluded to avoid using very weak signal patches in the covariance estimates. This

is especially important when performing these calculations using noisy data, as

will be required in Chapter 4.

A simple way of computing appropriate thresholds is by computing the val-

ues of dori and E at every location at a particular scale, and then setting the

thresholds dhign
ori , dlow

ori and E∗ to be percentile values. Typically dhigh
ori and dlow

ori

may be set at the 85th and 50th percentiles for dori, respectively, and E∗ set at

the 30th percentile for E.

3.3.2 EM iteration for estimating oriented component

weight

Once the oriented and non-oriented covariances have been calculated, the re-

maining parameter for the OAGSM/NC model is β. This is done by using

the Expectation Maximization (EM) algorithm for a two-component mixture

model. Unlike the prior densities for θ and z, this prior on δ will be fit from

data for each subband. A seperate value of β will be estimated for each image

subband. The estimated β will depend on the image patches for that subband,

as well as the oriented and non-oriented component covariances. I consider the

problem of estimating β from noisy patches, where the noise process is additive

Gaussian of known covariance Cn. In this case, the model for noisy patches may
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be obtained by simply adding Cn to each of the component covariances.

For estimating β from data, it is helpful to view the OAGSM/NC model as a

mixture of two component distributions, namely the oriented and non-oriented

distributions. Define the oriented and non-oriented models for noisy patches as

Pori(w) =

∫

g(w; zC(θ) + Cn)p(θ)p(z)dθdz

Pnor(w) =

∫

g(w; zCnor + Cn)p(z)dz (3.49)

Then the OAGSM/NC model for noisy patches is

P (w) = βPori(w) + (1 − β)Pnor(w) (3.50)

Given a collection of noisy patches {wi}m
i=1, the maximum likelihood estimate

of β is given by

βML = argmax
β

L(β) = argmax
β

m
∑

i=1

(log(βPori(wi) + (1 − β)Pnor(wi))) (3.51)

Direct optimization of the above expression is complicated by the terms

that are summed inside of the logarithm. An alternative, iterative approach

for optimizing the likelihood function L(w) is to use the EM algorithm [16].

The EM algorithm is an extremely general, widely used iterative method for

performing Maximum Likelihood estimation for problems that have so-called

“missing data”. When using EM for estimating the weights for a mixture model,

such as the problem for β, the “missing data” is really an artificial construct

that simply serves to simplify the problem. A very brief description of the EM
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methodology will be given below, following the treatment found in [33] and [4].

Assume the observed data X has probability distribution p(X|Φ) where Φ is

the set of parameters that must be fit from data. The maximum likelihood es-

timate may be described as Φ∗ = argmaxΦ log L(Φ|X) where L(Φ|X) = p(X|φ)

is the “observed data likelihood” The EM method assumes that the observed

data X can be “completed” by adjoining “missing data” Y to give the “com-

plete data” (X,Y ). This will only be useful if the “complete data likelihood”

p(X,Y |Φ) is simpler to manipulate than the original observed data likelihood.

The EM algorithm produces a series of estimates Φk for the model param-

eters. As the “missing data” Y is not observed, the complete data likelihood

p(X,Y |Φ) cannot be maximized over Φ, as this expression still refers to Y . The

EM algorithm deals with this by taking the expectation over the missing data.

This expectation is taken w.r.t p(Y |X, Φk−1), i.e., conditioned on the observed

data and the previously computed estimate of the parameters Φ. This is the

“E-step” of the algorithm, namely computing

Q(Φ, Φk−1) = E
[

log(p(X,Y |Φ)|X, Φk−1
]

=

∫

log(p(X,Y |Φ))p(Y |X, Φk−1)dY (3.52)

As the X are observed and Y has been integrated out, the above function

Q(Φ, Φk−1) does not refer to any unknown variables, and may thus be optimized

over. This defines the maximization, or M step, to achieve the subsequent iterate

Φk = argmax
Φ

Q(Φ, Φk−1) (3.53)
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It can be shown that the incomplete log-likelihood is guaranteed to increase

at each iteration and that the EM algorithm will converge, possibly to a local

maximum.

For the component mixture problem at hand, the incomplete data X consists

of the m noisy patches wi. Let W denote the collection of all of the wi. The

model parameters Φ consist of the single parameter β. The key “trick” for using

EM in this case is setting up the “missing data” in a way that will simplify the

resulting complete data likelihood. Choose the “missing data” Y to consist of

a set of binary indicator variables τ δ
i , where i = 1...m and δ = 0, 1. For each

value of i, exactly one of these variables equals 1, indicating which component

the ith sample was drawn from. E.g, if the ith sample came from the oriented

component, then τ 0
i = 0 and τ 1

i = 1, otherwise τ 0
i = 1 and τ 1

i = 0. Let

τi = (τ 0
i , τ 1

i ) and ~τ indicate the entire set of indicator variables. The complete

data likelihood will be a product of the terms p(wi, τi|β) = p(wi|τi, β)p(τi|β).

The introduced notation allows these to be written as

p(wi|~τ , β) = (Pnor(wi))
τ0
i (Pori(wi))

τ1
i

p(τi|β) = (1 − β)τ0
i βτ1

i (3.54)

The second equation follows as β is the prior likelihood for drawing each sample

from the oriented component. The complete data log-likelihood may thus be
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written as

log p(W,~τ |β) =
∑

i

log
(

(Pnor(wi))
τ0
i (Pori(wi))

τ1
i (1 − β)τ0

i βτ1
i

)

=
∑

i

τ 0
i log(Pnor(wi)) + τ 1

i log(Pori(wi)) + τ 0
i log(1 − β) + τ 1

i log(β)

(3.55)

A critical point here is that the “missing data” variables ~τ appear linearly

in the above expression. This implies that the expectation operation in the E

step may be passed inside the above sum. The E-step may thus be performed

by replacing each occurrence of τ δ
i by tδi (β) = E[τ δ

i |β,wi]. Note that

E[τ δ
i |β,wi] = 0 × p(τ δ

i = 0|β,wi) + 1 × p(τ δ
i = 1|β,wi)

= p(τ δ
i = 1|β,wi) (3.56)

These may be computed using Bayes’ rule. In particular

p(τ δ
i = 1|β,wi) =

p(wi|τ δ
i = 1, β)p(τ δ

i = 1|β)

p(wi|β)
(3.57)

Evaluating these for δ = 0, 1 shows

t0i (β) =
(1 − β)Pnor(wi)

βPori(wi) + (1 − β)Pnor(wi)

t1i (β) =
βPori(wi)

βPori(wi) + (1 − β)Pnor(wi)
(3.58)

which may easily be computed from the samples wi. The E step may thus be
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written as

Q(β, βk−1) =
∑

i

t0i (β
k−1) log(Pnor(wi)) + t1i (β

k−1) log(Pori(wi))+

t0i (β
k−1) log(1 − β) + t1i (β

k−1) log(β) (3.59)

The M step sets βk = argmaxβ = Q(β, βk−1). The first two terms for Q do

not involve β and thus may be ignored. Setting dQ
dβ

= 0 yields

1

β

∑

i

t1i (β
k−1) =

1

1 − β

∑

i

t0i (β
k−1) (3.60)

which has the solution

βk =

∑

i t
1
i (β

k−1)
∑

i t
0
i (β

k−1) + t1i (β
k−1)

=
1

m

∑

i

t1i (β
k−1) (3.61)

This has an appealing form. At every step, β is replaced by the average

expected probability that each sample arose from the oriented component, con-

ditioned on the previous iterate of β. Iterating this procedure converges to the

ML estimate for β. In practice for the OAGSM/NC model, about 20 iterations

are taken.
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Chapter 4

Applications to Image Denoising

The OAGSM and OAGSM/NC models provide a description of the signal con-

tent of natural images. If they provide a good description of natural image

signal, then they should be able to distinguish between natural image signal

and other signals, such as noise. A commonly studied problem in image pro-

cessing is image denoising, where one seeks to estimate the clean version of an

image that has been corrupted with noise signal. If the noise process is addi-

tive, then any denoising algorithm can be viewed as partitioning a given noisy

signal into noise and signal components. In order to perform this separation, an

algorithm must have some notion of what typical image signals look like. All

denoising methods rely on identifying and exploiting the differences between

image and noise signal. There is thus a strong connection between image mod-

eling and image denoising. In this section I derive a set of denoising methods

based on the OAGSM and OAGSM/NC models.

Removing noise from images is an important practical engineering problem.

All physical sensing devices are subject to some degree of random fluctuations
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in their outputs. Noise present in electronic sensors can be due to a number

of phenomena, from thermal effects to “shot noise” due to counting a discrete

number of electrons or photons in a circuit element. Familiar examples of this

type of noise include digital photographs taken under low light conditions with

high ISO settings. Noise can also be introduced in transmission of images,

as is easily verified by watching an analog television set with poor reception.

In addition, some deterministic distortions of images, such as quantization of

the pixel intensity values, can be viewed as effectively introducing noise to the

image. As some level of noise is inevitably introduced into any image produced

by any sensing device, it is natural to study the development of post-processing

techniques for removing it. For many imaging systems, reducing the intrinsic

noise produced by the sensors would require higher quality, and more expensive,

sensors. The ability to remove noise after the images have been acquired through

processing in software can effectively increase the quality of the imaging device

without the cost of using more expensive electronic component. Denoising image

signals is clearly a real world problem.

As noise can arise from a number of different sources, there are many different

types of noise. These can corrupt the signal in qualitatively different ways. A

simple example is additive noise, where each image pixel can be viewed as a

sum of the desired signal and the noise process. Another commonly studied

case, often used to describe transmission errors, is impulse or “salt-and-pepper”

noise, where a subset of randomly selected pixels are replaced by random values.

More complicated situations could include multiplicative noise, where each pixel

is corrupted by being multiplied by a random quantity, or when the noise process

depends on the signal values.
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Deriving a detailed description of noise that arises from a particular sen-

sor such as a camera CCD may involve complicated physical modeling of the

data acquisition process. If one were designing a noise removal algorithm for a

particular device, it may be possible to measure empirical samples of the noise

it produces. After such calibration, the statistics of the measured noise could

be analyzed and modeled. This sort of highly specialized noise model would

be useful for that particular device, but could not be broadly applied to other

denoising applications.

An alternative route to follow is to simply assume a fixed distribution for

the noise process that is not derived or measured from any particular class of

physical sensors. A very commonly studied example of this is the case of signal

independent additive Gaussian noise. While this model for the noise process

may be inaccurate for certain particular applications, there are several advan-

tages in picking a Gaussian noise model. An enormous number of different

stochastic processes have been modeled as Gaussian in the statistics literature.

Some theoretical justification for using Gaussian distributions is provided by

appealing to the central limit theorem. Random processes that are the result of

averaging many independent events will tend toward Gaussian as the number

of independent sub-events increases, provided the variances of each of the inde-

pendent events are finite. While it may be possible to view some noise processes

as occurring in this way, the primary reason for using Gaussian noise models is

their analytic tractability. Multivariate Gaussian densities are extraordinarily

amenable to analytic manipulation, often allowing simple closed form results

for calculations that arise in statistical estimation. Deviating from a Gaussian

noise model may certainly make sense when studying a particular subset of
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noise processes for a particular application. However, noise signals encountered

in practice are diverse, and may often reasonably approximated by Gaussians.

Given their analytic simplicity, assuming a Gaussian noise model is reasonable

when studying the denoising problem in general.

In this section I study the problem of denoising natural greyscale images that

have been corrupted with additive Gaussian white noise. The noise component

for each pixel is drawn independently from a one dimensional Gaussian with zero

mean. This process will be homogenous, so that the variance in each pixel will

be the same. This type of noise process is widely used in the image processing

literature. I assume that the variance of the noise process is known. If this were

not the case, then it would need to be estimated from the noisy image. This

is the so-called “blind denoising” problem. A number of effective methods for

estimating noise power from noisy images have been developed [41, 43]. These

function essentially because natural images have spatially varying power, and

thus typically contain regions of low signal power. The noise process, however,

is homogenous and has the same local power across the entire image. One

may thus estimate the properties of the noise by taking measurements from the

lowest power regions of the noisy image, which will be dominated by noise.

In addition to the practical engineering concerns, the image denoising prob-

lem can provide a good test of the power of the underlying signal model used.

The effectiveness of different denoising methods can be tested by artificially

generating noise, adding it to clean images, and then comparing the results of

the different methods. As one has access to the original clean images, it is pos-

sible to compute the residual error left in the different denoised images. This

defines a clear numerical experimental methodology for comparing denoising
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methods. If these methods are based upon well formulated statistical models

for image content, then the relative performance of the denoising methods pro-

vides a measure of how well the models themselves are capturing the relevant

properties of natural image structure. Performing such experiments repeatedly

requires the ability to artificially generate noise. Under these conditions the

experimenter has exact control over the noise process supplied, and the noise

model assumed in the denoising algorithms may be exactly correct. If ones

primary interest is knowing the power of the underlying signal model, then for

such an experiment it makes sense to use the simplest possible model for noise

process. This provides another justification for the use of additive Gaussian

white noise models.

The experiment described above relies on using some quantitative measure

of the residual distortion present in each of the denoised images. Such a function

may be called an “image quality metric”, as it is used to measure the quality of

the denoised image. One denoising algorithm will be superior to another if it

produces “higher quality” denoised images, given the same level of initial noise.

As images are ultimately intended to be looked at by human observers, how-

ever, this notion of “image quality” depends on how the human visual system

perceives the distortion. Human perception of image distortion is complex and

not completely understood. The development of more perceptually accurate

image quality metrics is currently an area of ongoing research [64].

One of the simplest and most widely used measures of image distortion is

mean squared error. Although the mean squared error is not always a good

measure of visually perceived distortion, it is highly tractable mathematically.

This is important, as one can design algorithms to optimize for the lowest mean
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squared error. Given a clean image Ic and a distorted image In, both defined

on an M × N pixel lattice, the mean squared error (MSE) is

MSE(Ic, In) =
1

MN

M,N
∑

i=1,j=1

|Ic(i, j) − In(i, j)|2 (4.1)

Two commonly used related measures of image distortion are the Signal to

Noise Ratio (SNR) and the so-called Peak Signal to Noise Ratio (PSNR). The

empirical signal variance is calculated by σ2
signal = 1

MN−1

∑

(Ic(i, j)− Ī)2 where

Ī = 1
MN

∑

Ic(i, j). Given the distorted image, the noise process in each pixel is

Ic(i, j) − In(i, j). Taking the sample variance of these gives the noise variance

σ2
noise =

1

MN − 1

[

∑

(Ic(i, j) − In(i, j))2 −
(

∑

Ic(i, j) − In(i, j)
)2
]

(4.2)

The Signal to Noise Ratio is then defined as

SNR = 10 log10

(

σ2
signal

σ2
noise

)

(4.3)

The Peak Signal to Noise Ratio is defined for signals that have their outputs val-

ues constrained to a finite range [Imin, Imax]. This is the case for 8-bit greyscale

images, which have pixel values between 0 and 255. The PSNR is defined to

measure the noise variance relative to the maximum possible signal power for

the input range, given by (∆I)2 = (Imax − Imin)2. This gives

PSNR = 10 log10

(

(∆I)2

σ2
noise

)

(4.4)

All of the images used in this thesis were 8-bit greyscale images, so PSNR values
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were computed using ∆I = 255.

4.1 Bayesian Framework for Denoising

In this chapter, denoising will be treated as a statistical estimation problem.

Given a noisy image In, one seeks to produce an estimated clean image Îc that

satisfies certain optimality conditions. One can view the addition of noise as

mapping clean images to noisy images. This mapping is not deterministic,

however. As the noise process is a random event, there are many possible clean

images Ic that could have been corrupted to give the observed noisy image In.

One can view a denoising algorithm as selecting one particular estimate from

this multitude of possible candidate clean images.

Some criterion is obviously necessary for this selection. The Bayesian ap-

proach to this problem works by constructing a probability density on this space

of candidate clean images. Once this distribution, known as the “a posteriori”

density, is known, calculation of the desired estimate can be chosen according to

several different criteria. Common choices include picking the the estimate max-

imizing the a posterior density, or choosing an estimate that minimizes some

cost functional averaged over the posterior. I review here some fundamental

concepts for Bayesian signal estimation.

Let x ∈ R
d denote the signal of interest. For the image denoising problem,

x could consist of the entire clean image, or it could represent some subset

of measurements of the image such as Fourier components, or coefficients of a

wavelet expansion of the clean image. In this thesis, many of the calculations will

be performed where x is a generalized patch of Steerable Pyramid coefficients,
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as described in section 3.1. However, the basic Bayesian framework can be

described independently of exactly what space x lives in. We assume that the

original signal x has been transformed by some random process to give the

corrupted signal y. In the case of additive Gaussian noise, this transformation

is given by

y = x + n (4.5)

where n is a Gaussian sample of known covariance Cn.

If the statistical properties of the noise are known and one knew the value

of the original signal x, then the ensemble of all possible distortions of x defines

a distribution on y. This probability, termed p(y|x), serves to encapsulate what

is known about the noise process. In the additive Gaussian noise case, given y

and x the noise n = y − x and it follows that

p(y|x) = g(y − x; Cn) (4.6)

In the Bayesian approach, the signal x is itself modeled as a random process

with distribution p(x), called the signal prior. When one observes a particular

noisy signal y, there are many different possible clean signals x that could have

led to the given observation. Intuitively speaking, choosing a particular estimate

for x should fuse information from both the given observation y, and from the

prior p(x). In the case of additive Gaussian noise, there are two competing

desirable properties for the estimate of x. On the one hand x should be “close

to” y, as large values of the noise n are increasingly unlikely. On the other

hand, the estimate should “look like” signals drawn according to the signal

prior, and should thus have large probability according to p(x). If the noise
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level is very small, then it is highly unlikely that x differs greatly from y, and

more emphasis should be placed on the observation. However as the noise level

increases and the observation becomes increasingly unreliable, more emphasis

should be placed on the prior.

The Bayesian method integrates these two conflicting desirable properties in

a consistent probabilistic framework. The key quantity for Bayesian estimation

is the posterior density, p(x|y), which gives the probability that the observed

signal y was generated by the original signal x. The approach gets its name

from the use of Bayes rule

p(x|y) =
p(y|x)p(x)

p(y)
(4.7)

which is used to compute the posterior density. Note that large values of p(x|y)

will occur when both p(y|x) and p(x) are large.

One obvious way of computing an estimator from the posterior density p(x|y)

is to chose x giving the greatest posterior probability. This is called the Maxi-

mum A Posterior (MAP) estimate

x̂ = argmax
x

p(x|y) (4.8)

Note that as the maximum does not depend on the normalizing probability

p(y) =
∫

p(y|x)p(x), the MAP estimator can be computed by maximizing

p(x)p(y|x). The fact that the normalizing constant may be disregarded often

simplifies MAP estimation.

For a wide class of signal priors, the MAP estimator has an especially ap-
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pealing form. If the signal prior p(x) is of exponential type, then it has the

form p(x) ∝ exp(−L(x)) where the function L(x) can be viewed as a “cost

function” penalizing some undesirable signal characteristics. This family in-

cludes Gaussian distributions with L(x) = (1/2)xT C−1
x x, and the generalized

Gaussian distributions when L(x) = a ||x||p for 0 < p < 2. Functions L that

measure norms of gradients of the signal x, and thus penalize signal disconti-

nuities, are also common and often termed “smoothness priors”. Given such an

exponential prior, under the additive Gaussian white noise case with variance

σ, the MAP estimate becomes

x̂ = argmax
x

exp(−L(x)) exp(− 1

2σ2
||y − x||2)

= argmin
x

L(x) +
1

2σ2
||y − x||2 (4.9)

where the second equation follows from taking logarithms. This expression

clearly shows how MAP estimation picks x that balances between minimizing

the “data fidelity” term ||x − y||2 and the cost function L(x) contained in the

prior.

While taking the estimate for x to be the most probable is quite reasonable,

there are other criteria that may be used for Bayesian estimation. In general,

one wishes to avoid making errors when estimating the signal x. Errors are un-

pleasant, and undesirable. It may well be that different errors are not equally

undesirable. If a quantitative measure of “displeasure” at making a certain type

of error can be written as a cost function C(δx), then one may seek to mini-

mize the average cost in estimation. It may be possible to shift the estimation

strategy by trading off accepting a larger number of negligible errors in order
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to avoid a small fraction of large, inordinately painful errors, in a manner that

reduces the overall expected error. This sort of cost function is often called the

“risk” in the statistics literature.

Once y is observed, one may seek to minimize the expected cost involved

in picking the estimate x̂. This expectation is taken over the posterior density.

Define the expected cost

E(w) =

∫

p(x|y)C(x − w)dx (4.10)

One may then pick the estimator x̂ = argminw E(w) giving the minimum ex-

pected cost.

Different cost functions may be designed for different situations, and may

depend intricately on the nature of the underlying problem. As a fanciful exam-

ple, imagine estimating from noisy sensor measurements the distance between

the current location of a moving robot and a nearby brick wall. Underestimating

the distance may result in a somewhat wasteful, overcautious motion strategy,

while overestimating the distance may result in a crash and subsequent need to

buy a new robot. If this estimation were performed by Bayesian methods, the

the cost function C should reflect this underlying asymmetry.

For many problems, however, the cost function is simply chosen to be the

square of the norm of the error, C(w) = ||w||2. In this case, the estimator

minimizing the average squared error is simply the a posterior mean. To see

this, note that for this choice of C,

E(w) =

∫

p(y|x) ||x − w||2 dx (4.11)
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Taking the gradient of this expression with respect to w gives

∇E = 2

∫

p(x|y)(x − w)dx = 2

∫

xp(x|y)dx − 2w (4.12)

Setting this to zero implies that the estimator minimizing the expected error is

w = x̂(y) =

∫

xp(x|y)dx (4.13)

This estimator is alternately known as the Bayes least squares (BLS) or the the

Bayes minimum mean squared error (MMSE) estimator, for obvious reasons.

The MAP and the BLS estimators thus calculate x̂ by finding the mode and

the mean, respectively, of the posterior distribution p(x|y). They will thus be

identical when the posterior is symmetric around its mean.

The denoising algorithms derived in this thesis are all based upon Bayesian

least squares estimation, where the signal priors p(x) are the OAGSM or

OAGSM/NC models described in chapter 3. The BLS estimator is optimized

to give the smallest average mean squared error of the resulting estimate. This

is conceptually consistent with using mean squared error to evaluate the perfor-

mance of the resulting denoising algorithms. However, one possible concern is

that the BLS estimation described will be performed in the Steerable Pyramid

domain, while the ultimate evaluation of the denoised image quality will be done

by measuring PSNR in the pixel domain. As the Steerable Pyramid transform

is overcomplete, the mapping from the coefficient domain to the pixel domain

is not 1-1. There is thus no explicit relation between mean squared error in the

coefficient domain and mean squared error in the pixel domain. It is conceiv-
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able that the BLS estimator may be optimal for mean squared error in the SP

coefficient domain, but suboptimal in the pixel domain.

Fundamentally, both the OAGSM and the OAGSM/NC models can be de-

scribed as Gaussian mixtures. As a prelude to discussing the full BLS estimators

implied by the OAGSM and OAGSM/NC, I discuss the case when the signal

model is a single multivariate Gaussian. In this case, the resulting BLS estima-

tor is called the Wiener filter. This result will be used extensively in this thesis,

and the calculation is outlined below.

Let x and n be zero mean Gaussians Cx and Cn respectively. Assuming the

noise is independent of the signal, then the corrupted signal y will likewise be

a zero mean Gaussian with covariance Cx + Cn. The posterior distribution is

then

p(x|y) =
p(x)p(y|x)

p(y)

=
1

p(y)

1

(2π)d|Cx|1/2|Cn|1/2
exp

(

−1

2
(xT C−1

x x)

)

exp

(

−1

2
((y − x)T C−1

n (y − x))

)

=
1

N
exp

(

−1

2
(xT (C−1

x + C−1
n )x − 2yT C−1

n x + yT C−1
n y)

)

(4.14)

While this expression appears complicated, one can take advantage of the fact

that by construction it is guaranteed to be a properly normalized probability

density. As the terms inside the exponential are polynomial in x with only

up to quadratic terms, the density p(x|y) is Gaussian. We wish to calculate

its mean. However, the mean of a properly normalized multivariate Gaussian

density will always be given by the minimum of the quadratic form found inside

its exponential. Using this argument, one can sidestep some tedious algebra
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and simply find the minimum of the quadratic expression above. Taking the

gradient of

Q(x) = xT (C−1
x + C−1

n )x − 2yT C−1
n x + yT C−1

n y (4.15)

gives ∇xQ = 2C−1
x + C−1

n − 2C−1
n . Setting this to zero gives the BLS estimate

x̂BLS(y) =
(

C−1
x + C−1

n

)−1
C−1

n y (4.16)

Using the matrix identity (A−1 + B−1)−1 = A(A + B)−1B (see [49]), this may

be written in the form

x̂BLS(y) = Cx(Cx + Cn)−1y (4.17)

This expression is known as the Wiener filter.

4.1.1 BLS estimator for Gaussian mixture models

Both the OAGSM and the OAGSM/NC models are mixtures of zero-mean mul-

tivariate Gaussian components where the covariances of each component are

functions of a set of hidden variables. The mixing weights for these compo-

nents, also referred to as the hidden variable priors, are clearly also functions

of this same set of hidden variables. For this general type of model, the Bayes

Least Squares estimate can be calculated in a particularly simple form. The

resulting estimator is expressed as a weighted combination of the Wiener es-

timates for each of the underlying Gaussian components, where each weight

term is related to the probability that the given noisy sample arose from that

component.
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Introduce the following general notation. Let ~τ represent some collection of

hidden variables used to construct the mixture model. For the OAGSM model,

~τ = (z, θ), while for the OAGSM/NC model we have ~τ = (z, θ, δ). Assume

for each value of ~τ there is a model covariance C(~τ). For the OAGSM and

OAGSM/NC models, the covariances C(~τ) have very specific functional forms

that are related to the interpretation of the hidden variables, i.e. z acts by scalar

multiplication and θ by rotation. The calculation of the BLS estimator, however,

does not depend on this particular functional form. For this calculation, C(~τ)

could be a completely arbitrary mapping from the space of hidden variables to

positive definite matrices.

Let p(~τ) be the prior density over these hidden variables. The general form

of the mixture density is then

p(x) =

∫

p(x|~τ)p(~τ)d~τ =

∫

g(x; C(~τ))p(~τ)d~τ (4.18)

The above expression is written as a continuous integral, however the hidden

variables may be sampled discretely. This will in fact be the case for the imple-

mentation in this thesis. In this case the integral expressions would reduce to

finite sums. As the underlying theory is unchanged, the more general expres-

sions written with integrals will be used in this section.

The BLS estimate x̂(y) will be the a posterior mean
∫

xp(x|y)dx. The pos-

terior p(x|y) can be decomposed by conditioning on, then integrating over, the

hidden variables.

p(x|y) =

∫

p(x|y, ~τ)p(~τ |y)dτ (4.19)

Substituting this into the a posterior mean and exchanging the order of inte-
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gration shows

x̂(y) =

∫

x

(∫

p(x|y, ~τ)p(τ |y)d~τ

)

dx

=

∫ (∫

xp(x|y, ~τ)dx

)

p(~τ |y)d~τ (4.20)

The interior integral over x is exactly the form of the BLS estimate of the

signal x in the presence of noise, when conditioned on fixed values of the hidden

variables ~τ . However, when conditioned on ~τ , x is Gaussian with covariance

C(~τ). As shown before, this type of estimate is given by the Wiener filter. It

follows that
∫

xp(x|y, ~τ)dx = C(~τ)(Cn + C(~τ))−1y = W~τy (4.21)

where we have set W~τ = C(~τ)(Cn+C(~τ))−1 to be the Wiener filter corresponding

to ~τ . The full BLS estimate for x is then

x̂(y) =

∫

(W~τy)p(~τ |y)dτ (4.22)

This is a weighted average of different Wiener estimates, where the weighting

is controlled by p(~τ |y). It is really this weighting which allows the denoising

algorithm to “adapt” to different local conditions. For example, in the OAGSM

model ~τ consists of z and θ. For noisy signal patches that are best described

with power z∗ and orientation θ∗, the weights p(z, θ|y) will be larger for values

z and θ closer to z∗ and θ∗, and smaller otherwise. The Wiener estimates Wz,θy

will be more accurate when z and θ are close to z∗ and θ∗ that best describe the

signal. As a result, the full estimate x̂(y) will contain more contribution from

the Wiener estimates that are more appropriate for the current noisy signal.
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Expanding the weighting terms p(τ |y) by Bayes’ theorem yields

p(~τ |y) =
p(y|~τ)p(~τ)

p(y)
=

p(y|~τ)p(~τ)
∫

p(y|~τ)p(~τ)d~τ
(4.23)

In the above expression, p(~τ) are the hidden variable priors and are specified

as part of the model. p(y|~τ) is the distribution of the noise, assuming that

the signal x was drawn from the Gaussian with covariance C(~τ). As the signal

and noise are independent, the covariances add and p(y|~τ) = g(y; Cn + C(~τ)).

Substituting these into (4.22) gives the full BLS estimate

x̂(y) =
1

N

∫

(W~τy)g(y; Cn + C(~τ))p(~τ)d~τ (4.24)

where the normalizing constant N =
∫

g(y; Cn + C(~τ))p(~τ)d~τ .

4.1.2 Hidden variable prior densities

The above expression for the full BLS estimator involves an integral over the

hidden variables, referencing the hidden variable prior density p(~τ). For the

OAGSM model, this set consists of ~τ = (z, θ) where for the OAGSM/NC we

have ~τ = (z, θ, δ). For the original GSM denoising method of Portilla et, ~τ

consists only of z. The hidden variable priors must be specified in order to

complete the description of the estimation procedure. For this work, the hidden

variables were sampled at a finite number of discrete points. The integrals in

the expression for the BLS estimate thus reduce to finite sums. Let Nθ and Nz

denote the number of sample points for z and θ. The δ hidden variable for the

OAGSM/NC was originally defined as a binary variable, and so naturally has
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only two sample points.

I take the priors to be separable. For the OAGSM, the prior is p(z, θ) =

p(z)p(θ). All of the oriented covariances used in this thesis are π periodic, i.e.

C(θ) = C(θ + π). Accordingly θ may be sampled on the range [0, π]. I use the

sample values θn = n−1
π

for n = 1...Nθ, and set p(θn) = 1
Nθ

, the discrete version

of the uniform density on [0, π].

Following [42], the prior on z is derived from the so-called Jeffrey’s non-

informative pseudo-prior p(z) ∝ 1
z
. This “density” cannot be normalized unless

z is truncated within some range [zmin, zmax]. The Jeffrey’s pseudo-prior is

equivalent to placing a uniform density on log z. As we are sampling z finitely,

this is implemented by choosing samples of zn uniformly logarithmically spaced

between zmin and zmax. Accordingly, I set p(zn) = 1
Nz

with

zn = exp

(

log(zmin) + (n − 1)
log(zmax) − log(zmin)

Nz − 1

)

(4.25)

for n = 1...Nz. For the denoising results in this thesis I use log(zmin) = −20.5

and log(zmax) = 3.5.

For the OAGSM/NC, the prior is p(z, θ, δ) = p(z)p(θ)p(δ). The same priors

are used for z and θ as for the OAGSM. For this model, the prior on the binary

variable δ is determined by p(δ = 1) = β, where the parameter β is the prior

probability of drawing each patch from the oriented process. β is estimated for

each subband and at each spatial scale, as described in section 3.3
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4.2 Denoising Algorithm

Denoising is performed in the wavelet coefficient domain. Noisy images are first

decomposed with the Steerable Pyramid. From these noisy coefficients, the

parameters for either the OAGSM or OAGSM/NC models are calculated, as

described in section 3.2. Several variants of the models are possible, depending

on whether the oriented covariances are estimated by patch rotation, using an

edge model or using the 1-d empirical covariances.

At each spatial scale, noisy patches y of a fixed generalized patch geometry

are extracted. These noisy patches are then denoised according to the BLS esti-

mation procedure described above. Note that the BLS estimator x̂(y) produces

an estimate of the entire generalized patch. One possible method for denoising

would be to partition the noisy coefficients into non-overlapping square patches,

denoise each patch, and then invert the transform. Doing this is likely to in-

troduce block boundary artifacts in each subband. An alternative approach,

taken in this thesis, is to take only the center coefficient of each estimate. In

this way, each coefficient is estimated using a generalize patch centered on it.

These patches are overlapping, as shown in figure 4.1.

The highpass and lowpass bands of the pyramid are treated differently. The

highpass band residual band is a scalar quantity, and the highpass filters are

not steerable, which makes it difficult to estimate OAGSM covariances for it.

Accordingly, the highpass band is denoised with the GSM method, exactly

following Portilla [42]. This method may viewed as a degenerate case of the

OAGSM, where the covariances C(θ) do not have any θ dependence. The low-

pass band typically has a much higher signal to noise ratio. This follows as
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Figure 4.1: Overlapping patches. Each coefficient is denoised using a neighbor-
hood centered on it.

the white noise process has a flat power spectrum, while typical image spectral

power is proportional to 1
wp for p close to 2. For lower spatial frequencies, the

signal power will increase and dominate the noise process. Another issue is that

for coarser spatial scales, estimating the model parameters becomes more diffi-

cult as there are fewer available signal patches to fit the parameters from. This

suggests that their is an effective limit to the depth of spatial scales it makes

sense to try to denoise. For this work, the pyramid representation is built to

a depth of three spatial scales, and the lowpass band is simply left unchanged.

Once each coefficient has been estimated, the entire transform is inverted to

give the resulting denoised image.

4.2.1 Calculating noise covariances in each subband

While the noise process is assumed to be white in the pixel domain, the noise

process in each pyramid subband has been shaped by the SP filters. As the

transformation from the pixel domain to the generalized patches at each spatial
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scale is linear, the noise process in each patch will be Gaussian, but no longer

white. One simple way of computing the noise covariances would be to take

a sample of the noise process in the image domain, compute its SP transform,

extract all of the noisy patches and take their sample average. Doing the calcu-

lation this way will give an estimate of the noise covariance with some error, as

it is sampled empirically. One may avoid this by computing the covariance in

the following way, instead. Following the notation in section 3.2.2, let n ∈ Im

denote the noise sample in the image domain, p ∈ R
d represent a generalized

wavelet patch, and T : Im → R
d be the patch measurement operator, so that

p = Tn. The desired noise covariance is then

Cn = E
[

ppT
]

= TE[nnT ]T T (4.26)

If the noise process is white with standard deviation σn, then E[nnT ] will be

σ2
n times an N × N identity matrix, where N is the number of image pixels.

The (i, j)th element of the noise covariance Cn is then σ2
nTiT

T
j . Ti ∈ R

N is

given by the response of the filter corresponding to position i to a unit impulse

in the pixel domain. Accordingly, all of the products TiT
T
j may be computed

in one step by taking the SP transform of a unit impulse, extracting all of the

patches of specified geometry at the desired scale, and taking their sample outer

product. Multiplying the resulting matrix by σ2
n then gives the noise covariance.

4.2.2 Results

The OAGSM and OAGSM/NC denoising methods were applied to a collection

of 10 greyscale images corrupted with 3 different levels of Gaussian white noise.
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The images were originally taken in color with a Pentax Optio S4 digital camera,

and were later cropped and downsampled to 512x512 pixels and converted to

greyscale for use as test images for this thesis. No attempt at camera calibration,

or control for different lighting conditions was made. The original greyscale pixel

values were numbers between 0 and 255. Noise levels with standard deviation

σ = 20, 40 and 80 were used for the denoising experiments.

Both of the denoising methods have a significant number of parameters,

aside from the model covariances, that must be specified. These include the

size of the generalized patches, the number of orientation bands used in the

Steerable Pyramid decomposition, whether winnowing by orientedness should

be used for selecting patches for fitting the model covariances, as well as the

number of discrete samplings used for the hidden variables z and θ. 13 points

were used for the z hidden variable, and 16 points for the θ hidden variable. It

was found that increasing the sampling density of the hidden variables above

these values led to minimal improvement in performance.

As described in section 3.1, determining the optimal geometry of the gener-

alized patches used for the OAGSM and OAGSM/NC models should be done

empirically. The performance of the OAGSM/NC model was checked for a large

number of different patch geometries. The spatial neighborhoods are chosen to

be symmetric around a single central coefficient. If square patches are used,

then the dimensions must be odd. 6 different patch geometries, consisting of

3x3, 5x5 and 7x7 patches with and without parent bands, were tried. Results of

these calculations are tabulated in table 4.1. The best performance was given by

either 5x5 or 7x7 patches with parents included. The difference in performance

between these two was slight. 5x5 patches with a single parent coefficient were
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Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
3x3 (np) 27.246 28.552 34.473 32.404 29.869 25.963 32.284 32.124 32.095 27.855
5x5 (np) 27.407 28.774 34.639 32.706 30.121 26.083 32.571 32.285 32.425 28.025
7x7 (np) 27.445 28.756 34.682 32.721 30.200 26.134 32.588 32.311 32.449 28.060
3x3 (p) 27.326 28.657 34.567 32.467 30.016 26.043 32.397 32.240 32.237 27.961
5x5 (p) 27.438 28.824 34.704 32.722 30.207 26.122 32.641 32.357 32.529 28.068
7x7 (p) 27.457 28.786 34.735 32.714 30.246 26.153 32.630 32.361 32.522 28.076

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
3x3 (np) 24.061 25.033 31.556 28.993 26.580 22.829 28.709 29.491 28.495 24.672
5x5 (np) 24.190 25.246 31.714 29.248 26.771 22.979 28.935 29.566 28.805 24.822
7x7 (np) 24.252 25.317 31.745 29.295 26.853 23.054 28.953 29.601 28.865 24.893
3x3 (p) 24.165 25.190 31.643 29.120 26.745 22.941 28.889 29.592 28.678 24.811
5x5 (p) 24.264 25.361 31.754 29.312 26.887 23.054 29.052 29.641 28.925 24.919
7x7 (p) 24.298 25.396 31.773 29.337 26.937 23.094 29.038 29.652 28.962 24.960

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
3x3 (np) 21.716 22.145 28.362 25.756 23.696 20.548 25.472 27.072 25.301 22.230
5x5 (np) 21.796 22.285 28.486 25.992 23.839 20.651 25.620 27.109 25.463 22.273
7x7 (np) 21.867 22.363 28.477 25.997 23.900 20.741 25.635 27.101 25.465 22.359
3x3 (p) 21.794 22.274 28.470 25.871 23.819 20.633 25.601 27.117 25.423 22.324
5x5 (p) 21.856 22.380 28.532 26.036 23.926 20.721 25.717 27.150 25.544 22.350
7x7 (p) 21.911 22.433 28.500 26.021 23.966 20.790 25.713 27.137 25.540 22.418

Table 4.1: Table of denoising results, by PSNR, for different patch geome-
tries, with starting noise levels σ = 20 (PSNR 22.0977 dB, top), σ = 40
(PSNR=16.0771, middle), σ = 80 (PSNR 10.0565, bottom). All results are
for the OAGSM/NC model with covariances from patch rotation, without win-
nowing

selected for use for the remainder of the denoising calculations in this thesis.

The neighborhoods described above, and used for all of the results in this

thesis, did not include any “cousin” coefficients from other oriented bands at

the same spatial scale. Accordingly, the denoising calculations at each spatial

scale must be run K times for each of the K orientation bands used in the SP

transform. Inclusion of cousin coefficients was tried, by taking the generalized

neighborhood to include all of the coefficients for all orientation bands within

a specified patch geometry. For instance, with 5x5 patches including parents

for the SP transform with 2 orientation bands, each such neighborhood would

include 52 coefficients. In this case the BLS estimation would be performed in

a 52 dimensional space, and the two central coefficients would be kept. This
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Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 27.394 28.516 34.463 32.352 29.918 26.064 32.067 32.246 32.081 27.998
O/rot/w -0.211 0.172 0.158 0.283 0.044 -0.139 0.464 -0.059 0.365 -0.165
O/rot/nw -0.079 0.241 0.161 0.228 0.249 0.016 0.529 -0.001 0.432 -0.045
O/edge -1.915 -1.565 -0.706 -1.083 -1.307 -1.789 -1.064 -0.887 -0.943 -1.906
O/1d-emp -2.046 -2.316 -0.846 -1.802 -1.724 -1.876 -1.548 -1.021 -2.063 -2.079
NC/rot/w 0.060 0.357 0.181 0.400 0.334 0.059 0.603 0.133 0.520 0.093
NC/rot/nw 0.044 0.308 0.241 0.370 0.289 0.057 0.574 0.111 0.448 0.070
NC/edge 0.036 0.268 0.188 0.305 0.224 0.025 0.503 0.102 0.433 0.051
NC/1d-emp 0.024 0.117 0.065 0.158 0.106 0.018 0.251 0.067 0.197 0.024

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 24.251 25.130 31.518 29.031 26.664 23.013 28.668 29.635 28.633 24.871
O/rot/w -0.192 0.082 0.062 0.163 0.014 -0.153 0.229 -0.181 0.206 -0.172
O/rot/nw -0.095 0.176 0.177 0.202 0.153 -0.041 0.320 -0.117 0.222 -0.060
O/edge -1.020 -0.923 -0.113 -0.515 -0.678 -0.991 -0.611 -0.336 -0.517 -1.150
O/1d-emp -1.169 -1.157 -0.296 -0.741 -0.798 -1.110 -0.709 -0.550 -1.215 -1.160
NC/rot/w 0.046 0.281 0.040 0.222 0.244 0.072 0.355 -0.044 0.285 0.090
NC/rot/nw 0.014 0.231 0.236 0.280 0.223 0.041 0.384 0.006 0.292 0.047
NC/edge -0.010 0.182 0.218 0.209 0.190 0.015 0.361 0.036 0.283 0.023
NC/1d-emp -0.017 0.083 0.106 0.053 0.091 0.012 0.168 0.006 0.114 0.005

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 21.913 22.280 28.315 25.790 23.736 20.717 25.406 27.048 25.374 22.383
O/rot/w -0.215 -0.060 -0.298 0.022 0.011 -0.130 0.104 -0.238 -0.034 -0.230
O/rot/nw -0.155 0.024 0.176 0.168 0.123 -0.076 0.254 0.044 0.078 -0.139
O/edge -0.428 -0.399 0.163 -0.018 -0.090 -0.396 0.041 0.066 -0.113 -0.504
O/1d-emp -0.622 -0.609 -0.010 -0.182 -0.257 -0.554 -0.112 -0.100 -0.614 -0.566
NC/rot/w -0.060 0.084 -0.363 0.032 0.126 0.015 0.143 -0.256 0.008 -0.047
NC/rot/nw -0.057 0.099 0.217 0.246 0.190 0.004 0.311 0.102 0.170 -0.033
NC/edge -0.056 0.083 0.213 0.233 0.192 -0.004 0.294 0.129 0.184 -0.025
NC/1d-emp -0.066 0.027 0.140 0.110 0.125 -0.006 0.183 0.115 0.091 -0.031

Table 4.2: Comparison of GSM with OAGSM and OAGSM/NC variants, based
on using Steerable Pyramid with 2 orientation bands. GSM denoised values are
given in PSNR, other methods are relative to GSM baseline. Results presented
for noise levels σ = 20 (PSNR 22.0977 dB, top), σ = 40 (PSNR=16.0771,
middle), σ = 80 (PSNR 10.0565, bottom).

is termed “joint” estimation as all of the orientation bands are estimated in a

single calculation. It was found that the resulting denoising methods performed

much worse than those based on generalized patches without inclusion of cousin

coefficients.

Using the selected patch geometry, the OAGSM and OAGSM/NC algo-

rithms were run on the test image set. For both methods, four different ways

of calculating the underlying signal covariances were tried. The oriented covari-
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ances were calculated by either the patch rotation method, by the step edge

model method or by the 1-d empirical covariance method, as described in sec-

tion 3.2. Denoising was done using the patch rotation method both with and

without winnowing. When winnowing was used, the oriented covariances were

calculated using patches with dori above the 85th percentile threshold. The edge

model covariances were computed using the step edge profile. It was observed

that the step edge profile gave slightly better performance than using the line

edge profile. For the 1-d empirical covariance method, the underlying correla-

tion functions were estimated by averaging over the ensemble of the 10 clean

images. This was done in an attempt to measure a single, non-adaptive, set of

correlation functions in that generate the oriented covariances.

The denoising method based on the Gaussian Scale Mixture (GSM) was

used as a baseline for evaluating the performance of the current methods. The

GSM results shown here were obtained using exactly the same implementation

as published in [42], which gave state-of-the art performance at the time of its

publication in 2003. Comparing to the GSM method is reasonable as the GSM

is similar to the current methods, but without adaptation to local orientation.

Thus the performance gain over the GSM really measures the specific benefit

that is gained by including orientation as a hidden variable. All of the methods,

the GSM, OAGSM and OAGSM/NC, can be implemented on top of the Steer-

able Pyramid with any number of orientation bands. Results are shown using

the 2 band pyramid in table 4.2 and using the 8 band pyramid in table 4.3.

For all of these methods, it is observed that denoising performance gener-

ally increases as the number of underlying SP orientation bands is increased.

Increasing the number of orientation bands for the SP yields SP filters with
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Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 27.426 28.732 34.799 32.565 30.200 26.136 32.447 32.384 32.445 28.068
O/rot/w -0.112 0.133 0.031 0.234 -0.015 -0.102 0.363 -0.049 0.352 -0.091
O/rot/nw -0.038 0.133 0.030 0.232 0.087 -0.030 0.363 -0.009 0.302 -0.031
O/edge -1.540 -1.325 -0.762 -0.890 -1.285 -1.447 -1.066 -0.971 -0.859 -1.461
O/1d-emp -5.510 -7.311 -5.306 -9.070 -6.825 -5.348 -7.432 -4.247 -7.803 -5.943
NC/rot/w 0.040 0.225 0.026 0.291 0.168 0.015 0.427 0.071 0.409 0.051
NC/rot/nw 0.027 0.161 0.063 0.265 0.113 0.015 0.356 0.050 0.277 0.027
NC/edge 0.029 0.104 -0.020 0.146 0.051 0.009 0.175 0.032 0.192 0.020
NC/1d-emp 0.022 0.025 -0.083 0.074 0.007 0.008 0.049 0.021 0.037 0.011

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 24.301 25.364 31.797 29.322 26.994 23.104 29.056 29.781 28.997 24.971
O/rot/w -0.134 0.057 0.048 0.096 -0.089 -0.135 0.146 -0.139 0.198 -0.126
O/rot/nw -0.089 0.057 0.106 0.137 -0.020 -0.084 0.150 -0.103 0.153 -0.073
O/edge -1.082 -1.015 -0.307 -0.596 -0.899 -1.035 -0.848 -0.538 -0.653 -1.121
O/1d-emp -3.335 -4.852 -3.197 -6.159 -4.516 -3.296 -4.890 -2.388 -5.145 -3.763
NC/rot/w 0.019 0.166 -0.054 0.142 0.063 0.020 0.166 -0.079 0.200 0.038
NC/rot/nw -0.007 0.106 0.130 0.161 0.041 -0.001 0.158 -0.031 0.176 0.004
NC/edge -0.001 0.068 0.068 0.020 -0.001 0.005 0.062 -0.020 0.102 0.007
NC/1d-emp -0.004 0.020 -0.001 -0.073 -0.035 0.007 -0.043 -0.035 -0.006 0.007

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 21.989 22.504 28.435 26.047 24.041 20.823 25.685 27.135 25.650 22.489
O/rot/w -0.188 -0.081 -0.157 0.063 -0.048 -0.143 0.097 -0.143 -0.010 -0.202
O/rot/nw -0.158 -0.059 0.200 0.148 -0.026 -0.118 0.153 0.053 0.012 -0.159
O/edge -0.590 -0.619 0.053 -0.169 -0.357 -0.569 -0.272 -0.012 -0.341 -0.648
O/1d-emp -1.668 -2.812 -1.276 -3.843 -2.393 -1.615 -2.535 -0.807 -2.734 -1.940
NC/rot/w -0.088 0.001 -0.344 -0.010 -0.017 -0.032 0.035 -0.262 -0.034 -0.096
NC/rot/nw -0.074 0.014 0.193 0.178 0.037 -0.034 0.177 0.080 0.103 -0.069
NC/edge -0.058 -0.002 0.143 0.098 0.040 -0.024 0.122 0.095 0.077 -0.043
NC/1d-emp -0.060 -0.025 0.100 0.007 0.009 -0.015 0.065 0.069 0.030 -0.041

Table 4.3: Same as table 4.2, using Steerable Pyramid with 8 orientation bands

higher orientation specificity, but also makes the overall SP transform more

overcomplete. It has been observed that simply increasing the redundancy of

the underlying basis in which one performs denoising often leads to increased

denoising performance. This observation is the basis for using so-called “cycle-

spinning” with undecimated wavelet bases for denoising [14]. However, increas-

ing the orientation specificity of the underlying SP filters is also likely to im-

prove denoising performance, especially for the GSM model which has no other

method for explicitly adapting to the local orientation of the signal. It is thus

difficult to separate the effects of both increased redundancy and increased ori-
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entation specificity that arise from using a higher order SP transform. It has

been observed that for the denoising methods presented here, the improvement

in performance obtained from using a SP transform with more than about 8

orientations bands is very minimal. The benefits of adaptation to local orien-

tation, however, are more strongly apparent in the denoising results based on

the 2-band SP. Results are thus presented in this thesis for the algorithms using

2-band SP and for the 8-band SP.

Referring to these tables, it is clear that the OAGSM/NC method consis-

tently outperforms the GSM method. This holds for both the 2-band calcula-

tions and the 8-band calculations. The performance difference is greater for the

2-band case, with the OAGSM/NC method showing up to 0.6 dB improvement

for some images. Performing winnowing by orientedness provides some benefit

at low noise levels, but leads to worse performance at higher noise levels. The

performance loss at higher noise levels is due to poor estimation of the oriented

covariance. As the winnowing procedure greatly reduces the number of patches

that are used to compute the covariances, the resulting estimates are less ro-

bust to noise. Thus the failure of winnowing under high noise conditions is not

unexpected.

For many images, the OAGSM model performs better than the GSM model.

This is highly dependent on the image content, however. Images that are

strongly dominated by oriented features will show better performance for the

OAGSM than for the GSM. However images that are dominated by non-oriented

texture regions may yield better performance for the GSM method. In contrast,

as the OAGSM/NC is able to adapt to non-oriented regions, it very rarely per-

forms worse than the GSM method. For texture dominated images, its behavior
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(a) (b)

(c) (d)

Figure 4.2: (a) Image #1 original (b) Noisy σ = 40 (16.0771) (c) GSM (24.251)
(d) OAGSM/NC (24.297)

is in fact very close to that of the GSM. Details of three selected denoised im-

ages are shown in figures (4.2 - 4.4). These images are for the noise level with

σ = 40, using two orientation bands. The first image is an example of a texture

dominated image. As can be seen, the visual appearance and PSNR perfor-
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(a) (b)

(c) (d)

Figure 4.3: (a) Image #4 original (b) Noisy σ = 40 (16.0771) (c) GSM (29.031)
(d) OAGSM/NC (29.253)

mance of the GSM and OAGSM/NC methods are very similar. For this image,

the OAGSM method performs worse by about 0.1 dB.

The second two images shown, #4 and #9, have significant oriented content.

For the picture #4 of the columbine flower, these oriented structures are due
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(a) (b)

(c) (d)

Figure 4.4: (a) Image #9 original (b) Noisy σ = 40 (16.0771) (c) GSM (28.633)
(d) OAGSM/NC (28.918)

to the object boundary of the flower against the out of focus background. In

the image #9 of the public art in the new york city subway, the oriented fea-

tures are due both to object boundaries and the strongly oriented siding of the

train. For both of these images, the OAGSM/NC algorithm gives significantly
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(a) (b)

(c) (d)

Figure 4.5: Estimated noise components n̂ corresponding to the denoising results
shown in figures 4.3 and 4.4. (a) GSM for Image #4 , (b) OAGSM/NC for Image
#4 , (c) GSM for Image #9 , (d) OAGSM/NC for Image #9

better performance both in visual appearance and PSNR. The OAGSM also

outperforms the GSM for these two, but not by as much as the OAGSM/NC.

Another way of visualizing the differences between different denoising meth-
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ods is by examining the estimated noise components. Given a noisy image y,

and a denoised estimate x̂, the estimated noise component image is given by

n̂ = y− x̂. If the denoising method were perfect, then the estimated noise com-

ponent should look exactly like a sample of Gaussian white noise. In practice,

however, some residual image structure remains in the estimated noise compo-

nent. Comparing these for different denoising methods can give some insight

into what image structures are “left behind” in the estimated noise component.

These estimated noise components are shown for the GSM and OAGSM/NC

methods in figure 4.5, for two images that were corrupted with white noise

with σ = 40. While the differences are subtle, some oriented structures can be

perceived in the estimated noise component for the GSM method. For the esti-

mated noise components from the OAGSM/NC method, however, these residual

structures are less apparent. This is further evidence that the OAGSM/NC is

doing a better job of correctly identifying oriented content as belonging to the

desired signal.

For both the OAGSM and OAGSM/NC models, the oriented covariances

calculated by patch rotation performed better than either the edge model or

implicit 1-d covariance methods. It is interesting to note that this difference

was much stronger for the OAGSM method than for the OAGSM/NC method.

As the OAGSM/NC has the non-oriented component to “fall back on”, it will

suffer only limited loss in performance from using oriented covariances that fail

to appropriately model much of the signal. The OAGSM method, on the other

hand, uses the oriented signal process to describe all of the image signal. The

edge model and implicit 1-d covariances are quite similar to each other, and are

only effective for describing perfectly oriented signal regions. As such perfectly
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(a) (b)

(c) (d)

Figure 4.6: OAGSM results with patch rotated covariances (a),(c), and edge
model covariances (b),(d).

oriented regions are not very common in actual images, the OAGSM method

based on either of these oriented covariances performs quite poorly. Such de-

noised images have interesting visual qualities, as can be seen in figure 4.6. The

OAGSM can introduce inappropriate oriented artifacts into textured regions,
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as can clearly by seen in figure 4.6 (a). Using the edge model covariances pro-

duces denoised images that are overly smoothed, but still present clean edges.

The empirical 1-d covariances produce results that are similar but consistently

worse than the edge model covariances. This may have to do with residual

error involved in discretely sampling and interpolating the underlying correla-

tion functions. There may still be room for improvement for estimating the 1-d

empirical covariances.

Unlike the oriented covariance calculated by patch rotation, the edge model

covariances are not computed from noisy data. Under very high noise conditions,

the OAGSM/NC model using edge model covariances may perform better than

using covariances from patch rotation. This is due to the presence of errors in

the covariances estimated by patch rotation, which do not occur for the edge

model covariances.

4.2.3 Spatially varying interpolation

The OAGSM/NC model incorporates aspects of both the GSM model and the

OAGSM model. The OAGSM/NC model probability distribution truly is inter-

polated between the OAGSM and GSM densities, as pointed out by equation

3.48. The interpolation is controlled by β, the prior probability for the oriented

component. As this parameter β is estimated for each subband of the image

being denoised, it mediates adaptation of the OAGSM/NC to the statistics of

the current signal.

Most images contain both oriented and non-oriented signal content. For

such images, the OAGSM and GSM estimators perform better in different,
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complementary image regions. The OAGSM/NC method is able to obtain bet-

ter performance than either method by adaptively interpolating between these

two estimators at each location at space and scale. This behavior is a general

property of BLS estimation performed using a model that is a mixture of compo-

nent densities. To see this, let the “total” density pt(x) = βp1(x)+ (1−β)p2(x)

be such a mixture. This corresponds to the OAGSM/NC where p1 = pori and

p2 = pnor as defined in section 3.3.2. Assume y has been corrupted with an

arbitrary noise process characterized by pn(y|x). For this calculation, this need

not be additive Gaussian noise. The total BLS estimate is then

x̂t(y) =

∫

xpt(x|y)dx =

∫

x

(

pn(y|x)pt(x)

pt(y)

)

dx (4.27)

where pt(y) =
∫

pn(y|x)pt(x)dx. Similarly define p1(y) =
∫

pn(t|x)pt(x)dx and

p2(y) =
∫

pn(t|x)p2(x)dx. Expanding out pt(x) in terms of its components gives

x̂t(y) =
1

pt(y)

∫

xpn(y|x) (βp1(x) + (1 − β)p2(x)) dx

=
β

pt(y)

∫

xpn(y|x)p1(x)dx +
1 − β

pt(y)

∫

xpn(y|x)p2(x)dx

=
βp1(y)

pt(y)

∫

x

(

pn(y|x)p1(x)

p1(y)

)

dx +
(1 − β)p2(y)

pt(y)

∫

x

(

pn(y|x)p2(x)

p2(y)

)

dx

(4.28)

The two integrals in the above expression are the properly normalized BLS

signal estimates assuming a signal density of p1(x) or p2(x), respectively. The

total BLS estimate is thus given by

x̂t(y) = h(y)x̂1(y) + (1 − h(y))x̂2(y) (4.29)
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where h(y) = βp1(y)/pt(y) functions as a spatially varying interpolation con-

stant for combining the two estimators

4.3 Hybridization of distinct denoising meth-

ods via Supervised Learning

The above discussion shows how using BLS estimation with a two component

mixture model such as the OAGSM/NC functions by combining two distinct

denoising methods via a spatially varying function. The function h used above

was derived in a consistent probabilistic framework, as the two component mix-

ture model is a proper probability distribution. While this consistent framework

is appealing for denoising applications it is not strictly necessary. In this sec-

tion I describe an alternative approach for the general problem of combining

two distinct “base” denoising methods into a single hybrid method. In this

section, no assumptions will be made on the two base denoising functions other

than that they operate on some local neighborhood of image coefficient data.

In particular, I do not assume that the base denoising methods have the form

of BLS estimators, or that they are based on probabilistic signal models.

I introduce a locally adaptive decision function that determines how the two

base denoising estimates are to be combined at each location. This decision

function is then learned from example data, where I assume access to an “ex-

ample” clean image whose statistical and structural properties are similar to

the image to be denoised. As the statistics of the noise process are assumed

to be known, this clean example image can corrupted with a synthetic noise
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sample. This corrupted example image may be denoised with each of the two

underlying base denoising methods. As the clean image is available, it is pos-

sible to see which of the two methods performed better in each location. From

this data, one may compute the weights of the optimal linear combination at

each signal location. These optimal weights, together with some set of features

characterizing the signal at each location, form a training data set for learning

the decision function.

If the decision function h is constrained to output only binary values, the

resulting hybrid denoiser makes a hard decision at each spatial location to chose

one denoising method or the other. In this case, learning h is a classification

problem. If h is allowed to take continuous values, then the hybrid denoiser can

smoothly interpolate between the outputs of the base denoiser at each location.

h then maps from a vector space of local image features into the real numbers,

and learning h is a regression problem. In this section I describe only the

latter case, using a method known as weighted Kernel Ridge Regression. After

describing the general theory, I apply the method to calculate the “machine

learning” hybrid denoiser using the GSM and OAGSM as the base denoising

methods. This provides an alternative way of achieving the spatial adaptation

shown by the OAGSM/NC method. The machine learning hybrid shows similar,

but consistently better, performance than the OAGSM/NC method.

Machine learning techniques have been applied to image denoising before.

Several authors have used support vector regression techniques to directly esti-

mate clean coefficients from noisy coefficients [11, 56]. More closely related to

the work in this thesis, Lin and Yu used an SVM classifier to adaptively switch

between applying a median filter and the identity filter for removing impulse
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noise from images [27].

4.3.1 Local Denoising Functions

Considering the noisy signal as a vector y ∈ R
N , any denoising algorithm may

be viewed as a function f : R
N → R

N where x̂ = f(y) is the estimate of the

clean signal. This space R
N may represent the original image pixels, or may

refer to the representation of the signal in some other domain, such as the space

of wavelet coefficients. As before, let a generalized wavelet neighborhood refer

to a set of coefficients that are close to each other in space, scale and orientation.

Given a generalized wavelet neighborhood, define a local denoising function to

be a function g : R
d → R

n taking its input a patch of d wavelet coefficients and

returning an estimate of a group of n < d coefficients, typically at the center of

the patch. Both the OAGSM and GSM methods are local denoising functions

according to this definition. Applying this procedure to overlapping patches

and estimating the center coefficients yields a complete estimator for all of the

wavelet coefficients, which may be inverted to give the denoised image.

4.3.2 Hybrid Denoiser Form

Given a set of two local denoising functions g1, g2 with the same input and

output dimensionality, one seeks to combine them into a single hybrid denoising

function gh. Introducing the decision function h, we write the hybrid estimate

for a noisy patch y ∈ R
d as

gh(y) = h(y)g1(y) + (1 − h(y))g2(y) (4.30)

160



The decision function h should determine for each patch which of the two base

denoising methods is more reliable. As h is a function of the patch itself, it is

spatially adaptive. If the initial base denoisers have been optimized for distinct

local signal content, one may view the output of h as classifying each patch

into the natural domain for either g1 or g2. Allowing h to take arbitrary real

values avoids a hard decision for each patch and permits the hybrid denoiser gh

to interpolate smoothly between the outputs of the base denoising functions.

4.3.3 Generation of Training Data

I wish to learn the function h that will yield good performance for the resulting

hybrid denoiser. Let y ∈ R
d and xc ∈ R

n denote a noisy wavelet patch and

corresponding clean center coefficients. Assume that these are drawn from some

fixed unknown distribution D(y, xc) that is determined by the statistics of the

signal and noise processes. I measure the performance of h by the expected

squared error for the corresponding hybrid denoiser gh, given by

E(y,xc)

[

||h(y)g1(y) + (1 − h(y))g2(y) − xc||2
]

(4.31)

In practice one must learn h from a finite set of training examples {(yi, x
c
i)}m

i=1.

Let hi represent the value of the decision function for the ith data point in the

training set. The error incurred on the ith training sample is

E(hi, i) = ||xc
i − (hig1(yi) + (1 − hi)g2(yi))||2 (4.32)

which is a quadratic polynomial in hi. We want to learn h that will lead to low
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values of this error. Accordingly, define the target value h∗
i to be the minimizer

of E(hi, i). This yields

h∗
i =

−(g1(yi) − g2(yi)) · (g2(yi) − xc
i)

||g1(yi) − g2(yi)||2
(4.33)

The pairs {(yi, h
∗
i )}m

i=1 then form the training data set for learning the decision

function h.

One important issue for learning h is that the same amount of error in h for

different patches will contribute differently to the error for the hybrid denoiser.

For patches where the output of the two base denoisers g1 and g2 are either

very similar or close to zero, large changes in h will yield only small changes in

the output of gh. Conversely, for image regions where the outputs of the base

denoisers are substantially different, small changes in h lead to large changes in

gh and in these regions it is more important for h to be correct.

Appropriate weightings for the training examples can be found by expanding

the error of the hybrid denoiser gh on the training set, the so-called empirical

loss, in terms of the target values h∗
i . The empirical loss is

Êh =
m
∑

i=1

E(h(yi), i) (4.34)

Expanding E(hi, i) about its minimum gives

E(h(yi), i) − E(h∗
i , i) = ||g1(yi) − g2(yi)||2 (h(yi) − h∗

i )
2 (4.35)

Summing over i and setting ρi = ||g1(yi) − g2(yi)||2 yields
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Êh =
m
∑

i=1

ρi(h(yi) − h∗
i )

2 + C (4.36)

where the constant C =
∑

E(h∗
i , i) does not depend on h. The ρi define the

weights for each training data instance. This expression gives the empirical loss

as a weighted sum of the squares of deviations from the target values for h.

Intuitively speaking, these weights pi indicate the relative amount of attention

that should be paid to getting the correct value of h for each training data point.

4.3.4 Weighted Kernel Ridge Regression

In the expression above, the empirical loss is written as a weighted sum, where

the weights are easily calculated from the training data and the base denoisers

g1 and g2. This problem differs from standard unweighted regression in that

errors on different training data points do not contribute the same amount to

the empirical loss. Incorporating these weights into the data-fidelity term for

the Kernel Ridge Regression algorithm gives a learning method that respects

the relative importance of the different training data points. Standard Kernel

Ridge Regression is described in detail in [15], and the weighted version has

been used in [48].

Weighted Ridge Regression without the use of Kernels is equivalent to per-

forming linear weighted least squares with a quadratic regularization term. As-

suming a linear form for the decision function h(x) = wT · x, this algorithm

works by choosing w to minimize the so-called weighted Ridge loss

L(w) =
m
∑

i=1

ρi(w · yi − h∗
i )

2 + α ||w||2 (4.37)
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where α is a learning parameter controlling the regularization.

This optimization problem is soluble in closed form. Introducing the data

matrix Y, the vector of target values H, and the diagonal matrix P with Pii = ρi,

we can write

L(w) = αwT w + (H − Yw)T P (H − Yw) (4.38)

Setting the gradient of L to zero yields the linear weighted Ridge Regression

solution for the decision function

h(x) = wT · x = HTPY
(

αId + YT PY
)−1

x (4.39)

where Id is an identity matrix of dimension d.

Like many algorithms in machine learning, Ridge regression may be “Ker-

nelized” by examining the form of the solution of the linear version and noting

that the training data appear only through their dot products. Replacing these

dot products with a Kernel function K(y1, y2) yields a nonlinear version of the

algorithm that implicitly maps the input data into a higher, possibly infinite

dimensional, space before performing weighted Ridge Regression. Applying the

matrix identity (I + AB)−1A = A(I + BA)−1, one may rewrite

h(x) = HT (αIm + PYYT )−1PYx (4.40)

As the i, j entry of YYT is yi · yj, it is replaced by K where Ki,j = K(yi, yj).

Similarly, replace Yx by the mx1 vector k(x) that has ith entry K(yi, x). With
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this notation, the weighted Kernel Ridge Regression solution is given by

h(x) = HT (αIm + PK)−1Pk(x) (4.41)

4.3.5 Results

The hybrid denoising procedure was applied to a collection of ten 256x256 pixel

test images that were corrupted with synthetically generated Gaussian white

noise. Original image pixel values ranged between 0 and 255. The same three

noise levels as in section 4.2.2 were used, with noise deviation σ = 20, 40 and 80.

For these numerical experiments, training and test image pairs were generated

by extracting two adjacent non-overlapping 256x256 pixel subregions from the

same 512x512 pixel test images that were used before in section 4.2.2.

The noisy training and test images, as well as the clean training image were

decomposed using the Steerable Pyramid representation with 3 scales and 2

orientation bands. 5x5 patches including one pair of “parent” coefficients at the

coarser scale are used, so each patch may be viewed as a vector in R
52. The

noisy training image was denoised with both the OAGSM and GSM denoising

methods, and at each location in space and scale the decision function target

value h∗
i was computed, as described in section 4.3.3. OAGSM covariances were

formed using winnowing, with threshold d∗
ori set to the 85th percentile value

at each scale. Distinct decision functions h were learned for each image and

at each scale. To form training features, the noisy patches were extracted at

each of the 3 scales. These noisy patches were then rotated by their dominant

orientation and the 52 coefficients of these rotated noisy patches were taken as
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the feature vectors for the learning problems. At each image scale, the rotated

patch features were scaled by a divisive constant to lie in the range [-1,1]. This

gave 65536 training examples for at the first scale, 16384 training examples at

the second scale and 4096 training examples at the third scale. Due to high

computational cost, the training examples at the first and second scale were

pruned to the 5000 with largest weights.

Gaussian kernels of the form K(xi, xj) = e−γ||xi−xj ||
2

were used for the

weighted Kernel Ridge Regression. Different values of the learning parame-

ters α and γ were used for different image scales and noise levels, however the

same parameters were used across the different images. The learning parame-

ters were selected by four-fold cross-validation on a single training image, using

the 3000 training examples with greatest weights at each scale. This was done

by dividing the 3000 training examples randomly into four pieces. Using par-

ticular values for the learning parameters γ and α, the weighted Kernel Ridge

Regression classifier was trained using 3/4 of the training data points. The er-

ror was then measured from using this classifier to predict the portion not used

for training. Averaging this over all four portions of the training data gave the

so-called cross validation error for the values of γ and α used. Cross-validation

was done for each point of a logarithmically spaced grid with α = [21, 22, ..., 210]

and γ = [2−5, 2−4, ..., 25] and the parameters yielding the lowest cross-validation

error were selected.

To obtain the final hybrid denoising results, the OAGSM and GSM denoising

estimates were computed for the noisy test images. Each test image patch was

then rotated by its dominant orientation and rescaled according to the divisive

constants calculated during training. The learned decision function for the
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Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 26.271 27.741 36.396 31.083 31.710 26.589 31.983 33.079 32.224 27.824
O/rot/w -0.294 0.005 0.033 -0.021 0.194 -0.188 0.626 0.048 0.217 -0.247
Hybrid 0.126 0.474 0.283 0.181 0.618 0.161 0.826 0.245 0.620 0.115
NC/rot/w 0.009 0.234 0.184 0.123 0.362 0.035 0.617 0.161 0.314 0.019

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 23.194 24.175 33.567 27.848 28.437 23.832 28.525 29.991 28.670 24.787
O/rot/w -0.185 0.007 -0.275 0.143 0.011 -0.136 0.331 -0.073 0.093 -0.212
Hybrid 0.068 0.356 0.260 0.256 0.451 0.076 0.713 0.186 0.434 0.084
NC/rot/w 0.007 0.173 0.187 0.144 0.251 0.022 0.387 0.119 0.195 0.014

Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10
GSM 21.107 21.348 29.991 25.219 25.494 21.934 25.504 27.116 25.527 22.434
O/rot/w -0.080 -0.115 -0.662 0.045 -0.127 -0.153 0.008 -0.330 -0.272 -0.245
Hybrid 0.057 0.175 0.161 0.316 0.275 0.008 0.404 0.086 0.144 0.020
NC/rot/w 0.012 0.074 0.075 0.108 0.165 -0.016 0.201 0.010 0.027 -0.021

Table 4.4: Hybrid denoising results. GSM results given in PSNR, other methods
are relative to GSM baseline. Results presented for noise levels σ = 20 (PSNR
22.0836 dB, top), σ = 40 (PSNR 16.063 dB, middle), σ = 80 (PSNR 10.0424,
bottom). OAGSM/NC results presented for comparison.

appropriate scale and noise level was then evaluated on these rotated patches,

and used to combine the OAGSM and GSM estimates to give a hybrid estimator

for each of the 3 scales. As both methods used the GSM estimator for the

highpass residual band, no adaptive combination was necessary for the highpass

band. Inverting the pyramid transform then gave the resulting denoised images.

For comparison, each of these images were also denoised with the OAGSM/NC

method.

Denoising results reported by PSNR are given in table 4.4. At all three noise

levels, the hybrid method shows significant improvement over both the GSM

and OAGSM. The hybrid method also outperforms the OAGSM/NC method

by up to 0.3 dB for some images. It should be noted that this is a somewhat

unfair comparison as the hybrid method had access to the clean training data

image, while the OAGSM/NC was computed entirely from the noisy test image.

Visual appearance of the hybrid method and the OAGSM/NC are actually quite
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similar. Both methods showing clear improvement over the baseline GSM result,

as can be seen in figure 4.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: 150x150 detail from hybrid denoising results for image #7. (a)
Original (b) Noisy σ = 40 (16.063) (c) GSM (28.525) (d) OAGSM (28.856) (e)
OAGSM/NC (28.912) (f) Hybrid method (29.238)
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Chapter 5

Conclusions and Future

Directions

Strongly oriented localized features are one of the most distinguishing charac-

teristics of natural photographic images. Accordingly, describing the orientation

at a particular location provides a significant amount of information about the

local signal content. In this thesis I have pushed this idea in two different, but

complementary directions.

On the one hand, I have shown that measuring and imposing a full set of local

multiscale orientation measurements completely constrains the resulting image.

The local multiscale orientations are measured by first building the two-band

Steerable Pyramid transformation of the image. As the filters of this transfor-

mation are first order derivative operators, the transform coefficients provide a

measurement of the image gradient at multiple scales. Transforming these gradi-

ent vectors into polar coordinates defines the magnitude and orientation bands.

I have shown that by starting with a random signal and repeatedly imposing
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the measured orientation bands, as well as the residual highpass and lowpass

information, it is possible to reconstruct the input image exactly. This yields a

novel deterministic representation of images based on purely geometric quanti-

ties. Reconstruction from these orientation measurements can be achieved by

starting with a random signal, building the SP transform, imposing the orien-

tations, inverting the transform and repeating. I have shown that this simple

algorithm operates by projection onto convex sets, and is thus guaranteed to

converge. Some methods for accelerating the convergence of this algorithm were

developed.

Although projection onto convex sets proves that the reconstruction algo-

rithm converges, it does not imply that the convergence will be unique. An-

alyzing the dynamics of the reconstruction algorithm provides a condition for

uniqueness of the representation. By translating a fixed point of the algorithm

to the origin and analyzing the “homogenized” dynamics, it was shown that the

representation will be unique if a certain operator has eigenvalues strictly less

than one. This condition may be verified numerically for specific images, thus

showing uniqueness of their orientation representations. This is an incomplete

result, however, as it does not provide a simple characterization of images for

which the orientation representation is unique.

It is simple to come up with certain images for which uniqueness will fail. In

particular, images which have been bandpass filtered such that their Steerable

Pyramid transforms have zero lowpass bands will fail to be uniquely deter-

mined by the orientation measurements. This is not unexpected, however, as

the orientation measurements are invariant under multiplication by a scalar con-

stant. This free constant was only pinned down by imposing the lowpass band.
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However, if the lowpass band is identically zero as for such bandpass images,

imposing it will fail to fix the overall free constant. For such images, however,

it was observed that running the reconstruction algorithm would converge to a

fixed point that was an exact scalar multiple of the original image. The precise

value of the multiple was dependent on the initial starting point. It is unclear if

this counterexample is the only type of image for which uniqueness fails. This

is an interesting question for further study.

This orientation representation has not yet been used for any image process-

ing applications. It is an open question if useful image manipulations can be

made by performing some processing in the “orientation domain” and then ap-

plying the reconstruction algorithm. One potential issue for this type of method

is that the reconstruction algorithm relied heavily upon the fact that the ori-

entations being imposed were consistent with some image in the image space.

If the orientations being imposed were obtained by some other manipulation,

this may no longer be the case. For such a situation, it is likely that some form

of “soft” imposition of the orientation data would be necessary, similar to that

used for the reconstruction from quantized orientations.

The second portion of the thesis focused on describing how knowledge of the

local neighborhood orientation can enable local adaptation of a stochastic image

model. Natural images are highly inhomogeneous, often showing quite different

local signal properties in different image regions. The models developed in this

thesis are based on the idea that much of the inhomogeneity present in images

may be explained by a few spatially varying hidden variables that parameterize

the local signal statistics. Natural images typically show significant spatial

variation in both local signal power and in local orientation. Constructing a
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probability model for the local signal content conditioned on the local power

and local orientation enables the development of an adaptive stochastic model.

This type of conditional model is an answer to the question, what do I know

about the signal given that I know the local neighborhood orientation and local

power? The previous orientation representation work shows that if all of the

local orientations at every scale are fixed, then the entire image signal is known

exactly. However, if only the current dominant neighborhood orientation is

specified, then the image signal is not completely constrained.

All of the stochastic models in this work are models for small patches of im-

age wavelet coefficients. By setting the signal model conditioned on the hidden

variables to be Gaussian, the complete density becomes a Gaussian mixture.

In the first model developed in this thesis, each signal patch is described as a

sample from a single, uniform multivariate Gaussian process that is scaled and

rotated by the hidden variables controlling local power and orientation. While

this OAGSM model provides a good description of oriented signal regions, many

images contain significant non-oriented regions that are not well described by

the OAGSM. Introducing a third hidden variable that models the “orientedness”

of each patch leads to the OAGSM with non-oriented component model. Both

of these are Gaussian mixture models, where the covariances of the components

are parameterized by hidden variables that describe the local signal properties.

These models are used for denoising images corrupted by additive Gaussian

noise, by using them as signal priors for a Bayes least squares estimator. The

performance of these methods was compared to denoising based on the Gaussian

scale mixture model, which is similar in form but without adaptation to local

orientation. For images with significant oriented content, the OAGSM method
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performs better. However for images dominated by non-oriented textures, the

OAGSM method introduces inappropriate oriented artifacts, and can perform

worse than the GSM method in some cases. These issues are resolved by the

OAGSM/NC, which is able to adapt between oriented and non-oriented local

signal, and accordingly shows consistent improvement over the GSM for all of

the test images used.

This adaptive selection between two different local denoising methods was

studied from another angle, using the formalism of machine learning. The

spatial adaptation can be placed into a locally varying decision function that

interpolates two specified local denoising methods. Setting up the problem this

way, one seeks to learn a decision function that yields low total denoising er-

ror. Given access to a clean training image, by corrupting it with noise and

denoising with the two given methods, one can learn where the strengths and

weaknesses of each method are. This was set up as a supervised learning prob-

lem, and solved using the weighted kernel ridge regression algorithm. When

applied using the OAGSM and GSM denoising methods, the resulting hybrid

denoiser outperformed both of these two base methods, as well as beating the

the OAGSM/NC.

The methods developed in this thesis provide a set of interesting and novel

tools for using local orientation to model images. There are many opportuni-

ties for expanding upon the current work. It is straightforward to sample an

isolated image patch from the OAGSM model. This suggests it may be useful

for synthesizing image data in areas where one can make a good prediction of

the local orientation. As orientations may be predicted across image scales,

the OAGSM model may be useful for image super-resolution problems. For
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this problem, one seeks to estimate a high resolution version of a given image.

Super-resolution is equivalent estimating one or more levels of “missing” sub-

bands of wavelet coefficients at the finer spatial scales. It may be possible to

first predict the orientation of the fine scale information from the known coarse

scales, then sample the fine scale coefficients using the OAGSM model. One

issue that will necessarily arise when using sampling from the OAGSM model

to estimate an entire image subband is how to address the overlap of neighbor-

ing patches. One possible method for addressing this, without the significant

complexity of building a entire global probability model, may be to fill in the

subband coefficient by coefficient, ordered according to some measure of confi-

dence in the ability to estimate a reasonable value. One such scheme may be

to sample each coefficient using a generalized neighborhood that may include

previously filled in coefficient values. Sampling may then be done using the

OAGSM distribution conditioned on the previously filled in coefficient values.

For all variants of the OAGSM and OAGSM/NC models considered, the

prior densities for the z and θ hidden variables were fixed over the entire image.

Additionally, no spatial interactions between the hidden variables were intro-

duced. One possible way of introducing some spatial communication between

different patch locations would be through modulating the hidden variable prior

densities based on nearby regions. For instance, the presence of a single strongly

oriented region may indicate that coaligned patches are likely to have similar

orientations. This could be gently encouraged through re-weighting of the priors

over θ in the adjoining coaligned regions. A more radical modification would be

to model the hidden variables z and θ as a random field, perhaps as a Markov

random field. Using Markov Chain Monte Carlo techniques, samples may be
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drawn from the field. In this case, the denoising estimate at each location would

be given by the average of Weiner estimates corresponding to each hidden vari-

able, weighted by the relative frequency of their appearance as samples from the

random field. This idea is related conceptually to recent work by Lyu and Si-

moncelli, who achieved very good denoising results using a two stage hierarchical

Markov random field model where one of the stages acts as a hidden multiplier,

similar in spirit to z in this thesis, modulating a homogeneous Gaussian Markov

random field [29].

The OAGSM/NC model hidden variables included the variable δ, which

modeled the orientation of the patch. In this model δ was constrained to be a

binary variable. An interesting problem would be to estimate signal covariances

that are able to smoothly interpolate between oriented and non-oriented. One

possible approach to this is suggested by the orientedness measurement dori.

One could estimate a signal covariance C(d∗) adapted to a certain orientedness

d∗ by using only patches with satisfying dori ∈ [d∗ − ǫ, d∗ + ǫ].
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Appendix A

Cosine Tiling

I seek to calculate
K
∑

k=1

cos

(

θ − kπ

K

)2(K−1)

(A.1)

Using cos(θ) = 1
2
(eiθ + e−iθ), this is

K
∑

k=1

(

1

2

(

eiθ− kπ
K + e−i(θ−nπ

K
)
)

)2K−2

(A.2)

Applying the binomial theorem, this may be expanded as

1

22(K−1)

K
∑

k=1

2K−2
∑

m=0

(

2K − 2

m

)

ei(θ− kπ
K

)me−i(θ− kπ
K

)(2K−2−m) (A.3)

Interchanging the order of sums and simplifying yields

1

22(K−1)

2K−2
∑

m=0

[

(

2K − 2

m

)

ei2(m+1−K)θ

K
∑

k=1

e−ik(m+1) 2π
K

]

(A.4)
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Now note that the inner sum over k is a geometric series, namely

K
∑

k=1

e−ik(m+1) 2π
K =

K
∑

k=1

zk
m (A.5)

for zm = e−i(m+1) 2π
K . Using the sum formula for a geometric series

∑K
k=1 zk =

z
(

zK−1
z−1

)

gives

K
∑

k=1

e−ik(m+1) 2π
K = e−i(m+1) 2π

K
(e−i(m+1) 2π

K )K − 1

e−i(m+1) 2π
K − 1

= 0 (A.6)

which is valid for m 6= K − 1. For m = K − 1, e−ik(m+1) 2π
K = 1 and the sum in

(A.5) equals K. We thus have

K
∑

k=1

e−ik(m+1) 2π
K = Kδm,K−1 (A.7)

Substituting this into (A.4) gives

K
∑

k=1

cos

(

θ − kπ

K

)2(K−1)

=
1

22(K−1)

2K−2
∑

m=0

(

2K − 2

m

)

ei2(m+1−K)θKδm,K−1

=
K

22(K−1)

(

2K − 2

K − 1

)

(A.8)

the desired identity.
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Appendix B

Steering

This section explains how to calculate steering coefficients ck(φ). These satisfy

cosK−1(θ − φ) =
K
∑

k=1

ck(φ) cosK−1 (θ − θk) (B.1)

where θk = (k−1)π
K

. First note that we may decompose

cosK−1 (θ − x) = (cos(θ) cos(x) + sin(θ) sin(x))K−1

=
K−1
∑

j=0

(

K − 1

j

)

(cos(θ) cos(x))j(sin(θ) sin(x))K−1−j

=
K
∑

j=1

aj(x)fj(θ) (B.2)

with aj(x) =
(

K−1
j−1

)

cosj−1(x) sinK−j(x) and fj(θ) = cosj−1(θ) sinK−j(θ). Any

translate of cosK−1(θ) can thus be written as a linear combination of the K

functions fj(θ).

The ck(φ) can be calculated by expressing all of the cosine powers in terms
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of this basis. Applying the decomposition (B.2) to both the left hand and right

hand sides of (B.1) gives

K
∑

j=1

aj(φ)fj(θ) =
K
∑

k=1

ck(φ)
K
∑

j=1

aj(θk)fj(θ) (B.3)

As the fj(θ) are linearly independent, this implies that

K
∑

k=1

aj(θk)ck(φ) = aj(φ) (B.4)

for j = 1...K. This can be interpreted as a linear matrix equation. Defining the

matrix A and the vectors c(φ) and a(φ) by (A)j,k = aj(θk), (c(φ))k = ck(φ) and

(a(φ))j = aj(φ), the solution of (B.4) may be written as

c(φ) = A−1a(φ)

which gives the steering coefficients ck(φ).
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Appendix C

Tight Frame Operators

Here I define and prove a few relevant properties of tight frame linear operators.

Let X and Y be Hilbert spaces with associated inner products <,>X and

<,>Y and resulting norms || · ||X and || · ||Y . A linear map A : X → Y is said

to be a frame if there exist positive constants C1 and C2 such that

C1||Ax||Y ≤ ||x||X ≤ C2||Ax||Y (C.1)

for all x ∈ X. The second of these inequalities implies that a frame is a bounded

operator. The first implies that A cannot have a nontrivial null space. In

particular, one must have dim(Y ) ≥ dim(X). If the frame bounds C1 and C2

are equal, then A is called a tight frame, and then for all x ∈ X

||x||X = C||Ax||Y (C.2)

The work in this thesis makes extensive use of the following two properties of

tight frame operators.
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Property 1 : 1
C
A† : Y → X is a left inverse for A, i.e. A†A = CIX .

Proof : A†A is self-adjoint and can thus has a full set of eigenvectors. It

then suffices to show that all of the eigenvalues are equal to C. Letting v be

any such eigenvector, with A†Av = λv. Taking inner products with v gives

λ < v, v >X =< A†Av, v >X (C.3)

=< Av,Av >Y (C.4)

= C < v, v >X (C.5)

using the properties of the adjoint and that A is a tight frame. This shows

λ = C for every eigenvector v. �

Property 2 : Let U = A(X) be the image of X under A. Then AA† is an

orthogonal projection from Y onto U.

Proof : Write y = Ax + n, where x ∈ X (and so Ax ∈ U) and n ∈ U⊥.

AA† will be an orthogonal projection onto U iff AA†y = Ax. One has AA†y =

A(A†A)x + AA†n = Ax + AA†n, as A†A = IIm. It remains to show AA†n = 0.

Examine

∣

∣

∣

∣AA†n
∣

∣

∣

∣

2
=
〈

AA†n,AA†n
〉

Y

=
〈

n, (AA†)†AA†n
〉

Y
=
〈

n,A(A†A)A†n
〉

Y

= C
〈

n,AA†n
〉

Y

where I have used AA† = CIX . As A†n ∈ X, AA†n ∈ U . But as n ∈ U⊥,
〈

n,AA†n
〉

Y
= 0. This shows that AA†n = 0. �
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[32] Stéphane Mallat. A theory for multiresolution signal decomposition: the

wavelet representation. IEEE Pattern Analysis and Machine Intelligence,

11(7), 1989.

[33] Geoffrey J McLachlan and Thriyambakam Krishnan. The EM Algorithm

and Extensions. Wiley Interscience, 1997.

[34] Yves Meyer. Wavelets and Operators. Cambridge University Press, 1993.

[35] Yves Meyer. Oscillating patterns in image processing and nonlinear evolu-

tion equations : the fifteenth Dean Jacqueline B. Lewis memorial lectures.

American Mathematical Society, 2001.

[36] Pierre Moulin and Juan Liu. Analysis of multiresolution image denoising

schemes using generalized gaussian and complexity priors. IEEE Transac-

tions on Information Theory, 45:909–919, 1999.

[37] D Mumford and J Shah. Optimal approximations by piecewise smooth

functions and associated variational problems. Communications of Pure

and Applied Mathematics, 42:577–685, 1989.

[38] A.V. Oppenheim and J.S. Lim. The importance of phase in signals. Pro-

ceedings of the IEEE, 69:529–541, 1981.

187



[39] William B Pennebaker and Joan L Mitchell. JPEG still image data com-

pression standard. Van Nostrand Reinhold, New York, 1993.
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