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Abstract
Range Estimation by Optical Differentiation
Hany Farid

FEero P. Simoncelli

We describe a novel formulation of the range recovery problem based on computation of
the differential variation in image intensities with respect to changes in camera position
(or aperture size). This method uses a single stationary camera and a pair of calibrated
optical masks to directly measure this differential quantity. The subsequent computation
of the range image involves simple arithmetic combinations, and is suitable for real-time
implementation. Both the theoretical and practical implications of this formulation are

addressed.
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Overview

This thesis focuses primarily on the problem of estimating the three-dimensional properties
of visual scenes from digital imagery (i.e., range). We present a novel formulation of
the range recovery problem based on computation of the differential variation in image
intensities with respect to changes in camera position (or aperture size). This method uses
a single stationary camera and a pair of calibrated optical masks to directly measure this
differential quantity. More specifically, we show that the spatial derivative of the image
formed under an optical attenuation mask, M, is related by a scale factor, a, to a second
image formed under the derivative mask M’'. Where the scale factor, o, is monotonically
proportional to range, Z. This simple relationship is illustrated in the figure below. Note
that the derivative with respect to camera position, I,, is measured optically by simply

imaging through the mask M'!

‘ M /\ " Optical Mask

P Point Light Source

d/dx

T v Sensor (Image Plane)

JA Ix = 4 Range

\Y4

By way of introduction, the first chapter reviews the basic geometry, physics, and math-
ematics of image formation. Wherever possible, these concepts have been placed within
a common linear algebraic framework. The final section of this chapter introduces some
important new ideas regarding the design of discrete differential operators. The second

chapter presents several standard range estimation techniques (stereo, motion, focus, and



defocus), and concludes with the observation that all of these techniques amount to mea-
suring changes (i.e., derivatives) with respect to different parameters. In the final chapter,
we explore fully the concept of optical differentiation and its application to range esti-
mation. All of the assumptions and constraints for this technique are made explicit and
their effect on the overall system carefully studied. The theory of range estimation by
optical differentiation is validated through simulation and experimentation. Portions of
Chapter 1 have appeared in [Farid 97] and [Farid 96a, Farid 96b, Farid 96¢|, and portions
of Chapter 3 have appeared in [Simoncelli 95, Simoncelli 96b, Farid 96d].
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Contributions

Below are what we consider the major contributions of this work:

1. We introduce a novel formulation of the range recovery problem based on optically
measuring the differential variation in image intensities with respect to viewing posi-
tion (as in range from stereo or motion) or aperture size (as in range from defocus).

Some advantages of this approach are:

(a) The technique requires only a single stationary camera.
(b) Only two images are required for the determination of range.

(c) The computations are simple and analytic (a few 1D convolutions and arithmetic

combinations of the pair of images).

(d) Because of its simplicity, this technique is amenable to a real-time implementa-

tion.

2. As compared to classical stereo approaches, this new formulation completely avoids
the difficult and computationally demanding correspondence problem. In addition,
with only a single camera, the extrinsic calibration of a stereo camera pair is unnec-

essary in our configuration.

3. We carefully outline the constraints inherent to this system and study how violations
of these constraints effect the overall system. We also develop techniques for either

eliminating or relaxing many of these constraints.

4. The basic formulation and sensitivity analysis are verified extensively in simulation.
We also verify this technique experimentally with a prototype range camera of our

construction.

5. Building on the work of [Simoncelli 94|, we have derived a set of higher-order, multi-
dimensional derivative/prefilter pairs. These filters are optimally designed (in a least-
squares sense) to preserve the necessary derivative relationship between the derivative
and prefilter. Although somewhat peripheral to the basic range estimation work, the

filters were employed in this work (and should be of general interest to others).

xii



6. By way of introduction, we review the image formation process and formulate this
process within a linear algebraic framework. Several other fundamental tools in signal
and image processing are also reviewed and cast in a linear algebraic framework. Also
by way of introduction, a variety of range estimation techniques are reviewed, and
it is argued that each of the techniques can be thought of in a common differential

framework: that of measuring change with respect to various imaging parameters.

xiii



Notation

For reference, the figure below provides the mathematical notation adopted throughout

this document. Any deviations from this notation are noted.

the complex numbers

V-1

the real numbers

the integers

convolution (h(z) = (fxg)(z))
inner product

cross product

defined

approximately

proportional

m
o

B RNVED I S

n-dimensional column vector
n-dimensional row vector

=SSR R X

M, xm n row by m column matrix
Mt matrix transpose
1 matrix inverse

p=(z y) point in 2-D sensor coordinates
P=(X Y Z)"| pointin 3-D world coordinates

glay,...,an) n-dimensional function

G(Ways -y Way) Fourier transform of g(aq, ..., a,)

Re(-) real portion of a complex number

Im(-) imaginary portion of a complex number

4Q] magnitude of Fourier transform: \/Re(G(-))%? + Im(G(-))?
<G() phase of Fourier transform: tan™! (%ﬂ;(%—%))

f0) function of unspecified arguments

F6) first derivative of f with respect to its argument
') second derivative of f with respect to its argument
) n-th derivative of f with respect to its argument
Do, (f(aq,...,a,)) | partial derivative of f with respect to a;

Sfai(a1, .., ap) partial derivative of f with respect to a;

cn a function is C'™ if its first n derivatives exist

f) a discretely sampled function

Figure 0.1: Mathematical Notation.
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Chapter 1

Introduction

We are primarily interested in computational methods for passive depth estimation. This
is a problem with which we are all familiar; taking advantage of several cues, our visual
system is able to determine, with remarkable accuracy, absolute and relative distances
between objects. ! For example, an outfielder attempting to throw out a base runner
must judge the absolute distance between himself and the base to which the runner is
headed. Alternatively, when placing the cap on a pen, we must make relative judgments
as to the distance between two objects. In both cases, our visual system performs such
tasks with remarkable ease and with seemingly little effort. Without the benefit of a few
million years of evolution and the seemingly infinite wisdom of Nature, computational
approaches to depth estimation have not yet achieved such remarkable performance.
Although not specifically motivated by the human visual system, we have strived to
develop a computationally simple and elegant solution that would be amenable to a real-
time implementation, and still allow for quantitative analysis of the assumptions, limita-
tions and errors. The third and final chapter of this document provides the full details
of our proposed solution: the anxious reader is welcome to skip to this point and avoid
the first two chapters which contain a variety of fundamental ideas and tools in optics

and signal/image processing (Chapter 1), as well as a review of several general classes of

!To illustrate the remarkable accuracy with which we are able to make relative depth judgments, consider
a pair of pencils placed side by side one meter away from you. Our visual system is able to determine if
the pencils are displaced by as little as 1 millimeter in depth from one another. This corresponds to a
discrimination of one-tenth of one percent, and on our retina the difference in disparity is less than four
ten-thousandths of a millimeter. This distance is many times smaller than the diameter of a single visual
receptor!
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Figure 1.1: Image Formation. Illustrated are the three components of image formation
which will be addressed in this chapter: Geometry, Physics, and Mathematics.

depth estimation techniques (Chapter 2). Combined, these two chapters will provide the
necessary background for Chapter 3.

In order to appreciate the difficulties involved in range estimation, we begin by review-
ing the process of image formation. The relevant characteristics of each stage of image
formation can be conveniently described in three broad categories: geometry, physics, and
mathematics. As illustrated in Figure 1.1, the geometry describes how light is collected
by the camera, the physics specifies how the incoming light is stored and transformed
into a digital signal, and the mathematics (i.e., sampling theory) provides us with a set
of tools for understanding the transformation from a continuous signal to a discrete signal
(i.e., from the intensity of the light to a digital image). Each of these stages is presented
according to the standard formulations, and because many aspects of image formation are

linear, these stages are recast in a linear algebraic framework.

1.1 Image Formation: Geometry

This section reviews the geometry and projection equations for four standard models of
image formation: (1) pinhole under perspective projection, (2) orthographic projection,
(3) para-perspective projection and (4) thin lens 2.

The following standard conventions are adopted. P = (X Y Z)" denotes a point
in the three-dimensional world, and p = (z y)t indicates the position of its projection

onto a two-dimensional imaging sensor. The world and sensor coordinates are relative to

?More sophisticated models of image formation that consider thick-lens distortion (e.g., [Stevenson 95])
are not considered here.



their own coordinate systems. As illustrated in Figure 1.2, the sensor coordinate system
is selected to be the plane Z = d;, where d; is the distance from the point (0 0 0 )t to
the sensor plane along the Z—axis (the optical axis), and its origin, (0 0)", lies along the

Z-axis. 3

1.1.1 Pinhole Model Under Perspective Projection

According to a pinhole camera model under perspective projection, light rays travel
from a point in the three-dimensional world through an ideal, infinitesimally small, pinhole
until they intersect the sensor plane (Figure 1.2). The perspective projection equations
are given by:

ds X

dsY
T=— and y=—7 (1.1)

where d, is the distance from the pinhole to the sensor plane along the optical axis 4. The
perspective projection equations may be derived simply from a similar triangles argument.
Although the perspective projection equations are non-linear, they may be expressed

in matrix form using the homogeneous equations:

X
zy d, 0 0 0
Y
gy | = |0 d 0 0 , (1.2)
Z
s 0 0 1 0
1

where the final image coordinates are given by (z y)' = (2 %)

1.1.2 Orthographic Projection

Under orthographic projection, light rays from a point in the world travel parallel to the

optical axis until they intersect the sensor plane (Figure 1.2). The orthographic projection

®The choice of a sensor coordinate system is of course arbitrary, the Z = d, plane is chosen to simplify
the transformation from world to sensor coordinates.

*The perspective projection equations are frequently written with the parameter f, referred to as the
focal length, in place of d.. We do not adopt this convention for two reasons: (1) it is a misnomer, under
the pinhole model all points are imaged in perfect focus and (2) it is inconsistent with the thin-lens model
which distinguishes between focal length, f, and lens to sensor distance, d.
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Figure 1.2: Perspective and Orthographic Projection. Illustrated are the projections of
a point, P, in the three-dimensional world under perspective (§) and orthographic (o)
projection. Points in the world and sensor are specified relative to their own coordinates
systems, (X Y Z) and (2 y), respectively. Under perspective projection, light rays
pass through an infinitesimally small pinhole. Under orthographic projection, light rays
travel parallel to the optical axis. See Equations (1.1) and (1.3) for the projection equations.

equations are given by:
r=X and y=Y. (1.3)

Note that this simple form of the projection equations comes directly from our convenient
choice of coordinate systems. These projection equations are linear and may also be

expressed in matrix form as:
X
( x ) ( 1 00 ) (1.4)
= Y 1.4
Y 0 1 0
7
Orthographic projection is a reasonable approximation to perspective projection when
the difference in depth between points in the world is small relative to their distance to the
sensor. In the special case when all the points lie on a frontal-parallel surface relative to
the sensor plane (i.e., d7 is constant in Equation (1.1)), the difference between perspective
and orthographic is only a scale factor, m = d7
Between orthographic and perspective projection is para-perspective. Under this model,
points in the world are projected under orthographic projection to a single plane in the

world and then projected under perspective projection to the sensor plane. The para-

perspective projection equations amount to orthographic projection “plus” a scale factor,



m = %—;, where Zg is the position of the initial projection world plane. Since this projection

is also linear, it can be represented in matrix notation:

X
x m 0 0
= Y (1.5)
Y 0 m O
Z
Both the orthographic and para-perspective projection equations are linear, however, the
addition of a scale factor makes para-perspective a better approximation to the non-linear
perspective projection equations.
Under perspective, para-perspective and orthographic projection, each point in the
sensor plane corresponds to a single light ray striking the sensor. However, in standard
imaging systems each point in the sensor corresponds to the average intensity from a

collection of light rays. Although still an idealization, the thin lens model described next

is a more accurate model of image formation.

1.1.3 Thin Lens

Light emanates from a point in all directions, and the pinhole camera model described
above captures this light from a single direction. In contrast, a lens collects light from
many directions and focuses the light to a small region on the sensor. An ideal thin lens
brings into perfect focus (i.e., a single point) the light emanating from a point at a depth
of d, satisfying the following lens equation (Figure 1.3):

1 N 1 (1.6)
dy ~ds —f’ '
where d; is the distance to the sensor plane from the center of the lens along the optical

5

axis, and f is the focal length of the lens °. Points at a depth of Z # d, are imaged as

blurred circles © with a radius r:

= gl el @)
F T Z

®The focal length is the distance from the sensor to the lens along the optical axis where the image of
an object that is infinitely far away is imaged in perfect focus. This definition is merely a restatement of
Equation (1.6), where if dl—o =0, then d. = f.

5The modeling of the blur as a blurred circle is only an approximation to the point spread function of
the camera (i.e., the image of a point source).
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Figure 1.3: Thin Lens. Illustrated is the projection of a point, ]3, in the three-dimensional
world under the thin lens model. A lens collects light emanating from each point in the
world from a continuum of directions and focuses them to a small region on the sensor
plane. See Equations (1.6) and (1.7) for the projection equations.

where R is the radius of the lens. This relationship is easily derived from the imaging
geometry. Equivalently, the image formation through a thin-lens may be considered in
reverse. In particular, the intensity at each point in the sensor is determined from a

weighted integral of the light emanating from a small surface patch in the world.

Under this model the projection of a point P= (X Y Z )t in the world is centered
about the point (z y)' = (% % )%, i.e., the perspective projection of the principle
ray passing through the center of the lens (Equation (1.1)). Note that the pinhole model
under perspective projection is simply a special case of the thin-lens model. In particular,

a pinhole is a lens with an aperture stopped down to allow only a single light ray, the

principle ray, to pass.

As in the case of perspective, orthographic, and para-perspective projection, the thin-

lens equations are linear and can thus be written in matrix form:

() = iy 2)a) 19
a; —g () m ) \ay ) '

where R is the radius of the lens, 7y and ny are the index of refraction for air and the lens
material, respectively. [y and [y are the height at which a light ray enters and exits the
lens (the thin lens idealization ensures that [ = l3). ay is the angle between the entering
light ray and the optical axis, and a3 is the angle between the exiting light ray and the

optical axis.



1.1.4 Non-Invertibility of Image Formation

Image formation, independent of the particular model, is a three-dimensional to two-
dimensional transformation (i.e., the sensor plane is two-dimensional). Inherent to such a
transformation is a loss of information: the information lost is the distance to the objects
in the world. Specifically, under perspective and thin-lens projection all points of the form
P = (¢X ¢Y ¢Z), forany ¢ € R, are projected to the same point (z y)".” Similarly,
under orthographic and para-perspective all points of the form P = (X Y )t, for
any ¢ € R, are projected to the same point ( y)t. In either case, the projection is not
one-to-one and thus not invertible.

In addition to this geometric argument for the non-invertibility of image formation,
a similarly straight-forward linear algebraic argument holds. In particular, we have seen
that the image formation equations may be written in matrix form as, p' = lwnxm];, where
n < m (Equations (1.2),(1.4), and (1.5)). Since the projection is from a higher dimensional
space to a lower dimensional space, the matrix M is not invertible, and thus the projection
is not invertible.

Up to this point we have concentrated on the geometric rules governing the formation
of images through various camera models. We have neglected to discuss the process by
which digital or discretely sampled images are actually formed, that is, the process by
which the light rays striking the sensor plane are converted into a digital image. The
following section reviews these principles, followed by the mathematics of image formation

(i.e., sampling theory).

1.2 Image Formation: Physics

Along with the moon landing and Woodstock, 1969 saw the appearance of the first paper
on the charge-coupled device (CCD) [Sangster 69] . Although the latter likely received
less publicity, CCD technology has had a widespread technological impact over the past
25 years. Since many of the details of this technology are not critical to the understanding

of our work, this section will focus only on the basic principles.

" Although it is true that under the thin-lens model the principle rays of all points, ﬁc, are projected to
the same sensor point, the blur radius is a function of ¢ (i.e., the distance to the sensor plane). However,
this information is lost when the light rays are averaged at the sensor plane.
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Figure 1.4: Metal-Oxide Semiconductor. Illustrated is a 5 x 5 CCD (left). Each element
of the CCD array is a metal-oxide-semiconductor (MOS) capacitor that stores charge pro-
portional to the intensity of the incoming light (top right). The stored charged is then
transferred along a row of the CCD, and converted to a voltage by an amplifier (bottom
right); see also Figure 1.5. An analog-to-digital converter translates the voltage into a
digital number (i.e., the intensity value of a pixel); see Section 1.3 for more details on
analog-to-digital conversion.

A basic CCD consists of a series of closely spaced metal-oxide-semiconductor (MOS)
capacitors (Figure 1.4). A CCD is a simple charge storage and transport device: charge is
stored on the MOS capacitors and then transported across these capacitors for readout and
subsequent transformation to a digital image. More specifically, when a positive voltage,
Vy, is applied to the surface of a P-type MOS capacitor, positive charge migrate toward
ground. The region depleted of positive charge is called the depletion region (Figure 1.4).
When photons (i.e., light) enter the depletion region, the electrons released are stored in
this region. The value of the stored charge is proportional to the intensity of the light

striking the capacitor.

A digital image is formed by transferring the stored charge from one depletion region
to the next (first introduced by [Boyle 70]). The stored charge is transferred across a series

of MOS capacitors (e.g., a row or column of the CCD array) by sequentially applying
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Figure 1.5: Mechanical Analog to CCD Charge Transfer. Illustrated is an analogy to the
transfer of charge across a series of MOS capacitors (Figure 1.4). The number 3 pistons are
analogous to the MOS capacitors, the number 1, 2, 4 pistons prevent neighboring charge
from mixing as they are being transferred, and the small black dots represent the stored
charge.

voltage to each MOS capacitor. A simple mechanical analog is illustrated in Figure 1.5,
where the number 3 pistons are analogous to the MOS capacitors, the number 1, 2, 4
pistons prevent neighboring charges from mixing, and the small black circles represent the
stored charge. As a charge passes through the last capacitor in the series, an amplifier
converts the charge into a voltage. An analog-to-digital converter translates this voltage
into a number (i.e., the intensity of an image pixel); see the next section for more details

on analog-to-digital conversion.



1.3 Image Formation: Mathematics

Having discussed the geometry and physics of image formation, only the mathematical
theory remains. In particular, this section presents the mathematical theory underlying
the sampling of a continuous signal (in our case, the sampling of light by the CCD camera).
Since sampling may result in a loss of information, it is important to understand precisely
what information, if any, is lost during the image formation process. For a more extensive
coverage of this material see [Oppenheim 89]. Discussion of this material also provides
a convenient platform for reviewing two standard tools in signal and image processing,
namely, convolution and Fourier transforms — these tools are used extensively in subsequent
chapters. As in previous sections, each of the concepts introduced is considered within a

linear algebraic framework.

1.3.1 Sampling

In the image formation process described above an analog (continuous) signal is sam-
pled and converted into a digital (discrete) signal. Underlying this process is a beautiful
and elegant mathematical theory which is presented next. For notational clarity, the pre-
sentation is in 1-D, the principles extend naturally to higher dimensions.

Throughout this section a continuous signal will be denoted as f(x), and its discretely
sampled counterpart will be denoted as f. Mathematically, the sampling of f(z) may be
denoted as:

f@) = 3 J0T) 8- k), (L9)

k=—c0
where T is the sampling period (1/7 is the sampling frequency), and §(¢) is a unit-impulse

function defined as:

_ 1, ©=0
5(a) = ¢ (1.10)
0, YzeZ, 2#0

The unit-impulse should not to be confused with the more common infinite Dirac delta

function. Alternatively, the sampling process can be described by a simple product of the

10



Continuous Impulse Train Discrete

Figure 1.6: Sampling. Illustrated, from left to right: a continuous signal, f(z) = sin(3z), a

unit-impulse train, $(x), and the discretely sampled function, f(z), computed by multiplying
the sinusoid and the impulse train (see Equation (1.11)).

original continuous signal and a unit-impulse train:

Ha) = f(2)-5(), (1.11)
where the unit-impulse train is defined as:

1, a=kT, ke Z
s(z) = (1.12)
0, otherwise
A system which implements this operation is referred to as a continuous-to-discrete-time
or analog-to-digital (A/D) converter. Figure 1.6 illustrates an example this process.

In general, the sampling process is not invertible, that is, given a discrete signal, f(z),
it may not be possible to uniquely reconstruct the original continuous signal, f(z). It may
be somewhat surprising then to learn that under certain conditions it is possible to recon-
struct f(z) exactly from f(z). Under such conditions, the continuous signal is completely
characterized by its discretely sampled counterpart. To better understand how this recon-
struction is accomplished, it is helpful for readers to be familiar with the basic principles of
convolution and the Fourier transform. Those familiar with these basic principles should

certainly skip the next two sections.

Convolution

Convolution is arguably the most fundamental operation in signal and image processing.

This linear operation takes as input a signal, f(z), (for our purposes, a discrete signal),

11



Original Signal Filter Convolved Signal

Figure 1.7: Convolution. Illustrated from left to right: an arbitrary signal, a convolution

filter (or kernel), and the result of applying the filter to the signal via a convolution (Equa-

tion (1.13)). Note that the effect of this particular filter is to average or blur the signal

(i.e., a low-pass filter that removes the high frequency content in the signal).
and a discrete filter, h(z), and returns the result of “applying” the filter to the signal as
follows:

st — p—
g@) = Y Fh(z— k). (1.13)
k=—c0

This operation is frequently denoted as g(z) = (f x h)(z). The convolution operation
amounts to “sliding” the filter across the signal, and at each position computing an inner
product between the filter and the underlying signal. The result of the inner product,
a scalar, is the value of the new signal for the position at which the filter is centered.

Mlustrated in Figure 1.7 is an example of a signal, a filter, and the result of convolving

the two. Since convolution is a linear transformation it may be expressed as a matrix

operation:
h(m) 0 0 0 0 0 0
) R(m—1) R(m) 0 0 0 0 0 3
92) = h(1) h(m) 0 0 0 0 1)
. 0 h(1) h(m) 0 0 0 o)
0 0 0 0 A1) h(m)
g = MfJ, (1.14)

where the rows of the matrix contain translated copies of the convolution filter (this expres-

sion assumes finite length signals and filters, and makes an arbitrary choice of boundary

12



handling to ensure that the convolution matrix is square). This formulation makes it
clearer that convolution is an invertible process, that is, given the filter (i.e., the matrix
M) and the results of the convolution, ¢, the original signal, fcan be reconstructed exactly.

That is, we need only invert the matrix M and premultiply with § to recover f 8

Fourier Transform

This section begins by exploring the Fourier series and then deriving the Fourier trans-
form. More specifically we describe the Discrete-Time Fourier Transform (just one of four
possible formulations). Our discussion begins with a simple (and perhaps somewhat sur-
prising) fact; any periodic and continuous signal (with period 7') can be written as a sum
of scaled and phase shifted cosines of varying frequencies:

oo
flz) = chcos(kwx—l—qbk), (1.15)

k=0
where, w = 2%, the coefficients ¢, are in R, and, since f(z) is periodic, only & € [0,7]
need be considered. It is sometimes desirable to express Equation (1.15) in terms of
sine and cosine functions. ® Recalling that cos(A + B) = cos(A) cos(B) — sin(A) sin(B),

Equation (1.15) may be rewritten as:

Z cr, cos(¢r) cos(kwa ) + ¢ sin( @) sin(kwa)
k=0

f(z)

= Z a cos(kwz ) + by sin(kwz). (1.16)
k=0

This is the Fourier series and the values aj and by are the Fourier coeflicients. Illustrated in
Figure 1.8 is a simple example of a Fourier series, where the signal on the left is expressed
as a weighted sum of a constant function (i.e., k = 0) '° and the sine and cosine of the first

and second harmonics (i.e., k = 1,2). Note that the by term is not present since sin(0) = 0.

8Given that convolution preserves dimensionality (i.e., §and fhave the same dimension) the convolution
matrix is square, and also full rank (assuming that % is not identically zero), and therefore guaranteed to
be invertible. In practice, determination of the original signal, f_: from the convolved signal, §, also requires
that the Fourier transform of the filter A be non-zero for each frequency (see next section on Fourier
Transforms).

?One benefit of expressing the Fourier series in terms of sine and cosine is the elimination of the phase
term, ¢, resulting in a fixed basis set.

1°The first term in the series (i.e., K =0) is commonly referred to as the dc-component.
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f(z) constant

cos(x) sin()
T w + b

cos(2z) sin(2z)
+ ap + by

Figure 1.8: Fourier Series. Illustrated is the Fourier series expansion of the signal f(z),
with period T' = 27 (Equation (1.16)). True to the figure, f(z) is constructed by literally
adding together weighted (by aj and bj) combinations of the constant, sine, and cosine
functions.

Equation (1.16) provides a simple expression for computing f(z) if the coefficients ay
and by, are known. The question now is, given f(z), how can the coefficients be determined?
Of course, Fourier discovered a simple method for computing the coefficients: the Fourier
transform. The first coeflicient in the series, ag (the by term can be ignored since sin(0) = 0)

is the mean of the signal over one period (i.e. t =0to ¢ =1"):

a6 = %/()de f(a). (1.17)

We can see quite easily why this must be so. Consider the mean of a signal and the mean
of its Fourier series (Equation (1.16)). Since the mean value of a sine and cosine over any
integral number of periods is zero, the only non-zero term remaining in the Fourier series
is ag. Therefore, in order for the equality to hold (Equation (1.16)), ap must be equal to

the mean of f(z).

The second coefficient in the series, aq and by, can be determined in a similar manner.

First consider the a; term. Multiplying both sides of the Fourier series (Equation (1.16))

14



by cos(wz), and expanding the right-hand side yields:

f(z)cos(wz) = agcos(wz)
+ ay cos(wz) cos(wz) + by sin(wa) cos(wz)

+  agcos(2wz) cos(wz) 4 by sin(2wz) cos(wz) + . .. (1.18)

Using the identities !! cos A cos B = %(cos(A+ B)+cos(A—B)) and sin A cos B = £(sin(A+

B) + sin(A — B)), the Fourier series can be rewritten as:

f(z)cos(wz) = agcos(wz)
+ %al(cos(wa) + cos(0)) + %bl(sin(wa) + sin(0))

+ %ag(cos(iiwx) + cos(wz)) + %bg(sin(&ux) + sin(wz)) + ... (1.19)

Once again, we compute the mean of both sides. On the right-hand side, the mean of most
terms is zero: the mean of the ag term is ag times the mean of cos(wz), but that is just
zero. The mean of all of the by terms is also zero since sin(0) = 0 and the mean of sin(-)
over an integral number of periods is zero. Since the mean of cos(-) is zero over an integral
number of periods, the mean of all of the a; terms, except for ay, is zero. In the case of
the a; term, since cos(0) = 1 the mean of the a; term is %al. Thus, computing the mean

of cos(wz) times the Fourier series yields a simple expression for determining the value of

the a; Fourier coefficient:

1T 1
T/o dz f(z)cos(wz) = ;@
T
ap = %/0 dz f(z)cos(wz). (1.20)

Note that in a linear algebraic sense, the coefficient is computed by projecting the signal
onto the basis function cos(wz). By multiplying both sides of Equation (1.16) by sin(wz),

a similar expression may be determined for by:

%/Ode f(z)sin(wz) = %bl

by = %/OTd:L‘ f(z)sin(wz). (1.21)

"' The Fourier series is rewritten from a product of sines and cosines into a sum in order to simplify
computing the mean.
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Clearly, this argument holds for any coefficient. In particular, the a and by coefficients
are determined by computing the mean of the Fourier series multiplied by cos(kwz) and
sin(kwz ), respectively. The general form for computing the Fourier coefficients (i.e., the

Fourier transform) is:
2 (T 2 T
ai = T/ dz f(z)cos(kwz) and by, = T/ dz f(z)sin(kwz). (1.22)
0 0

We may adopt a more compact representation for the Fourier series by recalling what

Feynman calls “the most remarkable formula in Mathematics” [Feynman 77]:
e = cos(w) + jsin(w), (1.23)

where j is the complex value /—1 (frequently denoted by mathematicians as ¢). This
relationship allows us to express the Fourier series (Equation (1.16)) in terms of the more

compact complex exponential:

f(z)

Re (i(ak — jb)(cos(kwz) + j sin(k:w.r)))

k=0

Re (Z ckejk‘”) ; (1.24)
k=0

where the Fourier transform is also expressed in terms of complex exponentials:

cr = %/Ode f(z)e ke, (1.25)

Due to the symmetry/anti-symmetry of the cosine and sine function (i.e., cos(w) = cos(—w)
and sin(w) = —sin(—w)), the Fourier series can be written over all w, positive and negative,
with a scale adjustment in the Fourier transform:

00 ] T .
flz) = Z cpe’toT and cp = %/0 dz f(z)e k", (1.26)

k=—00

As notation is rarely standard, it is useful to comment on various notations that one
may expect to see elsewhere. First, note that Equation (1.26) is continuous in the space
domain and discrete in the frequency domain. Such a transform is referred to as the
Discrete-Time Fourier Transform (DTFT), just one of four possible formulations. Instead

of the ¢4 notation, we will adopt the more traditional F(w) = # foT f(z)e™7¥% notation for
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Original n=1 n=2

n=2~8 n =16 n =64 n = 128 n = 256

Figure 1.9: A Fourier Series. Illustrated is a signal (upper left) and its partial reconstruc-
tion from its Fourier series. Each panel illustrates a partial reconstruction of the signal from
the first n — 1 frequencies and the dc-term. Note that the reconstruction based on only the
de-term (n = 1) is a constant function, equal to the mean of the signal. The reconstruction
based on the dc-term and one frequency (n = 2) is a single phase and amplitude modulated
raised sinusoid. The reconstruction based on the de-term and first 255 frequencies (n = 256)
is an exact reconstruction of the original signal which was composed of 512 samples. A sim-
ple transmission scheme may transmit a “coarse” version of the signal by transmitting only
the coefficients of the first few frequencies but this allows only a partial reconstruction of
the signal (i.e., the high frequency information is lost).

the Fourier transform of a signal, f(z). In general the Fourier transform, F(w), is complex

and may be expressed in terms of its real and imaginary parts:
Flw) = Fp(w)+ jFr(w), (1.27)
or in polar coordinates in terms of magnitude, |F(w)|, and phase, < F(w):

F(w)

|F(w)| cos(< F(w))+ j|F(w)|sin(< F(w))

|F(w)|ei<F ), (1.28)

where the magnitude and phase are given by:

[F@)l = /Fr(@)? + Fi(w)? (1.29)
< Fw) = tan™! <§;((Z))) . (1.30)

It is usually with respect to the magnitude and phase that the Fourier transform of a signal

is studied, and is commonly referred to as Fourier or frequency analysis.
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As has been the case so often before, the Fourier transform is also a linear operation

and can be expressed in matrix notation:

(0) 1 1 O | J(0)
F(w) eV e e ellw F(1)
— 1 . . . . —
F(2w) = 7 e e f(2)
F(Tw) el0 eiTw  ei2Tw - piT?w F(T)
F = MJ, (1.31)
where w = QT” Once again, it is straight-forward to see that this linear transform is

invertible: the matrix M is square, and the basis functions (i.e., the rows of M) are
orthonormal, and thus the matrix is invertible. Note that this matrix formulation is for the
Discrete Fourier transform (DFT), that is, discrete in both the space and frequency domain,
whereas our discussion has been based on the DTFT (continuous in space and discrete in
frequency), which of course cannot be represented in matrix notation. Nonetheless, both
the DTFT and DFT are linear transforms.

It may appear that the Fourier transform is an overcomplete representation since an
n-dimensional signal in the space domain is represented by a 2n-dimensional signal in
the frequency domain. That is, the Fourier transform is a n-dimensional complex valued
signal, consisting of a real and imaginary component at each of the n samples. Similarly,
the Fourier transform may appear overcomplete since it is equivalently represented by n
magnitude and n phase components. However this is not the case, the Fourier transform
is a rank preserving transform. The seemingly overcomplete representation is due to the
symmetry properties of the Fourier transform, that is, for a real-valued signal, the Fourier
transform is symmetric with respect to its origin (i.e., for each frequency component, the
magnitude and phase for w and —w are equivalent). 2

The Fourier transform has proven to be a useful and powerful tool for studying signals

and images. For example, the classic noise removal method (the Wiener filter) is typically

12 Another other useful symmetry property to note about the Fourier transform is that for a symmetric
function in the space domain, the Fourier transform is purely real (i.e., consists of only cosine terms), and for
an anti-symmetric function, the Fourier transform is purely imaginary (i.e., consists of only sinusoid terms).
This of course makes sense, since the cosine and sinusoids exhibit the same symmetry/anti-symmetry.

18



derived by observing that “natural” images tend to have a % frequency response (i.e., im-
ages tend to have more power in the low frequencies). Standard image compression schemes
(e.g., JPEG) compute a block (or local) Fourier transform and send only the coefficients

13 A simple example of this is illustrated in Figure 1.9. Some

of the low frequencies
motion estimation techniques operate in the frequency domain by exploiting the fact that
the temporal frequency response of a translating pattern lies along a line passing through
the origin, and that the orientation of the line is proportional to speed. And, as we will

see later, several range estimation techniques (e.g., range from focus and defocus) rely on

analyzing the frequency response of several images taken under different optical settings.

1.3.2 Sampling and Reconstruction

With an understanding of the convolution operator and basic Fourier theory, we are now
prepared to complete the sampling story: the reconstruction of a continuous signal from
its discretely sampled counterpart. Special attention will be given to what information, if
any, is lost during the transformation from a continuous to a discrete representation.

Recall that in the space (or time) domain, a continuous signal, f(z), is sampled at a

rate 7' by multiplying by an impulse train, 5(z):

fz) = fz)-5(2). (1.32)

Flw) = (F*9)w), (1.33)

where x is the convolution operator, Fi(w) is the Discrete-Time Fourier Transform (DTFT)
of f(z) (as presented in the previous section), and F(w) and S(w), are the Discrete Fourier

Transforms (DFT) of f(z) and 3(z), respectively. * The Fourier transform of an impulse

13 Actually, JPEG employs a block Discrete Cosine Transform (DCT), which has a slightly different basis
than the Fourier Transform but is similar in spirit.

'* As noted, the Fourier transform of the product of two signals is the convolution of their individual
Fourier transforms. The dual property also holds, the Fourier transform of the convolution of two signals
is the product of their individual Fourier transforms. A proof for the latter is given here. Consider the
Fourier series (Equation (1.26)) of a signal, g(z): g(z) = Zw G(w)e?“®. Our goal is then to prove that if
G(w) is equal to the convolution of, say, F(w) and H(w), then g(z) = f(z) - k(z). Substituting (F x H)(w)
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train, 5(z), is again an impulse train [Oppenheim 83]:
J— O p—
Sw) = Z O(w — kwy), (1.34)
k=—occ
where wy; = 2% Note that the spacing between impulses in the frequency domain is
wnversely proportional to the spacing, 7', in the space domain. Now, convolving an impulse
train, S(w), with F(w) in Equation (1.33) gives:

o0

Flw) = Y FPlw-—kw,), (1.35)

k=—oc0
an infinite superposition of translated copies of F(w) (i.e., the Fourier transform of the
original continuous signal):

Ilustrated in Figure 1.10 is an example of the effects of sampling in the space and
frequency domains. At the top of this figure is a continuous signal, and below it are
sampled version of the signal sampled at a rate T" and 27T. Note that when sampling at
a rate T the copies of the Fourier transform overlap, while at twice this sampling rate,
the copies no longer overlap. This is due to the fact that by increasing the sampling rate,
the distance between the impulses decreases in the spatial domain, and increases in the
frequency domain. Since sampling in the frequency domain is defined as a convolution
with the impulse train, this increase in the distance between impulses makes it less likely
that the copies of the Fourier transform will overlap.

As will be seen shortly, if the copies of the Fourier transform do not overlap (i.e., the
sampling rate is sufficiently high), then the continuous signal can theoretically be recovered

exactly from its discretely sampled counterpart. That is, no information is lost during

into the Fourier series for G(w) followed by a few algebraic manipulations gives:

gz) = Y (FxH)w)e™”

w

> (E F(kYH (w — k)) U = NPk H(w— ket
= D F(k)>_HOSM = N (k) H(1)e

= f(z)- h(z).

Recall that in the space domain, the sampled signal f could be determined from the convolved signal, g,
by multiplying by the inverse of the convolution matrix. In the frequency domain, this operation reduces
to a division by the Fourier transform of the convolution kernel, H(w). As such, convolution is invertible
only if the Fourier transform of the kernel is non-zero.
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Sampling Rate Space Frequency

Continuous

o il

Figure 1.10: Sampling in Space and Frequency. Illustrated is a continuous and sampled
(at a rate T and 27") signal (left) and its Fourier transform (right). First note that sampling
in the space domain leads to periodicity in the frequency domain (i.e., the Fourier transform
of the sampled signal is an infinite superposition of copies of the original Fourier transform).
When sampled at a rate T, the copies of the Fourier transform overlap and information is
lost. When sampled at a rate 277, the copies of the Fourier transform do not overlap, and a
perfect copy of the Fourier transform of the original continuous signal remains in tact (see
also Figure 1.11).

sampling. On the other hand, if the copies of the Fourier transform do overlap, the
continuous signal cannot be recovered exactly, and in this case, the reconstructed signal

will be said to be aliased.

Since the Fourier transform of the sampled signal contains copies of the Fourier trans-
form of the original contlinuous signal, we need only extract one of these copies and inverse
Fourier transform this copy to return to the original signal. The extraction of a single copy
can be accomplished by multiplying the Fourier transform of the sampled signal with an

ideal reconstruction boxcar filter (Figure 1.11). This filter has a value of 1 over the span
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Figure 1.11: Sampling and Reconstruction in the Frequency Domain. Illustrated is a
sampled signal and its Fourier transform (top), the application of a boxcar filter to extract
a single copy of the Fourier transform (middle) and the reconstruction of the original signal
(bottom). See also Figure 1.10.

of non-zero frequencies and is 0 elsewhere. This filter returns a single copy of the Fourier
transform. Inverse Fourier transforming returns the original signal. This sequence of steps
is illustrated in Figure 1.11.

The precise conditions under which a continuous signal can be recovered ezactly from its
samples can now be stated formally: let wy be the highest non-zero frequency component
of the Fourier transform, F'(w), of the original continuous signal, f(z), and let the sampling

5 in which case

rate T equal i—” The replicas of F(w) will not overlap when w,; > 2wy !
f(z) can be recovered exactly from its samples. If this inequality does not hold, then the
copies will overlap and f(z) cannot be recovered exactly from its samples, and is said to be

aliased. In other words, if the original signal is appropriately bandlimited (i.e., the Fourier

series in Equation (1.15) consists of a finite and small number of frequencies), then it can

1*The frequency wy is commonly referred to as the Nyquist frequency and 2wy as the Nyquist rate.

22



JAY AL LA afl 1
frequency

Figure 1.12: ldeal Reconstruction Function. Illustrated are truncated ideal reconstruction

functions (%) in both the space and frequency domain. If a signal is sampled above

the Nyquist rate, then convolution with an infinite version of this function will return an
ezact copy of the original continuous signal. However, convolution with a truncated copy will
introduce artifacts in the high frequencies (i.e., the Fourier transform is not a perfect boxcar
function, it is not identically 1 over the range of non-zero frequencies, see also Figure 1.11).
Unrelated to these artifacts, note that when centered about any integral number of the
sampling period, the function has a zero value at each integer value, except at the point at
which it is centered, where the value is one. This of course makes sense, since it is precisely
at the integer values that the value of the continuous signal is known. At non-integer values,
the continuous signal is computed from a weighted average of neighboring samples.

be sampled at or above the Nyquist rate without any loss of information.

The frequency-domain reconstruction of a continuous signal has a parallel in the space
domain. Recalling that multiplication in the frequency domain is equivalent to convolution
in the space domain, the original signal can be reconstructed by convolving the sampled
signal with the inverse Fourier transform of the ideal boxcar function. This function
(Figure 1.12) can be expressed analytically as, %27#1, where T is the sampling rate.
Note that this filter has infinite spatial extent, and is thus often impractical to implement.
A finite length filter can be constructed by sampling and truncating this function, however,
as illustrated in Figure 1.12, this introduces errors in the high frequencies (i.e., the Fourier
transform of the truncated filter is not a perfect boxcar filter). A further problem with the
ideal reconstruction filter is that since it falls to zero quite slowly, the effects of truncation

are significant for even fairly large filters. To overcome these problems, a “gentler” filter

is often employed, frequently a Gaussian.

Finally, in keeping with the linear algebraic formulations of the previous stages of image
formation, we note that sampling is also a linear operation and can thus be expressed in

terms of simple matrix manipulations. Since such a formulation will require finite length
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signals, we will concern ourselves with the subsampling and reconstruction of a discrete
signal (e.g., starting with a n-dimensional signal, subsample to a n/2-dimensional signal,
and then reconstruct the original n-dimensional signal). Although this formulation is
slightly different than the continuous to discrete sampling described above, the principles

are similar.
Let ﬁ be a n-dimensional signal and §,, be a m-dimensional signal (m < n) generated

by subsampling by a factor of n/m. This linear operation can be expressed as a matrix

operation:

100 0 00 0 0
00 1 0 00 0 0
in = | : I
00 0 0 01 0 0
00 0 0 000 1/,
= Spxnfns (1.36)

where in this example m = n/2, and 5 is referred to as the sampling matrix. Note that
the spacing between the non-zero entries between rows determines the subsampling rate,
in this case we are subsampling by a factor of two and every other sample is discarded.
Now, recall the constraint that allowed us to exactly reconstruct a sampled signal: for a
fixed sampling rate, the original signal must be bandlimited, that is, it must be expressible
as a finite sum of basis functions (in our case, sines and cosines), where the number of
basis functions is related to the sampling rate. In matrix notation, this constraint may be

expressed as:

f';b = BnXm’U_jma (137)

where the columns of the matrix B contain the sampled basis functions, and the vector @
is the appropriate weighting of each basis function (e.g., the Fourier transform). In this
example, the original n-dimensional signal f is written as a linear combination of m basis

functions, that is, it actually lies in a m-dimensional subspace of the larger n-dimensional
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space. Combining this expression with the sampling matrix (Equation (1.36)) yields:

gtm = San (Bnquﬁm)

= Mpxom @, (1.38)

where the columns of the matrix M contain the sampled basis functions. Since the original
basis set spans the full m-dimensional space, the matrix M is guaranteed to be invertible.

In addition, if the basis is chosen to be orthonormal, then the inverse is simply M?, and:

@, = M %,.q" (1.39)

mxmgm‘

Finally, given the weights @, the original n-dimensional signal, f can be reconstructed
(Equation (1.37)). That is, given the subsampled signal, §, the original signal can be
reconstructed exactly: ]?: BM~1g.

This result should not be entirely surprising in that the original n-dimensional signal
is contained in a m-dimensional subspace, where m < n (i.e., the original signal can be
expressed as a linear combination of m basis functions, Equation (1.37)). As such, the
original n-dimensional representation of the signal is overcomplete, and only m-samples
are required to fully represent the signal. 16
This brings to an end this section on digital image formation. Before beginning our

study of how three-dimensional properties of the world can be recovered from such images,

we take another slight detour. Since we are interested in differential approaches to the range

16 Consider the following simple example. Let f: (2 0 4 0),and §=(2 4)" obtained by sub-

. = R = 1 0 0 0 .. 7 .
sampling f by a factor of two <g = Sf, where S = <0 01 0)) Noticing that f actually lies in a
two-dimensional subspace (i.e., a plane) of the original four-dimensional space, fis expressed as a linear

1 0

combination of the two canonical basis vectors (the columns of the matrix B): f: 8 (1J (2) = Bw.

0 0

According to our derivation above, the original vector fcan be reconstructed from the subsampled version,

1 0 0 O
0 0 1 0

Of course, in this example the canonical basis was used instead of the Fourier basis (i.e., sines and cosines).

o
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Nonetheless, it should be clear that the subsampling and reconstruction are independent of the particular
choice of basis (i.e., the matrix B).
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recovery problem, it is worthwhile to first discuss some issues involved in the differential

analysis of digital imagery.

1.4 Image Derivatives

Although the details of this next section are not essential to the general understanding of
subsequent chapters, it is important to appreciate the difficulties that arise when measuring
differential quantities. Furthermore we believe that the careful design of derivative filters
is essential for many vision and image processing tasks.

We begin by considering a continuous and differentiable function, f : R? — R, and
the discretely sampled function f : 22 — R. The question which we address is that of
computing partial derivatives of the discretely sampled function, f(z,y). Strictly speaking,
such a sampled function cannot be differentiated. But, as was shown in the previous section,
if the original underlying continuous function, f(z,y), is sampled above the Nyquist rate,
then the sampled derivative of the original continuous function can be determined. More
specifically, if the function f(z,y) was sampled at a rate T, above the Nyquist rate, then

the original continuous function can be reconstructed ezactly as:

[lzy) = (S*[)(z,y), (1.40)

where S(z,y) = ﬂz;;—u?@ is the ideal-sinc function, and x is the convolution operator

defined as, (S x f)(z,y) = Y2 72 S(z — i,y — j)f(i,7). Since both sides of the

1=—00 J=—00
above equation are continuous, the differential operator, D(-), can be applied to both sides

of this equation. For example, the partial derivative with respect to z is:

De(f) = Do(S*f)

= [ (1.41)
where for notational clarity, the spatial parameters are dropped. The final derivative
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Figure 1.13: Ideal Reconstruction Function and its Derivative. Illustrated on the left is the

truncated ideal reconstruction function (p(z) = %) and on the right, its derivative
(D(p(z)) = a7 COS(”Z”{JCT/)T_;/T sin(r2/7)y Note that in addition to being infinite in extent,

the functions fall off gradually from the origin. As a result, truncation introduces artifacts
in the high-frequencies (see also Figure 1.12).

measurement is determined by sampling the right-hand side of the above equation:

= 7.. (1.42)

Alternatively, and of more practical interest, the continuous function 5, can be sampled

first and then applied to the sampled signal:

fo = Sux/f. (1.43)

In a similar way, the partial derivative of f with respect to y is given by fy =8, xf. Of
course, the ideal-sinc function, 5, is spatially infinite in extent making it computationally
intractable to implement (Figure 1.13). In addition, this function has considerable energy
in its tails, and as a result truncation introduces substantial artifacts. A more localized
function, P, may be chosen and its sampled partial derivatives, P, or P,, applied as
in Equation (1.43). Typically one would like to choose such a function based on the

bandlimitedness of the function f and the sampling rate.

A second constraint that one may like to impose on the function P is that of zy-
separability. A function is said to be zy-separable if it can be expressed as a product of

two “one-dimensional” functions:

Plz,y) = piz,y) pa(z,y), (1.44)

where, p; is independent of y and p, is independent of z. This constraint clearly has

important implications in terms of computational efficiency. For if a function has this
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property then the 2-D convolution can be replaced with a pair of 1-D convolutions. 7

A further benefit of this constraint is that the 2-D design problem has been reduced
to a simpler 1-D design problem, and as a result, the filters will extend naturally to
multi-dimensional functions. Given this separability constraint, let’s see how it affects the
derivative calculation in Equation (1.41), (as before, the spatial parameters are dropped

for notational clarity):

D.(f) = Dy(PxFf)

= dix(p2x ), (1.45)

where the convolution with d; is along the z dimension, and the convolution with py is
along the y dimension (i.e., the convolutions are one-dimensional, see footnote 17). When
computing directional derivatives we can ensure that the directional differentiation and
prefiltering along various axis are the same by strengthening the separability constraint
such that py(u,-) = pa(-, u) where the one-dimensional function is denoted simply as p(u).

Under this notation, the above equation can be expressed as:

Do(f) = dx(pxJf), (1.46)

where D(p(u)) = d(u). As will be seen shortly, this seemingly simple constraint will turn
out to play a key role in our filter design. Note again that the convolutions with d and
p are one-dimensional along the z and y dimensions, respectively. As in Equation (1.43),

the final sampled derivative is obtained by first sampling the continuous functions d and

17

(PxDy) = Y > Pe—iy-—niGi) = Y, Y »le—iy—ip(e—iy—5)iG )
= Y me—iy) Y p(ey—)FG0) = Y e —iy)pe = i,v)

= (p1*(p2*f))(=,9),

where, since p; and ps are dependent on only one of their variables (i.e., P is zy-separable), the convo-
lution with p1 is along the z dimension, and the convolution with p; is along the y dimension, i.e., 1-D
convolutions.
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p and then convolving them with f along the appropriate dimensions. For example, the

partial derivatives in z and y are given by:

Jo=dx(Pxf) and [, =dx(P'*]), (1.47)
where d and P are column vectors applied along the y dimension, and d and p! are row
vectors applied along the = dimension.

It may appear that, as before, the filter design problem reduces to simply choos-
ing an interpolation function P(z,y) = pi(z,y) - p2(x,y), with the additional constraint
that pi(u,-) = pa(-,u) = p(u). For any such function, the required derivative rela-
tionship between the resulting 1-D functions, d(u) and p(u), is automatically satisfied

1~ (z%+y?)/2

(i.e., D(p(u)) = d(u)). For example, a unit-variant Gaussian, P(z,y) = 5=ze

(which is separable, with p(u) = ﬁe”ﬂ/?) leads to the pair of functions:

— 1
= \/_Tq;e_“rz/? and p(u) = ﬁﬂe_“2/2, (1.48)

which clearly satisfies the required derivative relationship. But, recall that the actual filters,

d(u)

d and P, are gotten by sampling these continuous functions. Due to artifacts introduced by
sampling, the derivative relationship between these functions will typically be destroyed.
To address this problem, we propose to simultaneously design a pair of filters that optimally
(in a least-squares sense) preserves the required derivative relationship. A least-squares
solution is formulated for the joint design of a 1-D prefilter and derivative filter pair, p

and d (as in [Simoncelli 94]). This filter pair is designed so as to optimally preserve the

derivative relationship: D(p(u)) = d(u). We begin with the design of a first-order derivative
and prefilter, and then show how the basic constraint and design can be extended to higher-
order derivative filters.

In the frequency domain, the derivative relationship between the derivative, d(u), and

prefilter, p(u), becomes:
JwP(w) = D(w), (1.49)

where, P(w) and D(w) are the Fourier transforms of the derivative and prefilter, respec-

tively. '® We write a weighted least-squares error function to be minimized:

E(P,D) = /dw (W (w)(jwP(w) - D), (1.50)

181t is straight-forward to show that differentiation in the space domain is equivalent to multiplication by
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where W(w) is the frequency weighting function. We write a discrete approximation of
Equation (1.50) over the m-vectors p'and d containing the sampled derivative and prefilter,

respectively:

E(pd) = |W(Fp-Fd)?, (1.51)
where the columns of the matrix F),x,, contain the first m Fourier basis functions, the

matrix F!

Y m 18 Jwkxm (l.e., an approximation to the discrete-time Fourier transform,

DTFT), and W, x,, is a diagonal frequency weighting matrix. Note that the dimension m
is determined by the filter size and the dimension n is the sampling rate of the continuous
Fourier basis functions, which should be chosen to be sufficiently large to avoid sampling

artifacts. Equation (1.51) can be expressed more concisely as:
E(@) = |MudJ?, (1.52)

where the matrix M and the vector @ are constructed by “packing together” matrices and

vectors:

—

p
M=(WF | -WF) and = 7 (1.53)

The minimal unit vector % is then simply the minimal-eigenvalue eigenvector of the matrix

M'M. 19 The derivative and prefilter are then normalized so that the prefilter has

an imaginary ramp in the frequency domain. Consider first the Fourier series representation of the function
f(z): f(z) = fdw F(w)e?“®, where F(w) is the Fourier transform of f(z). Computing the derivative
with respect to z gives: %fl = %fdw Fw)e?“® = fdw F(w)%e]‘” = fdw JwF(w)e?*®. That is,
differentiation in the space domain is equivalent to multiplication of the Fourier transform by an imaginary
ramp, jw.

% An error function of the form E(#) = |M]? can be minimized analytically using eigenvector tech-
niques. In particular, the minimal unit vector, #, is the minimal-ecigenvalue eigenvector of the matrix
M*M; (see [Strang 88] for more details). Since we are interested in the minimal unit vector, the error
function can be expressed as E(%) = lj\;ZF. Expanding the numerator gives: E(@) = %
M can be decomposed, using a singular value decomposition (SVD), into a product of three matrices:
M = 01D0O2, where Oy and O3 are orthonormal, and D is a diagonal matrix. Substituting into the nu-
merator of E(%) gives 'LTt(OéDOi)(O1DOg)ﬁ = ¢'0L D* 0,4 (note that since O; is orthonormal, 0L0, is
the identity matrix, and since D is diagonal, the matrix D? = DD is computed by squaring each of the

. The matrix

diagonal elements of the matrix D).
The numerator of our error function, #'0%4D?O.i#, may be interpreted geometrically as a rota-
tion (i.e., Oz is orthonormal), dilation (i.e., D is diagonal), and rotation of our space of possi-

ble solutions (i.e., vectors, # lying on the unit circle). Illustrated below is an example for a
two-dimensional space. The resulting space of solutions is an ellipse (in higher-dimensions, an el-
lipsoid). Finally, in order to minimize FE(%), we would like to maximize, the denominator of

our error function, @'@. In the geometric sense, we are looking for the vector lying along the
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unit sum. See [Farid 97] for a constrained least-squares minimization (using Lagrange

multipliers) that incorporates this normalization into the error function.

We have created a matched derivative/prefilter set using the above design criteria
(throughout, a frequency weighting function of |i}—| was used, approximating the power
spectrum of most “natural” images). Illustrated in Figure 1.14 are the magnitudes of
the Fourier transforms of the derivative filter, J; and |jw| times the prefilter, p’ (i.e., the
frequency domain derivative of the prefilter). If the filters were perfectly matched (i.e., one
is the derivative of the other), then the two should coincide exactly: notice that this is
nearly the case for the 5-tap filters (see Figure 1.17 for filter tap values). For comparison,

filter pairs based on a truncated sinc function are also shown in Figure 1.14.

Higher-order derivative filters may be designed using a similar strategy. The design of
an N*'-order derivative is similar to that of the first-order derivative, with the constraint

of Equation (1.49) replaced with:

(jw)VP(w) = Dy(w), (1.54)

Nt derivative of the prefilter. If,

that is, the derivative filter is constrained to be the
on the other hand, we are interested in the simultaneous design of the first N derivative

filters, the following set of constraints may be considered:

(jw)" " " Dp(w) = Dy(w), (1.55)

for 0 < n,m < N and m < n and where D, (w) denotes the Fourier transform of the nth
derivative filter and Dy(w) denotes the Fourier transform of the prefilter. Using the full

major axis of the ellipse, this vector is the minimal-eigenvalue eigenvector of the matrix M'M.
R s

8%
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Filter Size:

Matched Set:

Truncated Sinc:

(0.5 0.5]/[1 — 1]:

2-tap 3-tap 4-tap 5-tap
| 7.78‘(’)796 1.361806 | 0.244124 | 0.043060
/11.571987x 12.8255246 | 9.417015 | 10.016./7778
9.088617

Figure 1.14: Prefilter and First-Order Derivative Filter Pairs (frequency domain). Illus-
trated in each panel is the magnitude of the Fourier transform of the derivative filter (solid
line) and the frequency-domain derivative of the prefilter (dashed line), that is, the prefilter
multiplied by |jw|. Shown are matched filters based on a total least-squares optimal design

criteria (Equation (1.50)), a truncated ideal reconstruction prefilter and its derivative, and
a commonly used 2-tap filter pair. If the filters were perfectly matched then the curves

would coincide: this is nearly the case for the optimally designed 5-tap filters. Beneath
each plot is the rms error.

set of w constraints, the equivalent matrix, M, in Equation (1.53) takes the form:

JWWF |  -WF | 0
0 |  JwWF | -WF
0 | 0 | jJwWF
0 | 0 | 0
0 | 0 | 0
M= | Gw?2WF | 0 | -WF
0 | (Jw)?2WF | 0
0 | 0 | 0
(Jw)PWF | 0 | 0
(jw)"WF | 0 | o

where, as before, the columns of the

o |
o |
—WF |

-WF

—WF |

matrix F,yx,m,

32

0 I o |

0 I o |

0 I o |
JWWF | —WF |
0 | jwWF |

0 I o |

0 I o |
(GwyPwr | o |
0 I o |

0 I o |

contain the first m

0 (1.56)

-WF

-WF
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Derivative Order: 1 2 3 4

0.022312 0.024591 0.259187 0.180334

Figure 1.15: 7-tap Prefilter and First Through Fourth Derivative Filter Pairs (frequency
domain). Illustrated is the magnitude of the Fourier transform of each derivative filter (solid
line), and the frequency-domain derivative of the prefilter, i.e., the prefilter multiplied by
|jw|™ (dashed line). If the filters were perfectly matched then the curves would coincide
exactly: notice that this is nearly the case for these filters; since the matches are nearly
perfect, it is difficult to see both curves. Beneath each plot is the rms error.

functions, W, x, is a diagonal frequency weighting matrix, and the vector @ is given by:

— — — t

@ = (| d | do | ... | dn), (1.57)

where, p’'is the prefilter and d, is the nt* derivative filter. Again, the unit vector, #, that
minimizes the error function E(@) = |M@|* is the minimal-eigenvalue eigenvector of the
matrix M'M.
A T7-tap prefilter and a set of matched derivative filters (first through fourth-order)
1

were created using the above design criteria (a frequency weighting function of L Was

again used). Illustrated in Figure 1.15 are the magnitudes of the Fourier transforms of
each derivative filter, Jn, and |jw|™ times the prefilter, 7. If the filters were perfectly
matched (i.e., if the derivative filter were the nt" derivative of the prefilter), then the two
should coincide exactly: notice that this is nearly the case for each of the derivatives (see
Figure 1.17 for filter tap values).

It is important to mention that these filters are nol guaranteed to return the exact
derivative of the original continuous function. In fact, this was not even one of our design
criteria. Rather, we are more interested in ensuring that the directional derivatives are
properly matched. That is, that when computing directional derivatives they are with
respect to the same underlying function. This relationship is especially important in a

variety of tasks that compare directional derivatives, for example, computation of the

gradient, orientation analysis, and motion estimation.
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1.5 Summary

We began this chapter by arguing that a thorough understanding of the image formation
process would aid us in the subsequent processing of digital images. Various aspects of
image formation were discussed: the geometry of several camera models, the physics of
charge-coupled devices (CCD), and the mathematics of sampling theory. In addition to the
standard formulations, we showed that most of the various stages of image formation are
linear and can therefore be considered within a linear algebraic framework. The discussion
on image formation also provided a convenient platform for introducing two fundamental
tools to signal and image processing, convolution and Fourier transforms, each of which
will be used extensively in subsequent chapters. We concluded with some important issues
in the design of digital derivative filters. Perhaps the most important point of this chapter
is that image formation is a 3-D to 2-D transformation, and that inherent to such a
transformation is a loss of information about the depth of objects in the world. This
information can, however, be recovered from multiple images, and it is this recovery process

that will be the central theme of the subsequent chapters.
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7 dy dy ds dy
Filter Size
3 L] H —
5 i %
L :
L

Figure 1.16: Prefilter and Derivative Filter Pairs (space domain). Illustrated are 3- to
9-tap matched prefilter (p) and first through fourth derivative filter pairs (di, da, ds, and
CZ;). See Figure 1.17 for actual tap values.

4 3 2 1 0 1 2 3 4
7 0.22274 0.55451 0.22274
dy -0.45805 0.00000 0.45805
7 0.02475 0.24629 0.45789  0.24629  0.02475
dy -0.09205 -0.31838 0.00000 0.31838  0.09205
d> 0.23426 0.03754 -0.54599 0.03754 0.23426
7 0.00194 0.05706 0.24788 0.38622 0.24788 0.05706 0.00194
dy -0.01087 -0.12159 -0.22471 0.00000 0.22471 0.12159 0.01087
ds 0.04247  0.16700 -0.04150 -0.33525 -0.04150 0.16700 0.04247
ds -0.11353 -0.03588 0.41492 0.00000 -0.41492 0.03588 0.11353
# | 0.00011 0.00840 0.07614 0.24158 0.34755 0.24158 0.07614 0.00840 0.00011
dy | -0.00077 -0.02454 -0.12261 -0.17808 0.00000 0.17808 0.12261 0.02454 0.00077
d> | 0.00401 0.05676 0.12045 -0.05646 -0.24952 -0.05646 0.12045 0.05676 0.00401
ds | -0.01631 -0.09080 0.02470 0.28794 0.00000 -0.28794 -0.02470 0.09080 0.01631
dy | 0.04967 0.04872 -0.29623 -0.05163 0.49880 -0.05163 -0.29623 0.04872 0.04967

Figure 1.17: Prefilter and Derivative Filter Taps. Filter taps correspond to the matched
prefilter (§) and first through fourth derivative filter pairs (d, da, d3, and dy) illustrated in
Figure 1.16.
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Chapter 2

Range Estimation: Overview

2.1 Introduction

In the previous chapter we saw that image formation is a three-dimensional to two-
dimensional transformation. The transformation is not one-to-one and thus not invertible:
lost in this transformation is the three-dimensional structure of the world (as illustrated
in Figure 2.1). Assuming no prior information and a standard imaging system, the full
three-dimensional structure of the world cannot be recovered from a single two-dimensional
image.

In addition to revealing where information is lost, the image formation models presented
in the previous chapter also suggest methods for recovering this information. For example,
under perspective projection (Equation (1.1)), the projection of a point in the world is
inversely proportional to its depth. As such, the range can be estimated by measuring
the change in the projection of a point from different viewing positions. Based on the
measurement techniques, such approaches are referred to broadly as range from stereo
(see [Dhond 89, Koschan 93, Ozanian 95] for reviews) or motion (e.g., [Koenderink 91,
Heeger 92, Tomasi 92, Costeira 95]).

The thin-lens model suggests a different method for recovering range. Recall that under
the thin-lens model (Equation (1.7)), a point in the world is imaged as a blurred circle
where the radius of the blur circle is a function of its depth. Range can be estimated

by measuring the change in the amount of blur as a function of different optical settings.
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Based on the particular changes in optical settings, such approaches are referred to as range
from focus (e.g., [Krotkov 87, Grossman 87]) or defocus (e.g., [Pentland 87, Subbarao 88,
Xiong 93, Nayar 95]).

A common property shared by these techniques is that of measuring change. As such,
we will argue that it is natural to consider each of these techniques within a differential
framework. In doing so, we will observe that the different range estimation techniques
amount to computing discrete approximations to a derivative (with respect to different
parameters). At this point, the significance of the previous section on image derivatives
should be more apparent, and later on we will borrow heavily from many of the ideas
presented there. But first, this chapter reviews the principles of range from stereo, motion,

focus, and defocus as described above.

2.2 Range from Stereo

When a point P in the 3-D world is projected onto a pair of spatially offset imaging
sensors, its image will fall on different relative locations on the two sensors (Figure 2.1).
This difference is a function of depth: points closer to the sensor will be more disparate
than more distant points. By measuring the difference or disparity between the projection
of the same point onto a pair of imaging sensors (binocular stereo) range can be estimated.
Although there are many variations, this section outlines a basic system of range from
stereo.

Consider the binocular stereo configuration in Figure 2.1. In this figure the sensor
nodal points are separated by a distance b, the baseline, and are a distance d; from the
sensor plane. The world point, P = (X Y Z)t, is at a distance Z from the sensor
plane and the disparity between the image of P in both sensors, p1 = (21 41 )t and py =
(z2 y2 )t, is denoted by A. Similar triangles yields the relationship % = %. Combined

with the perspective projection equations (Equation (1.1)), this relationship gives a simple

expression for determining the position of the point in the three-dimensional world:

ds.’Ifl dsyl dsb

7 7 and Z = A (2.1)
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Figure 2.1: Range from Stereo. Illustrated are a pair of spatially offset pinhole cameras
(by an amount b). The image of a point in the world, ]3, on the camera sensors are denoted
as p1 and po. First, note that although the points P and Cj are at different depths, they are
imaged onto the same point in the sensor, pj. As such, the distance to these points cannot
be determined from a single image. However, when imaged through a pair of spatially
offset cameras, points near the sensor will produce a greater disparity, A, than more distant
points. The distance, 7, to the point P can then be estimated from the relative positions
of its projection onto the sensors (Equation (2.1)).

Assuming a known baseline, b, and sensor to nodal point distance, ds, range, Z, can be
estimated if the correspondence between the projection of the point in both images is
known.

Given the projection of the point in one image I;(-), (centered at (z1,¥1)), the cor-
responding projection in the other image, I5(-), can be determined by finding the point
(z2,y2) that minimizes the following sum of squared differences (SSD) metric:

Sy S0 (w4 @+ y) = Da(wa + 3,92+ 9))?

c(z2,y2) = 2 , (2.2)

where the summation is performed over a small, n x n, image patch centered at (z1,y1).
By limiting the geometry of the sensors so that their nodal points are only translated
in the horizontal direction (i.e., a parallel optical axis configuration), the correspondence
search can be simplified. In particular, the corresponding match for a point (z1,31) is
of the form (z3, 1), that is, the matching point lies along the same horizontal scan line
in the digital image. With such a configuration, the correspondence search will yield a

horizontal disparity. By computing the horizontal or vertical disparity at each small image
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patch in an image, the complete structure of the imaged three-dimensional world can be
determined.

Stereo images are frequently displaced horizontally or vertically in order to simplify
the correspondence search. In particular, with such a configuration, searching is per-
formed along a single horizontal or vertical digital scan line (i.e., the epi-polar line). Of
course, any pair (or more) of spatially offset cameras will suffice. As illustrated in Fig-
ure 2.2, a nonparallel stereo geometry leads to an oblique epi-polar line, complicating the
correspondence search. ! Also illustrated in this figure is a trinocular and multiocular

stereo configuration where matching is performed across multiple images.

Due to the inherently discrete nature of the search for corresponding points (Equa-
tion (2.2)), this technique is frequently referred to as discrete matching. In contrast, we
may consider a differential formulation of the correspondence problem. In particular, we
write a quadratic error function (in 1-D, the extension to 2-D is straight-forward) over the
disparity, 2A:

E(A) = Y (h(a+2)- Lz - A, (2.3)

T
where the summation is over the spatial image parameter, z. Performing a Taylor series

expansion 2 and throwing away the higher-order terms gives:

X

E(A) > ((Iu(2) + AL(2)) = (Ia(2) = ALy(2)))"

T

= Y (@) - Blx) + A(L(2) + L))’

T

1Consider the parallel-axis stereo pair of cameras illustrated below (with camera centers, C1 and C3).
The epi-polar plane is the plane passing through the point P and the camera centers, Ci and C3. The
epi-polar line is then defined to be the intersection of the epi-polar and image planes. Note that in the case
of a parallel axis geometry, the epi-polar line coincides with a single horizontal scan line of the digital image.
In the case of a non-parallel axis geometry, the epi-polar line does not coincide with a horizontal scan line.
P

Epi-polar Plane

ci, o C2

Epi-polar Line

af'(z) | a2f"(=)
1!

2The Taylor series expansion of f(z+a) is given by the infinite sum: f(z+a) = f(z)+ + =5+

T8 s €. RN
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Parallel axis Nonparallel axis

Epi-polar Line

/ /" Epi-polar Line /
~~~~~~~~~

/ Trinocular Multiocular
Epi-polar Line

” 7

/ / Epi-polar Line
S

Figure 2.2: Stereo configurations. Illustrated are several possible stereo configurations.
(1) binocular parallel optical axis, (2) binocular non-parallel optical axis, (3) trinocular, and
(4) multiocular. The epi-polar line defines the constraint line for correspondence matching.

-

[ S—

Epi-polar Lines
] |

= Y (Li(e) + AL(2))”, (2.4)

T

where, the subscripts s and d denote sum and difference, respectively. The Taylor series is
truncated so that the resulting error function is linear and can be minimized analytically.
Taking the derivative with respect to A, setting equal to zero and solving for A yields the

minimal solution:

or
O Y an(e) (o) + ALl(e)?
>y La(x)I3(z)
S S ey 29
Ii(z,y) I (=,
In 2-D, this expression is simply A = —E(iy() d)(Ig?i,@;;2 y), where Iy(z,y) = Li(z,y) —
x,y =

I)(z,y), and I(z,y) is the partial spatial derivative, Lsgg’y).

This differential formulation provides an analytic solution to the correspondence prob-
lem: disparity, A, is computed via a simple arithmetic combination of the sum and dif-
ference of a stereo pair of images. Note however that due to the truncated Taylor series

expansion (Equation (2.4)), this formulation assumes small disparities between the stereo
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pair. That is, the truncated Taylor series expansion, I(z + A), is only valid for small values

of A (for example, trivially, the truncated expansion is exact for A = 0).

2.3 Range from Motion

The stereo formulation described above is based on estimating range from a pair of
images. This section reviews the basic principles of estimating range from several images,
termed range from motion. The presentation is provided in two parts: (1) estimating
motion in the image plane due to arbitrary camera motions, and (2) determining range
from the motion estimate, with known and unknown camera motions. Although the for-
mulations will appear different, we will show that range from stereo may be considered as

a constrained version of range from motion.

2.3.1 Motion Estimation

The standard differential formulation of motion estimation is based on the brightness
constancy assumption: the brightness of the image of a point in the world is constant
when viewed from different positions [Horn 81, Horn 86]. The collection of images is usually
parameterized with respect to a temporal parameter, and denoted as I(z,y,t). According
to our assumption, the derivative of the image intensity function, I(z,y,t), ® with respect
to time should be zero for each position in the world (assuming a static scene and moving
camera). This leads to the following constraint for estimating local changes in the image,
¥(x,y,t) (the constraint is written for a fixed point in space and time: the spatial and

temporal parameters are omitted for notational convenience):

®The intensity function, I(z,y,t), is parameterized by its spatial parameters, z and y, and a temporal
parameter, t. Although we adopt this standard notation, we note that the notation frequently leads to
confusion. In particular the spatial parameters should be denoted as functions of ¢, I(z(t), y(t), t), otherwise,
taking partial derivatives of these parameters with respect to ¢t is meaningless (as in Equation (2.6)).
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where I, = (I; 1,) and I; are the spatial and temporal derivatives, respectively.

Equation (2.6) provides a single constraint in {wo unknowns, the horizontal (v;) and
vertical (vy,) velocity components. One method for solving this underconstrained equation
is to impose a local smoothness constraint. A quadratic error function based on the
brightness constancy constraint for several points (indexed by 7) over a small region in the

image can be written as:

E@) = Y [, yi0) - 8w, i 0) + L(wi, yi, 1)) (2.7)

K3

Note that this error function is similar to the differential stereo formulation, where I’ in
Equation (2.4) is replaced by the vector of partial spatial derivatives, f;, and the difference
image I, (an approximation to a temporal derivative) is replaced with a temporal deriva-
tive computed from several images over time, I;. With vectors in place of scalars, the
minimizing solution will include vectors and matrices instead of only scalars. To compute
a linear least-squares estimate of ¥(x;,y;,¢) at each point in space and time, the gradient

of this error function is computed:

VE®) = 2 L7+ 1)
, 12 L1\ (L
- Z[(szy Ij)“(fyft)]
l( > I ZLJy) (Emt)]
= 2 7+
foly 215 EIyIt

= 9[M7+ 1), (2.8)
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where for notational convenience, the spatial and temporal parameters are dropped. Set-

ting this equation equal to zero gives the least-squares estimate of velocity:
7 o= —M'b. (2.9)

Of course, the matrix M is not guaranteed to be invertible. If the intensity variation
in a local image patch varies only one-dimensionally (e.g., [ = 0 or I, = 0) or zero-
dimensionally (I; = 0 and I, = 0), then M is not invertible (i.e., M is rank deficient or
singular). These singularities are sometimes referred to as the aperture and blank wall
problem, respectively. The matrix M s invertible if and only if the intensity variation is
two-dimensional.

Several other motion estimation techniques may be found in the literature (e.g., match-
ing techniques similar to the SSD stereo formulation, spatio-temporal energy models, fre-
quency domain regression, frequency domain phase estimation), see [Simoncelli 93] for a
review and unification of these approaches.

Up to this point, we have only described a method for measuring the motion in the
image plane due to an arbitrary camera motion. What remains is to show how to recover
the structure (i.e., range) given the velocity measurements and camera motion, where the

case of a known and unknown camera motion will be considered separately.

2.3.2 Range Estimation (with known camera motion)

Assuming a pinhole model under perspective projection (Section 1.1), the image of a

point, P = (X Y Z),is given by:

. doX
() - (2)
: A

As the camera undergoes an arbitrary small motion relative to a static scene, the new
projection of P can be expressed differentially by taking the temporal derivative of Equa-

tion (2.10): 4

de ds Z(dX/dt)—ds X (dZ/dt)
v o= ” 2.11)
dy - ds Z(dY/dt)—dsY (dZ/dt) | (2.

Z2

*Note again that the spatial parameters, ¢ and y, and X, Y, and Z, are actually functions of time, .
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As before, we denote the motion of a fixed point in space and time in the image plane as

a velocity vector (again, spatial and temporal parameters are omitted):

dz

. Uz a
- ()= (%), 12

Vy it

where @ is the quantity measured above in Equation (2.9).

The differential motion of P in the world can be expressed as a rigid-body transforma-

tion, parameterized by an axis of rotation, R= (R, R, R, )t, and a translation vector,

T=(T, T, T.):
o dX dY dZ \t
Vi= (o % @)
= —(R'x P 4+ T, (2.13)

As shown in [Heeger 92], substituting the motion components in world coordinates

(Equation (2.13)) into the expression for the motion in image coordinates (Equation (2.11))

vields:
R, T,
B =7 ds 5—2 Yy 1 /—-ds 0 =z
v o= 5 - Ry + Z Ty
e 0 —di y
’ R, T,

Il
o)
=
_'_

N| =

s

~y

(2.14)

With known camera parameter, d;, and camera motion, R and f, and an estimate
of velocity, @, at each point in space, (z,y), the complete structure of the imaged three-
dimensional world can be estimated by solving for Z in Equation (2.14).

We have seen that the differential stereo and motion error functions are similar, and
should therefore not be surprised to discover that although the formulations differ, range
from stereo and motion are closely related. In fact, range from stereo with a small baseline
is equivalent to range from motion with a constrained and known camera motion. In partic-
ular, a constrained Equation (2.14) is equivalent to Equation (2.1). Consider the equation
relating motion in the image plane to the camera motion and to range (Equation (2.14)),

where the camera is constrained to have zero rotation and a translation confined to the z
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dimension (i.e., a stereo configuration):

Vg L1 [ —ds 0 T
= B0+ —
Uy Z\ 0 —d, vy

(2.15)

I
TN
|
=T
N‘:ﬁ
~—

Extracting the horizontal velocity component and letting b = T, yields the familiar range
from stereo equation: v, = —%, where v, is synonymous with the disparity, A. The
negative sign cancels with the negative sign in the definition of v, (Equation (2.6)).

Note also that range from stereo suffers from the same type of singularities as range
from motion. In particular, if the intensity variation in a local image patch does not vary or
varies only one-dimensionally, then the correspondence search will yield multiple matches.

As a result, accurate disparity estimates at such regions are impossible. 3

2.3.3 Range Estimation (with unknown camera motion)

In the previous section we described a method for recovering range when the cam-
era motion is known. If the camera motion is unknown, then the recovery of range is
not as straight-forward. There are several techniques for simultaneously estimating range
and camera motion. One such technique, chosen for its simplicity, is reproduced here
([Tomasi 92]).

Unlike the differential motion algorithm discussed above, this algorithm assumes that
specific “features” are tracked as the camera moves, and that these features belong to a
single rigid object (see [Costeira 95] for a relaxation of the latter constraint). It is also
assumed that the images are formed under an orthographic projection model (Section 1.1).
The camera coordinate system is denoted by (if js Fky )t, where ky is the optical axis,
and where the subscript, f = [1, F], refers to the frame number. The position of feature
points in the image plane are denoted as (zy, ¥y, )Y, where p = [1, N] refers to a feature

being tracked over frame f. The corresponding feature point in the world is denoted as

®Coarse-to-fine algorithms are helpful in overcoming the singularities due to the blank wall and aperture
problem.
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ﬁp =(X, Y, Z, )t, and of course is not indexed by frame because its position is constant

over time.

—

Under orthographic projection, a point, F,, at frame, f, is projected to:

zf iy (P = Tf)
( p) = (? o, (2.16)

Yt 5 - (B = Ty)
where T} is the vector between the origin of the camera (at frame f) and the world coor-
dinate system. Note that this projection is defined for N feature points, across F' frames.

For reasons that will become clear in a moment the z and y centroids are subtracted, for

each frame, from each image coordinate:
1 N
Ufp T - N Ep=1 L fp
= L <N (2.17)
Vfp U = N Ep=1 Yy
Combining the transformed and original image coordinates, and performing some simple
algebraic manipulations yields:
(%) B (if (B = ))
Vs, 5 (B = P)
iy Q
= (? f) , (2.18)
Jf - Qp

where P is the centroid of the points in the world. Note that something very nice has

T

occurred: the translation vector, T}, no longer appears in our system of equations. This is
obviously attractive, since it is assumed that the motion of the camera is unknown. The
above equation provides a set of linear equations in the image coordinate system over F
frames, and the image and world coordinates of N features points over F’ frames. This set

of equations can be expressed in matrix form:

— - = — — —

Warxn = (- tmd1-Jf )apwa (@1 QN )ayn
= MS, (2.19)

where the matrix M embodies the “motion” and the matrix S embodies the “structure”.
The matrix W contains our measurements: the image coordinates of N points tracked over
F frames. In particular, row f of the matrix contains the z-coordinates of the N** feature

point at frame f, and row f + F contains its y-coordinate. Although it is known that the
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measurement matrix, W, is a product of a “motion” and “structure” matrix, we have no
method for separating these component matrices. In the previous algorithm, the motion
was known, making it easy to solve for the structure. Now, the motion is not known and

so both the motion and structure must be solved for simultaneously.

We observe that under ideal conditions (i.e., no noise in the measurements) the matrix
M is rank 3 (i.e., M is a product of a 2F x 3 and 3 X N matrix). Consider now a singular
value decomposition (SVD) of the measurement matrix: M = O1D0,, where O and O,

are orthonormal and D is a diagonal matrix. These matrices are partitioned as follows:

, " Dl3x3 O3xN—23 Oé(SxN)
01 = (01(2F><3) Ol(2FxN—3) )2FxN D= 0O, = .\ (2.20)
NxN OQ(N—SXN') NxN

On—axz D"N_axn-a

where M = 01D0; = 0{D'0% + O{D"0Y. Since W is rank 3, the second term in
this summation is 0, and the motion and structure matrices are simply M = O}(D’)/?
and S5 = (D’)UQOQ. This only provides a solution up to a linear transformation, that
is, the decomposition W = M Y5 is not unique since for any invertible matrix A, W =
(MA)A™1S) = MS. A unique solution can be determined by restricting the rows of the
motion matrix, M, to be orthonormal (i.e., they define an orthogonal coordinate system).

Both range from stereo and range from motion rely on observing changes in the ap-
pearance of the world across multiple viewpoints. In the case of range from focus and

range from defocus, the camera remains stationary and it is the change in the appearance

of the world with respect to different optical settings that is used to estimate range.

2.4 Range from Focus

Our impression may be that our entire retinal image is in clear focus, this is commonly
referred to as having an infinite depth of field. However, imaging devices (including the
human eye) do not have an infinite depth of field: objects projected onto an imaging sensor
plane are only in focus if they lie within a relatively narrow band of distances from the
imaging sensor’s focal plane (the depth of field). If they lie outside this range they are
imaged out of focus. Furthermore, the amount of defocus is a simple function of range.
This section reviews the basic principles for recovering range from focus.

Recall that under the thin lens model, a point at a depth Z will be imaged as a blurred
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circle with a radius:

: (2.21)

= gl
T Z

where R is the radius of the lens, d; is the lens to sensor distance, and f is the focal length.

Note that the amount of blurring, r, is a simple function of the range, Z. In order to recover

the three-dimensional structure of the world we must first model the effects of blurring on

an otherwise perfectly focused image (i.e., an image of the world taken through an ideal

pinhole camera). Blurring is usually modeled by a simple convolution: a defocused image,

I4(+), can be expressed as the convolution of a blurring function, A(-), and a perfectly

focused image, If(-):

Ii(z,y) = h(z,y,0)xIf(z,y). (2.22)

The blurring function, meant to approximate the point-spread function © of a camera, is
frequently taken to be a two-dimensional Gaussian:

1 22442

hMz,y,0) = e 20, (2.23)

2ro?
where ¢ is monotonically related to the blur radius, r, which in turn is related to range.

Note that implicit in the convolution (Equation (2.22))is the assumption that the world
consists of a single frontal-parallel surface. In particular, the blurring function, h(z,y, o),
is assumed to be constant over the entire image. Of course, the world does not generally
consist of a single frontal-parallel surface, and the blurring parameter, o, depends on the
spatial parameters, (z,y). This assumption will be addressed later; for now, we will put it
aside and continue.

Recall that under the thin lens model of image formation, only surfaces lying within
the depth of field will be imaged in perfect focus (i.e., 0 — 0). A straight-forward method
for recovering range presents itself: since the depth of field can be altered in a systematic
fashion by varying the sensor’s internal parameters, the range of a point in the world can
be estimated by determining the lens to sensor distance d at which it is imaged in perfect
focus (Figure 2.3). What is needed then is a method for measuring the amount of blur in

an image.

5The point spread function of a camera describes the relative attenuation of incoming light as a function
of lens position. This function can be described by the blurred image of a single point light source.
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Sensor Planes Thin Lens

Figure 2.3: Range from Focus. Illustrated is a sequence of images of a point, }3, taken
with varying lens to sensor distances, ds. The point will be imaged in perfect focus, when
the sensor plane is a distance of d from the lens. For smaller or larger values of d, the same
point will be imaged out of focus.

Our model of blurring (Equations (2.22) and (2.23)) is equivalent to low-pass filtering.
Therefore, an operator, o(z,y), for measuring the amount of blur in an image should be
sensitive to high frequencies because a patch in the image will be maximally focused when
its high frequency content is maximal. Convolution with any of a variety of standard
high-pass filters may be used for measuring the amount of blur (e.g., the Laplace operator,
V2= % + %). More specifically, the amount of blur at a point (zg, yo) in the image may
be computed as the sum of the responses of convolving with o(z, y) in a n X n neighborhood

around (g, yo):

n/2 n/2

Yo Y (olz,y)*La(zo+ 2,90+ 9)) (2.24)

r=—n/2 y=-n/2

Without prior knowledge of the frequency content of the scene, a sequence of images
(usually between 50 and 100) with varying amounts of blur must be acquired. As illus-
trated in Figure 2.3 this sequence of images may be obtained by varying the lens to sensor
distance. The focus operator is then applied to a n X n patch in each image in the se-
quence (Equation (2.24)). From an off-line calibration stage the lens to sensor distance
for the image at which the focus operator is maximal is then used to estimate range. By
repeating this process for each n X n image patch the complete structure of the imaged
three-dimensional world can be estimated.

We will show next how explicit knowledge of either the blurring function or frequency
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r2

Aperture

Figure 2.4: Range from Defocus. Illustrated is the image of a point, }3, taken with a
full aperture (72, solid lines) and a quarter aperture (rl, dashed lines). Note that as the
aperture is stopped down, the radius of the blur circle is reduced accordingly.

content of the scene can reduce the number of measurements required for recovering range.

2.5 Range from Defocus

Assuming an image with N pixels, our model of image blurring (Equations (2.22))
provides N constraints (the intensity at each pixel in the measured image, I4(z,y)) in 2N
unknowns (for each pixel in the image, the desired blur parameter, o, and the intensity of
the perfectly focused image, I¢(z,y)). Additional constraints can be added by making more
measurements of the scene. In particular, the same scene can be imaged with varying sensor
parameters (Figure 2.4). Each new measurement provides an additional N constraints from
the intensity at each pixel. Thus, a minimum of two measurements are required to solve
for the N blur parameters. A difficulty arises in that I¢(z,y) can only be measured by
imaging through a physically unrealizable pinhole camera. In order to estimate the blur
parameters, the immeasurable and unknown I¢(z,y) must be eliminated from the system

of constraints. This section outlines how this can be accomplished.

Recall, that the blurring of an image, I;(z,y), was modeled as a convolution with a
blurring function, h(z,y, o) (Equations (2.22) and (2.23)). Consider now a pair of images

acquired with different aperture sizes (Figure 2.4), and consequently with different amounts
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of blur:

Li(z,y) = h(z,y,01)xIf(z,y), (2.25)

Iy(z,y) = h(z,y,02)xIs(z,y). (2.26)

From this pair of equations (in three unknowns, oy, o, and I¢(z,y)), we wish to solve
for o1 or o3, which is monotonically related to range. In order to solve for the desired
parameters, the third unknown, I¢(z,y), must be eliminated. To this end, consider the

ratio of the power of the Fourier transforms of I1(z,y) and Ix(z,y):

i (wg, wy) _ H(wg,wy, 61) - Lf(wg, wy)
To(wg, wy) H(wg,wy, 62) - Lf(we,wy)
LTV (2.27)
H(wg,wy, b2)
where 6; = %102 . Note that in the frequency domain, the unknown If(z,y) cancels! Taking
the natural log 7 of both sides:
hl Il(wwiy) _ 111 H(wszyv (?-1)
IQ(“I?“@/) H(wwvav 02)
1
= (W2 ed)ed —ad) (2.28)

If o1 can be expressed as 01 = fog, for some constant 3 € R (i.e., the ratio of the aperture
sizes is known), then oy can be solved for directly in Equation (2.28). From the imaging

geometry the range, Z, to the point is given by:

Fd;
4l = — 2.2

where d; is the distance between the lens and sensor plane, f is the focal length of the
lens, and F' is the f-number of the lens(the ratio of focal length to lens diameter).

The blur parameter, o1, can be estimated by first computing the Fourier transform of an
image pair and then computing the log of the ratio of these transforms. Note that implicit
in this calculation is the assumption that the world consists of a single frontal-parallel
surface (as was the case in range from focus), that is, the Fourier transform is a global

transform operating on the entire image. In order to get a more local estimate of range,

"By computing the natural log of the ratio of the blurring functions, the blurring function, H(), is
constrained to be an exponential in the frequency domain, and therefore, in the spatial domain as well.
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a windowed short-time Fourier transform (STFT) is typically used. ® By computing a
STFT for each n X n image patch, the complete structure of the imaged three-dimensional

world can be estimated.

2.6 Summary

In this chapter we have seen that measurements of four image properties (viewpoint, time,
lens to sensor distance, and aperture size) can be used to estimate range. We have avoided
discussing the multitude of (often minor) variations within each of these classes. To the
contrary, we argue that these techniques share a common and fundamental property: that
of measuring change. Specifically, each range estimation technique measures changes in the
appearance of the world with respect to different parameters: viewing position (stereo),
time or viewing position (motion), lens to sensor distance (focus), or aperture size (de-
focus). Either implicitly or explicitly, each of these techniques amount to computing a
derivative (i.e., measuring change) with respect to their relevant parameters. More pre-
cisely, a discrete approximation to a derivative is computed (e.g., stereo approximates a
derivative with respect to viewpoint from just two samples). One may be tempted to argue
that techniques such as range from motion are differential, however, in that all of these
techniques sample along the dimension to be differentiated, none of the aforementioned
techniques are strictly differential.

Given that these range estimation techniques amount to computing discrete approx-
imations to a derivative, we may borrow from the issues that arose in the design of the
optimal derivative filters (Section 1.4). In so doing, we have arrived at a technique for
computing derivatives with respect to viewing position and aperture size which does not
rely on a discrete approximation - the derivatives are directly measured optically from a
single stationary camera. The full exploration of these techniques is the subject of the final

chapter.

8 A windowed short-time Fourier transform (STFT) is employed for computing a local Fourier transform.
Note that this windowing leads to blurring in the space and frequency domains. In particular, multiplicative

windowing (by W(z,y)) in the space domain is equivalent to convolution in the frequency domain. Rewrit-
II(WZ7Wy:)*W(wI7Wy) _ (H(wrva7&1)'If(wmva))*w(wz7wy) Note
To(we ,wy ) xW(wze ,wy) (H(wz,wy,é'2)~If(wx,wy):)*W(wx,u.)y) :

that Zf(ws,wy) no longer cancels, and convolution with the windowing function leads to blurring and
subsequent errors in range estimation.

ing Equation (2.27) with the windowing yields:
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Chapter 3

Range Estimation by Optical

Differentiation

3.1 Introduction

We are now prepared to connect Chapters 1 and 2 in what will be the central contribution
of our work. In Chapter 2 we presented various, seemingly unrelated, techniques for
estimating range, and concluded that each of the techniques can be thought of in terms of
measuring change with respect to various parameters. It is natural then to consider these
range estimation techniques within a differential framework. To do this it is necessary to
apply the continuous differential operator to discrete functions as discussed in Chapter 1.
As we will see, this calculation extends beyond just computing spatial derivatives in the
image plane.

We begin by revisiting the standard binocular stereo formulation of Section 2.2. Recall
that the disparity, A, (inversely proportional to range) can be determined from a pair of

images taken from spatially offset viewing positions:

A =

_ I(z,y,v1) = I(z,y,02)
2 (I(z,y,v1) + I(2,y,v2)) (3.1)

where, for simplicity, the summation over spatial position = and y is dropped, and the

subscript notation for denoting a stereo image pair, I1(z,y) and I3(z,y), is replaced with
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Figure 3.1: Viewpoint and Spatial Derivatives. Shown is a one-dimensional signal as it may

appear from two distinct viewpoints (black and gray curve). The disparity, A, is a simple

function of the viewpoint, I,, and spatial, I, derivative: A = % (see Equation (3.1)).

I(z,y,v1) and I(z,y,vy), respectively. First we should convince ourselves that Equa-
tion (3.1) amounts to computing derivatives of I(-). Clearly, the denominator is a deriva-
tive with respect to the spatial parameter, z. Perhaps less obvious, the numerator, the
difference between the stereo image pair, is an approximation to a derivative with respect

to viewpoint. !

It may not be immediately obvious why range is proportional to a ratio of these deriva-
tives, but as illustrated in Figure 3.1, this ratio makes perfect sense. Shown in this figure is
a one-dimensional intensity function as it may appear from two distinct viewpoints. Note
first that the signal is translated by a constant amount, A, which of course is inversely
proportional to range. The measurable quantities are the viewpoint, I,,, and the spatial
derivatives, I.. From this figure it is clear that I, = IK”, or A = % (i.e., the “slope” is the
ratio of the change “y” and the change in “z”). This example also illustrates the discrete
nature of these derivative measurements.

Since the intensity function, I(-), is discrete (i.e., sampled in both space and viewpoint)
let’s now examine Equation (3.1) more closely in light of our discussion on the proper
technique for computing derivatives of a discrete function. To compute the denominator,

interpolation in y and v are required, followed by differentiation in z (hence the summation,

1The approximation of a derivative by a simple difference can be most easily seen by the standard
definition of differentiation: f'(z) = lim._o M
e=1.

, where the approximation is computed by letting
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the simplest form of interpolation, over viewpoint, i.e., I(z,y,v1) and I(z,y,v2)). Although
not expressed explicitly, it is assumed that the resulting summed image is interpolated in
y before applying the directional derivative operator in z. To compute the numerator,
we again require interpolation in z and y followed by differentiation in ». Given only
two samples with respect to viewpoint, v, the simple difference is the best we can hope
to accomplish in approximating the viewpoint derivative. Again, it is assumed that after

subtracting the images, they are properly interpolated with respect to z and y.

So, we have seen that range can be computed as the ratio of the viewpoint derivative
and spatial derivatives of the intensity function, I(z,y,v). In the case of binocular stereo, a
generally crude approximation to the viewpoint derivative (a difference) is computed from
just two samples along the viewpoint dimension, v. To compute a more accurate viewpoint
derivative the intensity function can be sampled at three or more viewing positions, as
in the case of multiocular stereo (or range from motion). Illustrated in Figure 3.2 is a
2-D example of such a configuration. Shown is the projection of a single point in the
world imaged through five spatially offset pinhole cameras. Also shown is the subsequent
processing for computing the spatial and viewpoint derivatives (see figure caption for more
details). We naturally expect the accuracy of the viewpoint derivative to improve with
increasing number of views. Of course, the expense, physical size, and calibration of
a system containing numerous cameras may become prohibitive. As an alternative, we
propose a simple technique for measuring the viewpoint and spatial derivatives from a

single stationary camera and a pair of optical masks.

It is generally assumed that computing a viewpoint derivative requires multiple views,
either from two or more cameras, or by moving a single camera. This assumption typically
comes from thinking in terms of a pinhole camera model (Section 1.1). In particular,
under the pinhole camera model, a camera captures the projection of the world from
a single viewpoint. However, under the more realistic thin-lens model, a single camera
collects light from a continuum of viewpoints (Section 1.1). Of course, all this information
is lost once the lens focuses the light and the CCD sensor integrates over the different

viewpoints. Nonetheless, at the front of the lens, the information is there and available to
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Figure 3.2: Differentiating with Respect to Viewpoint and Space. Illustrated on the left
is the projection of a single point through five spatially offset pinhole cameras. The spatial
derivative is computed by first interpolating over viewpoint, p(v), (i.e., a linear combination
of the five images, where the weighting of each image is specified by the height of the impulse
directly beneath the image). A standard derivative filter, d(x), is then applied to compute
the spatial derivative. Similarly, the viewpoint derivative is computed by differentiating over
viewpoint, d(v), followed by interpolating over the spatial parameter, p(z). Shown on the
right are the same set of operations but now computed along a continuum of viewpoints.
In particular, the interpolation and differentiation across viewpoint are accomplished by
placing a variable opacity optical attenuation mask directly in front of the camera lens.

us. It is precisely this information that we propose to exploit. ?

Consider the image of a single point in the world, but this time, imaged through a
single thin-lens imaging system (Figure 3.2). First, note that unlike a pinhole camera, the
lens collects light from a continuum of viewpoints before focusing the light onto the sensor.
Now consider what would happen if an optical attenuation mask were placed directly in
front of the lens. The functional form of the optical mask takes on values in the range 0
to 1, where a value of 0 attenuates the incoming light ray fully, and a value of 1 passes
the light ray unattenuated. The spatial derivative can then be computed by first imaging
through the mask, M (), which blurs over viewpoint and then by differentiating in the
spatial parameter. Likewise, the viewpoint derivative can be computed by imaging through
a derivative mask, M'(u), ® and then blurring across the spatial parameter (Figure 3.2).
Note that this set of calculations is simply a continuous version of the five-camera stereo

setup also illustrated in Figure 3.2. That is, the “weighting of the light” is identical, but

“These ideas were inspired by the work of Adelson and Wang in [Adelson 92], see Section 3.5 for more
details on their work.

°In practice, the mask M'(v) cannot be used directly as an attenuation mask since it contains negative
values. This issue is addressed in Section 3.3.3.
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now we are operating with a continuum of viewpoints (across the diameter of the lens) as

opposed to a set of discrete views. This simple intuition is formalized in the next section.

3.2 Optical Differentiation

We have seen, at least intuitively, that a viewpoint and spatial derivative (and hence
range) may computed from a single stationary camera and a pair of optical attenuation
masks. In this section these ideas are formalized, and later, a variant of this technique is

discussed.

3.2.1 Viewpoint Derivatives

We begin by considering a simplified world consisting of a single, uniform intensity point
light source. This assumption is made only to simplify the explanation and accompanying
mathematics and will be relaxed later. The image of such a point light source through an

optical attenuation mask, M (-), is a scaled and dilated version of the mask function, M(-):

Ia) = +um <f) (3.2)

o o
where the parameter a is monotonically related to range, and is derived from the imaging

geometry:

ds  ds
= 1-24=2 3.3
a o (3-3)

ds is the distance between the lens and sensor, and f is the focal length of the lens as in
Figure 3.3. Intuitively, Equation (3.2) makes sense: as the point moves further from the
lens, the image becomes more blurred (i.e., shorter (scaled) and broader (dilated)). Since
the amount of light entering the lens does not significantly change with depth, the scaling
and dilation must be such that the area of the mask image is independent of depth (i.e., a):
fdz LM (£) = [dv M(v) (this is easily proven by letting v = £ and substituting this
into the left-hand side of the equality).

With such a system the effective viewpoint may be altered by translating the mask,

while leaving the lens and sensor stationary, i.e., imaging through the mask M (v + vg).
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Figure 3.3: Range Estimation by Optical Differentiation. Illustrated are the images of
the same uniform intensity point light source imaged through a pair of spatially varying
optical attenuation masks. Note that unlike a pinhole camera, the lens collects light from
a continuum of viewpoints. This allows the viewpoint derivative to be measured directly
by imaging through the mask M'(v). The corresponding spatial derivative is computed
by first imaging through the mask M(v) and then computing a spatial derivative in the
image plane. The ratio of the viewpoint and spatial derivatives is proportional to range
(Equation (3.5)).

The differential change in the image with respect to viewpoint may thus be measured
by imaging through the derivative of this mask, M'(v), (evaluated at vg = 0). Let’s now
convince ourselves that range can be determined by imaging through this pair of optical
masks. The pair of images formed under the optical mask M(-) and its derivative, M'(-)

(Figure 3.3) are simply:

I(e) =M (f) and  I,(z) = ~M’ (f) . (3.4)



As expected, the spatial derivative of I(z) turns out to be closely related to I,(z):
01 T
I, = —|—-M|[—
oz [a <a)]

- ()
87 (87

o = b (3.5)

where « is monotonically proportional to range, Z (Equation (3.3)). Note that this is
precisely the definition with which we began: range is proportional to a ratio of the view-
point and spatial derivative. The difference being that, here, the viewpoint derivative is
measured directly by imaging through the mask M'(-) — it is the image I,()!

Equation (3.5) embodies the fundamental relationship used for the differential com-
putation of range in a world consisting of a single point light source. A complex scene
consisting of a collection of many such light sources imaged through an optical mask ap-
pears as a superposition of scaled and dilated versions of the mask function. In particular,
we can write an expression for the image formed under the masks M(-) and M’(:) by

integrating over the images of the visible points, p:

1o)= [ an, Lus ( - ) L (_) nd 1o = [ dz, Lar (—7) L (ﬂ)m)
ap Qp Qp Qp Qp Qp

where a,, is still monotonically related to range (Equation (3.3)), and the integral is per-

formed over the variable z,, the position in the sensor of a point p projected through the
center of the lens. The function L(-) specifies the light intensity at each point, P, and it
is assumed that, for each point, this intensity function is uniform across the optical mask

(i.e., L'(z,) = 0, for all p). Once again, the spatial derivative of I(z) is closely related to

I(z):
L(z) = /dxp %M’ (35;7%) L (Z—p) (3.7)

As before, the viewpoint and spatial derivatives (/,(z) and I,(z), respectively) differ only
in a multiplicative term of a,. Unfortunately, solving for «, is nontrivial, since it is
embedded in the integrand and depends on the integration variable. Consider, however,

the special case where all points in the world lie on a frontal-parallel surface relative to
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the sensor (in practice, this assumption need only be made locally, see Section 3.3). Under

this condition, the scaling parameter a, is the same for all points z, and:

I(z) = é/d% YL (x —a%) I (%) and I,(z)= %/dxp M (%) L (%) (3.8)

The scaling parameter, o, may then be expressed as:

a = (3.9)

where a is monotonically proportional to range, Z (Equation (3.3)). As before, range is
determined from a ratio of the viewpoint and spatial derivative, where now the former is

measured directly by imaging through the derivative mask, M'(+).

Least-Squares Solution

In order to deal with singularities (i.e., I;(z) = 0 in Equation (3.5)), a least-squares
estimator can be used for a (as in [Lucas 81]). Specifically, the quadratic error function
E(a)=Y,(I,(z) — al,(z))? can be minimized, where the summation is performed over a
small patch in the image, p. Taking the derivative with respect to a, setting equal to zero
and solving for a yields the minimal solution:

2p Lo(@) Le(2)

= L) (3.10)

By integrating over a small patch in the image, the least-squares solution avoids singular-
ities when the spatial derivative, I;(z), is zero at a single point in the image. However,
since the denominator still contains an I;(z) term (integrated over a small image patch),
a singularity still exists when I;(z) is zero over the entire image patch (e.g., the “blank
wall” or “aperture” problem). In order to avoid this singularity, a small constant may be

added to the denominator:

S L@LE) )

(Ep Iﬂf(x)Q) + 5.

The choice of the constant ¢ and its effect on the estimate of a are discussed in Section 3.2.3.
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3-D Formulation

This technique extends easily to a three-dimensional world 4: we need only consider two-
dimensional masks M (u, w), and the horizontal partial derivative M'(u,w) = 0M (u,w)/0u.
For a more robust implementation, the vertical partial derivative mask M (u, w)/0w may

also be included. The least-squares error function becomes:

E(a) = > (I, —al)’ + (1, — aly)*. (3.12)

p

Solving for the minimizing a gives:

I, I.+ 1,1

(12 +12) +e

Through several simplifications and assumptions we have arrived at an elegant and
efficient scheme for estimating range using a matched pair of optical attenuation masks
placed in front of a single stationary camera. The spatial derivative of the image formed
under the first mask is related by a scale factor to a second image created with the derivative
of the first optical mask. This scale factor is monotonically related to range. As we have
seen several times before, range is computed from a ratio of the viewpoint and spatial
derivative. But the key difference here is that, instead of approximating the viewpoint
derivative with a simple difference, the viewpoint derivative is measured directly by imaging
through the derivative mask: it is the image I,(z)! As a result, the viewpoint derivative
is no longer approximated from samples, but is measured directly from a continuum of

viewpoints at the front of the lens.

In the next few sections we will discuss the implications of the various simplifications
and assumptions that were made, verify the technique through simulations and experiments
and analyze the errors and sensitivity of this approach. But first, we note an interesting
variant of the optical viewpoint derivative approach based this time on direct measurements

of the derivative with respect to aperture size (as in range from defocus, Section 2.5).

*Note that in 2-D, the image of a point source is LM(2), and in 3-D, it is Elgj‘l(%, ).
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3.2.2 Aperture Size Derivatives

In the previous section range was computed based on a viewpoint derivative. Here
we show a similar technique for estimating range that is based on the derivative with
respect to aperture size (as in range from defocus). Given the optical mask, M(u), the
effective aperture size may be altered by dilating the mask while leaving the lens and sensor
stationary, i.e., imaging through the mask %ZM (%). The additional % term out front is an
area preserving term and is used to ensure that the changes in the aperture size do not
depend on the intensity of the point light source being imaged. The differential change in
the image with respect to aperture size may be measured by imaging through the derivative

of the mask with respect to the dilation parameter, a:
My(u) = —5M (%) - %M (%). (3.14)

For notational simplicity, this function is evaluated at ¢ = 1, giving the masks M (u) and

M,(u) = —M(u) — uM’(u). Now, consider a pair of images formed through these masks:

I(e)= M <f> and  Iy(z) = —~M <5> Y (f) . (3.15)

a a a a a? a

As suggested from the solution to the dilation equation (see Section 3.3.3 for more details),
we consider the second partial derivative of I(z):
x

L(x) = L (

«

) and Im(x):igM"<f). (3.16)

a a a

This series of steps is illustrated in Figure 3.4. Note that unlike the viewpoint formulation
(Equation (3.5)), there appears to be no clear relationship between the aperture size and
spatial derivatives (I,(z) and I.;(z), respectively). However, consider a mask function
which satisfies the constraint that M"(u) = —(M(u) + uM'(u)) (e.g., a Gaussian satisfies

this constraint, see Section 3.3.3):
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e = (G) = (G)
= (o (G) v ()

_ Ly <f> (3.17)

«a «a
and
1 1 T
I = —(=M"[Z
@ = = (G (3))
1
- L (3.18)

Now, the second-order spatial derivative, I.;(z), is related to the aperture size derivative
by only a multiplicative factor of a?. Given the constraint on the optical mask, range can

now be estimated as:

_ [ dal(2)
a = To(e)’ (3.19)

where of course, a is monotonically proportional to range (Equation (3.3)).

Least-Squares Solution

As in the case of the viewpoint derivative formulation, a least-squares estimator can
be used for estimating a®. Specifically, the quadratic error function E(a?) =3 (I,(z) -

a*I,,(z))* is minimized, where the summation is performed over a small patch in the

2

image, p. Taking the derivative with respect to a*, setting equal to zero and solving for

a? yields the minimal solution:
o 2pla(e)lea()
at = T
2op Iz (2)

By integrating over a small patch in the image, the least-squares solution avoids singular-

(3.20)

ities when the spatial derivative, I, ;(z), is zero at a single point in the image. However,
since the denominator still contains an I;,(z) term (integrated over a small image patch),
a singularity still exists when I,;(z) is zero over the entire image patch. In order to avoid

this singularity, a small constant may be added to the denominator:
2 2op La(2) e ()
a® = .
(2 Les(2)?) +

(3.21)
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Figure 3.4: Range Estimation by Optical Differentiation. Illustrated is the same uniform
intensity point light source imaged through a pair of spatially varying optical attenuation
masks. The second mask is the derivative of the first mask with respect to a dilation (e.g., in
the case of a Gaussian, the derivative is taken with respect to the standard deviation). Here
the derivative with respect to aperture size is measured directly, it is the image I,(z)! The
ratio of this derivative to the second-order spatial derivative of the first image, I(z), is
proportional to range (Equation (3.19)).

The choice of the constant ¢ and its effect on the estimate of a? are discussed in Section 3.2.3

3-D Formulation

Extending this formulation to a three-dimensional world, and considering Gaussian-based

optical masks gives:

G(u,w,0) = %e—W”wWW, (3.22)
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and its derivative with respect to a dilation (i.e., 0):

0

Golu,w,0) = 9 (u,w,0)
2 2
_ _336—<u2+w2)/202+Me—<u2+w2ma? (3.23)
g g

Let I(z,y) and I,(z,y) be the images obtained through the masks G(-) and G,(-), respec-
tively. It can be shown, and follows from above, that these two images obey the following

constraint:

L(z,y) = a*o(Lusl(e.y) + Iy(2.9)), (3.21)

where I;,;(z,y) and I, (z,y) correspond to the horizontal and vertical second spatial deriva-
tives of I(z,y). The least-squares error function becomes:
E(®) = ) (Io(z,y) = 0’0 (Lza(,y) + Lyy(2,9)))* (3.25)
P
Solving for the minimizing a gives:

ot = Ep[g(x7y)(1”(x’y)+Iyy(xvy)) .
(Ep U(Ixx($,y)+fyy($7y))2) 1

(3.26)

There are several notable differences between this formulation based on aperture size
derivatives and the previous formulation based on viewpoint derivatives. First, a second-
order spatial derivative is required here, not only a first-order. Second, the ratio of the
aperture size derivative and spatial derivative is proportional to the square of the parameter
a which is proportional to range. As such, only the absolute value of a can be determined.
Physically, this translates into an ambiguity in points equally spaced on either side of the
focal plane. A second look at the optical masks reveals why this must be so. Whereas
the viewpoint derivative mask is anti-symmetric with respect to the center of the lens
(Figure 3.3), the aperture size derivative mask is symmetric (Figure 3.4). As a result,
points equally spaced on either side of the focal plane will differ by a sign in the case of
the anti-symmetric mask, but will appear identical in the case of the symmetric mask.
This ambiguity may be eliminated by focusing the camera at infinity, ensuring that a > 0.
However in practice this may be impractical since the scene will be imaged completely out

of focus, resulting in a poor spatial derivative signal.
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3.2.3 Maximum Likelihood Estimation

In the least-squares estimation of o (Equations (3.11) and (3.21)) a small constant,
€, is added to the denominator to avoid singularities when the spatial derivative, I, is
identically zero over the patch of integration. Here, we derive a systematic solution for
this small constant based on a maximum likelihood estimator (MLE). In this formulation,
we borrow heavily from the maximum likelihood motion estimation of [Simoncelli 93].

We will consider the 2-D optical differentiation with respect to viewpoint, where the

parameter to be estimated, a, is given by the, now familiar, constraint:
La-1, = 0, (3.27)

where I, and I, are the spatial and viewpoint derivatives, respectively. Because of noise,
filter and optical mask inaccuracies, etc., these derivatives are only approximations to the
true derivatives, which are denoted as I, and I,. The relationship between the true and

measured quantities is made explicit by introducing a set of additive random variables:
I,=1I,+n and I,=1,+ ns. (3.28)

The above constraint can then be expressed in terms of the measured quantities rather

than the ideal quantities as follows:

0 = ILa-1,
= (I —n)a— (I, — ng)

La—-1, = ny—an;. (3.29)

Unlike the previous ideal constraint, this constraint gives us a probabilistic relationship
between the true and measured parameters and accounts for errors in the derivative mea-
surements. The probability distributions for the random variables 7y and n9 are chosen so
that a can be solved analytically, and without any knowledge of their true distributions!
Thus, it is assumed that these random variables have independent zero-mean Gaussian

distributions. Under these assumptions, the above constraint takes the form:
La—-1, = ny—an;. (3.30)
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The right-hand side of this constraint equation is a zero-mean Gaussian random variable
with variance Ay — a)y, where A; and Ay are the variances corresponding to the random
variables ny and ng, respectively. This constraint can now be interpreted as a conditional

probability:

La—1,)*
P(I, I,) = _1(9”7“ . 31
(L | a, 1) eXp< 2A2_M1) (3.31)

This conditional probability can be rewritten, according to Bayes’ rule °, to give a condi-

tional probability on the desired parameter a:

Pla| L1,y = T |Pa(}f§)P(O‘). (3.32)

The prior distribution, P(«), is again chosen to be a zero-mean Gaussian with variance
Ap. Because the denominator in the above conditional probability is only a normalization
factor and does not affect the relative probabilities, it can be ignored. Expanding the

above expression gives:

La - I,)? 2
Pla | I,,I,) = exp (_%w) exp (_%a )
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where the mean, p,, and variance, A,, of this Gaussian distribution are determined by

completing the square in the above exponential:

LI I2 1
o= z7v d A= —""2 —+—. 3.34
Ho = p —ad)ra N —ahs A, (3.34)

That is, the resulting probability distribution is a Gaussian parameterized by its mean and

variance, and the maximum likelihood estimate (MLE) is simply the mean, p,. Expanding

the MLE gives:

L1,
12 4 2250
L1,

i (3.35)

® According to Bayes’ rule, P(A|B) = %.
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Figure 3.5: Illustrated is an example of the effect of varying ¢ in the maximum likelihood
estimator (see Equation (3.36)). Empirically we have found that rms errors are minimized
by choosing ¢ to be 0.02 of the mean of the denominator in the least-squares estimator
(Equation (3.10)).

which now looks very much like the original least-squares formulation (Equation (3.11)).
This is not surprising since a MLE with a Gaussian distribution is equivalent to a least-
squares estimate. As before, the MLE can be determined by integrating over a small
neighborhood in the image. If we assume that the noise at each point in the neighborhood

is independent, zero-mean Gaussian, then the MLE takes the form:

1.1,
e = 2plaly (3.36)

SplZ+e)

The assumption that the noise within a neighborhood is independent is unlikely to hold,
but it provides a reasonable first approximation and allows for an analytic solution.

In this formulation, the arbitrary choice of ¢ in the least-squares solution has been re-
placed with a term based on a probabilistic analysis of the expected noise in the derivative
measurements. Of course, since we have no evidence that the underlying distributions are
independent, Gaussian, or zero-mean, the choice of ¢ is still equally arbitrary: the variances
for the derivative measurements, A;, and the prior must still be chosen. Nonetheless, if we
were so inclined, it would be possible to make some measurements and try to approximate
the observed probability distributions with the required Gaussian distributions. In lieu of
such measurements, we have found empirically that on average the rms error can be mini-
mized by choosing ¢ to be 0.02 of the mean of denominator in the least-squares estimator
(i.e., > pI2). Tlustrated in Figure 3.5 is a simple example of how the rms error varies

with the choice of .
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3.2.4 Coarse To Fine

A major drawback of our direct differential range estimator and most other passive range es-
timation techniques is the inability to estimate range in regions with minimal or no texture.
A standard solution to this problem is to implement a coarse-to-fine algorithm, also re-
ferred to as multi-resolution, scale-space or pyramid algorithms (e.g.,[Marr 79, Grimson 81,
Terzopoulos 85, Lim 87, Hoff 89, Vleeschauwer 93, Gokstorp 95, Menard 96], or as in the
motion estimation of [Simoncelli 93]). We expect that any of these approaches would be

of benefit to our system.

3.2.5 “Steerable” Derivatives

We note here an interesting extension to the basic optical viewpoint differentiation formu-
lation of Section 3.2.1. In the basic formulation, we focused exclusively on the horizontal,
z, and vertical, y, viewpoint/spatial derivatives. However, this was a somewhat arbitrary
choice, as any directional derivative would have suffliced. Is there any benefit to using one
directional derivative over another? Possibly, but it may be difficult to determine, a priori,
which directional derivative optical mask to use, and even then the choice may depend
on the spatial location in the image. However this need not concern us since given the
horizontal and vertical viewpoint/spatial derivatives, the derivative at any orientation can

be determined ezactly from a linear combination of these two. ©

5The simplest example of this principle can be found by examining the directional derivative of a unit-

variant 2-D Gaussian, G(z,y) = e~ (3 +v?), Ignoring the scaling parameters, the partial derivatives in z

and y are given by:
Gy(z,y) = —22¢~ ="+ and Gy(z,y) = —2ye_(x2+y2).

Consider a polar representation of these derivatives (with radial portion, r = z2 + y2, and angular
portion, § = tan™'(y/z)):

Gy(r,0) = —2re™" cos(f) and Gy(r,8)= —2re™" sin(6).

Note first that these derivatives are rotated copies of each other, that is, G;(r,0 — 7/2) = Gy(r, §) (this is
trivial to see in that cos(§ —7/2) = sin(6)). Now, consider, the directional derivative rotated to an arbitrary
orientation, ¢:

—2re™" cos(§ — ¢)

= —2re " (cos(8) cos(¢p) + sin(8) sin(¢))

= cos((zﬁ)(—Zvre_T2 cos(9)) + sin(é)(—Zre_T2 sin(6))
= cos(¢)Gx(r,0) + sin(@)Gy(r, 6).

Ga(r,0 — ¢)
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For our purposes, this property of the directional derivative may be exploited to adap-
tively and locally determine the direction at which the spatial (or viewpoint) derivative
is strongest. These directional derivatives can then used in the same manner as in Equa-
tion (3.5). More specifically, consider the collection of images taken through the mask,
M(z,y), and the horizontal and vertical derivative masks, M;(z,y) and M,(z,y). These
images are denoted as I(z,y), I,,(7,y), and I, (z,y), and the horizontal and vertical
spatial derivatives of I(z,y) are denoted as I.(z,y) and I,(z,y). The orientation, 6,
and magnitude, rg, of the spatial derivative in the direction of maximal change (i.e., the
gradient) can be determined at each position in the image as:

0, = tan™* (I—y) and 1, = /12412, (3.37)
1, Y
where the spatial parameters, z and y, are dropped for notational convenience. Similarly,

the viewpoint derivative in the direction of maximal change is given by:

1 (1
0, = tan™! <Iv—y) and 7, = /17 + 17 . (3.38)

For the purposes of range estimation, we require a viewpoint and spatial derivative in the
same direction. As such, the viewpoint derivative can be “steered” to the orientation of

maximal spatial derivative change, 8 as:

I,, = rycos(f, —0,), (3.39)

2]

The ratio of this derivative with the spatial derivative at the same orientation, Iy = 7y,
gives an estimate of range (Equation (3.5)). By locally computing the directional derivative
in the direction of maximal spatial variation, we benefit by adaptively (but still analyti-
cally) finding the strongest spatial derivative signal, boosting the signal-to-noise ratio and

potentially avoiding singularities in the estimate of range.

That is, the directional derivative at any orientation, ¢, can be synthesized from a linear combination
of the directional derivatives, G(z,y) and Gy(z,y). In other words, these two directional derivatives
form a complete (and, if properly scaled, orthonormal) basis for the complete set of rotations of the
directional derivative. Note also that we only require a basis set of size two since the angular portion of
this function is bandlimited: it contains only the first harmonic. Thus according to Nyquist (Section 1.3),
only two samples are required to fully represent the full set of rotations. Also note that the z and y partial
derivatives form the canonical basis, but that any two distinct directional derivatives will fully span the
space. These principles were termed steerability by Freeman and Adelson in [Freeman 91] and applied
to a variety of computer vision problems, see also [Danielsson 80, Knutsson 93, Koenderink 87] for some
earlier work, [Simoncelli 92, Perona 92, Beil 94, Simoncelli 96a, Perona 95, Hel-Or 96] for extensions and
generalizations of these principles and [Farid 96c] for a tutorial.
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3.3 Assumptions and Constraints

As illustrated in Figure 3.6, several assumptions and constraints were imposed in deriving
the differential techniques of the previous section (here, we consider the viewpoint deriva-
tive formulation, the same basic constraints hold for the aperture size formulation - any
additional constraints will be noted). More specifically, computation of the matched spa-
tial and viewpoint derivatives (I, and I,) assumes that the (1) intensity of each point in
the world is uniform across the diameter of the lens (i.e., the brightness constancy assump-
tion), (2) that the functional form of the optical masks takes on values in the range [0, 1],
(3) that the optical masks maintain a derivative relationship (i.e., any non-linearities in the
mask formation have been corrected), (4) that the imaging process is linear, and (5) that
the scene does not change between the acquisition of the image pair, I; and I;. Further,
computation of @, (monotonically related to range) assumes that (6) surfaces in the world
are textured and locally frontal parallel. Finally, in order to compute range from a, it
is assumed that (7) the intrinsic parameters of the imaging system are known (i.e., focal
length, f, and lens to sensor distance, d).

In this section each of these assumptions and constraints are formulated precisely.
The system’s sensitivity to failures of these assumptions and to measurement noise is also
described. Some of the details of this analysis are tedious, and so the reader uninterested
in these details may wish to go directly to the summary in Section 3.3.8. At the conclusion
of this chapter, the basic differential formulation and theoretical sensitivity analysis are

validated in simulation and experimentation.

3.3.1 Brightness Constancy Assumption

Although not always explicit, the assumption of brightness constancy is made by vir-
tually all range and motion estimation algorithms. © The brightness constancy assumption
states that the brightness of a point in the world is constant when viewed from different

positions. Note that in addition to constraining the photometric properties of surfaces,

"See [Negahdaripour 93] or [Gupta 95] for examples of an optical flow algorithm which relaxes the
brightness constancy assumption.
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Figure 3.6: Assumptions and Constraints. Illustrated is a system diagram for computing
depth from spatial and viewpoint derivatives (Section 3.2.1). As shown, and discussed in
more detail in the text, several assumptions and constraints are introduced into various
stages of the system. Section 3.3 formalizes these assumptions and analyses the effects of
their failure on the overall system.

this assumption also implies that the scene cannot contain occlusions (Figure 3.7). For our

purposes, this constraint need only hold across the diameter of the lens.

Denoting the brightness of a point as a function of viewing direction as L(-), the images

of a single point light source under the required optical masks (Equation (3.4)) are:

o) = 1M <5> L (f) and  I,(2) = 2 M’ <f) L (f) . (3.40)

a 8]

Note that the brightness variation, L(-), is introduced in a multiplicative fashion. In
particular, the variation in light as a function of viewing position can be considered as
simply projecting a uniform intensity point light source through an additional optical mask
L(-), as illustrated in Figure 3.7. The combination of masks then acts in a multiplicative
fashion. As before (Equation (3.5)) the spatial derivative of I(z) is required; applying the

chain rule gives:
L(z) ! M’(gC)L<$)—|— ! iLf(x)L’(x) (3.41)
) = =M |- — —M | — — . .
a? « « a? « «
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Figure 3.7: The Brightness Constancy Assumption. Illustrated are two examples of the
failure of the brightness constancy assumption: the intensity of the point source is not
uniform across the diameter of the lens, but varies with viewpoint, as specified by L(v). In
either case, the change in intensity can be modeled as a uniform light source passing through
an additional optical attenuation mask. As a result, the image of the point source depends
on the product of the light variation, L(v), and optical mask, M (v) (Equation (3.40)).

Combining with the viewpoint derivative gives:
1 1 1
al(z) - I(z) = —M' (f) L (f) v =M (f) I (f) M (f) L (f)
o « o o o o o o o
(s
o a o

W) . METE
I.(z) aly(z)
@) )

L(x)L(3)
Where in the last step the definition of the image I(z) was substituted for the mask
function, M(-), to obtain an expression involving our measurement quantities. Note that
the ratio of viewpoint and spatial derivatives no longer gives the desired parameter «
(monotonically related to range, Equation (3.3)). However, if the brightness constancy
assumption holds (i.e., L(-) is constant and its derivative, L'(-) = 0) then the additional
term in the above equation is zero and a can be solved for directly. If the brightness

constancy assumption does not hold then our estimate of a, and hence range, will be
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either under or over estimated depending on the sign of the spatial and light intensity

derivatives. &

Sensitivity of Brightness Constancy Assumption

It is difficult to precisely quantify the errors in range since they depend on several scene
dependent factors. However, a perturbation analysis centered around L'(-) = 0 (i.e., when
the brightness constancy assumption holds) provides some insight into the sensitivity of
the estimator. In particular, the estimate of o in Equation (3.42) is substituted into the

definition of range (Equation (3.3)):

7 = ds f TR (3.43)
d, - - fettg)
s (- y)
Taking the partial derivative with respect to L', and evaluating at L' = 0, gives:
_ f1(z)
oz _ LI
or 1) 2)\\?
(=141 (o~ 125033))
g 2 I=)
oz, 4 B
or M=0 = (4= [+ Ja)?
1(z)

x Z* (3.44)

L(x)L (3)
That is, errors due to the failure of the brightness constancy assumption scale with the
square of the range. In addition, the errors are inversely proportional to both the spatial
derivative, I, (z), and brightness, L(-), which intuitively makes sense since both may be

considered as an indication of signal strength.

Relaxation of Brightness Constancy Assumption

The brightness constancy assumption may be restated in terms of a truncated Taylor

series expansion on the light variation function, L(-). In particular, according to Taylor’s

8We note an interesting (but probably not very useful) result from this analysis: if the light variation is
symmetric about the lens center (e.g., L(z) = 1}2) there is no effect on the estimate of range, even though,
strictly speaking the brightness constancy assumption does not hold (i.e., L'(z) # 0). Intuitively this makes
sense since given that the change in the light intensity on either side of the lens center is the same, the
derivative with respect to viewpoint will not be affected. This result can also be seen when considering
the above Equation (3.42) for a collection of point light sources. In this case, the derivative L'(z/«) in the
numerator of the error term is replaced with the integral [ dz, L'((z — z,)/a), which integrates to zero for
any symmetric function, L(-) (i.e., L'(-) is anti-symmetric).
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theorem:

Le)e—cf |, L))"

51 o +....(3.45)

L(z) = L)+ L'(c)(z—¢)+

The brightness constancy assumption then simply states that all higher-order terms of
the Taylor series expansion are zero (i.e., L(z) = L(c), a constant). One may imagine
relaxing this assumption and allowing the first two terms of the expansion to be non-zero
(i.e., L(z)= L(¢)+ L'(¢)(z — ¢)). In other words, the light variation varies smoothly as a

function of viewing position. In this case, the acquired pair of images takes the form:

I(e) = ~m (f) [L(c) + 1(e) (f _ C)] and (3.46)

L) = M <§) [L(c) +1(e) (2 _ c)] . (3.47)

The above equation provides only two constraints in three unknowns, «, L(-) and L'(-),
and is therefore underconstrained. However an additional measurement may be made with

a second-order derivative mask:

Loo(2) = ~M" (f) [L(c) + 1(e) (3 _ c)] . (3.48)

04 a a

Combined with the two previous measurements, /(z) and I,(z), we now have a system of
three equations in three unknowns. In order to relate the three measurements, the first
and second-order spatial derivatives of I,,(z) and I(z) need to be considered (Figure 3.8).
In particular, consider the second spatial derivative of I(z), the first spatial derivative of

I,(z) and the measurement I,,(z):

Lo(z) = %M” (2) L(c)

G () ra (F-o) e (B re) e () re] e
La(z) = %M” (2) L(c) + [%M (2) L) (2 - c) + %M (2) L’(c)] (3.50)
Lo(z) = éM“ (2) [L(c) () (2 _ c)] . (3.51)

With some algebraic manipulations, it is possible to show that:
I, (z) — 2al,.(z) + L,(z) = 0. (3.52)

That is, a (monotonically related to range) can be solved for directly from the three
measurements and their appropriate spatial derivatives. Solving for a now requires solving

a second-order polynomial, and the two solutions of this polynomial will differ in their sign.
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Figure 3.8: Higher-Order Derivative Masks. The first column of this figure illustrates
the image of a uniform point light source imaged through an optical mask M (-), and its
first- and second-order spatial derivative, M’(-) and M"(-). To the right of each plot are
the spatial derivatives of these images. Note that, pictorially (and in fact mathematically,
Equation 3.52), the spatial derivatives of the images formed under lower-order derivative
masks are similar to the images formed under higher-order derivative masks (e.g., Ip(z) is
similar to I, (z), and Ip,(2) is similar to I, (2) and I, (2)).

Physically, the two solutions correspond to points equally spaced on either side of the focal
plane. The reason for the ambiguity in this case is that, unlike the first derivative mask,
the second derivate mask is symmetric about its origin (Figure 3.8). In general, even-order

derivatives will have such an ambiguity, and odd-order derivatives will not.

In the original formulation (al;(z) — I,(z) = 0), it was assumed that the brightness
variation was constant (i.e., L'(-) = 0), while the above formulation assumes only that
the second-order derivative is zero (i.e., L”(:) = 0). It should be clear that by making
additional measurements with increasingly higher-order derivative masks, the brightness
constancy assumption can be further relaxed from a constraint on the first derivative
of L(-) (with only two measurements) to a constraint on the n'”" derivative (with n + 1

measurements). In other words, additional measurements allow us to measure higher-order
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terms in the Taylor series expansion of L(-). The general form for approximating a from

n measurements (under the optical mask M (-) and its first n — 1 derivatives) is:
C(n = 1,0)0" " o) 001y + C(n = 1,1)0" 2 L0 -2y + ... +
Cln—1,n=2)a' Lz, + C(n—1,n = 1)a’Lny,0 = 0
zn:C(n,i)an_ifv(z‘)I(n—i) = 0, (3.53)
1=0

al

where, C'(a,b) = Fasb)T” and 1 (a) v is the b

spatial derivative of the image taken through
the a!-order derivative mask. Note that in the case of n = 1, the above reduces to the
original equation, al, — I, = 0, under the general brightness constancy assumption.
Although in theory the brightness constancy assumption can be virtually eliminated, in
practice this may not actually be practical. More specifically the number of non-zero terms
in the Taylor series expansion of the lighting variation function (L(z)) will be large for re-
gions where the failure of brightness constancy assumption is most severe (e.g. specularities

and occlusion boundaries)

3.3.2 Locally Frontal-Parallel Assumption

As with the brightness constancy assumption, an assumption of locally frontal-parallel
surface geometry is frequently made (often implicitly) by most range and motion estimation
algorithms. Recall that this assumption was necessary in order to solve for a (monotoni-
cally related to range) embedded in the integral of Equation (3.8). Here, we quantify the
effects of this assumption and the effects of its failure on the estimation of range.

For simplicity consider a world consisting of only two uniform intensity point light
sources at different depths (Figure 3.9). These point light sources satisfy the brightness
constancy assumption, but may have overall different individual brightnesses. The image
of two such sources formed through an optical mask, M(-), is a superposition of scaled,

dilated and translated (by different amounts) copies of M(-):

1 — 1 —
I(z) = —M (w xl) Li+—M (w “) L. (3.54)
ay ay Qg Qg
Similarly, the image through the derivative mask, M'(-) is:
1 — 1 —
I(z) = —M <x :“) L+ —M (w “) L. (3.55)
aq aq Qg a
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Figure 3.9: The Local Frontal-Parallel Assumption. Illustrated is an example of the failure
of the local frontal-parallel assumption: two points at different depths are imaged onto the
sensor plane. The resulting image is a superposition of scaled, dilated and translated copies
(by different amounts) of the mask function. As a result, solving for « (monotonically
related to range) becomes non-trivial (Equation (3.60)).

In both of these equations L; and L are the brightnesses of the pair of points and are
constant across viewpoint (i.e., the brightness constancy assumption of Section 3.3.1 holds).

Computing the spatial derivative of I(z) gives:

L(z) = —M (w — xl) L+ - M’ < — “) L. (3.56)

aq Qq (05

As before, we consider the ratio of the viewpoint and spatial derivatives:

L) _ M (552) I . (== ””2)L2 -
L(e) L (z=2) b+ S (=2) L, S (2 1+ Sar (252 1,

aj a2
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2
multiplying term ¢ by m, with ¢ = 1,2 gives:

L

Iv(w) _ a1 + @2 . (3.58)
L) M () M ()
R R = D
2M1<Ia1$1)L1 1M/($a;2)L
Substituting in I,(-) = 2y M'(-)L in the above expression gives:
I(z) oy N ay
I, N Iz (z—5) L(z—z)
(.T) 1+ I (z—x1) 1+ I (z—z2)
_ arl.(z — xq) N axl (z — x3)
I(z —z1)+ I(z —22)  I(z—22)+ (2 — 1)
_ arl.(z — z1) 4+ axl(z — z3) (3.59)

I(z —z1)+ I(z — 22)
Note that if, according to our assumption, the two points have the same range, then
a; = ag, and the above equation reduces to a;. The general form of Equation (3.59) for
n points is given by:

L(z) _ Yisgaile(z —w)
I.(x) Y=t Le( — ;)

That is, from a local region in the image, the estimate of a is determined from an average

(3.60)

weighted by the spatial derivative. Note once again that if a; = «, Vi € [1,n], then

?Eg = a, and there is no bias in the estimate of range.

Equation (3.60) suggests that if the local frontal-parallel assumption does not hold, then
the estimate of a is a weighted average (by the spatial derivative) of neighboring points.
This effect is illustrated qualitatively in Figure 3.10. Shown are 1-D range maps with spatial
position plotted along the horizontal axis and range along the vertical axis. Ground truth is
a ramp in depth with varying slope (dotted line), and the estimated range map (solid line)
is computed by a weighted sum of a over a local neighborhood. In each case the spatial
derivative is a raised cosine (dotted line). Note that, as suggested by Equation (3.60),
the periodic errors in range coincide with the underlying spatial derivative. That is, the
estimate of range is unbiased at the points where the spatial derivative is maximal, and
is otherwise under or overestimated. Although seemingly an overly restrictive constraint,
we will show empirically that the frontal-parallel constraint poses little problem in the

estimation of range even for significantly slanted or curved surfaces (Section 3.4.1).

79



Figure 3.10: Failure of Local Frontal-Parallel Assumption. Illustrated are synthetic 1-D
range maps, with spatial position plotted along the horizontal axis, and range along the
vertical axis. Ground truth is a ramp oriented, from left to right, at 10, 30, 45, and 60 degrees
(dotted line). The estimated range map is given by the solid line, and the spatial derivative
is a raised cosine denoted by the dashed line. Range was computed from a weighted average
(by the spatial derivative) of range over a local neighborhood, as in Equation (3.60). Note
that the errors in range coincide with the underlying spatial derivative.

Sensitivity of Local Frontal-Parallel Assumption

The sensitivity to the failure of frontal-parallel assumption can be determined by a similar
perturbation analysis as in the previous section. In particular, we examine the differential
variation in the estimate of range for slanted surfaces. To simplify this analysis the failure
of the frontal-parallel assumption is assumed to take the form of a planar surface with
slope m. That is, the variation in range as a function of spatial position is of the form
mX + Zy, and the estimate of a is then proportional to >, m Substituting this

estimate of a into the definition of range gives:

dsf
ds = [+ [ ¥ mxiszs

Differentiating this expression with respect to the slope of the surface, m, and evaluating

Z

(3.61)

at m = 0 (i.e., a frontal-parallel surface) gives:

0z _ P Tigminy
om (ds = [+ T i mxisz)’
07 dsf* 35 7
I Oy E
X;
x T%:E' (3.62)

That is, errors in range due to the failure of the frontal-parallel assumption scale with
the square of the range. Also note that the errors will scale with the range of integration

(i.e., the spatial extent of ¢ in the above summation).
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Correcting for Non-Planarity

We have found, empirically, that the range estimator performs quite well even in the pres-
ence of large deviations from the frontal-parallel assumption (see Section 3.4.1). Nonethe-
less, we sketch an iterative solution for solving for the a parameter embedded in the integral
(Equation (3.6). That is, a solution for o when it cannot be pulled out of the integral due

to a failure of the frontal-parallel assumption.

First, recall that for complex visual scenes the image formed through an optical mask,

M{(-), is a superposition of scaled, dilated, and translated copies of the mask function:

I(z) = /dxp aipM (:C ;pxp) L (z—z) . (3.63)

Consider then a discrete version of the image formed under the derivative mask M’(-) (we

arbitrarily choose I,(-), equivalently, I.(-) may have been chosen):

L(z) = ¥ L (‘”;7%) L (2—27) : (3.64)

Tp Qap P

which may be written in matrix notation as follows:

Lol o= | oM L

i

I, = Aa, (3.65)

where the vector I, contains the measured image, the rows of the matrix A consist of

scaled, dilated (by an amount «,) and translated copies of the mask AM’, and initially,

the vector, @ contains the estimate of a, = %
z(Zp

inverting the matrix A and pre-multiplying it by the vector I,. A new matrix A is then

The vector @ can be re-estimated by

computed with this new estimate of @, and the process repeated until the process converges

or the difference between successive iterations becomes sufficiently small.
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3.3.3 Optical Mask Constraints

Due to the physical constraints of an optical attenuation mask, the functional form of
any such mask must only contain values in the range [0, 1], where a value of 0 corresponds
to full attenuation and a value of 1 corresponds to no attenuation. The viewpoint and
aperture size derivative masks both contain negative values, and as such may not be used
directly. Furthermore, simply adding a positive constant to the derivative mask destroys
the derivative relationship between them, and this destroys the simple relationship between
range and the measured spatial and viewpoint derivatives. For example, consider the pair
of non-negative 1-D masks, M(u) and M'(u) 4+ ¢. From Equation (3.2) the images of a

uniform intensity point light source through these masks are given by:

Ie)= M <f

«

) I and ILz)=— <M’ (2) + c) L. (3.66)

a a

As before, computing the spatial derivative of I(z) gives:

«

L(z) = %M’ (f) L. (3.67)

But now, the ratio of I,(z) and I.(z) is no longer related by a simple scale factor, a; an
additional additive term, m, occurs in the equation.

Nonetheless a pair of non-negative masks can be constructed by taking the appropriate
linear combination of the original masks. If the imaging system is linear (see Section 3.4.2),

then the original masks can be reconstructed from the non-negative masks. In particular,

consider the following construction of a pair of non-negative masks:
Mi(u) = iM(u) + 1 M'(w) and My(u) = BoM(u) — y2M'(u), (3.68)

where the scaling parameters 3(; ) and 7(; ) are chosen such that M;(u) and M(u) lie
in the range [0,1]. The desired masks, M(u) and M'(u) can be reconstructed through a
simple linear combinations of the non-negative masks, M;(u) and Ma(u):

_ le(u) + IVIQ(’LL) and jw/(u) _ j\/ll(u) — IMQ(U) ‘

M(u) B1+ B2 Y1+ 72

(3.69)

The scaling constants, 312y and (1), may be determined in two stages: (1) add the

appropriate amount of M (u) to M'(u) to make their sum/difference non-negative (if chosen
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properly, this will make the minimum value of the sum/difference equal to 0); (2) scale the
sum/difference so that its maximum value is 1. These scaling constants will be denoted
as b(1 9y and ¢(q 3), respectively. The former is the maximum ratio of |[M'(u)/M(u)| over
the negative/positive values only, the latter is simply the maximum of the sum/difference

computed after applying b(; ). The non-negative masks then take the form:

1 1
Mi(u) = — (byM(u) + M'(u)) and My(u)= — (boaM(u) — M'(u)), (3.70)
(5] C2
where the desired scaling constants are simply:
b 1 b 1
==, m=— and fr=—, pp=— (3.71)
c1 1 C2 C2

Now, according to our initial assumption of linearity, the desired images formed under

the masks M(u) and M'(u) can be determined from the images formed under the masks

My (u) and My(u):

Li(z) + Ir(2)
B1 + B2

Ii(z) — Ir(2)

I(z) =
(=) Y1+ 72

and I, q(z) = (3.72)

where [1(z) and I3(z) are the images formed under the masks M;(u) and Mz(u), respec-
tively, and I, , corresponds to either the viewpoint or aperture size derivative. Clearly, this

construction extends to 2-D optical masks as well. Illustrated in Figure 3.11 is a Gaussian

—(u?4+w?) /20

mask, M(u,w) = e , and it’s partial derivatives with respect to u (view-

2mwo
point derivative) and o (aperture size derivative). Also illustrated are the non-negative

masks constructed according to Equation (3.68).

Calibrating for Camera’s Point Spread Function

In describing the formation of an image through an optical attenuation mask we have been
assuming that the camera’s own point spread function (PSF) is constant across the lens
diameter. In other words, it has been assumed that the image of a point light source with
no attenuation mask is a scaled and dilated copy of a hard-edged rectangular function. This
of course is generally not the case: the camera’s PSF typically takes on a Gaussian-like
shape. The combination of the PSF and the optical mask will then act in a multiplicative

fashion. Whereas before, we employed a matched pair of masks, M(v) and M'(v), with
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(Gaussian

Viewpoint Derivative Aperture Size Derivative

Non-Negative Viewpoint Non-Negative Aperture Size

Figure 3.11: Non-Negative Gaussian-Based Optical Masks. Illustrated are a series of
2-D optical masks and 1-D horizontal slices through their vertical mid-point. In particu-
lar, illustrated is a Gaussian mask, G(u,w, o), (first row) and its derivative with respect
to u (i.e., viewpoint derivative) (second row, left), and its derivative with respect to o
(i.e., aperture size derivative) (second row, right). Also shown are the non-negative masks
constructed according to Equation (3.68). Note that, as required, the non-negative masks
lie in the range [0, 1].

d]\gvu = M'(v), we now require a pair of masks that obey the following constraint:
d(M(v)H .
( (21 ©) _ M(v)H (v), (3.73)

where H(v) is the camera PSF. That is, the derivative relationship is no longer imposed
on the optical masks, rather, this constraint is imposed on the product of the optical mask
and the PSF. Although in our experiments (see Section 3.4.2), we have not calibrated for
the camera’s point spread function, it is most certain that doing so will improve the overall

accuracy of this approach.
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Aperture Size Masks

When considering the functional form of the viewpoint derivative mask, we required only
that the mask to be C* differentiable. In the case of the aperture size mask (Section 3.2.2)
we required the mask function to be C? differentiable and imposed the additional constraint

that:
M"(w) = —(M(u)+uM'(uw)) (3.74)

It is straight-forward to show that, within a scale factor, a Gaussian satisfies this property:

1

—u? /262
Glu) = ——c /2 (3.75)
—u —u? /202
G//(U) — -1 —u?/20° u? —u? [20?

\/27rcr36 \/27ra56

_ __1 1 e—u2/202 . u2 e—u2/202
o? 210 \V2ro?

_ ;_21 (Gu) + uG'(w) (3.77)

The full family of permissible mask functions may be determined by noting that the con-
straint on the mask function is given by a second-order linear homogeneous differential
equation that may be solved for explicitly. In particular, the constraint in Equation (3.74)

is of the general form:
I'(@) + p(2)f'(2) + q(2) f(x) = 0 (3.78)
We provide, without proof, the following theorem for differential equations of this form:

Theorem 3.3.1 if fi and fy are solutions to a second-order linear homoge-
neous differential equation of the form in Equation (3.78), and W( f1, f2)(z) =

[y — f1fa, referred to as the Wronskian °, then:
2= N

°in honor of the Polish mathematician Wronski (1778-1853).  Also, note that the Wronskian,

W(f1, f2)(z) = fifs— fif2, is the determinant of the matrix ;1, ;:2, , and the two cases in the above the-
1 J2

orem amount to determining if these functions span the full space of possible solutions of the second-order

differential equation (i.e., if the determinant is non-zero).
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1. if f and f; are linearly dependent then W( f1, f2) =0,

2. or, if fi and f; are linearly independent then W ( f1, f2) = ce=J &= p(@) £ 0.

where two functions f; and fy are said to be linearly dependent if there exists two constants
¢1 and ¢z, not both zero, such that ¢q fi(2) + caf2(z) = 0, Va. Two functions f; and f; are
said to be linearly independent if ¢1 fi(x) + c2f2(z) = 0, Va only if ¢; = ¢ = 0. Working
with a known solution, the Gaussian, the full family of permissible mask functions will

—z2 /2

be derived. We know, by inspection, that fi(z) = e is a solution to the differential

equation 3.78. Considering each case in the above theorem separately, let f; be another

solution, then if f; and f; are linearly dependent:

W(fi,fo) = 0
e_zz/zfé-l-xe_IQ/?fg = 0

(e 12f,)Y = 0
/da: 0
C

fr = ce”/? (3.79)

L
=
~
mI

8
[iv]
o
[N}
o
~
I

It is straight-forward to verify that functions of this form satisfy our constraint and thus
provides an alternate mask function for the differential aperture size formulation. Now, if

f1 and f;5 are linearly independent then:

W(h,fs) = e ltoe
Tl ae T2, = ce~Jdz e
() = e/
/dx (=212 ) = /das ce " /2
e f, = erf(a)
fa = erf(x)e”/?, (3.80)

where erf(z) is the error function, and although it cannot be solved for analytically,

numeric approximations are available.
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M(u) = e =erf(u)e ™

!

Figure 3.12: Family of Aperture Size Masks. The differential aperture size formulation
requires that the functional form of the mask, M(u) be C? differentiable and satisfy the
constraint that M”'(u)+uM’'(u)+ M (u) = 0. By solving this second-order differential equa-
tion, the full family of possible mask functions has been determined (see text). Illustrated

M(u) = erf(u)e®

above, are examples of each class of functions: the Gaussian, e_“2, the exponential, 6“2,
and the exponentially modulated error function, erf(u)e“2 and erf(u)e_“2. In practice,
only the Gaussian mask is used because the other masks cannot be expressed analytically,
or do not fall smoothly to zero, introducing artifacts when computing spatial derivatives of
the image formed under them.

Additional solutions can be found by recursively considering each of the above solutions
as a starting solution (i.e., f1). In that case, a fourth and final solution of the form
fo=erf(z)e™ */2 is found. Illustrated in Figure 3.12 are examples of each of the possible

—u

mask functions: the Gaussian, e™" , the exponential, e , and the exponentially modulated

—u*  For practical purposes, only the Gaussian is

error function, erf(u)e® and erf(u)e
used since the other functions cannot be expressed analytically or because they do not fall
smoothly to zero at the mask edge and will introduce artifacts in the spatial derivative

computations.

Admittedly, this formulation was somewhat anticlimactic in that we finished at the
same place in which we began, with the Gaussian mask and its derivative with respect to its
dilation parameter as the only permissible and practical mask function for the differential
aperture size formulation. Finally, note that the choice of a Gaussian is specific to the
initial constraint Equation (3.74), which was somewhat arbitrary. There may be other
constraints, with alternate solutions, that will allow us to solve for range from the spatial
and aperture size derivatives. This may be an interesting avenue to explore, however we

will not pursue this area further.
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Sensitivity to Derivative Relationship

We have seen several times now that in order to estimate range, one mask must be
the derivative of the other. In practice, this constraint may not be strictly met (e.g., see
Section 3.4.2 on dithering), in which case we are interested in determining the resulting
errors. Consider the pair of masks, M(-) and M'(-), where M'(-) is not necessarily the
derivative M(-). The spatial derivative of the image formed under the mask A (-), and the
image formed under the mask M(-) are:

*

L(x) = L 11" (

«

) L and ()= ~M’ <f) L. (3.81)

a a a

)
)

The estimate of a is the ratio of these images, Zgg = QM’(”S

(2fa)" Substituting this estimate

of o into Equation (3.3) gives:

7 = %S (3.82)

ds - f + a%f
The error in range, Z, as a function of the deviation from the derivative constraint on the
masks can be quantified by taking the derivative of the above equation and evaluating at

M'(:) = M'(+) (i.e., when the masks are properly matched):

0z ad, f?
oM’ M (dy — f+ o2 p)°
0z | } _ Oédsz
oM MM M dy — f 4 af)?
x 71—
M
7z
i (3.83)

According to this perturbation analysis, the errors in range due to the failure of the matched
mask constraint are proportional to range, Z, and inversely proportional to the magnitude
of the derivative mask, M'(-). In the case of a Gaussian mask, the magnitude of the

derivative is inversely proportional to the width of the Gaussian.
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Placement of Optical Masks

Throughout our discussion we have claimed that in order to compute range by optical
differentiation, the optical mask must be placed directly in front of the lens. It is straight-
forward to see why this must be the case. Consider the projection of the points P; and P,
through an optical mask that has been displaced from the front of the lens (Figure 3.13).
There are two things to notice about this situation. First, the image of each point is no
longer a scaled and dilated copy of the mask function (I(z) # 1M(z/a)), rather, the
image is a scaled an dilated copy of only a portion of the entire mask function. Second,
the portion of the mask function that is captured by each point depends on the spatial
position of the point in the world. For these reasons, when the mask is not placed directly
in front of the lens, the basic constraints (Equations (3.5) and (3.18)) will not hold, the
required derivative relationship between the images will not hold, and estimates of range
will be inaccurate.

In our experiments we avoid this problem by sandwiching the optical mask between a

pair of planar-convex lenses (see Section 3.4.2).

Optimal Optical Masks

Up to this point we have discussed various constraints that must be imposed on the
functional form of the optical masks. Since there are many functions that satisfy these
constraints it is natural to ask whether certain masks are “better” than others. For exam-
ple, it would be desirable to choose a mask that reduces sensitivity to noise or increases
resolution. In this section we explore some of these constraints and show how to design
optimal masks based upon them.

The first and simplest constraint is to choose a mask function that maximizes the
amount of light throughput. Such a mask will clearly be beneficial in increasing the signal-
to-noise ratio (SNR). Denoting the mask function as y(z), we would like to maximize the

integral of this function across the diameter of the lens:

L = ’ dz y(z), (3.84)

—a
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p2 " P1

M(v)

1(x)

Figure 3.13: Placement of Optical Mask. Illustrated is the projection of two points
through an optical mask that has been displaced from the front of the lens. Note that the
basic constraint that the image of a point be a scaled and dilated copy of the mask function
no longer holds (i.e., I(z) # 1 M(2/a)). As a result the derivative relationship between
the pair of images imaged through the masks M(v) and M'(v) will not obey the necessary
derivative relationship (e.g., Equation (3.5)), and range can not be determined from their
ratio.

where @ is the radius of the lens. The function y(z) which maximizes this constraint
can be determined by employing tools from the calculus of variation (see, for exam-
ple, [Weinstock 52]). In particular, the above integral is of the general form of I =
f: dz F(z,y,y'), where y’ denotes the derivative of y with respect to its single argument z.
Stable points for this function can be determined by solving the following Euler-Lagrange
differential equation:

Solving the Euler-Lagrange equation for the constraint /; gives the solution for the mask

function:
y(z)=c and ¢'(z)=0, (3.86)
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where based on the physical constraints of our mask we choose the constant ¢ = 1. This of
course makes perfect sense: in order to maximize the light throughput, simply allow all the
light to pass. But since the derivative of this mask function is identically zero everywhere,
this choice of mask function is completely impractical.
Working towards a more practical solution, we may try to maximize the light through-
put for the derivative mask, y'(z).
a
I, = dz y'(z). (3.87)

—a

Solving for the maximizing y(z) (Equation (3.85)) gives:
y(z) =z +ecy and ¢ (z)=c. (3.88)

This solution holds more promise since neither mask function is identically zero. Illus-
trated in Figure 3.14 are examples of these masks and their non-negative counterparts (see
Equation (3.68)). These masks seem quite reasonable, unfortunately, computing spatial
derivatives of the image formed under the mask y(z) will be problematic. In particular,
the discontinuities of y(z) at its boundaries (i.e., z = @ and z = —a) will lead to spurious
derivative measurements at these points. In order to eliminate these discontinuities, we
may impose the boundary conditions that y(a) = y(—a) = 0, and solve for the two degrees
of freedom in y(z) (i.e., the constants ¢; and ¢3). Unfortunately the only solution to these
boundary conditions is to have y(z) = 0 ,Vz — again, a completely impractical solution
Taking a slightly different approach, we may choose to balance the light throughput
for the mask function and its derivative. That is, minimize the difference of the means for
these masks. This constraint can be expressed as:
a
I; = dz y(z)* — ¢/ (z)? (3.89)
—a

Solving the Euler-Lagrange equation gives the classical differential equation:
y(@)+y'(z) = 0. (3.90)

The trivial solution to this differential equation is y(z) = 0, but of more interest is the
solution of the form y(z) = cos(z) with y'(z) = —sin(z). Considering these functions in

the range [—7, 7] poses a problem for the computation of the non-negative masks. That is,
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Functional Form y(z) y'(2) By(z) +~y'(z)  Py(z) —~y'(x)

y(z) =2
o 1
1 0 1 -1 0 1 -1 0 1 -1 0 1
y(z) = 3(1+ cos(z)) 1 1 1
o
-1 0 1 1 0 1 -1 0 1 -1 0 1
ya)= el 1 : :
o

Figure 3.14: Optimal Masks. Shown, from top to bottom, are several optimal masks based
on the constraints specified in Equations (3.87), and (3.89), with @ = 1. For comparison
the Gaussian-based mask is also shown (bottom row).

since cos(7/2) = 0 and — sin(7/2) = —1, it is impossible to generate a pair of non-negative
masks from a simple linear combination of these masks functions (i.e., Sy(7/2)+~y'(7/2) <
0, V 3,7). Of course, we may consider these functions in the range (—7/2,7/2), but
then the mask y(z) will have a discontinuity at the border leading to spurious derivative
measurements in the image formed under this mask. Although not physically realizable,

this solution leads to a feasible solution of the form:

y(z) = (1 + cos(z)) and y'(z) = —1sin(x). (3.91)

[lustrated in Figure 3.14 are examples of these masks and their non-negative counterparts.
The mean light throughput of the non-negative mask is 0.5 and should be compared with a
mean value of only 0.36 for the Gaussian-based mask (shown in the same figure). In terms
of maximizing signal-to-noise ratio (SNR), the raised cosine function is clearly superior

(although not optimal with respect to our constraint).

This section has just begun to touch on the issue of optimal mask design, and there

are still many possible constraints and optimization techniques to be explored.
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3.3.4 Sensitivity to Measurement Noise

Throughout this section we have examined the sensitivity of our range estimator to
a variety of assumptions and constraints. Next, we examine the sensitivity to measure-
ment noise, that is, with respect to Figure 3.6, noise in the initial measurements of the
images I;(z) and I3(z). Recalling from Section 3.3.3 (Equation (3.72)) that the spatial
and viewpoint derivatives are determined from these initial measurements as:

:i<11($)+12(90)
dx b1+ B2

we may now inject noise into [;(z) and I3(z) and determine its effect on the estimate of

Il(x) — IQ(.%)

I.(x
(@) Y1+ 72

) and I,(z) = (3.92)

range:
0 (i) + ma(z)) + (La(x) + na(z))

=) = oz ( B1+ B2 ) (3.93)

I(z) = (Li(z) + nl(?l) ; E,f(x) + 712(1‘))7 (3.94)
and

de
Z ds - f ‘|’ fa
de

1+72
ds - f + fi((Il(r)+n1’(YI))1(I2(l’)+n2(1')))
oz B1+02

Computing the partial derivative of this expression with respect to I1(z) and evaluating

at ny(z) = ng(z) = 0 (i.e. a noiseless system) gives:

a_Z | _ dsfz(ﬁl —I'ﬁ?)
on M= (4 I)(ds = [+ fa) (n + 72)
Z*(B1 + B2)

@+ 1) +72) (3.96)

The partial derivative with respect to I3(z) yields a similar expression, differing only in the
sign. According to this perturbation analysis, the errors in range due to the presence of
noise in the initial measurements are proportional to the square of the range and inversely
proportional to the spatial derivatives of the measurements. This is not surprising, we

would expect the sensitivity to noise to increase with distance, and the spatial derivative
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provides a measure of signal strength. In addition, the errors are proportional to the scaling
factors 312 and inversely proportional to 7; 2, which makes sense since they appear as a
multiplicative and a divisive factor, respectively, in the computation of range.

In a manner similar to the above formulation the sensitivity of a to measurement errors

can also be determined. Consider the case when the estimate is corrupted with noise:

_ ds f
7 = PRy (et (3.97)

Computing the partial derivative with respect to o and evaluating at n = 0 (i.e., a noiseless

estimate) gives:

07 d, f?

e S R
x 7% (3.98)

That is, the errors are again proportional to the square of the range.

3.3.5 Calibration

In Equation (3.3) we showed that given an estimate of a (the ratio of a viewpoint or
aperture size derivative to a spatial derivative) absolute range can be determined:

ds f

Z o
ds— [+ fa

(3.99)

where ds is the lens to sensor distance, and f is the focal length. These intrinsic camera
parameters need to be calibrated, and clearly errors in this calibration will lead to errors
in the estimate of range. Here we determine the sensitivity of the estimator to errors in
camera calibration. As in previous sections, a simple perturbation analysis is performed
with respect to the calibration parameters, d; and f, where the effect of adding noise to
each of these parameters is considered independently. First, we consider the lens to sensor
distance, d,:

7 = 4 (3.100)

ds— [+ fo

where d; = d, + n, and n is the calibration noise. Computing the partial derivative with

respect to dy and evaluating at dy, = d, (i.e., perfect calibration, n = 0) gives:
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97 Jds = f + fo) = fdy

ad, (ds — [+ fa)?
0z, _ =]+ ]a) - Jd,
ad, =% (ds — f + fa)?
 [Ha-1)
a (ds -+ fa)2
7z
* g (3.101)

Errors in the calibration of the lens to sensor distance leads to errors in the determination
of range that are proportional to the range. A similar analysis with respect to the focal

length, f, gives:

_ dsf (3.102)

ds - f~ + JZO[7
where f = [ + n. Computing the partial derivative with respect to f and evaluating at

f=7 (i.e., perfect calibration, n = 0) gives:

07 dy(ds— [+ fa)—d,f(a - 1)

af (d‘s - JZ + ];a)Q
0z I = dy(ds — [+ fa) —dsf(a—1)
af = (ds — [+ fa)?
d?
T =T+ fa)
Z2
x T (3.103)

Whereas errors in the calibration of the lens to sensor distance are proportional to the
range, the errors in the calibration of the focal length are proportional to the square of the
range. Intuitively, this makes sense, since when computing range the estimated parameter

« is scaled by the focal length but not by the lens to sensor distance.

3.3.6 Stationary World Assumption

Although more of an implementation detail, the final assumption made by our system
is that both the camera and the world must remain stationary during the acquisition of

the pair of images. If this constraint does not hold, then the images will not be related
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by the proper derivative relationship, and this will clearly lead to errors in the estimate
of range. In this section we analyze the sensitivity of our estimator with respect to inter-
frame motion. Consider a point light source that undergoes an arbitrary motion during
image acquisition. The images of this point through the optical masks M(u) and M'(u)
can be expressed in 2-D as:

I(e) = +um <3> L and I(2) = ~M' <f) L, (3.104)

« ! ! !

where z = ¢ + A, and @ = a + A, corresponds to the inter-frame motion, and L is the
brightness of the point source. The quantity A, corresponds to a translation parallel to
the image plane and A, corresponds to a translation in depth along the points principle

ray. For simplicity, we will consider the effects of each of these motions independently.

Sensitivity of Stationary World Assumption

First, the case of a simple translation parallel to the sensor plane is considered; the pair of
images of interest are expressed as:

L(z) = — M (f) I and I(2)= ~M' <5> L, (3.105)

a? a a a

where & = 2 4+ A, represents the displacement in the image due to the inter-frame motion.
For non-zero displacements, A, # 0, the ratio of the viewpoint and spatial derivative yields
the desired a parameter scaled by a ratio of the derivative mask and a translated copy of

the same mask:

L@ M

)
e - S (3.106)

)

Substituting into Equation (3.3) in order to compute range gives:

Q8| Q=

ds
zZ = /

(3.107)
M

A~
Q|8
N

ds = f + fasy

Q|8
—]

Computing the partial derivative of Z with respect to # and evaluating at & = z (i.e., zero

inter-frame displacement, A, = 0) gives:
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4 _ M'(5)
ai |i‘:1‘ - = M’(g) 2
ds_f+faM,(£)

MM (E
R
(ds = [+ fa)?

M"(2)
x Z ST} %)
I (2)
VA ) 3.108

Where in the last step the definition of the image I(z) was substituted for the derivatives of
the mask function in order to obtain an expression involving measurable quantities. From
this perturbation analysis, we see that the errors in range due to an inter-frame translation

scale linearly with range.

Next, consider the case of inter-frame motion of the point source along the point’s
principle ray, a translation in depth with no change in the spatial position on the image
plane:

L(z) = — M’ <£> I and I(2)= M’ <f) L, (3.109)
87

a? a a

where & = a + A, represents the dilation in the image due to inter-frame motion, and L
the constant brightness of the point source. For non-zero dilation, A, # 0, the ratio of the

viewpoint and spatial derivative does not yield the desired a parameter, but rather:

I, M (%
(2) _ & (5) (3.110)
I(2) =M (f)
Substituting into Equation (3.3) in order to compute range gives:
ds
Z = fl B (3.111)
“MI(E
ds - + < a_;;
! féMTﬂ

Computing the partial derivative of Z with respect to & and evaluating at @ = a (i.e., zero
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inter-frame displacement, A, = 0) gives:

1 (T T (T
d, 2 [ MG+ EM(E)
P
[ ey )
(ds_f+fiTl(O(£)))
1 (T T (T
d, 2 [ a2MG)rasM ()
oz, _ Y ( L(2)
da o=« (ds — [+ fa)?

(3.112)

From this perturbation analysis, we see that the errors in range due to an inter-frame

translation in depth are proportional to the square of the distance.

Correcting for Non-Stationary Worlds

Perhaps the simplest solution to the problem of inter-frame motion is to simultaneously
capture the pair of images from the same viewpoint. Such a system could be constructed
from a pair of cameras, and beam splitting optics (e.g., [Nayar 95]). However, such a
construction would certainly eliminate some of the benefits of a single-lens range sensor

(e.g., calibration, physical size, and cost).

Alternatively, we may consider a sequential image capture system that estimates and
corrects for the inter-frame motion. For example, the motion between every second frame
(i.e., images taken through the same optical mask) can be estimated using techniques
outlined in Section 2.3. Then the intermediate image can be warped by the appropriate
amount, and range estimated from the arithmetic combination of the motion-compensated
images. Of course such an implementation would require three images to compute range
(although only two are used directly for estimating range), as well as additional compu-
tation time for estimating the inter-frame motion. Although its seems highly feasible, we

consider the implementation of such an algorithm beyond the scope of this work.
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3.3.7 Resolution

Of general interest in any range estimation technique is the achievable resolution. Since
the optical differentiation range estimation relies, at least implicitly, on measuring the
amount of blur in the image, we will look at the amount of blur as a function of range and
determine a theoretical upper-bound for the achievable resolution in range.

Recall from the thin-lens equation (Equation (1.7)) that the amount of blur is dependent
on range, Z, the radius of the lens, R, the focal length, f, the lens to sensor distance, d,

and the range:

(3.113)

Shown in Figure 3.15 is a plot of the amount of blur as a function of range (where the
imaging parameters were chosen so that the focal plane was at 1 m, that is, the blur radius
is 0 at 1m). Also shown in this figure is the resolution and percent resolution as a function

of range, where the resolution is determined by the following ratio:

A

9rj07’ (3.114)

Resolution =

and where A is the achievable sub-pixel resolution of the discrete spatial derivative operator
(chosen to be 1/2 of a pixel). Of course, the resolution also depends on the radius of the lens,
the focal length and the lens to sensor distance, each of which were fixed (for the purposes
of obtaining the graphs in Figure 3.15 we used values of R = 50mm, [ = 32mm, and
ds = 32mm). Figure 3.15 confirms our intuition that we should expect better resolution
in our range estimation for nearby surfaces. Of course, this analysis does not take into
account any of the other relevant parameters in the estimation of range, but these will be

considered in the following sections.

3.3.8 Summary

In the preceding sections we formalized and studied the assumptions and constraints im-
posed on the differential range estimation formulation. The central results from this anal-

ysis have been collected and presented in Figure 3.16. Note that in all cases the sensitivity
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Figure 3.15: Resolution. Illustrated in the left-most panel is the amount of blur as a
function of depth (where the imaging parameters were chosen so that the focal plane is at 1
m, i.e., blur radius is 0 at 1m). Illustrated in the middle and right-most panel are theoretical
upper-limits on the achievable resolution and percent resolution (Equation (3.114)), for a
fixed set of imaging parameters (i.e., lens radius (R = 50mm), focal length (f = 32mm),
and lens to sensor distance (ds; = 32mm)).

of the system either scales linearly with range or is proportional to the square of the range.
The latter result (which will of course dominate the errors) should not be surprising and
amounts to a restatement of the basic laws of triangulation. In particular, recall that in the
case of binocular stereo, range is given by the expression, Z = % (Section 2.2). Applying

the same type of perturbation analysis with respect to the disparity, A, gives:

0z _dib
A A2
Z2

x oo (3.115)

That is, errors in range are proportional to the square of the range, and inversely pro-
portional to the lens to sensor distance and baseline. Not surprisingly, these results are
entirely consistent with our findings. As already mentioned, the sensitivity of our system
is proportional to the square of the distance, and is also inversely proportional to the lens

to sensor distance, ds, and the width of the optical mask (analogous to the baseline, b).

3.4 Range Estimation

Up to this point we have presented the theory for the optical differential approach to range
estimation, studied the various assumptions and constraints, and analyzed the overall
sensitivity of the system. It is now time to validate the theory with experiments. The
following two sections present results from computer simulations and from experiments

with a prototype camera which we have constructed.
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Assumption/Constraint | Formulation Sensitivity
brightness constancy L'()=0 Z?, j-l—x
frontal-parallel J1/a,M(-)L(-)=1/a [ M(-)L(+) VA
derivative masks Mi(z) = M(z) = My(z) = %ﬂ Z
measurement noise I(z) = d(f z)+n(z)=>n(z)=0 AN
. . 2 1
cal?brat?on. f Z =z f}l—foz VA ’1f_2
calibration: d; Z = T fifa Z z
stationary world I = éMl (g) , Iy = éMg (’H'AI) = A, =0 Z, Il_z
stationary world I = éMl (g) , Iy = a+1Aa M, (aan) =>A,=0| 22, Il_x

Figure 3.16: Summary of Assumption and Constraints.

3.4.1 Simulations

To verify the basic differential formulation and the analysis presented in the previous
sections we have developed a 2-D simulator (written in MATLAB). 1° In this section we
describe the construction of the simulator, and present several examples of computed range
maps under a variety of scene geometries.

We start with a scene specified in terms of its geometry, reflectance function, and the
intensity of one or more light sources. The simulator then determines the appearance
of the scene from a specified viewing position under a lens-based imaging system. As
illustrated in Figure 3.17, an arbitrary scene is rendered by projecting multiple rays from
each pixel at the sensor through an ideal thin-lens and onto the world (Equation (1.8)).
The intensity at each pixel is then determined by simply averaging over the intensity of
these rays. The image formed through an optical attenuation mask placed directly in front
of the lens is determined by using the mask function to take a weighted average of the
bundle of rays passing through the lens. In this fashion, the necessary pair of images can
be generated and an estimate of range determined from the appropriate differentiation
and arithmetic combinations. Note that this simulator differs from the more standard and

simpler rendering process which involves only a single ray (i.e., a pinhole camera model).

197t was our feeling that a full-blown 3-D simulator would not provide additional insights and that due
to the heavy computational cost of rendering through a thin-lens imaging system, a 3-D simulator would
be computationally prohibitive.
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Sensor Lens Mask Surface

Figure 3.17: 2-D Simulator. This 2-D simulator renders simple geometric scenes through
an ideal thin-lens imaging system. For each pixel in the sensor, a bundle of rays are projected
through the lens and onto surfaces in the world. The intensity of each pixel is computed
by averaging the intensity of this bundle of rays. The image formed under an optical
attenuation mask is determined by computed a weighted average (as specified by the mask
function) of the bundle of rays. Once the appropriate pair of image are formed, range is
computed from the appropriate differentiation and arithmetic combinations.

The simulations presented here explore a variety of scene geometries while holding fixed

most other scene and imaging parameters (see Figure 3.18).

In the first set of simulations a simple frontal-parallel surface with a 1/f (fractal)
random texture pattern is considered. This surface was placed at depths of between 0.25
m and 4 m (with a focal plane near 1 m). Illustrated in the first column of Figure 3.19
are the recovered range maps. Note that as the surface is moved away from the focal
plane in either direction the errors increase substantially. This result was predicted by the
sensitivity analysis in Section 3.3 and is largely due to the loss of a strong spatial derivative
signal due to blurring. These errors can be largely alleviated by blurring and subsampling
the initial images before processing, as illustrated in the middle and right columns of the
same figure. In this case, the errors are reduced since regions in the image having weak
a spatial derivative are minimized. Also illustrated in Figure 3.20 are rms and percent
rms plots, averaged over 10 runs with random fractal texture patterns. It is important
to mention that subsampling requires the frontal-parallel assumption to hold over a larger
spatial region. In these examples, the frontal-parallel assumption holds precisely, so no
adverse side-effects of the subsampling are observed. Another point to notice about these
examples is that there is a bias in the range estimate towards the focal plane at around 1 m.
This is simply due to the fact that as the spatial derivative approaches 0 (i.e., I(z) — 0),

«a approaches infinity, which is consistent with the value of a at the focal plane. Note
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Lens:

diameter 50 mm
focal length 50 mm
sampling 0.1 mm
Optical Mask:
functional form Gaussian (G(z) = %e‘wz/‘ﬂ)
Sensor:
lens to sensor distance (ds) | 52.63 mm
width (w) 10 mm
pixels (p) 500 pix
resolution (w/p) 0.02 mm/pix
World:
geometry f(z) =1 + oz + c32?
texture fractal, (F(w) = 1/|w])
lighting uniform ambient

Figure 3.18: 2-D Simulator Parameters. Shown here are the variety of tunable parameters
in the 2-D simulator described above. Most of these parameters were fixed throughout the
simulations presented in this section.

also that there is an asymmetry in the percent rms errors with respect to the focal plane
(Figure 3.20). This error has a minimum at the focal plane (1 m) and increases faster
for near surfaces than for far surfaces. This is simply due to a similar asymmetry in the

amount of blur as a function of distance from the focal plane, as illustrated in Figure 3.15

In the next set of simulations the same planar textured surface, placed at a depth of
1.2 m, is considered but now its orientation relative to the sensor plane was varied between
0° and 60°. Illustrated in the first column of Figure 3.21 are the recovered range maps.
As before, the errors are substantially reduced by subsampling the initial measurements
before processing. Note also that the errors increase only slightly as the surface is tilted
away from frontal-parallel (see also Figure 3.22). Of course it is encouraging to see that
the failure of the frontal-parallel assumption does not severely increase the errors. Because
of the increased failure of the frontal-parallel assumption, we might expect the errors to
increase substantially with subsampling rate, however Figures 3.21 and 3.22 clearly show
that this is not the case. This is not entirely surprising given that the range at a given
point is computed by averaging over points with larger and smaller range. Of course, if

the variation in range were linear, then the over- and under-estimation would “cancel”.
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However, in our case the estimate of a is inversely proportional to range and therefore does
not vary linearly. More specifically, if we approximate the variation in range as locally
planar, then the estimate of ag at a fixed spatial position, zg, may be approximated as
> m, where m is the slope of the surface, and Zy is the range at zg. Note that for
a frontal-parallel surface (i.e., m = 0), ap = ZLov as desired. But, for non-frontal parallel
surfaces (i.e., m # 0), the estimate of ag will be biased depending on the slope of the
surface, m, and the spatial extent of integration. However note also that the term mX;
will typically be much smaller than Zy, and so the average will not deviate substantially
from the desired value of Zy. This observation is substantiated in the rms error plots for
increasingly non-frontal-parallel surfaces (Figure 3.22).

In the third set of simulations a concave quadratic surface with the same random fractal
texture pattern is considered. The surface is placed at a depth of 1.2 m, with varying
curvatures, with the maximum curvature varying from 0° to 60° (see figure caption of
Figure 3.23). Illustrated in the first column of Figure 3.23 are the recovered range maps.
As in the case of the slanted surfaces, the errors increase only slightly with increasing
curvature (see also Figure 3.24). As before, these errors may be reduced by subsampling
the initial measurements before processing.

In the fourth set of simulations a variety of occluded surfaces are considered. Again,
the surfaces have the same random fractal texture as in the previous simulations. In these
simulations, a single frontal-parallel surface was placed at 1.5 m, and a second partially
occluding or occluded surface was placed at 1 m, 1.25 m, 1.75 m and 2 m. [lustrated
in Figure 3.25 are the recovered range maps with and without subsampling. As before,
subsampling reduces the errors, however note also that the sharp discontinuity at the oc-
clusion boundary becomes increasingly broader as the subsampling rate increases. This
is not desirable of course, and illustrates one of the drawbacks of subsampling — a loss of
spatial resolution. To further illustrate this point consider the step structure in Figure 3.25
and the recovered range maps under varying subsampling rates. Note that as the subsam-
pling rate increases the sharp transition between the step levels becomes increasingly more
blurred.

We should also point out that for the frontal-parallel surfaces the errors decrease con-

sistently as the subsampling rate is increased. But this is not the case for the slanted and
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quadratic surfaces. For these surfaces we see a reduction in error between no sub-sampling
and a subsampling rate of 2, but little difference between a subsampling rate of 2 and
4. This effect is most likely due to an increase in the failure of the local frontal-parallel
assumption that occurs with increased subsampling rates, which is not a concern in the
case of frontal-parallel surfaces.

In the above simulations the feasibility of optical differentiation with respect to view-
point was tested (Section 3.2.1). In the next set of simulations the optical differentiation
with respect to aperture size formulation is examined (Section 3.2.2). In these simulations,
the subsampling rate is set at 4, and the same set of frontal-parallel, slanted, and quadratic
surfaces are explored. llustrated in Figure 3.26 are the recovered range maps and shown
in Figure 3.27 are the rms plots as a function of absolute range, orientation, and curvature.
Note that in all of these examples, the rms errors are larger than in the viewpoint deriva-
tive simulations. This is most likely due to the need for a second-order spatial derivative
as opposed to only a first-order spatial derivative in the viewpoint derivative formulation.
Recall also that in the aperture size derivative formulation, surfaces on either side of the
focal plane can not be distinguished (Equation (3.19)). In these simulations, this ambiguity
was solved by manually adjusting the sign of the recovered a parameter (i.e., we cheated).

The above set of simulations were designed to illustrate the basic feasibility of range
estimation by optical differentiation. In addition, the effect of some of the assumptions
(e.g., the frontal-parallel assumption) were verified empirically. In the final set of simula-
tions, the essential sensitivity results of the previous section (as summarized in Figure 3.16)
are verified empirically. In particular, the sensitivity of the system to Z2, d%v and i are
explored.

In the first of these simulations we consider a single frontal-parallel surface placed at
varying depths between 1 m and 4 m. The lens to sensor distance was held constant,
and the focal length was adjusted so that the percent distance between the focal plane
and surface remained constant. This ensures that the signal strength remains constant
so that the effects of the absolute range can be determined. The initial measurements
were not subsampled before processing. Uniform random noise was added to the initial
measurements, with a signal-to-noise ratio (SNR) of approximately 20 db (i.e., SNR =
10log;(std(signal)/std(noise)), where std(-) denotes standard deviation). Illustrated in
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Figure 3.28 are the rms errors in the range estimation averaged over 10 independent trials.
Note that the errors are well fit to a second-order polynomial, that is, the errors scale

approximately with Z2.

In the next simulation a single frontal-parallel surface was placed at a fixed depth of
1.2 m (with the focal plane fixed at 1 m), and the lens to sensor distance, d,, varied
between 5 mm and 50 mm. As before, uniform random noise was added to the initial
measurements with a SNR of approximately 20 db. Figure 3.28 shows the rms errors
in the range estimation averaged over 10 independent trials. Note that the errors scale
approximately with the inverse of the lens to sensor distance, di Clearly a larger lens to
sensor distance is desirable, but at the cost of a narrower field of view (i.e., field of view is
proportional to tan=1(1/dy)).

In the last simulation, a single frontal-parallel surface was again placed at a fixed depth
of 1.2 m (with the focal plane fixed at 1 m). The initial signal strength was varied between
3 db and 20 db, where the signal strength was taken to be the standard deviation of
the intensity image when imaged with no optical mask (converted to db as 10log;(std)).
Uniform random noise was then added to the initial measurements with a SNR, of between
10 db and 20 db. Illustrated in Figure 3.28 are the rms errors in the range estimation,
averaged over 10 independent trials. Note that the errors scale approximately with the
inverse of the strength of the spatial derivative

1
» T,

3.4.2 Experiments

We have constructed a prototype camera for validating the differential approach to range
estimation. As illustrated in Figure 3.29, the camera consists of an optical attenuation
mask sandwiched between a pair planar-convex lenses, and placed in front of an off-the-
shelf SONY CCD camera. We have employed a liquid crystal spatial light modulator (LC
SLM) for use as an optical attenuation mask, also shown in Figure 3.29. In the following
three sections, several of the technical details of the operation of the LC SLM are discussed,
along with some issues specific to our particular LC SLM. The anxious (or uninterested)

reader is encouraged to skip over these sections to the results section.
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Figure 3.19: Simulation of Optical Viewpoint Differentiation. Illustrated are the estimated
range maps (solid curve, with ground truth shown in dashed curve) for a frontal-parallel
surface at varying depths, and varying subsampling rates. Note that as the surface is moved
away from the focal plane (1 m), the errors increase, but that these errors are reduced by
subsampling the initial measurements before processing (see also Figure 3.20).

107



sub-sample rms (mm) % rms
1000 50
800¢ 40
600¢ 30
0
400t 20
200¢ 10
% 1 2 3 %
1000 50
800¢ 40
600¢ 30
2
400t 20
200¢ 10
% 1 2 3 %
1000 50
800¢ 40
600¢ 30
4
400t 20
200¢ 10
% 1 2 3 % 2

Figure 3.20: Simulation of Optical Viewpoint Differentiation. Illustrated are rms and
percent rms errors for frontal-parallel surfaces at varying depths and subsampling rates (see
also Figure 3.19). Rms errors were computed by averaging over 10 independent trials with
random fractal texture patterns.
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Figure 3.21: Simulation of Optical Viewpoint Differentiation. Illustrated are the estimated
range maps (solid curve, with ground truth shown in dashed curve) for planar surfaces, cen-
tered at 1.2 m, at varying orientations, and varying subsampling rates. Note that the errors
do not increase substantially as the surface becomes more slanted, and that subsampling
the initial measurements before processing reduces these errors (see also Figure 3.22).
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Figure 3.22: Simulation of Optical Viewpoint Differentiation. Illustrated are rms and
percent rms errors for planar surfaces at varying orientations and subsampling rates (see
also Figure 3.21). Rms errors were computed by averaging over 10 independent trials with
random fractal texture patterns.
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Figure 3.23: Simulation of Optical Viewpoint Differentiation. Illustrated are the estimated
range maps (solid curve, with ground truth shown in dashed curve) for quadratic surfaces
centered at 1.2 m with varying curvature and varying subsampling rates. The orientation
refers to the tangent at the steepest point on the quadratic surface and ranges from 0 to 60
deg. Note that the errors do not increase substantially as the surface becomes more curved,
and that subsampling the initial measurements before processing reduces these errors (see

also Figure 3.24).
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Figure 3.24: Simulation of Optical Viewpoint Differentiation. Illustrated are rms and
percent rms errors for quadratic surfaces of varying curvature and subsampling rates (see
also Figure 3.23). Rms errors were computed by averaging over 10 independent trials with
random fractal texture patterns.
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Figure 3.25: Simulation of Optical Viewpoint Differentiation. Illustrated are the estimated

range maps (solid curve, with ground truth shown in dashed curve) for occluding frontal-
parallel surfaces and varying subsampling rates. Note that as the subsampling rate increases,

the errors are reduced, but that the sharp discontinuity between the surfaces becomes
increasingly blurred.
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Figure 3.26: Simulation of Optical Aperture Size Differentiation. Illustrated are the
estimated range maps (solid curve, with ground truth shown in dashed curve) for frontal-
parallel surfaces at varying depths, planar surfaces at varying orientations, and quadratic
surfaces of varying curvature. In each case, the subsampling rate was fixed at a factor of 4
(see also Figure 3.27).
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Figure 3.27: Simulation of Optical Aperture Size Differentiation. Illustrated are rms
and percent rms errors for frontal-parallel surfaces at varying depths, planar surfaces at
varying orientations, and quadratic surfaces of varying curvature (see also Figure 3.26).
Rms errors were computed by averaging over 10 independent trials with random fractal
texture patterns.
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Figure 3.28: Sensitivity of Optical Differentiation. Illustrated are the errors in range
estimation as a function of range, Z (in m), lens to sensor distance, d; (in mm), and
spatial derivative, I; (in normalized SNR). Note that as predicted by our earlier sensitivity
analysis, and summarized in Figure 3.16, the errors scale with Z2, dl—s, and i (the dotted
curve corresponds to a least-squares fit of the data to a second-order polynomial, and to
the log of a first-order polynomial, i.e., 1/z, respectively.

Polarization and Liquid Crystal Displays

In our experimental setup, we have employed a fast-switching, fully programmable liquid
crystal display (LCD) for use as an optical attenuation mask. The principles underlying
LCDs are discussed here (see [Collings 90] for a nice presentation). Since the polarization
of light is central to the operation of these devices, we begin this discussion with a brief
review of the electromagnetic wave properties of light and techniques for polarizing light.

The latter of which will prove to be the key ingredient in LCDs.

Throughout our discussions light has been considered only in terms of geometric op-

tics !, and the wave properties of light have been ignored. This is a reasonable simpli-
fication when the wavelength of the light is much smaller than anything with which the
light interacts, as has been the case so far. But now, in order to discuss the polarization
of light, polarizing filters and liquid crystal displays, the electromagnetic wave properties

of light need to be considered.

1 All of the properties of geometric optics may be deduced from three simple rules: (1) light travels in
straight lines in homogeneous media; (2) the angle at which light is reflected from a surface is equal to the
angle at which it is incident; and (3) when light passes from one medium to another, its path is described
by the equation ni sin(61) = na sin(62), where ny and nz are the indices of refraction of the different media.
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Figure 3.29: Prototype Camera. Illustrated on the left is a fast switching liquid crystal spa-
tial light modulator (LC SLM) employed as an optical attenuation mask (see Section 3.4.2
for more details). Illustrated on the right is our range camera consisting of an off-the-shelf
CCD camera and the LC SLM sandwiched between a pair of planar-convex lenses. The
target consists of a piece of paper with a random texture pattern.

The electric field 12 of a light wave lies in a plane (i.e., light falls under the gen-
eral category of plane waves) perpendicular to the direction of propagation. The electric
field oscillates sinusoidally in the plane with a specified orientation(s), as illustrated in
Figure 3.30. The polarization of light is specified by how the orientation of the electric
fields changes as the wave propagates. For example, in an ideally monochromatic light, the
electric field oscillates at a single frequency. Since the z- and y-components can oscillate
independently, we need to first consider what effect varying the individual magnitudes has
on the electric field. As illustrated in Figure 3.31, varying the magnitude of the z- and
y-components changes the orientation of the electric field (in the zy-plane). But for a fixed
relative magnitude, the orientation is constant. Under these conditions (i.e., when the z
and y oscillations are in phase and vary only in magnitude), the light is said to be linearly
polarized. On the other hand, if the z and y oscillations have the same magnitude but
differ in phase by a multiple of 7, then the orientation of the electric field traces out a
circle as it propagates. Under these conditions the light is said to be circularly polarized

(Figure 3.31). The more general case occurs when the phase difference is not a multiple of

s

5 or when the magnitudes are different (and the phases are offset by any non-zero amount).

12 Associated with a light wave are both an electric and magnetic field (i.e., light waves fall under the
more general category of electromagnetic waves), however we need only consider the electric field explicitly,
since the magnetic field is uniquely determined from the electric field and the direction of propagation.
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Figure 3.30: Light Wave Propagation. Illustrated is the propagation of the electric wave
component of a plane light wave (lying in the zy-plane). This wave modulates sinusoidally in
the plane, and the change in orientation of the modulation, as the wave propagates forward,
defines the polarization of the light. In particular, if the orientation does not change, then
the light is said to be linearly polarized. On the other hand, if the orientation changes
as the wave propagates, the light is said to be elliptically polarized, that is, the tip of the
vector defining the orientation traces out an ellipse as viewed down the axis of propagation
(or in a special case, a circle).

Under these conditions the light is said to be elliptically polarized (Figure 3.31). Lastly, if
the polarization changes more rapidly than can be detected, then the light is said to be

unpolarized (e.g., sun light).

There are several techniques for polarizing light, these include scattering, birefringence,
refraction, and polarizing filters. Here, we are only interested in the latter of these tech-
niques, polarizing filters, the most common being the polaroid filter. Polaroid consists of a
thin layer of small crystals of herapathite each aligned with their axis. These crystals ab-
sorb light when the oscillations of the electric field are in one direction, and do not absorb
light when the oscillations are in the orthogonal direction. Illustrated in Figure 3.32 is an
example of linearly polarized light, oriented at an angle 8, passing through a polaroid filter
oriented perpendicular to the direction of propagation. The linearly polarized light can
be decomposed into a horizontal component, proportional to sin(#), and a vertical compo-
nent, proportional to cos(#). The amplitude of the light which passes through the polaroid
is proportional to cos(f), while the sin(f) is absorbed. For example, if § = 0, (i.e., the

light is oriented with the polaroid filter), then the light passes unattenuated, and if § = 7,
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Figure 3.31: Linearly, Circularly and Elliptically Polarized Light. For a single frequency
light wave, the # and y modulations may differ in both magnitude and/or phase. Depending
on the differences, the resulting light wave is either linearly, circularly, or elliptically polar-
ized. In particular, if the z- and y-components are in phase and differ only in magnitude
(left column), then the light is linearly polarized, and the relative magnitudes define the
orientation of the light wave. If the z- and y-components are of equal magnitude and differ
in phase by 7, then the light is circularly polarized (right column, second row). And finally,
if the z- and y-components differ in phase by any amount, or in magnitude by any amount
(and the phases are offset by any non-zero amount), then the light is elliptically polarized
(right column, third and fourth rows), where the relative phases and magnitudes define the
orientation of the ellipse.

(i.e., the light is perpendicular to the polaroid filter) then the light is fully absorbed. Note
that the amplitude of the light which passes is reduced by a factor of cos(#), and so the
intensity is reduced a factor of cos?(#) (intensity is the square of the amplitude).

With a basic understanding of the wave properties and polarization of light, we are
now prepared to discuss liquid crystal displays and there use as spatial light modulators
(i.e., optical attenuation masks). Loosely speaking, liquid crystals have some properties
characteristic of liquids and some characteristic of solids. Mechanically, liquid crystals
resemble liquids (with varying degrees of viscosity), and optically, they resemble crystalline
solids. Another way to describe liquid crystals is to consider the molecular difference

between liquids, solids and liquid crystals. In liquids, molecules have six degrees of freedom:
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Linearly Polarized Light Polaroid Filter

Figure 3.32: Polaroid Filter. Illustrated is a linearly polarized light passing through a
polaroid filter. The resulting light is still linearly polarized, but at a different orientation,
and lower intensity. The polaroid filter has the property that it absorbs light at some
orientations and not at others. As a result, only the vertical component of the light is
allowed to pass through the filter (see text for more details).

translation and rotation about all three axes. In a crystalline solid, molecules have zero
degrees of freedom: they are fixed in space and cannot rotate. In liquid crystals, molecules
have three to four degrees of freedom: translation in two directions and rotation about one
axis, or translation in all three directions and rotation about one axis. Of particular interest
to us is the fact that liquid crystals have many interesting optical properties including the

ability to act as a polarizer.

MMustrated in Figure 3.33 is an example of a liquid crystal display (LCD). In this
figure, the light entering the LCD is first linearly polarized. The relative orientation of
the crystals through the medium either re-polarizes the light, or passes it unaltered. After
passing through the liquid crystals, the light exits through a final polarizing filter that is
oriented perpendicular to the first filter. The orientation of the liquid crystal molecules
are controlled by a signal voltage applied to the glass substrates on either side of the
medium. Depending on this voltage, the light passing through the first polarizing filter
may be unaffected, in which case, no light exits through the second polarizing filter. On
the other hand, if the light is re-polarized by 90°, then the maximum amount of light
exits the LCD. The intensity of the light exiting the LCD may be controlled by varying
the degree of re-polarization. Furthermore, the orientation of the liquid crystals may be

controlled locally, as well as globally, allowing arbitrary text or images to be displayed.
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Figure 3.33: Liquid Crystal Display. Light entering the LCD first passes through a po-
larizing filter so that the light entering the liquid crystal molecules is linearly polarized.
Depending on the relative orientations of the molecules (controlled by a signal voltage ap-
plied to the glass substrates), the light passes unaffected or is re-polarized. The light then
passes through a final polarizing filter, perpendicular to the first filter.

We have purchased from CRL Smectic Technology (Middlesex, UK), a fully pro-
grammable, fast-switching, twisted nematic liquid crystal display for use as an optical
attenuation mask (also referred to as a spatial light modulator). This device measures 38
mm (W) X 42 mm (H) x 4.3 mm (D), with a display area of 28.48 mm (W) X 20.16 mm
(H). The spatial resolution is 640 X 480, with 4 possible grayscale values (some technical
issues related to the low grayscale resolution are discussed below). The display is controlled
through a PC VGA video interface, supplied by the manufacturer. The LCD refreshes its
display at 30 Hz; when synchronized with the frame grabber, the required images taken
through the pair of optical masks may be acquired at 15 Hz. '* The subsequent processing
(i.e., convolutions and arithmetic combinations) can be performed in real-time on any of

a number of DSP chips or high-end workstations. This LCD display, integrated into the

¥ As in  [Nayar 95], a pair of images may be acquired simultaneously (i.e., 30 Hz), by employing an
additional camera, some beam splitting optics, and two fixed optical masks.
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range sensor, is shown in Figure 3.29. Recently we have found a 3.5 cm, 800 x 480 pixel,
24-bit, fast switching SONY LC SLM that should provide us with a larger and higher res-
olution optical attenuation mask. We are encouraged that over the past year these devices
have dramatically increased in quality and dropped in price (due primarily to the heavy

demand produced by the virtual head-mount industry).

Dithering

A second experimental detail involves the resolution of the liquid crystal display described
in the previous section. Although higher resolution LCDs exist, our display only allows
2-bit images (i.e., 4 gray levels) to be displayed. In order to minimize the quantization
effects, standard dithering techniques were employed (see [Ulichney 88] for an extensive
review of dithering and halftoning). Dithering is a process by which a digital image with a
finite number of gray levels is made to appear as a continuous-tone image. Since there are
numerous dithering algorithms (and even more variants within each algorithm), and few
quantitative metrics for measuring their performance (beyond an RMS error metric), we
have chosen a standard stochastic error diffusion algorithm based on the Floyd/Steinberg
algorithm [Floyd 76].

The Floyd/Steinberg error diffusion dithering algorithm tries to exploit local image
structure to reduce the effects of quantization. For simplicity, a 1-bit version of this algo-
rithm is described here, the algorithm extends naturally to an arbitrary number of gray
levels. The gray value of a pixel is first thresholded into “black” or “white”, the difference
between the new pixel value and the original value is then computed and distributed in a
weighted fashion to its neighbors. In [Floyd 76], the authors suggest distributing the error

to four neighbors with the following weighting:

. ( 07)
_X s
7\3 5 1

where the o represents the quantized pixel, and the position of the weights represent spatial
position on a rectangular sampling lattice. Since this algorithm makes only a single pass
through the image, the neighbors receiving a portion of the error must consist only of those
pixels not already visited (i.e., the algorithm is casual). Note also that since the weights

have unit sum, the error is neither amplified nor reduced. There are numerous algorithms
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which vary the choice of neighbors and the weighting function (see [Ulichney 88] for a
review), these multitude of variations will not be considered.

Qualitatively, the error diffusion algorithm reduces the effects of quantization. However
this algorithm does introduce correlated artifacts due to the deterministic nature of the
algorithm and the scanning order. These problems may be partially alleviated by intro-
ducing a stochastic process. ! A stochastic process may be introduced into the error
diffusion algorithm in a variety of places. For example, in [Woo 84] the authors suggest
randomizing the weighting function (making sure that the weights always have unit sum),
and in [Billotet-Hoffman 83], the authors suggest randomizing the quantization threshold.
Along these lines, we have taken the standard error diffusion algorithm and randomized the
error (within 0.90% and 1.10%, before distributing it to its neighbors), and alternated the
scanning direction (odd lines are scanned from left to right, and even lines are scanned from
right to left). Hlustrated in Figure 3.34 are dithered images of Richard P. Feynman based
on this algorithm. Qualitatively, these images are a considerable improvement over those
based on simple thresholding (Figure 3.35), especially for the low-bit images.

Since a quantitative analysis of dithering algorithms would require sophisticated models
for measuring image quality, such algorithms are usually only evaluated at a qualitative
level. However, for our purposes we can do slightly better. In particular, recall that the
dithering procedure will be employed by the LCD to display a pair of optical attenuation
masks, and for the purposes of range recovery we require that one mask be the derivative
of the other (Section 3.3.3). To this end, the dithering algorithm should be evaluated by
how well it preserves the derivative relationship between the pair of masks.

In order to begin to quantify the errors introduced by the dithering algorithm, several
pairs of optical masks were dithered using the stochastic error diffusion algorithm described
above at varying number of gray levels, and their derivative relationship evaluated in the
frequency domain (Figure 3.36). In particular, a pair of non-negative, Gaussian-based
optical masks were constructed (Equation (3.68)) and dithered to either 64, 16, 8, 4, or 2

gray levels. The appropriate linear combination of these masks (Equation (3.69)) produces

" There are several examples of where randomization has been introduced to reduce visual artifacts.
Some of the earliest examples may be found in [Dippe 85], where the authors randomized the sampling grid
to reduce the effects of spatial aliasing of undersampled images and in [Allebach 76], where the authors
removed moire patterns from computer screens by randomized the centers of dot clusters.
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Figure 3.34: Dithering: Stochastic Error Diffusion. Illustrated, from left to right/top
to bottom, are images of Richard P. Feynman dithered from 1 bit (2 gray levels) to 6
bits (64 gray levels). The original was an 8-bit image (bottom right). The dithering was
accomplished using a stochastic error diffusion process based on the Floyd/Steinberg al-
gorithm [Floyd 76] (see text for more details). These images should be compared with
quantization based on simple intensity thresholding illustrated in Figure 3.35.

the required masks, G(z,y) and G'(z,y), where the latter should be the derivative of
the former. These dithered masks are shown in the first two columns of Figure 3.36. The
derivative relationship of these masks was then evaluated in the frequency domain. That is,
if one mask is the derivative of the other, then the Fourier transform of one mask multiplied
by a ramp should be equal to the Fourier transform of the other (i.e., jw,G(ws,wy) =
G'(wg,wy)). Hlustrated in the third and fourth columns of Figure 3.36 are a ramp times
the Fourier transform of the first mask and the Fourier transform of the second mask. For
the purpose of display, the Fourier transforms were raised to the power 1/8, and only the

central portion displayed ([—w/2: w/2]). In the last column are 1-D horizontal slices of the
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Figure 3.35: Quantization by Thresholding. Illustrated, from left to right/top to bottom,
are images of Richard P. Feynman quantized from 1 bit (2 gray levels) to 6 bits (64 gray
levels). The original was an 8-bit image (bottom right). The quantization was accomplished
using simple thresholding, these images should be compared with those generated using a
stochastic error diffusion dithering algorithm (Figure 3.34).

Fourier transforms, where the dashed line is the Fourier transform of G(z, y) multiplied by a
ramp, and the solid line is the Fourier transform of the derivative mask, G'(z,y). Note that
for the masks dithered at 16 levels and higher, the Fourier transforms are nearly identical,
that is, the derivative relationship between the optical masks is preserved. Because our

LCD dithers at 4 gray levels we can expect errors in the higher frequencies.

Although it is not possible to exhaustively test each dithering algorithm (and their
numerous variants), empirically we have found that the stochastic error diffusion algorithm
described above produces rather small artifacts in the low frequencies, and modest errors

in the higher frequencies.
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Figure 3.36: Dithering of Derivative Optical Attenuation Masks. Illustrated in the first
two columns are a matched pair of dithered (to the specified number of gray levels) Gaussian-
based optical attenuation masks, G(z,y) and G'(z,y) (see text for a full description of their
construction). Illustrated in the third column is the frequency domain derivative of the first
mask, jw;G(we,wy), and in the fourth column is the Fourier transform of the derivative
mask, G'(wg,wy). For display purposes, the Fourier transforms were raised to the power
1/8, and only the central portion displayed ([—w/2 : w/2]). If the masks were perfectly
matched (i.e., G'(z,y) is the derivative of G(x,y)), then the Fourier transforms should be
identical. Illustrated in the last column are 1-D horizontal slices of the Fourier transforms,
where the dashed line is the Fourier transform of the mask G(z,y) multiplied by a ramp,
and the solid line is the Fourier transform of the derivative mask, G'(z,y). Note that for
dithering levels of 16 and higher, the filters are almost perfectly matched.
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Non-Linearities

And finally, there are at least two possible non-linearities with which we need to con-
tend. The first is the non-linearity in the light transmittance of the optical attenuation
masks. A non-linearity at this stage will effect the derivative relationship of the optical
masks. As discussed in the previous section, the optical masks were generated using a
fully-programmable liquid crystal display (LCD). As illustrated in Figure 3.37, the LCD is
highly non-linear. Shown in the first panel of this figure is the light transmittance (mea-
sured with a photometer) through one of four uniform gray mask (open circles) — if the
LCD were linear, then these measurements would lie along a unit-slope line. The second
panel of the same figure illustrates a similar plot for a brighter light source. The similarity
of these two plots suggests that the non-linearity in the LCD is constant across this range
of lighting conditions. Also shown in these two panels is a second-order polynomial fit to
the data (dashed line), referred to as the gamma function, ¥(-). The non-linearity can now
be partially corrected by inverting the gamma function (shown in the third panel of Fig-
ure 3.37) and applying the inverse gamma function to the requested gray-value (i.e., when
the gray value g is requested, the gray value y7!(g) is displayed). To test how well the
inverse gamma function linearizes the LCD a series of 32 uniform gray masks were piped
through the inverse gamma function and then dithered (see Section 3.4.2 for more details
on the dithering algorithm). Illustrated in the fourth panel of Figure 3.37 is the measured
light transmittance across each each of these masks. If the corrected LCD were perfectly
linear, then the data (open circles) would lie along a unit-slope line (dashed line). The
corrected output is clearly not perfectly linear, but the improvement is substantial. The
failure to perfectly linearize the LCD is most likely due to a relatively poor fit to the

gamma function from only four data points, and to dithering artifacts.

An alternative approach to linearizing the LCD is to perform the gamma correction
within the dithering algorithm. More specifically, in the stochastic error diffusion dithering
algorithm the error between the quantized pixel value and the desired value is distributed
to its neighbors (see Section 3.4.2). In order to correct for the non-linearity in the LCD the

diffused error is now given by the difference between the desired value and the measured
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Figure 3.37: Calibration of LCD. Illustrated in this figure is the non-linearity of the LCD
(i.e., optical mask). In particular, shown in the two left-most panels is the measured (with
a photometer) normalized light transmittance (in cd/m?) through one of four uniform gray
masks, averaged over five trials (open circles). The two panels correspond to the same
measurements under different lighting conditions. Also shown is the gamma function, a
second-order polynomial fit to the data (dashed line). Illustrated in the third panel is the
inverse gamma function used to linearize the LCD. Shown in the final panel is the normalized
light transmittance measured through one of 32 uniform gamma-corrected and dithered gray
masks, averaged over five trials. If the LCD were perfectly linear, the measurements (open
circles) would lie along a unit-slope line (dashed line).
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Figure 3.38: Calibration of LCD. Illustrated in this figure is the non-linearity of the LCD
(i.e., optical mask). In particular, shown on the left is the measured (with a photometer)
normalized light transmittance (in cd/m?) through one of four uniform gray masks, averaged
over five trials. Shown on the right is the normalized light transmittance measured through
one of 32 uniform dithered and gamma-corrected gray masks, averaged over five trials. That
is, the gamma correction is built into the dithering algorithm. If the LCD were perfectly
linear, the measurements (open circles) would lie along a unit-slope line (dashed line).
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Figure 3.39: Calibration of Imaging Sensor. Illustrated in this figure is the normalized
pixel intensity of a point light source as imaged through a series of 32 uniform, dithered
optical masks (with gamma correction), averaged over five trials. If both the optical and
imaging sensor were linear, then these measurements (open circles) would lie along a unit-
slope line (dashed line). Although clearly not the case, it would appear that the deviation
is due to a remaining non-linearity in the LCD (see Figure 3.38). As a result, we conclude
that, for our purposes, the imaging sensor is linear.

light transmittance of the quantized pixel (i.e., the gamma function, v, evaluated at either
1, 2, 3, or 4). Note that with this approach, we no longer require an explicit gamma
function, only the measured light transmittance at the four gray settings. Ilustrated in
Figure 3.38 is the measured light transmittance through 32 uniform gray masks dithered
according to this technique. If the corrected LCD were perfectly linear, then the data (open
circles) would lie along a unit-slope line (dashed line). Because this non-linear correction

outperforms the previous approach (Figure 3.37) it is employed by our range sensor.

The second possible non-linearity to consider is in the imaging sensor. A non-linearity
at this stage will effect the recombination of the images I(-) and I, ,(+) from the measured
images I1(-) and I5(-) (Equation (3.72)). With the optical masks linearized, it is possible
to test the linearity of the imaging sensor by measuring the pixel intensity of the image of a
point light source imaged through a series of uniform gray masks. As shown in Figure 3.39,
the imaging sensor is close to linear. If both the optical masks and imaging sensor were
perfectly linear, then the measurements (open circles) would lie along a unit-slope line
(dashed line). Clearly this is not the case, but it would appear that the deviations are due to
a remaining non-linearity in the LCD. In particular, the data in this figure closely resembles
the measured light transmittance of the LCD after gamma correction (Figure 3.38). For
our purposes then, it is assumed that the imaging sensor is linear, and a second gamma

correction on the initial measurements is not necessary.
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Figure 3.40: Illustrated in the first two panels are 1-D slices of the image of “point light
source” taken through a pair of non-negative Gaussian-based masks, I; and I». Shown
in the third and fourth panels are 1-D slices of the images [ and I, determined by the
appropriate linear combination of these measurements (see Equation (3.72)). Note that,
as expected, these images are reasonably well fit to a Gaussian and its derivative (dashed
curve).

Results

In addition to the simulations presented earlier, we have verified the principles of range
estimation by optical differentiation with a prototype camera which we have constructed
(see Figure 3.29). The first experiment consisted of verifying the basic nature of the optical
attenuation masks. In particular, according to our initial observation we expect that the
image of a point light source to be a scaled and dilated copy of the mask function. Hlus-
trated in Figure 3.40 is an example of this behavior: shown are 1-D slices of images taken
through a pair of non-negative Gaussian-based optical masks, and the appropriate linear
combination of these images (Equation (3.72)). Note that these 1-D slices are reasonably
well fit to a Gaussian and its derivative (dashed curve). Errors in the fit are undoubtedly
due to dithering artifacts in the optical masks, remaining non-linearities in the system,
noise, the effects of the camera’s intrinsic optical transfer function, and the inability to
precisely construct a true point light source.

In the remaining experiments the target consisted of a sheet of paper with a random
texture pattern and back illuminated with a desk lamp to help counter the low light
transmittance of the LC-SLM optical mask (Section 3.4.2). The initial measurements were
subsampled from their original size of 512 X 512 to 256 X 256. Spatial derivatives were
computed using the 5-tap optimally matched filters described in Section 1.4. In regions
with low spatial derivative (approximately 50% of the pixels) range was not computed

directly but was instead determined by simple linear interpolation from the neighboring
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range estimates.

Mlustrated in Figures 3.42 and 3.43 are a pair of recovered range maps where the
target was a frontal-parallel surface relative to the sensor plane and placed at a distance
of 11 and 17 cm from the camera. These figures illustrate the range maps computed
using optical viewpoint and aperture size differentiation, respectively. In the case of the
viewpoint differentiation, the recovered range maps had a mean of 11.01 and 17.07 cm,
with a standard deviation of 0.08 and 0.06 cm, respectively. In the case of the aperture
size differentiation, the recovered range maps had a mean of 10.99 and 16.80 cm, with
a standard deviation of 0.005 and 0.01 cm, respectively. Statistics for these range maps
are given in Figure 3.41. It was somewhat surprising to discover that the aperture size
differentiation gave significantly better results than the viewpoint differentiation (in terms
of standard deviation). We suspect that this is due to two possible reasons. First, the
aperture size mask have a higher mean light throughput; for the Gaussian-based optical
masks, the mean light throughput is 0.37, as compared to a mean of 0.20 for the viewpoint
masks. The increased light throughput translates to a higher signal-to-noise ratio. Second,
since the depth of field of our camera is narrow, the inherent sensitivity to changes in
aperture size are likely to be larger than with respect to viewpoint. Although, the aperture
size differentiation affords fewer errors in this example, it still suffers from a sign ambiguity
(i.e., surfaces equally spaced on either side of the focal plane are indistinguishable).

Ilustrated in Figure 3.44 is a recovered range map for a planer surface oriented approx-
imately 30 degrees relative to the sensor plane, with the center of the plane 14 cm from
the camera, and a pair of occluding surfaces placed at 11 and 17 cm. The recovered range
maps in this figure were determined using the optical viewpoint differentiation formulation.

Qualitatively, these range maps look quite reasonable.

3.5 Related Work

The idea of optical differentiation and its application to range estimation is novel to this
work, however the concept of single-lens range imaging is not. Below are brief descriptions
of several such systems, and shown in Figure 3.45 is a quantitative comparison of these

techniques, several other standard range estimation techniques (e.g., range from motion,
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Derivative Range Mean Std Min Max
View. 11 11.01 0.08 9.42 12.91
View. 17 17.07 0.06 15.59 18.87

Ap. Size 11 10.99 0.005 10.85 11.20

Ap. Size 17 16.80 0.01 16.12 17.23

Figure 3.41: Range Estimation Statistics. Illustrated are the mean, standard deviation,
minimum and maximum range values for the frontal parallel surfaces illustrated in Fig-
ures 3.42 and 3.43. All measurements are given in cm.

stereo, focus, and defocus) and our optical differentiation approach.

The use of optical attenuation masks for range estimation has been considered in the
work of Dowski and Cathey [Dowski 94] and Jones and Lamb [Jones 93]. The former
employs a sinusoidal aperture mask and computes range by searching for zero-crossings in
the local frequency spectra. The latter system employs an aperture mask consisting of a
pair of spatially offset pinholes. Imaging through such a mask produces a superimposed
pair of images from different viewing positions. Range is determined using standard stereo
matching or visual echo techniques. The masks used in both these systems are not based
on differential operations. Furthermore, these systems operate on a single image and must
therefore rely on assumptions regarding the spectral content of the scene.

Adelson and Wang [Adelson 91, Adelson 92] describe a clever single-lens, single-image
range camera, termed the plenoptic camera !°. The authors placed a lenticular array (a
sheet of “miniature lenses”) over the sensor, allowing the camera to capture images from
several viewpoints. More specifically, each group of 5 x 5 pixels (termed macropixels) cap-
tured an image from a different viewpoint. From only a single image, a viewpoint deriva-
tive can be computed across the macropixels. By computing a spatial derivative within the
macropixels, range is determined by the familiar ratio of these derivative measurements.
Note however, that the viewpoint derivative is still being computed from a discrete set
of viewpoints (i.e., across 5 macropixels). The authors noted several technical difficulties
with this approach, most notably, aliasing and the alignment of the lenticular array with

the CCD sensor. This approach is based on the same underlying principles as our own

1*The term plenoptic is derived from plenus, complete or full, and optic, view.
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Figure 3.42: Results. Illustrated are the recovered range maps using optical viewpoint
differentiation for a pair of frontal-parallel surfaces at a distance of 11 and 17 cm from the
camera. The computed range maps have a mean of 11.01 and 17.07 cm with a standard
deviation of 0.08 and 0.06 cm, respectively.

Figure 3.43: Results. Illustrated are the recovered range maps computed using optical
aperture size differentiation for a pair of frontal-parallel surfaces at a distance of 11 and 17
cm from the camera. The computed range maps have a mean of 10.99 and 16.80 cm with
a standard deviation of 0.005 and 0.01 cm, respectively.
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Figure 3.44: Results. Illustrated on the left is the recovered range map computed using
optical viewpoint differentiation for a slanted surface oriented approximately 30 degrees
relative to the sensor plane with the center of the plane at a depth of 14 cm. Illustrated on
the right is the recovered range map for a pair of occluding surfaces at a depth of 11 and
17 cm.

(and inspired many aspects of our approach), but is entirely different in implementation
and, most importantly, the method of calculating viewpoint derivatives.

A series of single-lens stereo systems have also been developed [Teoh 84, Nishimoto 87,
Goshtasby 93]. In the first of these systems, a stereo pair of images is generated by two
fixed mirrors, at a 45° angle with the camera’s optical axis and a rotating mirror made
parallel to each of the fixed mirrors. In the second system, a rotating glass plate placed
in front of the main lens, shifts the optical axis slightly, simulating two cameras with
parallel axis. The last system places two angled mirrors in front of a camera producing
an image where the left and right half of the image correspond to the view from a pair of
verged virtual cameras. In each case, range is calculated using standard stereo matching
algorithms. The benefit of these approaches is that they eliminate the need for extrinsic
camera calibration (i.e., determination of the relative positions of two or more cameras),
but they do require slightly more complicated intrinsic calibration of the camera optics.

We have compared the performance of our technique for range estimation with the
classical approaches outlined in Chapter 2 as well as the more exotic approaches described
above. Figure 3.45 shows a comparison of the mean errors for various range estimation
techniques. This list is not intended to be exhaustive, and only a few examples from each
technique are given. The choice of techniques was based primarily on the availability of
quantitative error measurements, but we also have tried to give an appropriate sampling

of early and current work in each area. Whenever possible, the following information is
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provided: (1) mean range of surfaces in the world, (2) camera focal length, (3) frame rate,
(4) density of range image, (5) whether structured illumination was employed, (6) mean
error as a percent of range, and (7) normalized error. The normalized error compensates
for differences in range and focal length (see figure caption for more details). However, this
is only intended as a first approximation, and ignores many other factors. In addition, we
give the benefit of the doubt to the range from motion algorithms and assume that they
are able to exactly recover the camera motion, that is, the errors are given with respect to
the velocity measurement (see Section 2.3). This comparison shows that our approach is
competitive with other techniques, where we benefit over others in terms of physical size,

cost, calibration, and computation.

3.6 Summary

In this chapter, we have presented the theory, analysis, and implementation of a novel
technique for estimating range from a single stationary camera. The computation of range
is determined from a pair of images taken through one of two optical attenuation masks.
The subsequent processing of these images is simple and analytic involving only a few 1D
convolutions and arithmetic operations. We have shown that the errors and sensitivity of
this approach are proportional to the square of the range, which is in line with most other
range estimation techniques.

The simplicity of this technique has some clear advantages. In particular, the use of a
single stationary camera reduces the cost, size and calibration of the overall system, and the
simple and fast computations required to estimate range makes this technique amenable
to a real-time implementation. In comparison to classical stereo approaches, our approach
completely avoids the difficult and computationally demanding “correspondence” problem.
In addition, with only a single stationary camera, we avoid the need for extrinsic camera
calibration. Of course there are also some clear disadvantages as well: most notably, the
construction of a non-standard imaging system, the limited resolution due to the width of
the lens, and the requirement of two sequentially acquired images.

It is unlikely that this technique will supplant the multitude of existing range estimation

techniques, rather, we expect that this approach will prove to be well suited for certain
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domains, and poorly suited for others. We are hopeful that with time and advancements
in the liquid crystal technology employed by the optical masks, the construction, cost, and

performance of our system will improve.

136



Focal Frame Structured Normalized
Classification Reference Range Length Rate Density IMum. Error Error
(mm) (mm) (frame/s) (pixels) (%range)
stereo [Cochran 92] - - 0.002 128 x128 No 0.76 -
stereo [Kanade 95] 750 50 30 256 X240 No 0.8 1.42
diff. stereo [Gokstorp 95] - - - 144 x144 No 3.5 -
motion [Lucas 81] - - - 128x128 (8.8%) No 3.55 -
motion [Simoncelli 93] - - - 128 x128 No 3.81 -
motion [Fleet 90] - - - 128%x128 (34.1%) No 4.17 -
motion [Horn 81] - - - 128x128 (33.3%) No 7.12 -
motion [Uras 88] - - - 128 x128 No 10.44 -
motion [Horn 81] - - - 128 x128 No 16.23 -
motion [Lucas 81] - - - 128 x128 No 17.93 -
focus [Xiong 93] 1000 130 - - No 0.5 1.30
focus [Subbarao 95] 600 35 - 256 X256 No 2.07 4.02
focus [Subbarao 95] 5000 35 - 256 X256 No 17.27 0.48
defocus [Nayar 95] 300 12.5 30 512 %480 Yes 0.25 0.69
defocus [Pentland 94] 45 - 4 64x64 Yes 0.5 -
defocus [Xiong 93] 1000 130 - - No 1.3 3.38
defocus [Pentland 94] 2000 - 4 64 x64 No 2.5 -
sinusoid mask [Dowski 94] 1400 50 - 256 X256 (<1%) No 1.4 0.71
pinhole mask [Jones 93] - 16 - - No - -
plenoptic [Adelson 92] - 35 - 100x100 No - -
active [Kramer 93] 310 45 50 128 x128 Yes 1.2 11.23
optical diff. (sim) - 4000 50 - 1x128 No 0.56 0.04
optical diff. (sim) - 2000 50 - 1x128 No 0.19 0.05
optical diff. (sim) - 500 50 - 1x128 No 0.36 1.44
optical diff. (view) - 110 - - 256 X256 (50%) No <<1% 0.75
optical diff. (view) - 170 - - 256 X256 (50%) No <<1% 3.41
optical diff. (ap) - 110 - - 256 X256 (50%) No << 1% 0.75
optical diff. (ap) - 170 - - 256 X256 (50%) No < 1% 9.7
Figure 3.45: Comparison of Range Recovery Techniques. Classification: general cate-

gorization of technique (see Chapter 2 and Section 3.5 for descriptions). Reference: ci-
tation from which results are taken.

Range: mean distance to surface(s) in the world

(mm). Focal Length: camera focal length (mm). Frame Rate: number of range images
computed per second (frames/second); note that this rate is not normalized over the size

of the range images.

Density: size of computed range image (pixels); the parenthese-

sized number indicates the percentage of pixels for which an estimate was available, no
specified value indicates 100%. Structured Ilumination: indicates whether the technique
employed structured illumination. Error: mean percent error with respect to range (e.g. 1%
error at 1000mm, reflects a mean error of 10mm in the recovered range image). Normal-
wzed Error: Error normalized to a 1000mm viewing distance with a 50mm focal length

(normalized error =

%GII'OI'

— (Tange/1000)2

focal length)
50

; the normalized error metric is intended

only as a first approximation and ignores many other factors which may influence errors. All
the structure from motion values are for the “Yosemite” sequence [Barron 92]. The range
maps for the optical differentiation from simulation (sim) are illustrated in Figure 3.19; for
the viewpoint differentiation (view) see Figure 3.42; and for the aperture size differentiation
(ap) see Figure 3.43.
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