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The deployment of eye movements to complex spatiotemporal stimuli likely involves a variety of cognitive factors. However,
eye movements to movies are surprisingly reliable both within and across observers. We exploited and manipulated that
reliability to characterize observers’ temporal viewing strategies while they viewed naturalistic movies. Introducing cuts and
scrambling the temporal order of the resulting clips systematically changed eye movement reliability. We developed a
computational model that exhibited this behavior and provided an excellent fit to the measured eye movement reliability.
The model assumed that observers searched for, found, and tracked a point of interest and that this process reset when
there was a cut. The model did not require that eye movements depend on temporal context in any other way, and it
managed to describe eye movements consistently across different observers and two movie sequences. Thus, we found no
evidence for the integration of information over long time scales (greater than a second). The results are consistent with the
idea that observers employ a simple tracking strategy even while viewing complex, engaging naturalistic stimuli.
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Introduction

The human visual system relies on rapid eye move-
ments to foveate regions of interest in a visual scene.
Static images such as photographs and line drawings have
long been used to infer a large number of stimulus- and
task-dependent factors that drive eye movements (Buswell,
1935; Mannan, Ruddock, & Wooding, 1995; Noton &
Stark, 1971; Parkhurst, Law, & Niebur, 2002; Peters, Iyer,
Itti, & Koch, 2005; Reinagel & Zador, 1999; Tatler,
Baddeley, & Gilchrist, 2005; Yarbus, 1967). The use of
dynamic, naturalistic stimuli has extended that work to
reveal how the time course of eye movements depends on
the temporal evolution of visual events. The dominant
computational framework for studying gaze allocation for
both static and dynamic stimuli begins with the character-
ization of local image properties at fixated locations
(Krieger, Rentschler, Hauske, Schill, & Zetzsche, 2000;

Parkhurst et al., 2002; Parkhurst & Niebur, 2003; Peters
et al., 2005; Rajashekar, van der Linde, Bovik, &
Cormack, 2007; Reinagel & Zador, 1999; Tatler, Baddeley
et al., 2005). Low-level visual features such as intensity,
color, orientation, and motion contrast are computed at
each location and combined to yield a master, scalar
“saliency map” that predicts the conspicuity of a given
location in a scene (e.g., Itti & Baldi, 2005; Itti, Koch, &
Niebur, 1998; Koch & Ullman, 1985; Parkhurst et al.,
2002; Peters et al., 2005). Observers are more likely to
fixate locations of high salience. Such bottom-up models
provide a biologically grounded and principled approach
for relating gaze locations to stimulus features.
Many factors not predicted by bottom-up saliency also

contribute to the spatiotemporal deployment of eye
movements. Eye movements depend on the instructions
and ongoing goals of a task (Ballard & Hayhoe, 2009;
Buswell, 1935; Land, 2009; Land & Hayhoe, 2001;
Rothkopf, Ballard, & Hayhoe, 2007; Yarbus, 1967), prior
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expectations and knowledge about semantic and spatial
relationships among objects in a scene (Henderson,
Weeks, & Hollingworth, 1999; Neider & Zelinsky, 2006;
Torralba, Oliva, Castelhano, & Henderson, 2006), and
social cues such as faces and gaze directions (Birmingham,
Bischof, & Kingstone, 2008; Friesen & Kingstone, 1998;
Shepherd, Steckenfinger, Hasson, & Ghazanfar, 2010).
Many of these top-down factors contribute to idiosyncratic
eye movement patterns in individual observers, reflecting
differences in their task strategy and prior knowledge
(Buswell, 1935; Noton & Stark, 1971; Yarbus, 1967).
Alternatively, idiosyncrasies may reflect individual differ-
ences in oculomotor control and execution (Andrews &
Coppola, 1999). As such, the allocation of eye movements
in complex scenes likely reflects a collection of processes
of varying time scales, from early sensory processing to
recognition and memory.
We sought to examine the relationship between the

temporal properties of a naturalistic scene and the
temporal dynamics of eye movements. Rather than try to
determine which features in such stimuli drive eye move-
ments, we asked how eye movements depended on the
integration of visual information (of any kind) across time.
In spite of their complexity, some temporally dynamic
stimuli (e.g., well-produced films) evoke similar eye
movements across repeated viewings and across different
observers (Carmi & Itti, 2006a; Goldstein, Woods, & Peli,
2007; Hasson, Landesman et al., 2008; Hasson, Malach, &
Heeger, 2010; Hasson, Yang, Vallines, Heeger, & Rubin,
2008; Shepherd et al., 2010; Tosi, Mecacci, & Pasquali,
1997). This repeated-viewing and inter-subject reliability
represents a substantial level of control over the observer’s
viewing behavior and can be quantified without specifying
or modeling the salient image features that attract eye
movements.
The content of a movie spans multiple time scales that

may influence reliable viewing behavior. There are
moment-to-moment changes in the visual stimulus. How-
ever, there are also properties that span longer time scales.
For example, understanding the narrative of a film requires
integrating information over time. Some or all of such long
time-scale features might or might not contribute to the
reliability of eye movements. Like eye movements, brain
activity during movie viewing is highly reliable within and
across observers (Hasson et al., 2010; Hasson, Nir, Levy,
Fuhrmann, & Malach, 2004), but the activity in some
brain areas is less reliable when the temporal sequence of
the film is disrupted (Hasson, Yang et al., 2008), implying
that the activity in those brain areas depends on the
accumulation of information over long time scales.
Here, we used movie scenes that evoked highly reliable

eye movements across observers to measure, manipulate,
and model the reliable component of eye movements. Our
goal was to determine if the reliability of eye movements
is affected by disrupting the temporal sequence of a

stimulus, and if so, whether eye movement reliability
necessarily depends on information in the stimulus that is
presented over long time scales. We manipulated the
temporal continuity of a scene from a feature film by
dividing the scene into clips of various durations and
presenting them in scrambled order. We measured eye
movements to the temporally scrambled version of the
scene and compared them with eye movements to the
same clips when they were presented in the original intact
order. The original scene was shot as a single take without
any cuts, and the scrambling manipulation introduced
sharp discontinuities in the spatiotemporal structure of the
stimulus. Scrambling systematically disrupted the reli-
ability of eye movements, in a manner that depended on
the temporal scale of scrambling.
We developed a simple computational model to account

for these data. To capture the reliable component of eye
movements (i.e., the variability in eye position over time
that was shared across observers), the model assumed that
the observer tracked a point of interest on the screen while
viewing the intact scene. We approximated that point of
interest as the median of the measured eye movement time
courses across observers for the intact scene. The model
made no assumptions about the processes underlying the
high reliability, which could consist entirely of bottom-up
features, entirely of top-down factors, or of a combination
of the two. When an observer viewed the temporally
scrambled version of the movie, the model assumed that
the observer searched for, found, and tracked the same
point of interest after each cut. As such, the model did not
require any dependence of eye movement reliability on
temporal context, and the model predicted that the
dependence of eye movement reliability on temporal
scrambling simply reflected time needed to find the
point of interest following each cut. The model provided
an excellent fit, with a small number of parameters, to
eye movement measurements across multiple observers
and for scenes from two very different movies. Therefore,
we found no evidence that the integration of information
over longer time scales (greater than about 1 s) influenced
eye movements in any way that contributed to their
reliability.

Materials and methods

Observers

Twelve observers, aged between 24 and 47, with normal
or corrected-to-normal vision participated in the study.
Observers provided written informed consent, and the
experimental protocol was approved by the University
Committee on Activities involving Human Subjects at
New York University.
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Stimuli and experimental procedure

Stimuli for the main experiment were derived from a
6-min scene from the motion picture Children of Men
(Universal Pictures, 2006). The experiment was also
conducted with a 3-min scene from the film Russian Ark
(the State Hermitage Museum, 2002). Both scenes were
shot as single takes without any cuts.
The scene from Children of Men was subdivided into

short clips, each of equal duration. This process was
repeated for five different durations (0.5 s, 1 s, 2 s, 5 s, and
30 s), which we refer to as “scramble durations.” We
pooled all of these clips together, randomly shuffled their
order, and concatenated them, resulting in a 30-min movie
composed of interleaved clips of varying lengths, with
cuts at the transition between clips (Figure 1A). Randomly
interleaving clips of different durations prevented antici-
patory eye movements to predictable cut onsets, which
might have occurred if observers viewed separate sequen-
ces containing clips of the same scramble duration. We
refer to the scrambled movie as “interleaved” and the
original 6-min movie as “intact.” The same manipulation
was applied to the Russian Ark scene to make an
interleaved movie of 15 min.
Eleven observers participated in the Children of Men

experiment. Three of these observers, and one additional
observer, participated in the Russian Ark experiment.
Some observers had seen Children of Men before the
experiment, but there were no qualitative differences in
the results between those observers and the observers who

had not seen the movie. None of the observers had seen
Russian Ark before the experiment. For each experiment,
each observer viewed the intact movie twice and the
interleaved movie once (Children of Men shown in two
consecutive parts, È15 min at a time; Russian Ark shown
in whole). For all data reported for the main experiments,
the observer viewed the intact movie first, then the
interleaved movie, then the intact movie again. To verify
that our conclusions did not rely on this ordering of
conditions, we collected data from two additional observers
who had not seen Children of Men before the experiment.
These observers viewed the interleaved scene of Children
of Men twice (on two separate days) before finally
viewing the intact scene.
Gaze positions were measured (500 Hz, monocular)

with an infrared (Eyelink 2000, SR Research) eye tracker.
A 9-point calibration was performed at the start of each
movie presentation. All movies were 24 frames/s and
presented using the Psychtoolbox (Brainard, 1997; Pelli,
1997) in MATLAB (Mathworks) on a 22W flat screen CRT
monitor (Hewlett-Packard p1230; resolution of 1152 !
870) at a distance of 57 cm. The monitor provided
approximately 39- ! 30- of viewing angle. The Children
of Men stimuli were shown at 1037 ! 560 resolution
(35.5- ! 19.5- of viewing angle) and the Russian Ark
stimuli were shown at 1037 ! 585 resolution (35.5- !
20.4- of viewing angle). All stimuli were shown without
sound, so as to avoid potential artifacts from temporally
scrambling the soundtrack and to specifically identify eye
movements induced by a visual stimulus (rather than a

Figure 1. Scrambling manipulation and unscrambling analysis. (A) Construction of interleaved movie stimulus. A continuous 6-min scene
from the film Children of Men was divided evenly into short clips at each of five durations: 0.5 s, 1 s, 2 s, 5 s, and 30 s. In the cartoon, each
rectangular box depicts a movie sequence of 0.5 s long, so that a group of two boxes represents a 1-s clip, a group of four boxes
represents a 2-s clip, and so on. Clips of all durations were interleaved in random order to create a 30-min movie. (B) Unscrambling
analysis. For each clip duration (shown here for 0.5 s), eye movement time courses (horizontal and vertical) were extracted and
rearranged to match the order of the corresponding clips in the intact movie. Covariance was computed between the unscrambled eye
movement time courses and those for the intact movie.
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combined audiovisual stimulus). Both scenes evoked
highly reliable eye movements despite the lack of sound.

Data preprocessing

Eye positions were recorded in screen coordinates and
normalized by the resolution of the movie, such that both
horizontal and vertical eye positions varied between
values of 0 and 1 irrespective of screen dimension or
stimulus. A value of 0 corresponded to the leftmost
(horizontally) or uppermost (vertically) edge of the movie,
and a value of 1 corresponded to the rightmost (horizon-
tally) or the bottommost (vertically) edge. Data points
were discarded if eye positions were offscreen, or if there
was signal loss (e.g., if the eye tracker reported failing to
locate the pupil center because of eye blink, eyelash
occlusion, or other recording artifacts). Spline interpola-
tion was used to fill in these discarded time points, which
accounted for 8.9% T 3.5% of time points (mean T
standard deviation across n = 15 observers, combining
data from both movies). One observer for the Children of
Men experiment was excluded from further analysis
because the variance of his eye positions (both horizontal
and vertical) for the interleaved movie and for one of the
intact movie measurements were two standard deviations
below that of the rest of the observers. Thus, all
subsequent analyses for the main experiments were based
on data from 10 observers for the Children of Men
experiment and 4 observers for the Russian Ark experiment.
Saccades were detected and parsed using the Eyelink

(SR Research) saccade detection algorithm. The following
detection thresholds were used: eye movement amplitude 9
0.1-, velocity 9 30-/s, and acceleration 9 8000-/s2. The
configuration was relatively conservative (hence, insensi-
tive to noise) and ignored most microsaccades. On
average, 1.7 T 0.3 saccades/s (mean T standard deviation
across n = 10 observers) were detected for the Children of
Men experiment, and 2.1 T 0.3 saccades/s were detected
for the Russian Ark experiment (n = 4 observers).

Covariance analysis

Reliability of eye movements was quantified in two
ways. First, we measured the covariance between eye
positions for the intact movie and eye positions for the
same content when presented within the interleaved movie
(as explained in the following paragraphs). Second, we
measured the squared difference between eye positions for
the intact movie and eye positions for the same content
when presented within the interleaved movie and used that
to estimate how well the intact eye positions predicted the
unscrambled interleaved eye positions as a function of
time (as explained below under Eye position error,
variance in eye position, and fractional explained variance
section).

Reliability of eye movements was quantified with
covariance and cross-covariance. For each observer and
scramble duration, eye movement time courses for the
interleaved movie were reassembled to match the temporal
sequence of the intact movie. As an example, for a
scramble duration of 0.5 s, excerpts from the eye move-
ment recordings (both horizontal and vertical) corresponding
to all 0.5-s clips in the interleaved movie were rearranged
and assembled to match the temporal order of the same clips
in the intact movie (Figure 1B). We refer to this as the
“unscrambled eyemovement time course.” The unscrambled
eye movement time course and the eye movement time
course for the intact movie contained eye positions in
response to the same visual content. However, in one case
(intact), the clips had been presented in their original order,
and in the other case (interleaved), the clips had been
presented in a random sequence. The same procedure was
performed for each of the other scramble durations.
For each observer and each scramble duration, cross-

covariance functions (Figure 2) were computed between
the unscrambled eye movement time courses and the eye
movements for the intact movie (separately for horizontal
and vertical). Cross-covariance is the sliding inner product
of two mean-subtracted signals. It is expressed as a
function of the time lag between the two time courses.
For two discrete signals g and h, the sample cross-
covariance is defined as

Ĉg;h k½ # ¼
1

N

X

%

ðg %½ # j 2gÞ h %þ k½ # j 2hð Þ; ð1Þ

where k is the time lag between the two signals, N is the
number of samples, and 2g and 2h are the sample means
of the two signals. Both g and h were zero-padded so that
the sum was always over N samples. For some analyses,
we used each observer’s own eye movements for the
intact movie, but in other analyses, we used the median
(across observers) eye movement time course for the
intact movie. The median eye movement time course was
computed by aligning all eye movement time courses
(2 repeats of each intact movie per observer; 20 in total
for Children of Men stimuli, and 8 for Russian Ark) to the
same set of sampling time points and taking the median at
each time point. The covariance of two time courses is the
value of the cross-covariance function at a time lag of k = 0.
Covariance is often normalized by the product of the
standard deviation of the time courses, yielding the familiar
Pearson’s correlation coefficient. We observed that eye
position variances were not constant across scramble
durations (see Eye movement reliability decreased with
shorter scramble durations section; Figures 3E and 3F).
Trying to account for how variances depend on scramble
duration would have made the model intractable. Our
principal analysis, therefore, was to compute unnormalized
covariance.
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Except where noted, covariances were computed
between individual observers’ unscrambled eye move-
ments for the interleaved movie and the median eye
movement time course (across all observers) for the intact
movie. In some analyses, we also compared the eye
movement time course for the intact movie from an
individual observer with the median from the other
observers (Figures 3A–3D, dashed lines). In that case,
the median excluded the data of the individual observer to
avoid any statistical bias.

A phase randomization test was used to assess whether
the covariance between two eye movement time courses
was statistically significant. Specifically, we took the
discrete Fourier transform of one of the time courses,
randomly permuted its Fourier phase without changing the
amplitude, inverted the Fourier transform, and recomputed
the covariance between the resulting time course and the
other time course. This procedure was repeated 1000 times
to yield a null distribution for the covariance between the
two time courses. We determined a p value as the fraction

Figure 2. Examples of eye movement cross-covariance for different scramble durations. (A) Eye movement time courses for the intact
movie. Dark and light blue, sample eye movements from a single observer for two separate presentations of the intact movie. Black,
median across the other observers for the intact movie (n = 9). Eye positions are normalized by the extent of the video in each dimension,
so 0 corresponds to the leftmost edge of the video and 1 corresponds to the rightmost. Only horizontal eye positions are shown (in this
and the other panels), but the results for vertical eye positions were similar. (B) Cross-covariance of eye movements for the intact movie.
Blue, cross-covariance between eye movement time courses for two presentations of the intact movie from a single observer. Black,
cross-covariance between eye movements from a single observer for a single presentation of the intact movie and the median across the
other observers for the intact movie (n = 9). The peak at a time lag of 0 s shows that eye movement time courses were highly correlated
and time locked to the stimulus. (C) Eye movements for the 5-s scramble duration. Dark blue, unscrambled eye movements from a single
observer for the 5-s scramble duration (see Figure 1B). Light blue, eye movements from the same observer for a single presentation of the
intact movie. Black, median across all observers for the intact movie (n = 10). Light blue is replotted from A. (D) Cross-covariance for the
5-s scramble duration. Blue, cross-covariance between unscrambled eye movement time courses from a single observer for the 5-s
scramble duration and eye movements from the same observer for a single presentation of the intact movie. Black, cross-covariance
between unscrambled eye movements from the same observer for the 5-s scramble duration and median across all observers for the
intact movie (n = 10). (E, F) Same as (C) and (D) for the 1-s scramble duration. Covariances are lower for the shorter scramble duration.
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of the null distribution that was as large or larger than the
covariance observed without randomization.

Model

We developed a simple model to account for the
reliability of eye movements to complex movie stimuli
and tested the predictions of the model. We begin with the
key assumptions and intuitions behind the model. See
Appendix A for a detailed derivation.
The model assumes that for any particular movie

stimulus, there is a hypothetical “point of interest” that
follows a particular trajectory over time. This point of
interest can be thought of as a target or the correct place to
look on the screen at any point in time. The observer is
assumed to behave as follows. Starting from the beginning
of any stimulus presentation (the start of the movie or
immediately after a cut), each saccade made by the
observer had a fixed probability of finding the point of
interest. That probability depended on several unknown
factors, including both the stimulus and the observer.
Before finding the target, eye movements were assumed to
be uncorrelated with the location of the point of interest.
After finding the target, the observer locked on and
tracked the point of interest. So long as the observer had
locked on to the point of interest, covariance between
the observer’s eye movement time course and the point
of interest trajectory was maximal (limited only by
measurement noise and by the observer’s internal cogni-
tive and motor variability). The model made no assump-
tions about the statistical nature of eye movements before
the observer locked on but only required that they were
uncorrelated with the point of interest during that period.
In fact, our data show that the variance of eye movements
evolved systematically as a function of time after a cut,
including a tendency for observers to fixate near the center
of the screen following a cut (Figure 6A). A variation of
the model assumes that while the point of interest was
being tracked, there was a certain probability at any time
that the observer abandoned the point of interest and made
exploratory eye movements to look for another point of
interest. This process of exploration could be exactly the
same as that which happens immediately following a cut.
Adding this exploratory process to the model affected only
the maximal covariance and is accounted for in the
derivation (see Appendix A) as one possible source of
noise.
How is this model affected by our scrambling

manipulation? Scrambling the temporal order of the
movie introduced artificial cuts that are not present in
the intact movie. We assumed that the tracking process
was reset after each cut. When clip durations were short
(and the number of such clips is large), the observer
reset (and needed to rediscover the point of interest)
more frequently. A large proportion of the eye positions,

over the course of the entire stimulus, were uncorrelated
with the point of interest, simply because the observer
needed time to find the point of interest following each
cut and, consequently, spent more time not looking at
the right place. Therefore, the eye movement reliability
was lower (low covariance) for shorter scramble
durations.
We derived a closed-form expression for the model (see

Appendix A). For each scramble duration, covariance with
the point of interest depended solely on the proportion of
time during which the observer was locked on or not
locked on to the point of interest. In the derivation, the
model assumed that the observer made a series of
independent saccades after each cut and that there was a
fixed probability 1 (Figure 5C) that the observer would
find and lock on to the point of interest after each saccade.
Assuming that the saccades were statistically independent
after each cut made the model analytically tractable, but
violations of this independence assumption would not
have qualitatively changed the predictions of the model
(see Integration of visual information across fixations
during search section). We also defined QH and QV to be
the “maximal” covariances attainable (in horizontal and
vertical eye positions, respectively) between an intact eye
movement time course and the trajectory of the point of
interest. For a particular scramble duration, we expressed the
predicted covariance between an unscrambled eye move-
ment time course, Sd, and the point of interest time course,
S, as a function of 1, QH, and QV (see Equation A12 in
Appendix A).

Model fitting

We used the median eye movement time course (across
all observers, n = 10) for the intact movie as an estimate
for the point of interest, which served as a prediction for
the unscrambled eye movement time courses for the
interleaved movie. Covariances were computed between
individual observers’ unscrambled eye movements, Sd,
and the median time course, S (see Covariance analysis
section above). We fit the model to the data by finding
parameters that minimized the squared error between the
predicted covariance (from Equation A12 in Appendix A)
and measured covariance. First, we estimated the param-
eters for the inter-saccade interval distribution of each
observer. Specifically, parameters 2 and A (Equation A1
in Appendix A) were determined by fitting a lognormal
distribution (using maximum likelihood, lognfit function
in MATLAB) to each observer’s inter-saccade intervals
for the intact movie. Fitted values of 2 and A did not vary
substantially across observers. Second, with 2 and A fixed
for each observer, we then estimated the parameters that
best accounted for the covariance values for that observer.
The covariance was computed between that observer’s
unscrambled eye movement time course, Sd, for each
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scramble duration d, and the point of interest time course,
S, separately for horizontal and vertical eye positions. We
used the median eye movements for the intact movie as an
estimate of S because it is robust to outliers; using the
mean eye movement time course produced similar results.
The fit was performed simultaneously for all scramble
durations and simultaneously for horizontal and vertical
eye positions. We accounted for individual variation in
maximal covariance in both horizontal and vertical eye
positions with the free parameters QH and QV. A
constrained non-linear optimization routine (fmincon
function) in MATLAB was used to numerically solve for
the values of the three free parameters (1, QH, and QV)
that minimized the squared error between the predicted
and measured covariances (10 data points). In the fit, 1
was constrained to be between 0 and 1 and QH and QV to
be greater than 0. Hence, there were a total of 5 free
parameters: 2 and A were fit to the inter-saccade interval
distributions, and 1, QH, and QV were fit to the measured
covariances.
Bootstrapping was used to obtain confidence intervals

for the parameter 1 (Figure 5C). For each observer, eye
movement epochs of 30 s were randomly sampled with
replacement from the eye movement time course for the
intact movie and concatenated to obtain an eye movement
time course with length equivalent to the length of the
original scene (6 min for Children of Men and 3 min for
Russian Ark). Corresponding epochs were extracted from
the five unscrambled eye movement time courses for the
interleaved movie, such that for each 30-s epoch, eye
positions for the 30-s scramble duration were derived
from a single clip, and eye positions for the remaining
four scramble durations were derived from clips that
had been unscrambled to match the content of that 30-s
clip. After each resampling, covariances were recom-
puted and the fit was performed to reestimate 1. This
procedure was repeated 1000 times, and the 2.5th and
97.5th percentiles of the resulting distribution of 1 values
provided a 95% confidence interval (equivalent to two
standard deviations if the distributions were normally
distributed).
Goodness of fit was assessed with cross-validation. Half

of all 30-s clips from the intact movie (and corresponding
clips from the interleaved movie) were used to compute
covariances and estimate model parameters (training). We
then used all the fitted parameters (1, QH, and QV) to
predict covariances on the remaining half of data and the
fitted parameter 1 was used to compare model predictions
with actual covariances for the other half of the data
(testing). The cross-validation was unstable in individual
observers due to the occasional occurrence (for some
training and testing splits) of large differences in asymp-
totic covariances QH and QV between the training and
testing data. We therefore performed this analysis only
after concatenating data across all observers, which

stabilized estimates of maximal reliability. This procedure
was performed 1000 times to obtain a 95% confidence
interval on the goodness-of-fit measure r2 (coefficient of
determination or percentage variance explained by the fit)
for the combined data.

Eye position error, variance in eye position,
and fractional explained variance

Another implication of the model is that the point of
interest should serve as a poor predictor of a measured eye
movement time course immediately following a cut but
become better shortly after when eye movements con-
verge on to the point of interest. To test this prediction, we
examined how the squared difference between the meas-
ured eye movement time courses and the point of interest
(given by the median eye movement time course across
observers) evolved as a function of time after a cut. This
difference (the measured “eye position error”) should start
high and drop to a baseline (Figure 6B). At any particular
time point, a large eye position error might have suggested
that the observer was unlikely to have locked on to the
point of interest, and a smaller eye position error might
have suggested that the observer was more likely to have
locked on. The magnitude of eye position error, therefore,
might have been proportional to the fraction of time
(across all clips) that the observer was not locked on to the
point of interest. The eye position error was, however,
confounded by changes in the eye position variance,
which evolved systematically as a function of time after a
cut (Figure 6A).
To isolate the component of the eye position error that

reflected only the probability of locking on to the point of
interest (or the fraction of time that an observer was
locked on), we computed what we call the “fractional
explained variance.” This quantity estimated the fraction of
eye position error explained by the point of interest relative
to that expected under the assumption of no correlation
between the point of interest and the unscrambled eye
movements. We computed the fractional explained var-
iance in eye position in the following manner:
(1) The squared error in eye position, G(t) = E[(Sd(t) j

S(t))2], was computed for each observer (Figure 6B),
where Sd(t) was the unscrambled eye movement time
course for clip duration d from the interleaved movie, S(t)
was the median eye movement time course for the intact
movie, and t ranged from 0 to d for each Sd of a particular
duration d (i.e., from the beginning to the end of each
clip). G(t) was computed by averaging across all clips
from all scramble durations for that observer, aligned to
each cut. G(t) computed separately for each scramble
duration d yielded similar curves, therefore justifying
averaging across durations, resulting in more averaging
for smaller values of t.
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(2) The variance of the unscrambled eye movement
time courses, vSd(t), was estimated as a function of time
after a cut (Figure 6A). The sample mean eye position
time course, E[Sd(t)], averaged across clips, was È0.5 for
both horizontal and vertical dimensions (center of the
screen) at any time t. The variance vSd(t), therefore,
reflected the fact that eye positions tended to cluster near
the center of the screen shortly after a cut and then
gradually expand outward over time (Figure 6A). vSd(t)
was computed separately for each observer across all clips
from all scramble durations for that observer; all observers
showed the same tendency.
(3) The maximal position error, G0(t), was computed as

the sum of the variance (across clips) of the unscrambled
eye movements, vSd(t), and the variance (over time) of the
median eye movement time course (see Fractional
explained variance: Derivations section in Appendix A).
Intuitively, G0(t) reflected how eye position error would
have evolved over time after a cut if the unscrambled eye
movements never locked on to the point of interest. G0(t)
was not constant over time, as would be expected if the
variance of Sd(t) was stationary, confirming that it would
have been inappropriate to use G(t) by itself to infer the
temporal dependence of Sd(t) on the point of interest.
(4) For each observer, we then computed fractional

explained variance as 1 j G(t)/G0(t) (Figure 6C), which
could be interpreted as an estimate for the probability
(across clips) that the unscrambled eye position was locked
on to the point of interest (the median eye position) as a
function of time after a cut (see Appendix A for derivation).
We also simulated fractional explained variance using

the model described above (Figure 6C, inset; see
Appendix A for details).

Results

Eye movements to intact movie were reliable
both within and across observers

Replicating previous results (Goldstein et al., 2007;
Hasson, Landesman et al., 2008; Hasson, Yang et al.,
2008; Shepherd et al., 2010; Tosi et al., 1997), we found
that movies evoked reliable eye movements. We tracked
eye position in 10 observers while they watched a 6-min
scene from the feature film Children of Men. Each
observer viewed the scene twice. The movie stimulus
evoked reliable eye movements across repeated presenta-
tions within an individual observer and across observers
(Figure 2A). We quantified the degree of reliability using
cross-covariance (see Covariance analysis section), sepa-
rately for horizontal and vertical eye movements. For each
observer, cross-covariance was computed between eye
movement time courses for two presentations of the intact

movie (for that observer) and between eye movements for
one presentation of the intact movie (for that observer)
and the median eye movement time course across the
other 9 observers (Figure 2B). In both cases, cross-
covariance was maximal at a time lag of zero, suggesting
that correlated changes in eye position were time locked to
stimulus events. The width of the peak indicated the
temporal precision of the time locking. The magnitude of
the peak at a time lag of zero (i.e., the covariance)
provided a measure of the reliability of eye movements for
that observer, given instrument noise and the observer’s
internal cognitive and motor variability across repeated
measurements. The cross-covariance for time lags far from
zero provided a qualitative baseline for spurious cova-
riance due to chance. In general, covariance was high (well
above the baseline for all observers, and highly statistically
significant: p G 0.001 for all observers, phase random-
ization test; see Covariance analysis section).

Eye movement reliability decreased
with shorter scramble durations

We parametrically disrupted the temporal continuity of
the movie by scrambling the original scene at different
time scales (0.5 s, 1 s, 2 s, 5 s, and 30 s). The original
scene was divided into clips with each of these “scramble
durations,” and the clips were randomly ordered and
reassembled into one long interleaved movie (see Stimuli
and experimental procedure section; Figure 1). Eye
positions were recorded while observers viewed this
interleaved movie. For each observer, an eye movement
time course corresponding to each scramble duration was
extracted from the measurements for the interleaved
movie, unscrambled (i.e., reordered to match the order of
the intact movie), and compared with the eye movements
for the intact movie. If temporal scrambling affected the
reliability of eye movements, then the covariances should
have been smaller.
Eye movements were less reliable for shorter scramble

durations (Figures 2, 3A, and 3B). Covariances between
unscrambled eye movements and eye movements for the
intact movie (either the observer’s own or the median
across observers) were smaller for shorter scramble
durations, as indicated by the lower peaks in the cross-
covariance (Figures 2B, 2D, and 2F). Covariance was
statistically above baseline even for the shortest scramble
duration (p G 0.025 for the 0.5-s scramble duration for all
observers in horizontal eye position and for 8 out of 10
observers in vertical eye position; p G 0.025 for all other
scramble durations for all observers in both horizontal and
vertical; phase randomization test, see Covariance analysis
section). Covariance increased monotonically with scram-
ble duration, for each of the 10 observers (Figures 3A and
3B). Covariances were computed by comparing a single
observer’s unscrambled eye movements with the median
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intact eye movements across observers. Covariances
computed by comparing eye movements within an
observer were similar. The covariance between the eye
movements for two presentations of the intact movie
indicated maximal reliability attainable for an observer, in
the absence of scrambling. This covariance was com-
puted, for each observer, between each intact eye move-
ment time course from the individual observer (two per
observer) and the median time course across the other
observers. Covariances were then averaged between the
two estimates per observer and across all observers
(Figures 3A and 3B, dashed lines). The fact that all
observers were similarly affected by the scrambling
manipulation suggests a behavioral strategy or computa-
tion that was common across observers.
We used covariance rather than the more familiar

correlation to quantify reliability, because correlation is

covariance normalized by variance and conflates changes
in covariance and variance. The correlation coefficient
could have increased either because covariance increased
or because variance decreased. The variance in eye
positions showed a dependence on scramble duration,
increasing monotonically with longer scramble durations
(Figures 3E and 3F). We attribute this to the fact that
variance decreased sharply right after each cut and then
increased gradually over seconds; thus, overall variance
was smaller for shorter cuts (see also Figure 6A and
Discussion section). A potential problem with reporting
covariance is that its magnitude is not intuitively
interpretable (in the way that the correlation coefficient
is). However, we plotted covariance for each scramble
duration alongside the covariance for the intact movie.
This “maximal” covariance serves as a reference point.
While covariance is reported in our primary analyses,

Figure 3. Eye movement reliability increases with scramble duration. Top row: Horizontal eye movements. Bottom row: Vertical eye
movements. (A, B) Covariance as a function of scramble duration. Small symbols, covariances between the unscrambled eye movement
time courses from a single observer for each scramble duration and median eye movements across observers for the intact movie. Large
symbols, average covariances across observers (n = 10). Dashed lines, average covariances between the eye movements for a single
presentation of the intact movie from each observer and the median eye movement time course across the other observers. Covariance
was computed separately for each observer and averaged between the two intact movie presentations for each observer and across
observers (n = 10); a.u., arbitrary units. (C, D) Correlation as a function of scramble duration. Same format as A and B. Correlations
increased with scramble duration similarly to covariances (panels A and B). However, the correlation between two time courses equals
their covariance divided by the product of the standard deviations, so the correlations depended both on the covariances and the standard
deviations (panels E and F). (E, F) Standard deviation of eye movement time courses for each scramble duration. Small symbols,
standard deviations of the unscrambled eye movement time courses for a single observer. Large symbols, average standard deviations
across observers (n = 10). Dashed lines indicate the standard deviations for the intact time courses. At shorter scramble durations, eye
positions tended to be clustered and did not span the full range of screen coordinates, yielding smaller standard deviations.
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correlations were computed in a complementary analysis
(Figures 3C and 3D); the pattern of results was qualita-
tively similar, with a maximal correlation coefficient of
about 0.5–0.6, but the correlations would have been more
difficult to model and interpret because the variances
depended on scramble duration (Figures 3E and 3F).

Eye movement reliability did not depend
on repeated viewing or presentation order

Observers might have employed different strategies
depending on whether they had seen the scene more than
once, resulting in systematically different eye movement
time courses for the repeated presentations of the movie
clips. To assess this possibility, we computed covariances
separately for the first and second viewings of the intact
movie, by comparing eye movements from the initial
presentation from one observer to the median eye move-
ment time course across the initial presentations of the
other 9 observers and doing the same for the second
presentation of the movie for each observer. In addition,
we also computed the covariances between the individual
eye movements from each observer’s first presentation
and the median eye movements from the other 9
observers’ second presentations, and vice versa. This
yielded four sets of covariances for assessing inter-subject
eye movement reliability for the two presentations of the
intact movie. We found no evidence that the covariances
differed between any pair of these four sets (p 9 0.1 for all
6 comparisons; randomization test, whether or not
corrected for multiple comparisons). This suggests that
eye movement reliability did not depend significantly on
repeated viewings of the same scene.
In addition, to verify that the covariance values for the

unscrambled time courses did not rely on the ordering of
conditions, we collected data from two additional observers
who viewed the interleaved movie first (see Stimuli and
experimental procedure section). For each of these
observers, we computed covariances by comparing the
unscrambled eye movements to the median eye move-
ments for the intact scene across the previous 10 observers.
We performed this procedure separately for unscrambled
eye movements corresponding to each viewing of the
interleaved scene (two presentations per observer). We
found no evidence for a difference in covariance values for
these observers compared to those obtained for the original
observers, who viewed the scenes in a different order
( p 9 0.05 for horizontal and vertical covariance values in
all scramble durations; randomization test, corrected for
multiple comparisons). Furthermore, for both of the
additional observers, covariance values were qualitatively
similar across the two repeated presentations of the
interleaved scene, validating our earlier observation that
reliability measurements did not depend substantially on
the order of presentation or the experience of prior
presentations.

A simple model accounted for the increase
in eye movement reliability with scramble
duration

The cinematically composed movie scene evoked
reliable eye movements within and across viewers.
Temporal scrambling systematically disrupted eye move-
ment reliability. This might seem to imply that eye
movements depended on temporal context. For example,
perhaps observers accumulated information about the
content of a clip over several seconds to make a decision
about where to look next. However, is this kind of
temporal context (and its disruption) necessary to explain
the effect of scrambling on covariance?
We considered an alternative, simpler model in which

observers tracked a point of interest on the screen, and eye
movements depended on temporal context only insofar as
the tracking process began anew at the beginning of each
clip immediately following each cut. The point of interest
provided a simple descriptive model to capture the
reliable component of eye movements (i.e., the variability
in eye position over time that was shared across
observers). The model made no assumptions about the
factors underlying the point of interest (i.e., bottom-up or
top-down). It only required that the point of interest in a
given stimulus frame was the same regardless of the
temporal context in which the stimulus was presented
(i.e., same when it was presented within an intact movie
or within the different scramble durations of the inter-
leaved movie). According to this model, eye movements
for the intact movie were reliable because observers
tended to track the same point of interest. Furthermore,
according to the model, eye movements were uncorrelated
immediately following a cut because it took time for
observers to find a point of interest. With more cut
transitions (and shorter clip durations), the search for a
point of interest reoccurred with greater frequency.
Consequently, eye movements for shorter scramble dura-
tions were less reliable, according to this model, simply
because observers spent a greater percentage of time
searching for a point of interest. Is this simple tracking
model sufficient to explain the data?
We derived an implementation of the model and fit it to

the measurements. The model depended on the distribu-
tion of saccade latencies (i.e., the inter-saccade interval
distribution). The intervals at which an observer made
saccades during a movie were well characterized by a
lognormal distribution (Figure 4A). Parameters for that
distribution were estimated from the data and were
assumed to be invariant throughout the experiment for
each observer. The model assumed that the observer made
a series of independent saccades following each cut and
that there was a fixed probability 1 that the fixation
following each saccade would lock on to the point of
interest. Thus, the probability that the observer locks on at
a given time after a cut is a weighted sum: The first term
is the probability that the first saccade occurs at that time
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and finds the point of interest, the second is the probability
that the second saccade occurs at that time and finds the
point of interest (given that the previous saccade did not),
and so on. The mean of this probability distribution
corresponds to the average time that it takes for an
observer to find the point of interest following a cut. For
small values of 1, it becomes increasingly likely that the
point of interest will be found only after a long period of
time (Figure 4B). The probability of having locked on to
the point of interest within any particular time after a cut
likewise depends on 1 (Figure 4C). The function rises
more slowly for a smaller 1, because it takes more time to
accumulate probability of having locked on.
According to this model, eye movement reliability

(covariance) depends systematically on 1, the probability
of finding the point of interest at each fixation following a
saccade (Figure 4D). We assumed that, while the observer
locked on to some true point of interest, covariance with

that point of interest was maximal. However, until he or
she locked on, covariance was 0. Under this assumption,
covariance over the course of the movie was proportional
to the relative amount of time during which the observer
was locked on (see Equation A9 in Appendix A). For
example, when scramble durations were long, an observer
spent most of the time locked on, and covariance was
nearly maximal. However, when scramble durations were
short (and there were many cuts), the observer spent less
time locked on and more time searching for points of
interest, so covariance was smaller. By such reasoning, we
derived a closed-form expression for the covariance
expected at different scramble durations (see Equation A12
in Appendix A). The relationship depends only on the
frequency of saccades, the maximal obtainable covariance,
and the free parameter 1, which describes the probability
that an observer found the point of interest at each fixation
following a saccade. Values for these parameters were

Figure 4. Model. (A) Inter-saccade intervals are well described by a lognormal distribution. Gray, histogram of inter-saccade intervals from
a single observer for the two presentations of the intact movie. Black, best-fitting lognormal distribution. (B) Probability density function
pT(t) for a continuous random variable T that describes the amount of time it takes to find a hypothetical “point of interest” after a cut (see
Model section and Appendix A). The parameter 1 determines the probability of finding the point of interest following a saccade. When 1 = 1,
the probability of fixating the point of interest after the first saccade is 1, so pT(t) is just the lognormal distribution (panel A). When 1 G 1, the
probability of finding the point of interest after each saccade is lower so the shape of pT(t) changes to have larger probabilities associated
with later saccades after a cut. (C) Cumulative probability distribution pT(t) that describes the probability of having fixated the point of
interest at a particular time after a cut. Over time following a cut, the probability increases to 1, but it does so more quickly (with a steeper
slope) for larger values of 1. (D) Covariance as a function of scramble duration as predicted by the model, for different values of 1; a.u.,
arbitrary units.
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found by numerically minimizing the squared error
between the observed covariances and the predicted
covariances. Parameterizing saccade times using a log-
normal distribution yielded a closed-form solution, but the
qualitative predictions of the model did not depend on the
specific form of the saccade time distribution.
We fit the model to the data by finding values of 1 and

maximal covariances (horizontal and vertical) that best
predicted the measured covariances across all scramble
durations. The median (across observers) eye movement
time course for the intact movie provided an estimate
for the point of interest trajectory, and covariance was
computed, for each observer, between each of the
unscrambled eye movement time courses and this point
of interest. The model fit the data well; when fit to the
covariances combined across observers (see Modeling
fitting section), r2 was 0.88 (cross-validated 2.5th–97.5th

percentiles = 0.61–0.98). The fitted value of 1 was 0.79,
corresponding to an expected time of 0.73 s (bootstrapped
2.5th–97.5th percentiles = 0.63–0.83 s) within which
observers were able to find and lock on to the point of
interest. The model was also separately fit to the data for
each individual observer, and again accounted for most of
the variance in the data from each observer (Figures 5A
and 5B). Fitted values of 1 for individual observers were
between 0.5 and 1 (mean 1 = 0.82 across 10 observers,
Figure 5C), corresponding to an expected time of 0.75 T
0.16 s (mean T standard deviation, n = 10) for locking on
to the point of interest. Although there may have been
systematic individual differences in 1, our data did not have
sufficient sensitivity or statistical power to explore it; values
of 1 varied somewhat across observers, but the confidence
intervals for the most part overlapped. We fit the model to
data from the two additional observers who viewed the

Figure 5. Model fits. (A) Eye movement reliability as a function of scramble duration for individual observers. Circles, covariances between
the unscrambled eye movement time courses from a single observer for each scramble duration and median eye movements across
observers for the intact movie. Filled and open circles, covariances for horizontal and vertical eye movements, respectively; a.u., arbitrary
units. Gray curves, best fit of the model. The median eye movement time course for the intact movie was used as a proxy for the “point of
interest” trajectory in the model (see Figure 4). The three free parameters were: 1, probability of locking onto the point of interest on each
fixation after a saccade; QH and QV, the asymptotic covariances for horizontal and vertical eye movements. (B) Eye movement reliability
averaged across observers (n = 10). Filled and open circles, average covariances for horizontal and vertical eye movements, respectively
(replotted from Figures 3A and 3B, large symbols). Error bars, SEM across observers. Model was fit to each individual observer and
individual fits were averaged. Gray curves, mean fit. Light gray shaded area, confidence interval on the mean fit, computed by taking the
standard error across individual fits. (C) Best-fitting value of the parameter 1, which corresponded to the probability that each fixation
locked onto a point of interest. Error bars, 95% confidence intervals obtained through bootstrapping (see Materials and methods section).
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scenes in a different order (see Stimuli and experimental
procedure section). The model provided a good fit for those
observers as well, with fitted values of 1 = 0.82, 0.73
(additional observer 1, two separate presentations of the
interleaved scene) and 0.56, 0.99 (observer 2), comparable
to those obtained for the original 10 observers (p = 0.35,
randomization test).
While the estimate of 1 was sensitive to the parameter

estimates of the saccade latencies used during the fit, the
expected time to find the point of interest (computed from
a combination of the fitted value of 1 and inter-saccade
interval parameters) did not depend on the specific
parameterization of saccade times. Compared to the
overall distribution of saccade latencies, inter-saccade
intervals tended to be shorter immediately after a cut.
Therefore, our use of saccade parameters derived from
eye positions from the overall intact scene was an
oversimplification. Using shorter inter-saccade intervals
for the fit yielded smaller values of 1 than reported above.
However, we verified that the overall expected time to
find the point of interest remained the same. This means
that when saccade latencies were shorter, the probability
of finding the point of interest after each saccade was
consequently lower, resulting in a greater number of
saccades to reach the point of interest.

A complementary analysis confirmed
predictions of the model

To further confirm the appropriateness of the model, we
validated the time needed to lock on to the point of
interest (determined by fitted values of 1 and saccade
latencies) using a complementary and independent anal-
ysis (Figure 6). Deviations between unscrambled eye
movements and the estimated point of interest trajectory
(“eye position error”) were computed as a function of time
after each cut (Figure 6B). Eye position error started high
right after a cut, decreased sharply, but showed a gradual
increase over time. However, the eye position error at any
time point after a cut depended not only on the difference
between the unscrambled eye position and the estimated
point of interest but also on the variance of unscrambled
eye movements (Figure 6A), which showed a similar
decrease and then increase over time. To isolate the
component of the eye position error that was independent
of eye movement variance, we first computed the maximal
eye position error, which reflected how eye position error
would have evolved if the unscrambled eye movements
never locked on to the point of interest (error was always
maximal). This maximal eye position error was computed
from the variance (across clips) of the unscrambled eye
movements (Figure 6A) and the variance (over time) of
the point of interest (see Fractional explained variance:
Derivations section in Appendix A). One minus the ratio
between the measured and maximal eye position errors

Figure 6. Reliability of eye movements over time. (A) Variance in
eye position as a function of time after a cut. Variance was
computed at each time point, across all clips, separately for each
observer. Black curve, mean across observers (n = 10). Shaded
area, SEM across observers. Results are shown (in this and the
other panels) for horizontal eye movements; those for vertical eye
movements were similar. Data points (in this and the other panels)
shortly after a cut were averaged across more clips than later time
points. (B) Eye position error as a function of time after a cut.
Purple curve, the squared position difference between the
measured time courses and the median across observers,
averaged across all clips and averaged across observers.
Shaded area, SEM across observers. (C) Fractional explained
variance as a function of time after a cut (see Eye position error,
variance in eye position, and fractional explained variance
section). Light blue curve, mean across observers (n = 10).
Shaded area, SEM across observers. This represents how well
the dynamics of the median eye movement time course
accounted for the dynamics of the unscrambled time courses,
irrespective of the variance in eye position (panel A). Values near
zero indicate that the median eye movement time course did not
account for the unscrambled time courses, and a value of 1
indicates that the median matched the unscrambled time courses
completely. Inset: Simulated fractional explained variance (see
Simulating fractional explained variance section in Appendix A).
Shaded region, SEM across simulations for individual observers.
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(“fractional explained variance,” Figure 6C) indicated
how well the trajectory of the point of interest predicted
the measured eye movements, independent of the eye
movement variance (see Fractional explained variance:
Derivations section in Appendix A). The fractional
explained variance started to increase about 0.2 s after
cuts and flattened out after 0.5–0.8 s. This shows that the
point of interest predicted the unscrambled eye move-
ments poorly right after a cut but did better given enough
time, consistent with the model’s prediction that eye
movements start out uncorrelated with the point of interest
and then converge. Time courses of fractional explained
variance computed separately for each scramble duration
were nearly identical, consistent with the model’s
assumption that convergence on to the point of interest,
on average, depended only on the amount of time the
observer had to view the clip after a cut. The results are
also consistent with the idea that the search-and-track
process reset following each cut.
Model simulations using the fitted values of 1 and the

best-fitting lognormal parameters of saccade latencies
(2 and A; see Equation A1 in Appendix A) showed a

similar fractional explained variance (Figure 6C, inset),
which also started to increase at 0.2 s after cuts and
achieved asymptote around 1 s. The simulated fractional
variance showed a more gradual rise, which might be due
to our imperfect assumption that each saccade was
independent and had a fixed probability of finding the point
of interest (see Integration of visual information across
fixations during search section). Despite this difference,
the probability of finding the point of interest averaged
over the initial few fixations was similar for both the
measurement and the simulation, consistent with the
predictions of our model. This analysis also revealed
the fine-grained temporal dynamics of locking on, an
aspect of the results (and the model) not fully captured by
the covariance analysis.
The variance of eye position dipped shortly after a cut

and gradually increased over a period of several seconds
(Figure 6A). The mean eye position remained close to the
center of the screen (data not shown), so we interpret the
change in variance as a tendency for eye positions to
converge to the center of the screen right after a cut. This
is consistent with the evidence that observers tend to
orient toward the center of the screen after stimulus onset
(Parkhurst et al., 2002; Tatler, 2007; Tseng, Carmi,
Cameron, Munoz, & Itti, 2009) and keep their eyes
concentrated near the center during rapid scene cuts (Tosi
et al., 1997). Some of the change in variance, over time
after a cut, might also reflect an increased tendency to
make exploratory eye movements to look for another
point of interest long after a cut. This time-dependent
change in variance also explains why the variance of eye
positions depended on scramble duration. This change in
variance, however, did not affect the average reliability of
eye movements as measured by covariance. We teased
apart the effect of eye position variance from eye move-
ment reliability, by computing the fractional explained
variance, or the proportion of total variance at any time that
may be accounted for by the point of interest (Figure 6C).
Nonetheless, the non-stationary variance of eye positions
reveals an interesting aspect of the data not captured
within the scope of the model.

Model accounted for the eye movement
reliability of a second movie

To test whether the model generalized across stimuli,
we tested a smaller group of observers on a second movie
with a very different pace and cinematography (Russian
Ark, 2002). Eye movements for this movie showed a
similar relationship between scramble duration and cova-
riance (Figure 7), confirming that the dependence of eye
movement reliability on scramble duration was not
specific to the choice of film. The model fit the eye
movements well (r2 = 0.91, cross-validated 2.5th–97.5th
percentiles = 0.66–0.98), yielding values of 1 qualitatively

Figure 7. Data and model fits for the Russian Ark movie.
(A) Covariance as a function of scramble duration for two sample
observers viewing stimuli from the Russian Ark movie. Same
conventions as in Figure 5A. (B) Average covariance (n = 4
observers) and model fits. Same conventions as in Figure 5B.
(C) Bootstrapped best-fitting values of the 1 parameter. Same
conventions as in Figure 5C.
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similar to those estimated with the other movie (compare
Figures 5C and 7C) and an expected time of 0.85 T 0.40 s
(mean T standard deviation, n = 4) within which observers
were able to find the point of interest. It remains to be
tested whether the model would yield substantially differ-
ent results for other classes of movies. A starting
assumption of the model is that the unperturbed eye
movements are reliable (high covariance between eye
movements for the intact movie). Since reliability depends
on the content of a movie (Dorr, Martinetz, Gegenfurtner,
& Barth, 2010; Hasson, Landesman et al., 2008; Shepherd
et al., 2010), e.g., differences in the degree to which the
stimulus engages an observer, it is possible that we would
observe different results for a substantially different
choice of film (e.g., a static scene without action or
movement or a scene with many cuts). Nonetheless, the
fact that our model provided a good fit for two very
different movie stimuli is consistent with its content-free
nature and suggests some degree of generalizability.

Discussion

Engaging movies evoke highly consistent and reprodu-
cible eye movements (Goldstein et al., 2007; Hasson,
Landesman et al., 2008; Hasson et al., 2010; Hasson,
Yang et al., 2008; Orban, 2008; Tosi et al., 1997). We
exploited this high reliability of eye movements and
parametrically varied the temporal structure of two movie
stimuli by scrambling them at different temporal scales.
Our scrambling manipulation preserved the frame-by-
frame features in the original stimulus, while disrupting
the temporal relationships portrayed by the scene in a
content-independent manner. Eye movements for the
intact scene were compared to those obtained for the
same content presented within a scrambled context, which
allowed us to assess the extent to which eye movements
depended on the instantaneous properties of a scene
versus its temporal context. Reliability of eye movements
decreased with shorter scrambling durations, in a manner
that was consistent across multiple observers and two
movies. We characterized the effect of scrambling with a
simple model in which eye movement reliability arises
from observers tracking a relevant point of interest on the
screen and in which the tracking process reset with every
cut. Fits from the model for the two movies yielded
parameters that corresponded to an expected time ofÈ0.8 s,
within which observers were able to find and lock on to
the point of interest; this value was independently verified
in a separate complementary analysis. The explanatory
power of this simple model suggests that the temporal
accumulation of information over time periods exceeding
a second is not needed to explain our data. That is, a
simple, memory-less model captured the reliability of eye

movements to complex, dynamic scenes with different
degrees of temporal scrambling.

Spatial factors that drive eye movements

Early work on eye movements using still images, like
photographs and line drawings, found that certain loca-
tions consistently attracted an observer’s fixation during
free viewing (Buswell, 1935; Yarbus, 1967). Since then,
many studies have shown that fixated locations tend to
differ from non-fixated locations in a number of low-level
statistics, such as local intensity, color, and orientation
(Krieger et al., 2000; Mannan et al., 1995; Parkhurst &
Niebur, 2003; Rajashekar et al., 2007; Reinagel & Zador,
1999; Tatler, Baddeley et al., 2005). These findings have
led to computational models that predict fixation locations
by extracting the “saliency” (conspicuity) of local features
in a scene (Itti & Koch, 2001; Koch & Ullman, 1985;
Parkhurst et al., 2002; Peters et al., 2005; Tatler, Baddeley
et al., 2005). The computations embodied in such bottom-
up models connect elegantly with known aspects of neural
processing in cortical visual areas. They provide a quanti-
tative and principled approach for relating eye movement
behavior to a stimulus.
Eye movements are also influenced by many other

cognitive factors not predicted by feature saliency. For
example, in the presence of a task, eye movements depend
on the task demands and the observer’s internal goals
(Buswell, 1935; Hayhoe & Ballard, 2005; Land, 2009;
Land & Hayhoe, 2001; Noton & Stark, 1971; Rothkopf
et al., 2007; Turano, Geruschat, & Baker, 2003; Yarbus,
1967). Contextual knowledge based on the co-occurrence
of objects (e.g., a plate on a dining table) and semantic
content of the scene can facilitate the selection of atten-
tional targets and bias gaze strategy (Eckstein, Drescher, &
Shimozaki, 2006; Henderson et al., 1999; Neider &
Zelinsky, 2006; Torralba et al., 2006). In fact, it has been
argued that bottom-up saliency does not necessarily drive
eye movements causally, as the local image statistics
underlying saliency are also correlated with higher
level scene content (such as semantic informativeness;
Einhauser & Konig, 2003; Einhäuser, Spain, & Perona,
2008; Henderson, Brockmole, Castelhano, & Mack,
2007). Several models for predicting fixation locations
incorporate both bottom-up and top-down elements. In
some implementations, saliency maps are selectively
modulated by information that reflect top-down control
or prior expectations (e.g., about the location or features
of a target object), based on knowledge of a task or an
understanding of scene gist (Navalpakkam & Itti, 2005;
Oliva, Torralba, Castelhano, & Henderson, 2003; Peters &
Itti, 2007; Torralba et al., 2006). In other implementations,
a probabilistic model learns preattentive targets from
scene statistics, therefore combining both bottom-up
saliency and top-down biases (Butko, Zhang, Cottrell, &
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Movellan, 2008; Kanan, Tong, Zhang, & Cottrell, 2009;
Yamada & Cottrell, 1995; Zhang, Tong, & Cottrell,
2009). Alternatively, some models integrate both saliency
and top-down information at the level of object represen-
tation (Sun, Fisher, Wang, & Gomes, 2008; Wischnewski,
Belardinelli, Schneider, & Steil, 2010), reflecting the
hypothesis that the “proto-object” (i.e., the position and
a cluster of features relevant to an object) represents the
basic unit for prioritizing attention (Einhäuser et al., 2008;
Hollingworth & Henderson, 2002; Scholl, 2001). The
combination of bottom-up and top-down information
outperforms purely bottom-up models when fixations are
of immediate behavioral relevance, such as during search
tasks (Kanan et al., 2009; Navalpakkam & Itti, 2005;
Oliva et al., 2003; Torralba et al., 2006) or tasks involving
interactive viewing (e.g., video game playing; Peters &
Itti, 2007). Finally, socially relevant cues not predicted by
saliency models, such as faces, gaze direction, and body
movement, also serve as powerful predictors of eye move-
ments (Birmingham et al., 2008; Friesen & Kingstone,
1998; Shepherd et al., 2010).

Temporal factors that drive eye movements

A variety of dynamic stimulus types and approaches
have been used to explore how viewing behavior depends
on continuously changing visual information (e.g., Butko
et al., 2008; Carmi & Itti, 2006a, 2006b; Dorr et al., 2010;
Goldstein et al., 2007; Hasson, Landesman et al., 2008;
Itti, 2005; Itti & Baldi, 2005, 2009; Le Meur, Le Callet, &
Barba, 2007; Rothkopf et al., 2007; Shepherd et al., 2010;
Wischnewski et al., 2010). Some of this work has focused
on the perception and representation of scene information
across time. Complex, dynamic scenes often contain
editorial cuts, such as viewpoint switches; changes in
scene content across these cuts or the cuts themselves may
go unnoticed by the observer (Bordwell & Thompson,
2001; Levin & Simons, 1997, 2000; Reisz & Millar, 1953;
Smith & Henderson, 2008). Extending research on change
detection and memory representation of static scenes
(e.g., Grimes, 1996; Henderson & Hollingworth, 2003;
Hollingworth & Henderson, 2002; Irwin & Zelinsky,
2002; McConkie & Currie, 1996; Melcher, 2006; Melcher
& Kowler, 2001; O’Regan, 1992; Rensink, O’Regan, &
Clark, 1997; Tatler, Gilchrist, & Land, 2005; Tatler,
Gilchrist, & Rusted, 2003), many studies have examined
the perceptual and memorial consequences of changes in a
dynamic scene (Angelone, Levin, & Simons, 2003;
Garsoffky, Huff, & Schwan, 2007; Garsoffky, Schwan, &
Hesse, 2002; Kraft, 1986; Levin & Simons, 1997, 2000)
and their interactions with eye movements (d’Ydewalle,
Desmet, & Van Rensbergen, 1998; d’Ydewalle &
Vanderbeeken, 1990; Germeys & d’Ydewalle, 2007;
Hirose, Kennedy, & Tatler, 2010; Smith & Henderson,
2008). For example, Hirose et al. (2010) found that eye

movement behavior reflected observers’ differential sensi-
tivity to object property and location changes across
viewpoint switches. Smith and Henderson (2008) found
that undetected editorial cuts (“edit blindness”) in feature
films appeared to depend mainly on inattentional blind-
ness induced by the content of the new shot rather than
coincidence with periods of perceptual insensitivity
induced by saccades or blinks.
Computational models of eye movements have also

been extended to explain how eye movements depend on
temporal features within dynamic scenes under free
viewing (e.g., Itti, 2005; Itti & Baldi, 2005, 2009; Kienzle,
Schölkopf, Wichmann, & Franz, 2007; Le Meur et al.,
2007; Peters & Itti, 2007; Vig, Dorr, & Barth, 2009;
Wischnewski et al., 2010; Zhang et al., 2009). Spatio-
temporal versions of saliency models reveal that motion
contrast and temporal novelty serve as strong predictors
for locations of eye movements (e.g., Itti, 2005; Itti &
Baldi, 2005, 2009). Motivated by the importance of
temporal salience on eye movements, two studies inves-
tigated how eye movements depended on temporal
continuity of a scene by comparing eye movements for a
continuous movie and sequences of static frames from the
same movie. ’t Hart et al. (2009) recorded eye movements
during free exploration of indoor and outdoor environ-
ments and compared them to those during head-fixed
replays of the same visual input (either dynamic or static
versions) in the laboratory. They found that eye move-
ments during continuous replay movies predicted real-
world gaze positions better than those during shuffled
sequences of 1-s still frames and better than those
predicted by a static model saliency map. This confirmed
that temporal continuity played an important and consis-
tent role in influencing eye movements during different
types of dynamic visual inputs. Furthermore, static model
saliency yielded better predictions of eye positions during
continuous replay movies than did eye positions during
1-s still frames, suggesting that a consequence of temporal
continuity was a larger dependence of eye movements on
bottom-up spatial information. In addition, similar to what
we found for eye positions during short scramble
durations of movie clips, ’t Hart et al. found that eye
position for the still frames showed a stronger spatial bias
toward the stimulus center (Buswell, 1935; Parkhurst et al.,
2002; Tatler, 2007; Tseng et al., 2009), which contributed
substantially to inter-observer consistency. Another study
used Normalized Scanpath Saliency (Peters et al., 2005)
as a metric to quantify inter-observer consistency in eye
movements (Dorr et al., 2010). Their measure of consis-
tency was quite different from the covariance-based
measure of reliability that we used. They found that the
time course of inter-observer consistency differed substan-
tially between the continuous and static frame versions of
homemade natural movies (e.g., a busy roundabout
intersection with moving cars). Consistency of eye move-
ments for static frames (sampled at a regular interval from
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the continuous scene and shown for 3 s at a time) was high
immediately after each frame transition but dropped
sharply until the next frame onset. However, in the
continuous version of the movie, consistency peaked
immediately after movie onset and remained at a modest
level throughout the rest of the presentation. Like ’t Hart
et al., Dorr et al. (2010) also found that much of their
inter-observer consistency was dominated by the tendency
to fixate the center of the screen after each onset,
independent of the specific visual stimulus.
Other studies have examined how editorial visual

disruptions in dynamic scenes impact the temporal
dynamics of eye movements. Vig et al. (2009) quantified
the time delay between visual events in video clips and the
responding eye movements during free viewing, by cross-
correlating saliency maps and spatiotemporal fixation
maps and identifying the time shift at which the two
maps showed maximal correlation. They found that the
lag was near zero for a database of dynamic natural scenes
shot with a static camera (e.g., populated streets and
parks) but much longer (133 ms) for a separate database
with video clips containing editorial transitions, such as
camera movements (pan, tilt, zoom), special effects (fade,
dissolve, wipe), and jump cuts. They reasoned that
whereas eye movements are usually slightly anticipatory
(e.g., looking ahead of the movement) for continuous
scenes, the presence of cuts and other editing techniques
introduce temporal discontinuities that interrupt that
anticipation. Finally, Carmi and Itti (2006a, 2006b)
examined the evolution of eye movements over time
following rapid-transition jump cuts in dynamic scenes.
They found that eye movements were well predicted by a
saliency model shortly after a cut, but prediction accuracy
diminished over a period of 2.5 s across several fixations.
They explained these results in terms of a competition
between bottom-up processes and top-down processes that
depended on “perceptual memory,” which we interpret as
including any process that integrates information across
time.
Like Carmi and Itti (2006a, 2006b), our study also

explored how the factors driving eye movements evolve
over time. We took advantage of the fact that a class of
dynamic stimuliVhigh-production filmsVelicits highly
reliable eye movements across observers. We manipulated
and modeled that reliability to draw conclusions about
observers’ viewing behavior, specifically, how it
depended on temporal context. This provided a comple-
mentary approach for studying the temporal dependence
of eye movements without explicitly modeling their
governing factors or predicting them directly as a function
of the stimulus. While we found no evidence that eye
movement reliability depended on visual information
accumulated over time, our model is agnostic as to
whether such information represents low-level or high-
level cues. As discussed above, many high-level processes
besides saliency, such as contextual and social cues, can
also guide eye movements on a fast temporal scale.

Furthermore, by design we modeled only the reliable
component of eye movements, namely, the point of
interest that captured the variability in eye position over
time that was shared across observers. Any deviation from
the point of interest (considered “noise” in our model)
likely reflected sources of variability other than measure-
ment noise, which could include idiosyncratic viewing
strategies that may or may not depend on temporal
context, as well as systematic tendencies to fixate certain
locations on the screen as a function of time elapsed after
a cut (see Variance of eye movements as a function of
time section below). Therefore, it remains an open
question how the declining impact of feature saliency on
eye movements after a cut, as found by Carmi and Itti,
relates to the time course of eye movement reliability as
found by our study.

Integration of visual information across
fixations during search

Our model assumed that observers began tracking a point
of interest after some delay following a cut but was agnostic
with respect to what happened in the few hundred milli-
seconds before observers found the point of interest. The
predictions of the model only required that, during this
time, eye movements were uncorrelated with the point of
interest trajectory. Specifically, we assumed that each
saccade before the observer locked on had a fixed
probability of finding the point of interest (parameter 1 in
Equation A3, see Appendix A and Figure 5C). We could
not, however, exclude the possibility that this probability
increased across fixations during the period before locking
on (i.e., that information was accumulated across fixations
about the likely location of the point of interest). Such a
framework in which the observer uses prior information to
search for relevant points of interest bears some resem-
blance to visual search (Treisman & Gelade, 1980).
Human behavior during search has been modeled by
assuming that the observer chooses where to look to
maximize information about the location of the target
(Najemnik & Geisler, 2005). Accordingly, visual infor-
mation is integrated across fixations and updated itera-
tively. There is also empirical evidence for the accrual of
visual information across the first two fixations during
search (Caspi, Beutter, & Eckstein, 2004), within the time
frame that observers typically find the point of interest for
our movie stimuli. Note that visual search models indicate
that human performance does not significantly depend on
information integrated beyond a relatively short time scale
of two fixations (Najemnik & Geisler, 2005). If the
observer indeed integrates information across fixations to
optimally locate the point of interest, the probability of
locking on should increase with every fixation. In that
case, the fitted values of 1 (Figures 5C and 7C) can be
thought of as an average probability of finding the point
of interest over those fixations. However, this would not
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change the model’s prediction of the average time required
to find the point of interest after a cut. As such, this
elaboration would not affect the model’s prediction for
how covariance with the point of interest depends on
scramble duration. Indeed, the fractional explained var-
iance analysis revealed that the probability (across clips) of
locking on rose more sharply than predicted by the model
(Figure 6C), possibly suggesting integration of visual
information within the first couple of saccades (e.g., the
first saccade had a lower probably of locking on than
predicted, and the second saccade had a higher probability).

Variance of eye movements as a function
of time

We used covariance (instead of correlation) to quantify
the reliability of eye movements, and therefore, our model
did not account for or depend on the variance of eye
movements. It is well established that fixation locations on
static images become more variable across observers with
prolonged viewing (Henderson & Hollingworth, 1999;
Mannan et al., 1995; Tatler, Baddeley et al., 2005), but
such time-dependent increase in variability is less pro-
nounced for dynamic videos (Dorr et al., 2010), presum-
ably due to the impact of continuous temporal change on
attentional selection (Itti, 2005; Yantis & Jonides, 1984).
We calculated eye position variance across clips (rather
than across observers) as a function of time after a cut and
found that the distribution of eye positions depended
systematically on the time elapsed since the cut. A portion
of this variance might contribute to changes in inter-
observer variability as a function of time. Consistent with
previous studies (Dorr et al., 2010; Tatler, 2007; Tosi
et al., 1997; Tseng et al., 2009), we also found that the
distribution of eye positions fell near the center of the
screen right after a cut but gradually spread to include
positions away from the center over a period of several
seconds thereafter (Figure 6A). Factors underlying the
change in variance may include the well-documented
center bias immediately after stimulus onset (Buswell,
1935; Dorr et al., 2010; Parkhurst et al., 2002; Tatler,
2007; Tosi et al., 1997; Tseng et al., 2009), as well as a
tendency to explore and look for new points of interest
with prolonged viewing. The change in variance therefore
revealed a separate, but nonetheless intriguing, aspect of
the data not encompassed by the scope of the model.

Relationship to narrative continuity
and editorial cuts

We investigated how the spatiotemporal continuity of a
movie scene contributed to the reliability of eye move-
ments, but such spatiotemporal continuity was not
necessarily equivalent to narrative continuity, which is

linked to the comprehension of event relationships in a
scene. For example, Hasson, Yang et al. (2008) found that
presenting a film backward in time preserved most of its
spatiotemporal continuity while severely disrupting its
narrative continuity and compromising observers’ com-
prehension. However, the reliability of eye movements
was similar for both forward and backward movies,
suggesting that narrative continuity (or comprehension)
was not necessary for reliable eye movements. In other
instances, narrative continuity (achieved through editing
techniques) may help mask spatiotemporal discontinuity
and therefore enhance the reliability of eye movements.
In our experiments, we specifically used scenes that

were shot as single takes without any cuts. In most feature
films or TV commercials, cuts typically occur every 2–10 s,
though their average frequency varies by era and by genre
(Bordwell & Thompson, 2001; MacLaclan & Logan,
1993; Salt, 1992). The types of cuts intentionally placed
in films (“editorial cuts”) differ from the cuts produced by
our scrambling manipulation, which were sharp spatio-
temporal discontinuities in the scene. Most editorial cuts
adhere to the conventions of film editing so as to maintain
narrative continuity (Bordwell & Thompson, 2001;
d’Ydewalle et al., 1998; d’Ydewalle & Vanderbeeken,
1990; Hochberg & Brooks, 1978; Kraft, 1987; Reisz &
Millar, 1953; Salt, 1992). For example, viewpoints
typically stay on the same side of the “axis of action,”
so as to preserve the left–right relationship between two
characters in a scene or a character’s direction of move-
ment across cuts (“180 rule”). These techniques maintain
the psychological continuity of the scene by exploiting the
observer’s inferences of event and spatial relationships
(d’Ydewalle et al., 1998; d’Ydewalle & Vanderbeeken,
1990; Frith & Robson, 1975; Germeys & d’Ydewalle,
2007; Hochberg & Brooks, 1978; Kraft, 1987; Levin &
Simons, 2000). In fact, changes across editorial cuts or the
editorial cuts themselves often go unnoticed by the
observer (Bordwell & Thompson, 2001; Levin & Simons,
1997, 2000; Reisz & Millar, 1953; Smith & Henderson,
2008). A well-produced film with editorial cuts can evoke
highly reliable eye movements (Hasson, Landesman et al.,
2008; Hasson, Yang et al., 2008), with correlations
comparable to what we found for our intact scenes
(approximately 0.5). Thus, although we employed single-
shot scenes because of their high temporal continuity,
well-designed editorial cuts likely help preserve the
temporal continuity of a scene, and our experimental
results would likely generalize to well-produced movie
scenes containing such cuts.
Nonetheless, the effectiveness of editorial cuts depends

greatly on their composition, and different types of editorial
cuts may differentially affect the perceived continuity of
the scene as well as the observer’s viewing behavior
(d’Ydewalle et al., 1998; d’Ydewalle & Vanderbeeken,
1990; Dmytryk, 1986; Germeys & d’Ydewalle, 2007;
May, Dean, & Barnard, 2003; Smith & Henderson, 2008).
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For example, Smith and Henderson (2008) found that an
observer was less likely to notice a cut if it stayed within
the same scene and coincided with a sudden onset of
visual motion. Failure to notice changes across the type of
transitions common in editorial cuts (e.g., viewpoint
change) is linked to inattentional blindness and change
blindness (Levin & Simons, 1997, 2000; Mack & Rock,
1998; Rensink et al., 1997); the retention of information
across these transitions and how that interacts with eye
movements are areas of active study (e.g., Hirose et al.,
2010; Smith & Henderson, 2008).
In our experiments, scrambling served as an exper-

imental manipulation for varying the temporal structure of
the movie scenes. We specifically employed single-shot
scenes to ensure high temporal continuity in the
unscrambled stimulus. Our artificial jump cuts introduced
substantial visual disruption to the temporal structure, in a
manner that was independent of the underlying content of
the scene. There are two alternative manipulations that we
could have used for scrambling, but both would have
limited our experimental control. One possibility would
have been to employ a conventional scene with existing
editorial cuts and scramble the temporal order of that
scene by introducing new cuts. The resulting interleaved
movie would contain both the original cuts and the ones
we inserted. If all the editorial cuts in the scene were well
designed, they should only minimally impact eye move-
ments, and we would expect to obtain similar results to
those obtained for a single-shot scene. However, as
discussed above, the cognitive effects exerted by editorial
cuts can vary greatly depending on their type and the
filmmaker’s style, therefore introducing additional visual
disruptiveness outside of our experimental control. A
second possibility would have been to employ a conven-
tional scene with existing editorial cuts and shuffle only
those cuts. However, the distribution of clip length would
depend on the film and again lie outside of our
experimental control, making it impossible to precisely
manipulate the scramble duration or to apply the same
manipulation to different movies. Furthermore, the type of
visual disruptiveness introduced by shuffling only editorial
cuts may differ systematically from that introduced by
inserting jump cuts, as editorial cuts often depict break-
points marking a shift in action or perceptual events
(Carroll & Bever, 1976; Schwan, Garsoffky, & Hesse,
2000). Thus, inserting artificial jump cuts as we have done
allowed us to take control over the visual disruption and
scramble duration of our stimuli, independent of the
choice and content of the movie scene.
While we focused on a specific set of scrambling

manipulations applied to continuous single-shot video
sequences, the derived model parsimoniously captured the
data set and represents a general (and thereby testable)
hypothesis for how eye movement reliability depends on
temporal context for naturalistic, dynamic stimuli. How

well the model can account for eye movements for
broader sets of stimuli, such as films with less editorial
structure, remains a question for further study.

Appendix A

Model derivation

We derive the relationship between eye movement
covariance and scramble duration. The mathematical
notations used in the derivation and their descriptions
are listed in Table A1. We begin by finding an expression
for the probability that an observer will fixate the point of
interest as a function of time, t. The intervals at which an
observer makes saccades are well described by a lognor-
mal distribution, with parameters that can be estimated
directly from our data (Figure 4A). The lognormal
probability density function with parameters 2 and A is
defined as

f tk2;Að Þ ¼ 1

tA
ffiffiffiffiffiffi
2:

p e
jðlntj 2Þ2

2A2 : ðA1Þ

Assuming consecutive inter-saccade intervals are inde-
pendent, the time of the jth saccade is the sum of j random
variables, each with a probability density distribution
f(tj2, A). We define the probability density distribution for
the time of the jth saccade as zj(t). The pdf zj(t) is the
convolution of lognormal pdf f(t) with itself j j 1 times.
For j 9 1, this expression has no closed form, so we used
an approximation. The convolution of j j 1 identical
lognormal functions f with parameters 2 and A is
commonly approximated by another lognormal distribu-
tion, f(tj2j, Aj), where

Aj ¼
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In making this approximation, the first and second
moments (i.e., the mean and variance) of f(tj2j, Aj) were
matched to j times those of f(tj2, A) (Fenton–Wilkinson
method; Fenton, 1960). We verified in simulation that this
approximation was accurate to within 1% error for the
range of 2, A, and j used in our calculations.
On each fixation following a saccade, the observer has a

fixed probability 1 of finding and locking onto the point of
interest. Thus, the probability of finding the point of
interest precisely on the jth fixation is 1(1 j 1) jj1. This is
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the probability of finding the point of interest on the jth
fixation times the probability of not finding it on all
previous fixations.
We introduce the probability density function pT(t) for a

continuous random variable T, which describes the proba-
bility of finding a point of interest over time after a cut:

pTðtÞ ¼
XV

j¼1

1ð1j 1Þjj1zjðtÞ ,
XV

j¼1

1ð1j 1Þjj1f ðtk2j;AjÞ;

ðA3Þ

where f(tj2j, Aj) is the lognormal approximation for zj(t),
the probability density distribution for the time of the jth
saccade, and parameters 2j and Aj are related to 2 and A as

in Equations A2. Note that for j = 1, z1(t) = f(tj2, A).
Consistent with standard probability notation, lowercase t
denotes a specific value for the random variable T:

Pr½a e T e b# ¼
Z b

a
pTðtÞdt: ðA4Þ

The approximated form of function pT(t) in Equation A3 is
a sum of a series of lognormal distributions. Each
lognormal distribution describes the time of an individ-
ual saccade, and each distribution is weighted by the
probability of finding the point of interest following that
saccade. When 1 = 1, the observer always fixates the
point of interest after the first saccade, and pT(t) is equal
to a lognormal distribution describing the time of that

Notation Type Definition

L Constant Duration of the original scene
d Constant Duration of each clip used to evenly divide up the scene
S Time course Point of interest time course (median eye movement time course for intact movie)
Sd Time course Unscrambled eye movement time course for scramble duration d
f(2, A) Function Lognormal probability density function describing inter-saccade intervals; depends on 2 and A

zj Function Probability density function describing the time of the jth saccade
pT Function Probability density function describing the likelihood of finding a point of interest as a function of time

after a cut onset; depends on f and 1

PT Function Cumulative density function of pT
C Function Covariance between two eye movement time courses
T Variable A continuous random variable with pdf pT
t Variable Time after a cut (a value for random variable T with pdf pT; Pr(t G T G t + dt) = pT (t)dt for an infinitely

small interval dt)
C Variable A random variable describing the amount of time an observer is not locked onto the point of interest

within a cut; depends on T and d
2, A Parameters Parameters governing the shape of the lognormal pdf f
2j, Aj Parameters Parameters governing the shape of the lognormal pdf for the time of the jth saccade

(an approximation for zj(t))
1 Parameter Probability of finding and locking onto a point of interest on each fixation after a saccade
Q Parameter Maximal covariance between an intact eye movement time course and the trajectory of the

point of interest, as limited by noise
N Empirical measure Total number of samples in the time courses (corresponding to a total time duration of L)
N0 Empirical measure Number of samples (out of N) that the observer is not locked on to the point of interest
S0 Time course Random point of interest with the same distribution as entries in S, i.e., with mean and variance 2S

and vS
2Sd Function Mean of unscrambled eye movements, i.e., mean of Sd (stationary with respect to time after a cut)
2S Function Mean of the point of interest, i.e., mean of S (stationary with respect to time after a cut)
vSd(t) Function Variance of unscrambled eye movements after a cut, i.e., variance of Sd(t)
VS Function Variance of the point of interest, i.e., variance of S (stationary with respect to time after a cut)
G(t) Function Eye position error between the unscrambled time courses and the point of interest after a cut;

G(t) = E[(Sd(t) j S(t))2]
G0(t) Function Maximal eye position error or the eye position error expected between the unscrambled time courses

and an uncorrelated, random point of interest after a cut; G0(t) = E[(Sd(t) j S0)
2] = vSd(t) + vS

Table A1. Notation for derivations in Appendix A.
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saccade (all terms in the summation where j 9 1 equal 0).
For smaller 1, more saccades are required to find the point
of interest, and the shape of pT(t) changes to have larger
probabilities associated with later saccades (Figure 4B).
The cumulative distribution associated with the density

pT(t) is

PTðtÞ ¼
Z t

0

pTðxÞdx: ðA5Þ

PT(t) increases to 1 as t increases (PT(t)Y1 as tYV),
which means that the probability of finding the point of
interest converges to 1 as the amount of time allotted to
find it increases (Figure 4C). For larger values of 1, the
slope is steeper, i.e., PT(t) converges to 1 more quickly.
When there is only a finite amount of time in a clip (i.e., t
is bounded), and especially when 1 is small, PT(t) may
still be far from 1 even when t achieves its maximum
value. That is, there is a non-trivial probability that the
observer will not have found the point of interest before
the end of the clip.
To predict covariance, we derive an expression for the

average amount of time during which the observer is
locked on (or not locked on) to the point of interest. An
intact scene of length L is divided evenly into clips, each
of length d, whose order may be randomly scrambled.
Over the entire movie, there are L/d clips in total. For each
clip, the above probability distributions are used to
estimate the average value of a random variable C, which
describes the time during which the observer is not locked
on to the point of interest for that clip. For any given clip,
the maximal value that C can take is d. When C is less than
d, the value of C depends on the value of the random
variable T with probability density function given by
Equation A3. Thus, a natural choice is to define the
variable C piecewise:

C ¼
T; T G d

d; T Q d:

8
<

: ðA6Þ

By the law of total expectation, the expected value of C is
given by

EðCÞ ¼ PrðT G dÞEðCkT G dÞ þ PrðT Q dÞEðCkT Q dÞ;
ðA7Þ

where T is the random variable with density pT(t) and
cumulative distribution PT(t) as given above. The two
expectations on the right-hand side are

E CkT G dð Þ ¼ E TkT G dð Þ ¼

Z d

0

tpTðtÞdt

PTðdÞ
if observer locks on before end of cut

EðCkT Q dÞ ¼ d if observer does not lock on :

ðA8Þ

Suppose S(t) is the “correct” eye position (as a function of
time t) corresponding to the point of interest in the intact
movie, and Sd(t) is the unscrambled eye movement time
course for scramble duration d. The expected duration of
Sd(t) that is not correlated with S(t) is therefore E(C)
summed over all L/d cuts: (L/d)E(C).
We define Q to be the covariance between an intact eye

movement time course made by the observer and the
trajectory of the point of interest. If the observer’s eye
positions matched the location of the point of interest
perfectly when locked on (i.e., there was no noise or
variability), Q would simply be the variance of S(t). The
actual value of Q depends on both the measurement noise
and the observer’s cognitive and motor variability (includ-
ing exploratory eye movements to look for a new point of
interest; see Model section). We interpret Q as the
maximal covariance attainable for that observer.
We further assume that the covariance between the two

eye movement time courses (intact and unscrambled) is
proportional to the maximal covariance, Q, times 1 minus
the fraction of time during which the eye movements are
uncorrelated (see Linearity assumption section below). By
this assumption, the covariance C between Sd(t) and S(t) is
given by

C Sd; S
" #

¼ Q 1j

L

d
E Cð Þ

L

0

B@

1

CA: ðA9Þ

Substituting in the conditional probabilities from
Equation A7 for E(C), we obtain

C Sd; S
" #

¼ Q 1j

L

d
Pr T G dð ÞE CkT G dð Þ þ Pr T Q dð ÞE CkT Q dð Þð Þ

L

0

B@

1

CA:

ðA10Þ

Since Pr(T Q d) = 1 j Pr(T G d), and Pr(T G d) is the
cumulative distribution PT(t) evaluated at d, substituting
in Equation A8 and canceling out L yields

C Sd; S
" #

¼ Q 1j
PT dð Þ

Z d

0

tpTðtÞdt

PTðdÞ
þ d 1 j PT dð Þð Þ

d

0

BBBBBB@

1

CCCCCCA
:

ðA11Þ
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Simplifying (canceling d in the second term and the two
1s and rearranging terms) gives

C Sd; S
" #

¼ Q PT dð Þ j

Z d

0

tpTðtÞdt

d

0

BB@

1

CCA; ðA12Þ

where pT(t) is the pdf defined in Equation A3 and its
cumulative distribution PT(t) may be computed through
numerical integration. Note that this derivation is inde-
pendent of the specific parameterization of saccade times.
Any distributional form for saccade times can be plugged
in to the equations for pT(t) and PT(t) to obtain an
expression for predicted covariance. We used the lognor-
mal distribution, which we observed to be a good
description of the inter-saccade interval distribution
(Figure 4A).

Linearity assumption

In the above derivation, we assumed that the covariance
between two eye movement time courses (intact and
unscrambled) was proportional to the maximal cova-
riance, Q, times 1 minus the fraction of time during which
the eye movements were uncorrelated (Equation A9).
Here, we provide mathematical intuition for why this
relationship holds and show that it is a reasonable
assumption for our data.
The sample covariance between two measured eye

movement time courses Sd and S is computed as

Ĉ Sd; S
" #

¼ 1

N

XN

k¼1

Sd kð Þj2Sd
" #

S kð Þj2Sð Þ; ðA13Þ

where 2Sd and 2S are the sample means of Sd and S, index
k indicates individual measurement samples, and N is the
total number of samples in the time courses (correspond-
ing to a total time duration of L).
In Equation A9, the covariance is expressed as propor-

tional to the expected time during which the observer is
not locked on to the point of interest. We want to show
that according to our model, the empirical covariance
expressed in Equation A13 can be approximated with
Equation A9. To do so, we show that the form of Equation
A13 simplifies greatly when considering the case in which
the two signals are maximally correlated for only a subset
of samples (i.e., the time points during which the observer
is locked on). Specifically, assume that the observer is not
locked on to the point of interest for N0 measurement
samples (uncorrelated) and is locked on for N j N0

samples (with maximal covariance). Additionally, assume
that the individual samples of Sd and S in Equation A13
are independent and that the sample mean 2Sd does not

change as a function of N0. It follows that for any value of
N0, the product (S

d(k) j 2Sd)(S(k) j 2S) summed over N0

out of the N terms will be approximately 0 (because Sd

and S are uncorrelated for those terms), and the remaining
N j N0 samples will constitute 1 j N0/N of the maximal
covariance Q. Thus, for a finite sample,

Ĉ Sd; S
" #

, Q 1 j
N0

N

$ %
; ðA14Þ

and equality holds in the limit of infinite samples. The
right-hand side of Equation A14 is just a discrete time
version of Equation A9: The number of samples N0

corresponds to the time (L/d)E(C) during which the
observer is not locked on, and the total number of samples
corresponds to the total time L. Thus, if Equation A14
holds for our data, it validates the assumption of the
model as expressed in Equation A9.
We used simulations to verify that the relationship in

Equation A14 holds when applied to the eye movement
data measured in our experiments. Although our data did
not strictly adhere to the above assumptions (for example,
neighboring sample points of eye positions tended to be
correlated), the simulation results showed that the linear
relationship nonetheless provided a good approximation,
i.e., violation of these assumptions had only a negligible
effect on linearity. The simulations further suggested that
the linearity assumption was more accurate for shorter
scramble durations. However, deviations from linearity
were small even at the longest scramble duration.
For Equation A14 to hold, only the sample mean and

not the sample variance of Sd needs to be independent of
N0 (number of samples for which Sd and S are uncorre-
lated). In fact, the variance in eye position was smaller for
shorter scramble durations (Figures 3E and 3F). However,
the sample mean of Sd was approximately invariant
(near the center of the screen) for unscrambled eye
movement time course, as assumed in the derivation of
Equation A14.

Fractional explained variance: Derivations

The deviation expected between an observer’s eye
position and the point of interest, under the assumption
that the two are uncorrelated (“maximal eye position
error”), is denoted G0(t). This value is expressed as G0(t) =
E[(Sd(t) j S0(t))

2], where t is time after a cut, Sd(t) is
unscrambled eye movements for scramble duration d, and
S0(t) is a random point of interest from the same
distribution as the actual point of interest S(t) but not
correlated with Sd(t). We show here that G0(t) is equal to
the summed variances of the two underlying variables,
Sd(t) and S0(t).
For a moment, assume that both Sd(t) and S0(t) are

normally distributed at time t; Sd(t) has variance vSd(t) and
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mean 2Sd, and S0(t) has variance vS and mean 2S.
Furthermore, 2Sd = 2S for all time points t. Note that
treating vS and 2S as stationary with respect to t is
reasonable because S0(t) has the same mean and variance
as the point of interest S(t); we would not expect the
statistics of S to change as a function of time t after a cut
from the manipulations of the interleaved movie.
Let SdV(t) = Sd(t) j 2Sd and S0V(t) = S0(t) j 2S, and we

can substitute the variables in the expression of G0(t) with
their mean-subtracted versions:

G0ðtÞ ¼ E½ðSdVðtÞjSV
0 ðtÞÞ

2#;

¼ E½ðSdVðtÞÞ2#j2E½SdVðtÞSV
0 ðtÞ# þ E½SV

0 ðtÞ
2#:

ðA15Þ
The first term and last terms are simply vSd(t) and vS,
respectively. The cross term 2E[SdV(t)S0V(t)] , 0 because
SdV(t) and S0V(t) are uncorrelated, zero mean, and normally
distributed. Therefore,

G0ðtÞ ¼ vSdðtÞ þ vS: ðA16Þ

Note that this shows that the trajectory of G0(t) depends
on the trajectory of the unscrambled eye position variance
vSd(t); if vSd(t) was constant irrespective of time after a
cut, then the maximal eye position error G0(t) would also
be constant.
In our data, Sd(t) was computed by aligning the

unscrambled eye movements for a particular scramble
duration d to each cut in that scramble duration. Sd(t)
computed separately for each d yielded similar curves as a
function of t. Therefore, at each time point t, vSd(t) may be
estimated using the variance of Sd(t) across all clips (n =
1344 clips from all 5 scramble durations for t = 0–0.5 s;
n = 624 clips from the 4 longest scramble durations for t =
0.5–1 s; and so on). We used the median eye movements
across observers for the intact movie as an estimate for the
point of interest S(t). The variance of the median time
course S(t) across time provided an estimate for the
variance vS, which was equivalent to computing the
variance across clips for each t under the assumption that
variance was stationary with respect to time. We verified
in our data that our assumptions for the derivation were
reasonable, i.e., that Sd(t) (across clips) and S(t) (across
time) were well approximated as Gaussian and that 2Sd ,
2S for all t (i.e., the mean eye position across all clips was
the same for the unscrambled and median intact time
courses and near the center of the screen). Furthermore,
simulations of G0(t), computed with randomly permuted
values of S(t) as S0(t), yielded values close to vSd(t) + vS,
as predicted by the derivation.
To isolate the component of the eye position explained

by the point of interest, we computed “fractional
explained variance” as 1 j G(t)/G0(t), where G(t) was
the measured position error (see Eye position error,

variance in eye position, and fractional explained variance
section) and G0(t) was the maximal position error
(computed using Equation A16). Here, we show that this
quantity can be thought of as an approximate empirical
estimate for the fraction of the time the observer was not
locked on to a random point of interest (or locked on to
the actual point of interest) as a function of time. Suppose
at each time point t, the observer has a probability of PE(t)
locking on to the point of interest. When the observer is
locked on, E[(Sd(t) j S(t))2] , 0. When the observer is not
locked on (1 j PE(t) of the time), S(t) will be random
with respect to Sd(t), so E[(Sd(t) j S(t))2] , E[(Sd(t) j
S0(t))

2]. Therefore, at any time point t,

GðtÞ ¼ PEðtÞE ½ðSdðtÞ j SðtÞÞ2#jlocked on

þ ð1 j PEðtÞÞE½ðSdðtÞ j SðtÞÞ2#jnot locked on

, ð1 j PEðtÞÞE½ðSdðtÞ j S0ðtÞÞ2#: ðA17Þ

Recall that the maximal eye position error G0(t) =
E[(Sd(t) j S0(t))

2]. Therefore, 1 j G(t)/G0(t) , 1 j (1 j
PE(t)) = PE(t). Consequently, the quantity 1 j G(t)/G0(t)
approximates PE(t) and corresponds to the probability
(across clips) at time t after a cut that the unscrambled
time course was locked on to point of interest (median
intact eye position across observers).

Simulating fractional explained variance

The model was developed to explain the covariance
measurements as a function of scramble duration, but we
used it also to simulate eye position error and the
corresponding fractional explained variance. For each
observer, we simulated the eye position error, G(t), for t
up to 5 s, by generating artificial epochs of an
unscrambled eye movement time course, Sd(t), and
comparing these epochs of Sd(t) to the corresponding
portions of the median eye movement time course, S(t).
All samples of simulated Sd(t) were drawn from a
measured eye movement time course for the intact movie
(out of two repeats per each observer). To simulate the
fact that each epoch of Sd(t) contained samples that were
uncorrelated with S(t) right after a cut, we determined a
random time $ in each epoch after which the observer was
presumed to lock on. Specifically, for $ G t e 5, samples
of S(t) corresponded to the same segment of the movie as
those in the median time course S(t), such that the
covariance between Sd(t) and S(t) was maximal (as
determined by that observer). For t e $, samples of Sd(t)
were set to those from a random portion of the intact time
course, such that Sd(t) still contained actual positions on
the screen but unrelated to S(t). The value of $ was
determined by the model. Specifically, it was drawn

Journal of Vision (2012) 12(1):16, 1–27 Wang et al. 23



according to the distribution of a random variable that
described the time during which an observer was not locked
on to the point of interest for a clip (C in Equation A6).
This random variable was determined using the fit
parameter 1 and lognormal parameters of saccade laten-
cies for that observer (Equation A3), subject to the
constraint $ e 5 s (d = 5 in Equation A6). The maximal
position error G0(t) was computed using Equation A16, in
which vSd(t) was the variance of the simulated Sd(t) (or the
variance of the intact time courses), which was constant
over time. We then computed the fractional explained
variance 1 j G(t)/G0(t). The simulation was performed
independently 1000 times for each observer, and the value
1 j G(t)/G0(t), averaged across simulations, yielded the
model’s prediction for the fractional explained variance
(Figure 6C, inset).
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