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Abstract

In almost every study of the linearity of spatiotemporal summation in simple cells of the cat’s visual cortex, there
have been systematic mismatches between the experimental observations and the predictions of the linear theory.

These mismatches have generally been explained by supposing that the initial spatiotemporal summation stage is

strictly linear, but that the following output stage of the simple cell is subject to some contrast-dependent

nonlinearity. Two main models of the output nonl

inearity have been proposed: the threshold model (e.g. Tolhurst &

Dean, 1987) and the contrast-normalization model (e.g. Heeger, 1992a.b). In this paper, the two models are fitted

rigorously to a variety of previously published neurophysiological data, in order to determine whether one model is
a better explanation of the data. We reexamine data on the interaction between two bar stimuli presented in different
parts of the receptive field; on the relationship between the receptive-field map and the inverse Fourier transform of

the spatial-frequency luning curve; on the dependence of response amp
between the responses to moving and modulated gratings; and on the

stationary gratings; on the relationships

litude and phase on the spatial phase of

suppressive action of gratings moving in a neuron’s nonpreferred direction. In many situations, the predictions of
usually fits the data slightly better than the

the two models are similar, but the contrast-normalization model

threshold model, and it is easier to apply the equations of the norma

lization model, More importantly, the

normalization model is naturally able to account very well for the details and subtlety of the results in experiments
where the total contrast energy of the stimuli changes; some of these phenomena are completely beyond the scope

of the threshold model. Rigorous application of

the models’ equations has revealed some situations where neither

model fits quite well enough, and we must suppose, therefore, that there are some subtle nonlinearities still to be

characterized.
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Introduction

Hubel and Wiesel (1939) provided the first and lasting definition
of simple cells in cat striate cortex. These are neurons whose
receptive fields can be mapped into distinct excitatory and inhib-
itory subregions and, most importantly, the geometry of the most
effective visual stimuli can be predicted from the geometry of
these subregions. Phrased more formally, this is a proposal that
simple cells show linear spatiotemporal summation.

Numerous studies of simple cell behavior have investigated the
extent to which summation can indeed be considered to be linear.
These studies have included tests of the additivity of the responses
to combinations of simple stimuli (Maffei et al., 1979; Schumer &
Movshon, 1984; Tolhurst & Dean, 1987; Pollen et al., 1988), com-
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parisons of the responses to moving and counterphase-modulated
gratings (Reid et al., 1987, 1991; Albrecht & Geisler, 1991; Tol-
hurst & Dean, 1991: DeAngelis et al., 1993), and comparisons of
receptive-field maps with the inverse Fourier transforms of the
spatial-frequency sensitivity curves (R. De Valois et al., 1978;
Movshon et al., 1978a; Andrews & Pollen, 1979; Maffei et al.,
1979: Kulikowski & Bishop, 1981; Glezer et al., 1982; Webster &
R. De Valois, 1985; Jones & Palmer, 1987; Shapley et al., 1991;
DeAngelis et al., 1993).

In almost every study, there have been systematic mismatches
between the experimental observations and the predictions of the
linear theory, showing that the behavior of simple cells cannot be
thought of as strictly linear. In a small proportion of simple cells,
the observed nonlinearities are of such a form that they can only
result from fundamental nonlinearities of spatial summation (Mov-
shon et al., 1978q; Dean & Tolhurst, 1983; Mullikin et al., 1984;
Tolhurst & Dean, 1990). For instance, some simple cells respond
with an unmodulated elevation of activity to high spatial-frequency
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gratings. In the same neurons, the sign of the response to a bar
stimulus in some parts of the receptive field is nor reversed when
the sign of the stimulus is reversed from bright to dark. These
nonlinearities are just as powerful at low contrasts as at high con-
trasts and they are similar to the nonlinearities reported by Enroth-
Cugell and Robson (1966) for Y-cells in the cat’s retina, It is
widely believed that there must be a push-pull arrangement of
excitatory and inhibitory synapses impinging on the simple cell
(Palmer & Davis, 1981; Glezer et al., 1982; Tolhurst & Dean,
1987, 1990; Ferster, 1988; Ferster & Jagadeesh, 1992), and it may
be that these nonlinearities of spatial summation arise from mis-
matches in this push—pull mechanism (Tolhurst & Dean, 1987,
1990; Atick & Redlich, 1990). This kind of nonlinear behavior will
not be considered any further in this paper.

For most simple cells, on the other hand, the failures of the
linear model vary in magnitude depending upon stimulus contrast
(e.g. Tolhurst & Dean, 1987, 1990, 1991; Albrecht & Geisler,
1991; Albrecht, 1995). Perhaps, the initial spatiotemporal summa-
tion stage is strictly linear in these simple cells, but the following
output stage is subject to some contrast-dependent nonlinearity.
Two main models of the output nonlinearity have been proposed to
account for many of the discrepancies between measurement and
linear prediction. These are the threshold model (e.g. Tolhurst &
Dean, 1987) and the contrast-normalization model (e.g. Heeger,
19924.b).

The threshold model

The threshold model was introduced formally by Movshon et al.
(1978a) to rationalize some mismatches between their experimen-
tal observations and the linear predictions. The model was devel-
oped most thoroughly by Schumer and Movshon (1984), Tolhurst
and Dean (1987), and Tadmor and Tolhurst (1989), although many
other authors have called on it naturally te explain discrepancies in
their results (e.g. Andrews & Pollen, 1979; Kulikowski & Bishop,
1981; Glezer et al., 1982; R. De Valois et al., 1985; Robson ¢t al.,
1988; DeAngelis et al., 1993).

In this model, it is presumed that the simple cell sums the
influences of the light falling in the different parts of its receptive
field to give a strictly linear underlying response (continuous fluc-
tuations of membrane potential), which must then exceed some
threshold level of depolarization before an overt response of action
potentials is seen by the experimenter. For example, a low contrast
stimulus would evoke no action potentials. But once the contrast
exceeded some threshold value a response would be evident, and
its amplitude would increase with further increases in contrast
(lkeda & Wright, 1974; Tolhurst et al., 1981; Dean, 19814).

As well as the threshold, another nonlinearity is usually present
in the responses of simple cells: response amplitudes saturate at
moderate to high contrasts (e.g. Maffei & Fiorentini, 1973; Al-
brecht & Hamilton, 1982; Ohzawa et al., 1982). Although the
threshold model per se does not explain such response saturation,
we can add a post hoc maximum firing rate to the model, forcing
it to exhibit this behavior.

This threshold model seems to be justified by the known bio-
physics of action potential generation in neurons of the cerebral
neocortex. In response to injected current, a threshold depolariza-
tion value must indeed be exceeded before action potentials are
generated and, due to the refractory period between action poten-
tials, there is indeed a maximal rate of firing in response to current
injection (e.g. Koike et al., 1970; Ogawa et al., 1981; McCormick
et al,, 1985; Mason & Larkman, 1990; Jagadeesh et al., 1992).
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However, there are several problems with this model, First, the
firing-rate limit imposed by the refractory period is generally much
higher than that typically measured in response to visual stimuli.
Second, the model fails to explain that saturation begins al a given
contrast rather than at a given (maximal) firing rate (Albrecht &
Hamilton, 1982; Li & Creutzfeldt, 1984; Skottun et al., 1987;
Albrecht & Geisler, 1991: Tolhurst & Dean, 1991: Geisler & Al-
brecht, 1992; Heeger, 1992¢a; Carandini & Heeger, 1994; Albrecht,
1995). Third, the threshold model does not provide any explana-
tion at all for the phenomenon of nonspecific suppression; a simple
cell’s response to a preferred stimulus can be reduced by the si-
multaneous presence of almost any other visual stimulus, which
may on its own have no overt effect (e.g. Maffei & Fiorentini,
1976; Dean et al., 1980; Hammond & MacKay, 1981; Morrone
et al,, 1982; K. De Valois & Tootell, 1983; Gulyas et al., 1987:
Bonds, 1989; Bauman & Bonds, 1991; DeAngelis et al., 1992).

The contrast-nermalization model

Contrast normalization was originally proposed by Robson (1988)
and Bonds (1989) specifically to provide explanations for response
saturation and nonspecific suppression. The model has been ex-
panded and formalized by Heeger (1991, 1992a,b, 1993), by Al-
brecht and Geisler (1991), and by Carandini and Heeger (1994)
who have shown that it is capable, in principle, of explaining a
wide variety of phenomena including many of those which were
originally attributed to a threshold (see also DeAngelis et al., 1993;
Jagadeesh et al., 1993; Tolhurst & Heeger, 1997; Carandini et al.,
1997; Nestares & Heeger, 1997). The overall motivation of the
normalization model and its detailed synaptic mechanisms are sur-
prisingly similar to Marr’s (1970) general theory of cerebral neo-
cortex, and to Grossberg’s theoretical work on nonlinear neural
networks (for review, see Grossberg, 1988).

The normalization model supposes that the simple cell’s un-
derlying linear response is subject to two nonlinearities. First, the
underlying linear response is normalized, divided by a quantity
proportional to the pooled activity of a large number of other
neurons. The response of each neuron is no longer dependent
solely on the contrast of stimulus components that it prefers: rather,
the response is normalized or rescaled with respect to the total
contrast or energy within the stimulus, This model explains re-
sponse saturation because the divisive suppression increases with
stimulus contrast. It also explains nonspecific suppression because
a given model neuron is suppressed by many other neurons, in-
cluding those with very different stimulus preferences. The second
nonlinearity is that the neuron’s response is halfwave rectified and
then squared, to give “half-squaring.” This expansive behavior, at
low stimulus contrast, is very similar to a threshold nonlinearity.

Sometimes, it is the expansiveness of response at low contrasts
which is the crucial feature for modelling the behavior of real
neurons; normalization per se does not contribute when total stim-
ulus contrast remains constant throughout an experiment. How-
ever, in most of the cases, it is the combination of expansiveness
and normalization that is required to model a neuron’s behavior.
Although the model includes expansiveness as well as normaliza-
tion, it is convenient to refer to the model as the normalization
model.

The plan of this paper

In this paper, we compare these two models of the output nonlin-
earity of simple cells head-to-head. We fit the two models to a
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variety of neurophysiological data, most of which have been pub-
lished previously by one of us (D.J.T.) and which were supposed
to show the success of the threshold model. We re-evaluate data on
the additivity of responses to paired bar stimuli (Tolhurst & Dean,
1987); on the relationship between the line-weighting function and
the inverse Fourier transform of the spatial-frequency tuning func-
tion (Movshon et al., 1978a; Tadmor & Tolhurst, 1989); on the
amplitude of response to sinusoidal gratings of different spatial
phases (Robson et al., 1988); and on the relationships between the
responses to modulated and moving gratings (Tolhurst & Dean,
1991). We show that the contrast-normalization model usually fits
the data at least as well, and often better, than the threshold model.
We also show that the normalization model is naturally able to
account far some phenomena that were previously unexplained or
unnoticed. Lastly, we present some previously unpublished results,
related to the study of Dean et al. (1980) on the divisive inhibition
produced by stimuli moving in the neuron’s nonpreferred direc-
tion. The normalization model explains a variety of phenomena in
these suppression experiments that find no immediate explanation
in the threshold model.

Methods

Neurophysiological procedures

The experimental methods have mostly been described in the pa-
pers where the data were first presented; general details are found
in Movshon et al. (1978a,b), Tolhurst and Thompson (1981), and
Dean and Tolhurst (1983). Simple cells were recorded extracellu-
larly from the area centralis representation of area 17 of adult cats
using tungsten-in-glass microelectrodes. The neurons were classi-
fied after Hubel and Wiesel (1959) using the quantitative criteria
discussed by Dean and Tolhurst (1983). The cats were anesthetized
by i.v. infusion of barbiturates, supplemented by ventilation with
nitrous oxide. The animals were also paralyzed by i.v. infusion of
gallamine triethiodide to prevent eye movements. The state of
anesthesia was assessed by monitoring heart rate and the EEG.

Visual stimuli were presented on a bright monochrome raster
display, and a computer compiled peristimulus time histograms
(PSTH) of the action potentials generated in response. A particular
stimulus was presented for only a few seconds or temporal cycles
at a time, interleaved at random with short presentations of the
other stimuli in the experiment. These short epochs were repeated
several times, so that the final PSTH might represent the summed
response to 50-200 temporal cycles. Sinusoidal gratings were gen-
erally of the optimal spatial frequency and orientation; the tempo-
ral frequency of modulation or movement was usually 2 Hz. Bar
stimuli were of optimal orientation, and their contrast was modu-
lated sinusoidally in time at 1 Hz.

The metric of response was usually the amplitude of the Fourier
component in the PSTH whose frequency was the same as the
modulation frequency of the stimulus. Response is expressed as
impulses per second (ips). In some Figs. (3, 5 and 6), responses are
plotted as if they were negative. This simply indicates a shift of
180 deg in the temporal phase of the response; the response am-
plitudes are, of course, positive.

The directional suppression experiment

Figs. 810 show the results of experiments that have not been
described before in detail (after Dean et al., 1980). Thirty-five
experiments were performed on 17 simple cells which had pro-
found directional selectivity, so that they gave almost no response
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to sinusoidal gratings moving in the nonpreferred direction. The
neurons were activated by gratings of optimal spatial frequency
and orientation moving in the preferred direction at 2 Hz. This was
done at a variety of contrasts. Suppression of responses was caused
by the simultaneous presentation of a grating of the same spatial
frequency and orientation moving in the nonpreferred direction at
2.5 Hz. The contrast of the suppressing grating could also be
varied. In a typical experiment, control conditions with just the
activating grating present would be interleaved randomly with test
conditions where the suppressing grating was also present.

In this experiment, a stimulus presentation lasted 4.5 s and the
results from the initial 0.5 s were discarded. A PSTH was compiled
over the next 4 s, when there were cight complete cycles of the
activating grating and ten complete cycles of the suppressing grat-
ing if it was present. Thus, the temporal phase difference of the two
gratings went through two complete cycles. Each time a given pair
of gratings was presented together, the starting phase difference
was randomized. Thus, over the many repeats of a full experiment,
we would expect all possible phase differences to be represented.
The results were analyzed by calculating the temporal phase and
amplitude of the 2-Hz Fourier component in the PSTH; this rep-
resents “the response to the activating grating.”

Definitions

Consider that the simple cell gives an underlying linear response to
visual stimuli—R. This underlying response is then subject to one
or more output nonlinearities, resulting in an overt or measured
response—R. These two quantities are related by

R =f(R) M)
R=f'R) @)

where f() is a nonlinear output function and f~'() is the inverse
of that function. The nonlinearity need not be completely revers-
ible: it may not always be possible 10 estimate R from R.

The threshold model

The threshold model is described most easily for an experiment in
which overt response amplitude (R) is measured as a function of
stimulus contrast (c). If R is the linear underlying response, then

R=K-c 3)

where K, the neuron’s responsivity, depends on the spatial and
temporal parameters (e.g. spatial frequency, temporal frequency,
orientation, etc.) of the stimulus. Now, an overl response R will be
generated only when a threshold response value T is exceeded:

R=Kwe—-T forKec>T (4a)
R=0 forK-c=T (4b)
At high contrasts, the neuron’s response saturates and so we must

add another post hoc limit to eqgn. (4a):

R= Emax for (K"C == T] = Rmnx (4(:)
where R, is the response amplitude at saturation.

The threshold model was fit to the experimentally measured
response amplitude as a function of contrast (Fig. 2 open circles,
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Fig. 4, and Fig. 7). by searching for the best-fitting values of the
three parameters (K, T, and R,...) in eqn. (4). Details of the fitting
algorithms are given below. The value of T is expressed as a
percentage of the largest measured response to any of the stimuli
in the experiment.

The two-bar interaction data (filled symbols in Fig. 2) were fit
relatively easily for the threshold model, since the linear theory
predicts a parallel upward shift of the control relationship between
response and contrast for single bars. Compared to the control data
[eqn. (4)], one extra variable parameter was needed; i.c. the amount
of the upward shift, equal to the underlying linear response to the
second (the dark) bar, Ry.

R=K-c,—T+Ry forR>0 (5)
where ¢, is the contrast of the first (the bright) bar. In the cxample
shown in Fig. 2, the temporal phases of the responses were very
nearly the same for the two bars that were used (cf. Tolhurst &
Dean, 1987). Hence, we can use scalar rather than vector arithme-
tic in eqn. {5).

For the other experiments, the contrast term (c) in eqns. (3) and
(4 had to be replaced with the appropriate prediction of the linear
model specific to the experiment. For instance, the purely linear
model predicts that the amplitude of the responses to modulated
gratings as a function of stimulus spatial phase (¢), depicted in
Fig. 5 would obey

R = K-|cos(¢p — @) (6)

where R is the linear response amplitude, and & is the stimulus
spatial phase that evokes the maximal response. Equations analo-
gous (0 eqns. (4a) and (4b) were used to account for the threshold:

R=K|cos(p— )| —T for K«|cos(p — )| >T  (6a)

R =0 forK-|cos{ed — PH=T (6b)

In this experiment, the form of the results was not influenced by
response saturation; hence, the saturation parameter (Ronax) Was
ignored. Thus, the fitting algorithm sought the best values for K, 7.
and @ in the above equation. In addition, the fitting routine kept
track of the temporal phase of the responses and used them as
additional constraints for the fits. In other words, the routine rec-
ognized that two stimulus spatial phases on either side of the “null
position”” might evoke virtually the same response amplitudes but
with response phases shifted by 180 deg.

To fit the polar plot of Fig. 6 (response amplitude vs. response
phase for temporally modulated grating stimuli), we needed to find
the best-fitting values for both the major and the minor axes of the
putative ellipse. Hence, we used a total of four parameters: K
(response amplitude at the best stimulus spatial phase), K (re-
sponse amplitude at the worst stimulus spatial phase), T (thresh-
old), and ® (best stimulus spatial phase).

The contrast-normalization model

According to the contrast-normalization model with strict half-
squaring, the overt response R of a simple cell to any stimulus is
given by

e kHg -
ST+ D H?
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where k and § are constants for the particular neuron, Hy is the
halfwave-rectified version of the underlying linear response (Rg) of
the neuron from which we are recording, and H; represents the
halfwave-rectified responses of all the neurons in the normaliza-
tion pool. This equation can be written in different ways to match
different experimental situations. For experiments (Fig. 2 open
circles, Fig. 4, and Fig. 7) in which response amplitude (R) was
measured at different contrasts (c), we can usc

(8)

where R, determines the maximal attainable response amplitude,
and o is the semisaturation contrast (the contrast at which response
is half the maximum). This equation expresses a sigmoidal rela-
tionship between response and contrast; it is expansive at low
contrasts (where ¢ << o) and saturating at high contrasts (where
¢ 3 o). As long as o is positive, the responsc R will always be a
value between 0 and R saturating for high contrasts.

Albrecht and Hamilton (1982) used a more general form of
egn. (8) as an empirical description of the relationship between
responsc and contrast:

nn

= T ¢

B=Raw = o ©)
where n is a variable exponent. In a mechanistic description of the
synaptic processes underlying contrast normalization, Carandini
et al. (1997) have developed the related formulation:

_ "

R= JRmmﬁ _____;-r
(Vo2 + ¢?)

The dividing signal depends upon the square of the contrast since
it arises from many neurons, and the value of n averaged across the
whole population of simple cells is close to 2 (Albrecht & Ham-
ilton, 1982). The normalized underlying response of the neuron is
then subject to an expansive output nonlinearity with an overall
exponent n.

We used all three of these formulations to fit the response
versus contrast data described in this paper. In most cases, the
variable exponent n turned out to be close to 2 so that, in fact, the
three formulations tended to be almost identical. The fitting pro-
cedure searched for the best-fitting values of the parameters: R
a, and 1.

For the response versus spatial phase (¢) data of Fig. 5, we
used

(10)

R = K:|cos"(¢ — @) (1)

and the fitting procedure sought the best values of K, n, and &.
Since the contrast (c) was fixed and presumably the semisaturation
parameter (g) was also constant throughout the experiment, the
full normalization model was not needed for fitting this data sct.
Rather, the exponent (e.g. squaring) was the only part of the output
nonlinearity that we needed to consider. We either allowed n to
vary, or we fixed it at a value of 2. The fitting procedure accounted
for 180-deg response phase shifts, as described above [eqn. (6)].

The fits to the polar plots of Fig. 6 were only slightly more
complex, requiring a total of four parameters: K (response to best
spatial phase), K (response to worst spatial phase), n (exponent),
and & (best spatial phase).



Normalization and threshold models for simple cells

For the directional suppression experiments (Figs. 810}, it so
happened for these neurons that the grating moving in the nonpre-
ferred direction elicited no overt responses. But, even so, super-
imposing the grating moving in the nonpreferred direction would
be expected to change the normalizing signal in the denominator of
eqgn. (10), which was elaborated to:

=l
R = Ry —re———
— fimax a
(or+ci+d)

where ¢, is the contrast of the activating grating and ¢, is the
contrast of the suppressing grating. One or the other of these
contrasts was fixed in any given experiment, leaving three param-
eters (Ruax, O, and n) that were sought by the fitting procedure.
In the experiment investigating the interaction between two bar
stimuli (Fig. 2, filled symbols), both bars do activate the neuron.
Thus, we elaborated both the numerator and the denominator of

eqn. (10):

(12)

_ (ep + karca)”
R= Rmux 3 B PR
(\'0’ +cp t+ c;;)

where ¢, is the contrast of the first bar, ¢ is the contrast of the
second, and k, is the ratio of the neuron’s responsiveness to the two

bar stimuli. This expression has four variable parameters (Rmax, ka-
¢, and n) which were optimized by the fitting procedure.

(13)

Fining procedures

Most of the experimental data were fit to the threshold model and
normalization model using the simplex routine AMOEBA taken
from Press et al. (1986). The simplex routine was used to minimize
the following weighted least-squares crror or merit function:

-3 e =) i

where r, is the measured response to the ith stimulus condition and
m,(p) is the model’s prediction of the response with model param-
eters, p. The w; in the denominator is the weight to be given to the
{th value; it should be equal to the variance of the response for that
stimulus condition. Response variance was not usually measured
in the original experiments, but we estimated it by knowing that
the response variance of cortical neurons is directly proportional to
response amplitude, independently of what precise stimulus con-
figuration evoked that response ( Tolhurst et al., 1981; Dean, 19815,
Tolhurst et al., 1983; Skottun et al., 1987; Vogels et al., 1989;
Geisler & Albrecht, 1995). We had to allow a minimal nonzere
variance for very small or zero response values:

w;=rt; + € (15)

where the constant € was set arbitrarily to be 2.5% of the largest
response (r) recorded in that experiment, It should be noted that,
since these were weighted fits, they were dominated by the data
with smallest variance (i.e. the smallest response amplitudes). In
some cases (e.g. Fig. 5A), the best weighted fit might not appear,
a first sight, to be correct: the fit to the high amplitude points has,
in fact, been sacrificed in order to provide a good fit at low am-
plitudes.

When fitting the normalization model, the merit function [eqn.
(14)] usually had a shallow minimum as a function of the expan-
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sive exponent n, which could be changed considerably on either
side of the best-fit value with only small changes in x>

We quote values for ¥ to allow comparison of the best fits of
different models for one data set at a time. The actual values of x°
should be interpreted cautiously because gstimates, not measure-
ments, of the response variances are used. Furthermore, the actual
values are influenced by such arbitrary decisions as whether re-
sponse should be expressed as impulses per second or as impulses
per stimulus trial.

Fitting the line-weighting data

The fits to the line-weighting data (Fig. 3) were the most indirect.
Tadmor and Tolhurst (1989) discuss the procedure in detail for the
threshold model. The neuron's measured spatial-frequency re-
sponse function was inverse Fourier transformed. The even-
symmetric transform with amplitude A was added to the odd-
symmetric wransform with amplitude Ag. The resulting estimate of
the underlying linear line-weighting function was shifted in posi-
tion by an amount xg, and was subjected to a threshold T [cf. eqn.
(4b)]. The fitting procedure sought the best-fitting values of these
four parameters (Ag, Ao, Xos and T).

To fit the line-weighting data with the half-squaring contrast-
normalization model, we nceded only three parameters (Ag, Ao,
and x,). We assumed that the neuron’s measured spatial-frequency
tuning curve had itself been subject to half-squaring. Hence, we
computed the square-root of the spatial-frequency tuning curve,
before taking its inverse Fourier transform. The resulting even- and
odd-symmetric inverse Fourier transforms were added with weights
Agp and Ap. Finally, this function was squared and shifted in po-
sition by an amount Xy, before it was compared with the measured
line-weighting data. We also examined a more general expansive
nonlinearity, by taking the nth root of the spatial-frequency tuning
curve before calculating the Fourier transforms, and then raising
the model line-weighting function to the nth power before fitting
it to the experimental data.

The fitting algorithm used for the line-weighting data was dif-
ferent from that used for the other data. We used the MRQMIN
routine of Press et al. (1986) to optimize the parameters of the
model. Furthermore, we minimized the unweighted sum of squared
deviations between the data and the model predictions, for reasons
that are discussed by Tadmor and Tolhurst (1989).

Results

Additivity of responses to paired bar stimuli

Fig. 1 illustrates an experiment first described by Tolhurst and
Dean (1987) to test the additivity of the responses of simple cells
to two simple stimuli. The PSTHs show the averaged responses of
a simple cell to sinusoidal temporal modulation of bar stimuli. In
Fig. 1A, a single bar was placed in the neuren’s dominant excit-
atory region, and the temporal phase of modulation was such that
the bar began by getting brighter than the uniform background (see
schematic). The response waveform looks like a halfwave-rectified
sine wave, which seems compatible with quasilinear behavior ina
neuron with zero spontaneous activity (Movshon et al., 1973a).
During the course of the experiment, the neuron gave an overall
response (R}) of 239 action potentials to this stimulus. In Fig. 1B,
we see the response (R,) when a bar was presented in the neuron’s
dominant inhibitory region; the temporal modulation applied to the
bar was 180 deg out of phase with respect to Fig. 1A so that now
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Fig. 1. The PSTHs show the [ailurc of additivity of the responses 1o two
excitatory stimuli. The binwidth is 16 ms, and each PSTH represents the
sum of the responses to 200 stimulus cycles. The contrast of each stimulus
was sinusoidally modulated at 1 Hz. The numbers beside each histogram
show the total number of action potentials evoked. A: A bright bar with
contrast 0.13 was presented in the dominant excitatory region of the re-
ceptive field (see schematic). B: A dark bar of contrast 0.075 was presented
in the dominant inhibitory region. C: Both bars are presented simulta-
neously. Their contrasts were modulated in antiphase so that the temporal
phases of the responses were almost the same. See Tolhurst and Dean
(1987, their Fig. 2B) for more details.

the stimulus began by getting darker than the background, The
response to this dark bar in the inhibitory region (236 action po-
tentials) had nearly the same temporal phase as that to the bright
bar in the excitatory region.

Fig. 1C shows the response (Ry..q) when the two bars were
presented simultaneously. If summation in the simple cell were
strictly linear, we would expect

Ryra =Ry + Ry (16)

This is a test of the Law of Superposition, and clearly it has not
been obeyed: the response to the combined stimulus {920 action
potentials) was much larger than predicted (475 action potentials).
If the failure of the linear prediction were due only to an output
nonlinearity, then in terms of egn. (2):

F Ryra) = F 7 (Re) +£ 7' (Ra) (16a)

Tolhurst and Dean (1987) were able to rationalize the discrep-
ancy using a threshold model. Suppose that the underlying re-
sponses (R, and Ry) of the neuron are summed linearly, but that
some threshold response value (7') must be exceeded before the
overt responses (Ry+ 4. Ry, and R) are measurable. Then we would
expect

(i_?,,+d+T)=(§b+T)+(§d+T) (17)

where R, = R, — T is the overt response to the bright bar, Ry=
R, — T is the overt response to the dark bar, R, = K-c is the
underlying linear response to the bright bar, and ¢ is the contrast of
the bright bar [cf. Methods, eqn. (3)]. The behavior of the neuron
in Fig. 1 would be compatible with linear summation, if it had a
response threshold of about 450 action potentials.

D.J. Tothurst and D.J. Heeger

On the other hand, Heeger (1992b) has shown that this kind of
mismatch between simple linear prediction and experimental mea-
surement can also be explained on the half-squaring hypothesis.
Here, it is presumed that the overt response (R) is the square of the
underlying linear response (R). Then, we would expect

JRyra= VR, + VRa (18)

Application of this relation to the data of Fig. 1 gives an al-
most perfect match, as it does for the other neuron illustrated by
Tolhurst and Dean (1987, their Fig. 2A). In fact, the full contrast-
normalization model would predict a more complicated relation-
ship, since the normalizing signal changes when a second bar
stimulus is added [see eqn. (13)]. In this example, however, the
effect of normalization will be small because the contrast energy of
the bar stimuli was low compared to the best-fitting sernisaturation
parameter (o = 0.32, see Fig. 2B).
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Fig. 2. A detailed examination of the additivity of excitatory responses for
the same experiment as Fig. 1. The open circles in (A) and (B) show the
amplitude of the response to the bright bar in the neuron’s dominant ex-
citatory region as a function of stimulus contrast {c;). The filled symbols
show the effect of adding a dark bar of fixed contrast 0.075 (cy) in the
dominant inhibitory region. The lines through these data in (A) are parallel
and are the best joint fit of the threshold model to the two sets of data [eqn.
(4) is fit to the open circles, and eqn. (5) is fit to the filled circles; three
parameters: K = 33.03, Ry = 4.25, T = 29.9% of response to the highest
contrast bright bar; x> = 1.21]. The dashed line shows the supposed
subthreshold responses to single bars. The curves in (B) are the best joint
fit of the normalization model to both data sets [eqn. (10) fit to the open
circles, and eqn. (13) fit to the filled circles; four parameters: Ryax = 14.09,
o = 032, ky = 1.47, n = 2.05; ¥* = 1.64]. The threshold model necded
one fewer fitting parameters than the normalization model since there is
little sign of response saturation at high contrasts; Rumax can be ignored for
the threshold fit. Data replotted from Tolhurst and Dean (1987, their
Fig. 3B). They fitted regression lines to the “linear” portions of the two data
sels: open circles—slope = 32.5,8.E. = 5.38; filled circles—slope = 38.2,
S.E. = 2.90.
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Tolhurst and Dean (1987) performed a more elaborate experi-
ment with the intention uf cstablishing that the threshold constant
T remained the same for a variety of different stimulus conditions.
Fig. 2 illustrates such an experiment, from which the examples of
Fig. 1 were taken. The data are the same in the two parts of the
figure; the models fitted are different. The open circles show how
the response amplitude depended on the contrast of a bar presented
in the neuron’s dominant excitatory region. The filled symbols in
Fig. 2 show how the response versus contrast relationship for the
bar in the excitatory region was changed by the simultangous
presence of a second bar in the neighboring inhibitory region of the
receptive field. The second bar was of fixed contrast (0.075) and
was modulated in antiphase (see Fig. 1B} so that the responses 1o
the two bar stimuli added in the same temporal phase.

The threshold model (Fig. 2A) predicts a paralle] upwards shift
by a fixed value, equal to the underlying linear response to the dark
bar when presented alone (Rg = R, + T). The lines drawn through
these data in Fig. 2A are the best-fitting threshold model applied
jointly to the open [eqn. (4)] and filled [egn. (5)] symbols, with
shared parameter T (there arc three fitting parameters altogether).
It fits reasonably well.

The prediction of the contrast-normalization model (Fig. 2B) is
more complicated, and needs four fitting parameters [sce Methods,
eqn. (13)]. The curves drawn through the data are solutions of the
model [egns. (10) and (13)] with the best overall fit to the two data
sets of Fig. 2B. The parameters n and o are shared between the two
data sets. It is important to note that this model predicts that the
relationship for paired bars will not be simply parallel to the con-
trol for single bars (cf. the threshold model). Rather, the two curves
should diverge slowly. Such divergence is evident in the data of
Fig. 2, and was indeed reported by Tolhurst and Dean (1987) for
two out of their three experiments (their Figs. 3 and 6).

Overall the two models describe the data almost equally well,
with the threshold model being slightly the better (x* = 1.21 for
threshold model, three parameters, x? = 1,64 for normalization
model with n = 2.03, four parameters). The threshold model is
superior largely because it is the better fit to the very low-ampli-
tude responses to low-contrast bright bars when presented alone
(open circles). For instance, 2 bar of contrast 0.056 evoked a
response of only 85 action potentials in 200 repetitions of the
stimulus (an average of one action potential for every three stim-
ulus presentations). Had the neuron produced an average of one
action potential for each stimulus repetition, then the normalization
model would have been the better fit to the data of Fig. 2. More-
over, in another very similar experiment on this neuron (unpub-
lished), the normalization model provided the slightly better fit.

Responses to single bars: The line-weighting function

There have been many studies in which the receptive-field map has
been compared with the inverse Fourier transform of the spatial-
frequency tuning curve {see Introduction for references). Fig. 3A
shows the measured receptive-field profile of a simple cell (his-
togram bars) along with the best-fitting linear prediction from the
spatial-frequency tuning (reproduced from Tadmor & Tolhurst,
1989, their Fig. 4). Details of the least-squares fitting procedure are
given in the Methods. As in most such studies, the inverse Fourier
transform predicts that there should have been more excitatory and
inhibitory subregions within the receptive field than were actually
measured experimentally with bars or spots. Several authors have
proposed that this discrepancy between measured and predicted
receptive-ficld profile can be attributed to a threshold in the neu-
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Fig. 3. The histogram shows the measured receptive-field profile of a
simple cell, as measurcd with bars of the same width as the histogram
blocks. The receptive field was mapped with bars 0.19 deg wide and a
contrast of 0.56 over a total extent of 1.9 deg. Preliminary experiments had
shown that there was no significant activity outside of this extent. The
circles show the best-fitting predictions of the profile under a number of
models, The filled circles show the prediction within the spatial extent that
the field was actually mapped; the open circles show predictions outside
the mapped region. A: A simple linear prediction from the inverse Fourier
transform of the spatial frequency tuning curve (0% threshold model). The
residual sum of squares is 10.48, with three fitting parameters (Ag, Ao, Xo);
for these data, we did not usc a weighted fit (see Methods). B: A threshold,
T, equal to 35% of the maximal response recorded in the experiment is
incorporated in the model (residual sum of squares = 1.34, with four
parameters). C: The model assumes that the measured responses 10 bath
sinusoidal gratings and to bars have been subject 1o half-squaring (residual
sum of squares = 0.794, with thrce parameters, one fewer than the thresh-
old model since n was fixed at 2,0). A similar fit with n = 2.3 gave a
residual sum of squares of 0.735. Further details in Tadmor and Tolhurst
(1989, their Fig. 4).

ron’s responses (Andrews & Pollen, 1979; Kulikowski & Bishop,
1081; Glezer et al., 1982; R. De Valois et al., 1985; DeAngelis
et al., 1993).

Tadmor and Tolhurst (1989) addressed this question quantita-
tively, and Fig. 3B shows the best-fitting prediction from the in-
verse Fourier transform, once a threshold has been allowed.
Incorporation of the threshold causes a great improvement in the
fit (residual sum of squares reduced by a factor of about 8). How-
ever, very high threshold values were often needed for these fits,
and inspection of Fig. 3B suggests that the model is now under-
estimating the number and strengths of the subsidiary regions in
the receptive ficld.

Heeger (1992b) and DeAngelis et al. (1993) have shown that
the discrepancies between measurement and linear prediction (as
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Fig. 4. For the samc neuron as in Fig. 3, the amplitude of response is
plotted against the contrast of a bar of width 0.19 deg, presented in the
neuron's most sensitive excitatory region. Further details in Tadmor and
Tolhurst (1989, their Fig. 7). The line in (A) is the best fit of the threshold
meodel [egn. (2)); x* was 1.72 (two paramelers since R, was ignored) and
the threshold parameter 7 was only about 9.5% (cf. the value of 35%
needed to fit the receptive-field profile in Fig. 3B). The curve in (B) is the
best fit of the normalization model [eqn. (10); three parameters: R =
9517, n = 1.79, @ = 0.56; x> = 1.45].

in Fig. 3A) are also compatible with the contrast-normalization
model. Fig. 3C shows the same receptive-field profile, along with
the best-fitting prediction of the normalization model using an
expansive exponent of 2. The residual sum-of-squares is less than
that for the threshold model (see figure legend). Inspection of
Fig. 3C shows that the model does describe the weak flanking
regions of the receptive field rather well. We also examined the
effect of changing the expansive exponent in the normalization
model (see Methods); the data were best fit with n of 2.3.

Tadmor and Tolhurst (1989, their Fig. 7) also analyzed re-
sponse versis contrast measurements from the same neuron. We
replot these data (Fig. 4) and have fit them with the predictions of
the threshold model [egn. (4)] and the normalization model [eqn.
(8)]. The x? of the best fits is almost the same in the two cases.
However, the magnitude of the threshold parameter from this fit
(Fig. 4A) was only about 9.5%, compared to the value of 35%
needed to fit the line-weighting data in Fig. 3B, There was much
grealer consistency with the normalization model: the best-fit ex-
ponent for the line-weighting data was 2.3, while the best-fit ex-
ponent for the response versis contrast measurements of Fig, 4B
was 1.79. These values are very close, considering that the minima
in the fitting procedure were quite shallow (see Methods).

Response amplitude at different spatial phases

According 1o linear theory, response amplitudes evoked by sta-
tionary sinusoidal gratings would vary sinusoidally with the grat-
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ing’s spatial phase (e.g. Enroth-Cugell & Robson, 1966; Movshon
et al., 1978a). Fig. 5 shows the results of such an experiment on a
simple cell, replotted from Robson et al. (1988). As with other
predictions of the simple linear model, this one is not fulfilled in
detail. Robson et al. (1988) supposed that deviation from a perfect
sinusoid could be explained if the neuron had a threshold. The
curves drawn through the data of Fig. 5A show the best-fitting
prediction of the threshold model [see eqn. (6), Methods for de-
tails]. This fit may not, at first sight, seem convincing but it must
be remembered that this is a weighted fit (see Methods) which will
tend to fit the low-amplitude data at the expense of the high-
amplitude data. Fig. 5B shows the same data but fitted with the
contrast-normalization model [eqn. (11, n = 2.33].

The normalization medel ( Xz = (.81, three parameters) fits
better than the threshold model (x* = 2.24,also three parameters).
However, inspection of Fig. 5 suggests that the difference in per-
formance of the two models may hinge almost entirely on their
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Fig. 5. The amplitude of response of a simple cell is plotted against the
spatial phase of a stalionary sinusoidal grating of optimal orientation and
spatial frequency. The contrast of the grating was modulated sinusoidally in
time at 2 Hz. Negative responses represent a phase shift of 180 deg in the
temporal phase of response. Gratings were prescnted only over a spatial
phase range of 180 deg, and the data have been negated and repeated 1o
complete the full cycle. The Michelson contrast was 0.31. A: The data are
compared with the best-fitting sinusoid after applying a threshold [eqgn.
(6a); T = 38% of the maximal response evoked in the experiment; xis
2.24, three parameters]. The relationship between response and grating
contrast was not determined for this neuron, so we do not have an inde-
pendent estimate of the threshold value. B: The curve is the best-fitting
solution of the contrast-normalization model [egn. (11); K = 1146, n =
2.35; x* is 0.81, three parameters including ). The data were also fit with
an exact hall-squaring normalization model (not shown; K = 10.69, x° =
1.53, two parameters), and with a strictly linear model, i.e. a pure sinusoid
(not shown; X2 = 20.35, two parameters). Further details in Robson et al.
(1988, their Fig. 2A).
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respective abilities to fit just one of the data points. The response
at a phase of 0 deg/180 deg had a very low amplitude (only 25 action
potentials were recorded in 100 repetitions of the stimulus). Had
the response actually been eight action potentials instead of 25, then
the threshold model would have been slightly the better fit.

Polar plots of response to modulated gratings,
and directional selectivity

In most simple cells, the temporal phase of the response also
changes with the spatial phase of a modulated sinusoidal grating

{Movshon et al., 1978a). According to the lincar model, a polar’

plot of response amplitude as a function of response phase should
produce an ellipse centered on the origin. The degree of directional
selectivity shown by the neuron will affect the aspect ratio of the
ellipse. For a neuron with no directional selectivity, the ellipse
should degenerate into a straight line; for a neuron with total
directional selectivity, the ellipse should become a perfect circle.
For neurons with varying degrees of directional selectivity, the
ellipses should have an aspect ratio in between these two extremes.

Fig. 6 shows an example of such data replotted from Tolhurst
and Dean (1991, their Fig. 1A). The responses to moving gratings
of the same spatial and temporal frequencies were measured in the
same experiment. An ellipse is, in fact, a poor fit to the data
(Fig. 6A) because the responses near the minor axis are smaller
than expected. This “wasp-waist” was described by Movshon et al.
(1978a) who proposed that it could be explained by the existence
of a threshold. Fig. 6B shows the best-fitting version of the thresh-
old model and there is, indeed, a considerable improvement in the
fit ( x2 has fallen by a factor 9, for the addition of one extra fitting
parameter, T'). However, the threshold parameter T had to be very
high (74%) to achieve this fit.

The expansive nonlinearity in the normalization model would
also predict a wasp-waist (Heeger, 19926, 1993) and Fig. 6C shows
the best fit of the model, with = 10.1. Although this may seem
to be a very high value, the minimum in the fitting routine was so
shallow that the fit was only a little better than with n of 4.0.

We can try to obtain independent support for the estimates of
the threshold or of the exponent, from the form of the relationship
between response amplitude and contrast for moving gratings.
Fig. 7 shows these results (previously unpublished), fit with the
threshold model (A) and the normalization model (B). The two fits
are almost equally good. However, there is a major inconsistency
with the threshold model: the best-fit threshold parameter in
Fig. 6B was 74%, while in the experiment of Fig. 7A it was only
1.9%. The normalization model fares little better: the best fit to the
data of Fig. 7B required an exponent # of 1.30, which is very
different from the value of 10.1 needed to fit the wasp-waist of
Fig. 6C. This discrepancy is illustrated by the solid curve in
Fig. 6D which shows the best-fitting solution of the expansive
nonlinearity in the normalization model with n = 1.3; the fit hardly
shows a wasp-waist at all.

We made an overall evaluation of the performance of each
model by fitting the ellipse (Fig. 6) and contrast experiment
(Fig. 7) jointly. For the threshold model, the procedure found the
single value of the threshold parameter 7" that best fit both sets of
data. The normalization model sought the best-fitting value of the
exponent # to fit both sets of data. The data points from the two
experiments were weighted according to their actual response val-
ues (see Methods). This meant that the best fits tended to be those
that fit the low-amplitude responses to low stimulus contrasts in
Fig. 7 well, at the expense of ignoring the wasp-waist of Fig. 6.
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Overall, the threshold model needed a threshold T of 12% of the
response to a grating in the best spatial phase (x> = 17.98, six
parameters altogether). The best-fitting exponent in the normaliza-
tion model was 2.29 (x2 = 11.08, six parameters altogether). The
normalization model is the better fit overall, but both models show
inconsistencies; we shall return to this point in the Discussion.
Fig. 6D (dashed curve) shows the best-fit solution of the normal-
ization model with this overall n of 2.29.

Predictions of directional index and response amplitude

We can use the same data (Figs. 6 and 7) to evaluate the two
models in another way. For a linear neuron, the responses to mov-
ing gratings should be predictable from the responses to modulated
gratings. In addition, the directional index, a measure of the neu-
ron’s directional sclectivity, should be the same when computed
from the responses to moving gratings and to modulated gratings.
However, these linear predictions are only partially successful (Reid
et al., 1987, 1991: Albrecht & Geisler, 1991; Tolhurst & Dean,
1991; DeAngelis et al., 1993).

Tables | and 2 examine these predictions and the effects of
various models of the output nonlinearity, for the same neuron
used for Figs. 6 and 7. Table 1A lists the amplitudes of the re-
sponses to moving and modulated gratings all of the same spatial
and temporal frequency, and of the same contrast. Table IB lists
the directional indices calculated from the response amplitudes.
First, the directional index was calculated, assuming the linear
model, from the responses to moving gratings:

R,— R,

Dl =2~

= m (19)

where R, is the preferred direction response and R, is the nonpre-
ferred direction response. The directional index was also calcu-
lated from the responses to modulated gratings:

R,

D.":E

(20)
where R, is the response to the best spatial phase and R, is the
response to the worst spatial phase.

The first row of Table 1B shows that the simple linear predic-
tion from modulated gratings [egn. (20)] is a significant underesti-
mate compared to the calculation from moving gratings [eqn. (19)],
as has been reported before. The remaining rows of the table repeat
these calculations, supposing that the underlying responses do obey
the relations of eqns. (19) and (20) but that the overt measured
responses have been subject to some output nonlinearity. Using the
terminology of eqn. (2), the predictions become

SR, — (RS

PI= TRy +7 'R, e
(R i
= 20

= Ry L

Accounting for either a high threshold (from the best fit to
Fig. 6B) or a low threshold (from overall fit to Figs. 6 and 7) does
not improve lhe agreement between the two estimates of direc-
tional index. An expansive nonlinearity with exponent 10.1 (from
best fit to Fig. 6D) is also unimpressive. However, if we presume
that the responses have been subject to expansion with exponent
2.29 (overall fit to Figs. 6 and 7), then the two estimates of direc-
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Fig. 6. A polar plot of response amplitude and response phase for an experiment in which the spatial phase of a temporally modulated
sinusoidal grating was varied systematically, This is a different neuron from Fig. 5. The grating's contrast was modulated sinusoidally
at 2 Hz, from a maximal Michelson contrast of 0.31. In the same experiment, the responses were measured for gratings of the same
spatial frequency and contrast moving in the preferred and nonpreferred directions through the receptive field. They, too, had a temporal
frequency of 2 Hz. Details in Tolhurst and Dean (1991, their Fig. 1A). The four panels show the best-weighted fits to four different
models. A: A simple lincar model predicts an ellipse (x* = 11.51, three parameters: K., K>, ®). B: A threshold model with threshold

T equal to 74% of the overt response at the best spatial phase ( x?

= 1.29, four parameters). C: Contrast normalization with exponent

n as a parameter (n = 10.1; x* = 1.12, four parameters). D: Contrast normalization with n fixed at 1.3 (solid curve; x* = 7.36, three
parameters) or al 2.29 (dashed curve; x* = 2.81, three paramelers). The axes show responsc in arbitrary units; the firing rate in the

best spatial phase was 53 ips.

tional index are closer. The discrepancy almost disappears when
the exponent is 1.30 (the best fit to Fig. 7B).

Linear theory (Reid et al., 1987, 1991) also shows that the
amplitudes of response 10 moving gratings should be predictable
from those to modulated gratings:

R,=R + R (21)

R,=R — R, (22)

The linear model generally fails; in particular, the prediction usu-
ally overestimates the amplitude of the response in the non-
preferred direction (Reid et al., 1987, 1991; Tolhurst & Dean,
1991).

Table 2 shows the success of different models in predicting the
responses to moving gratings from those to modulated gratings.
The first row of the table shows the simple linear model making
the familiar failures of prediction. The remaining rows show the
predictions, supposing various output nonlinearities. For instance,
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Fig. 7. For the neuron of Fig. 6, the amplitude of response for moving
gratings is plotted against stimulus contrast. A: The lines show the best-
fitting version of the threshold model [eqn. (4); ¥ = 9.26, three param-
cters]; the threshold parameter T is only 1.9%, very different from that
estimated from the polar plot (Fig. 6B), B: The curve shows the best fit of
the contrast-normalization model [eqn. (10); Ry, = 40.45; o = 0.065; 1 =
1.30; ¥ = 6.79, three parameters].

the general solution for responses in the preferred direction is, in
terms of eqns. (1) and (2),

Ep=f(f_ltﬁl)+f_i(§2)} (21a)

Attempting to account for a threshold (whether high or low)
makes the discrepancies between prediction and measurement even
worse. However, the contrast-normalization model expects these
discrepancies. This is partly because of the expansiveness (e.g.
half-squaring) in the neuron’s output, but there is also an important
new consideration: there is a difference mn the normalization sig-
nals that arise from moving and modulated gratings (Heeger, 1993;
Tolhurst & Heeger, 1997). The time-averaged contrast energy of
the modulated gratings is less than that of the moving gratings, and
so modulated gratings will invoke less normalization for a given
contrast. Hence, the proper predictions of response in the preferred
and nonpreferred directions become

R,= (IR +R)"s (21b)
R,= (YR - YR s (22b)

where n is the expansive exponent and s is a contrast-dependent
scaling factor that accounts for the lower normalizing effect of
modulated gratings ( Tolhurst & Heeger, 1997). From Tolhurst and
Heeger [1997, their egn. (21)],

_(J—U{T)

The models with contrast normalization generally fare better
than the threshold model, although the exponent of 10.1 is much

(23)
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Table 1A. Definition of terms (Heeger, 1993; Tolhurst &
Heeger, 1997) and summary of response amplitudes, expressed
relative to the response to modulated gratings of the best
spatial phase for the experiment illustrated in Fig. 6

Measured

Grating stimulus Abbreviation  response amplitude

Modulated in best spatial phase E, 1.000
Modulated in worst spatial phase R 0.212
Moving in preferred direction R, 0.884
Moving in nonpreferred direction R, 0.298

Table 1B. Calculations of directional index of the supposedly
linear underlying responses of the neuron®

Directional index
calculated from

Model Moving Modulated
Simple linear model 0.496 0.212
Threshold model (T = 74%, from Fig. 6B) 0.220 0.547
Threshold model (T = 12%, overall fit) 0412 0.296
Exponent, n = 10.1 (Fig. 6D) 0.054 0.858
Exponent, n = 2.29 (overall fit) 0.234 0.508
Half-squaring 0.265 0.461
Exponent, n = 1.30 (Fig. 7B) 0.395 0.303

aFor each model, the index is calculated from the supposedly lincar un-
derlying responses to moving gratings [eqns. (19) or (192)] and from those
to modulated gratings [eqns. (20) or (20a)], assuming different nonlinear
output models. A model would be successful if the two calculations of
directional index gave almost the same value (e.g. see last row).

too extreme in its “corrections.” The amplitude of response in the
nonpreferred direction is best predicted by an exponent between
1.30 (from the best fit to Fig. 7B) and 2.29 (from the overall fit to
Figs. 6 and 7). The response in the preferred direction is fit most
convincingly by the normalization model with n = 1.30.

Table 2. Predictions of the response amplitudes for moving
gratings from the responses to modulated gratings,
for the same neuron as Figs. 6 and 7, and Table 1°

Response amplitude
calculated from
modulated responses

Preferred  Nonpreferred

direction direction
Model (cf. (.884) (cf. 0.208)
Simple lincar model 1.212 (.788
Thresheld model (T = 74%, from Fig. 6B) 1.950 0.048
Threshold model (T = 12%, overall fit) 1.330 0.668
Exponent, n = 10.1 (Fig. 6D) 15.71 0.000
Exponent, n = 2.29 (overall fit) 1.176 0.091
Half-squaring 1.084 0.148
Exponent, n = 1.30 (Fig. 7B) 0.924 0.409

1The linear model shows the solutions to eqns. (21) and (22). The contrast
normalization models show solutions to eqns. (21b) and (22b) with values
of 5 from egn. (23). The responses actually measured were 0.884 in the
preferred direction and 0.298 in the nonpreferred direction. A successful
model would need to match both these values (e.g. see last row).



304

Overall, the contrast-normalization model with an exponent of
1.3-2.0 has provided the best description of the various relation-
ships in Tables 1 and 2. The threshold model has not performed well.

Response suppression by gratings moving
in the nonpreferred direction

Dean et al. (1980) briefly reported a series of experiments in which
they studied the suppressive effect of “masking” gratings moving
in the simple cell’s nonpreferred direction. At the time, the exper-
iments were thought to be examining a directionally selective form
of inhibition, responsible for the neuron’s own directional selec-
tivity. We now believe that this effect is just one example of a more
general, nonspecific suppression (Robson, 1988; Bonds, 1989;
Heeger, 1992a; and many others cited in the Introduction).

Fig. 8 shows the example originally described by Dean et al.
(1980, their Fig. 1). The open symbols show the responses of a
highly directionally selective simple cell as a function of the con-
trast of a single grating moving in the preferred direction of mo-
tion. The filled symbols show that these responses were reduced by
the simultaneous presence of a second ( suppressing) grating, which
had a relatively high, fixed contrast (0.4) and which moved in the
neuron’s nonpreferred direction. The suppressing grating evoked
almost no response when presented alone (filled circle on ordi-
nate). The data do seem to support the proposition of Dean et al.
(1980) that the suppressing stimulus has decreased the neuron’s
gain or responsivity by an arithmetic operation akin to division
since the suppressing grating has caused a change in slope of the
response versus contrast relation.

Dean et al. (1980) had no theory to explain why a suppressing
contrast of 0.4 should cause the particular magnitude of effect that
was observed, and they concentrated on the responses to low-
contrast stimuli because saturation phenomena would have been
difficult to explain. The real success of the normalization model is
shown in this experiment since it naturally encompasses the data.
The two curves drawn through the data in Fig. § are the single

response amplitude (ips)
I

1
0 0.1 0.2
activating contrast

Fig. 8. The relation between responsc amplitude and contrast for a simple
cell that was extremely direction selective. The open circles show the
response 1o sinuscidal gratings moving in the preferred direction at 2 Hz.
The filled circles show how the relation was changed by the simultaneous
presence of a grating moving in the nonpreferred direction at 2.5 Hz with
contrast of 0.4. Replotted from Dean et al. (1980). The curves drawn
through the data show the best-fitting selution to the normalization model
[egn. (12): ¢, = 0 for open circles, ¢; = 0.4 for filled circles]; the three
best-fit parameters, shared between the two graphs were: R = 1230,
n=1231,0=022
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best-fit solution to the normalization model [eqn. (12)], with ¢, of
zero for the open circles and of 0.4 for the filled circles. Only three
parameters arc needed and these are shared between the two curves
(R oux, 11, and o). Furthermore, these are the same three parameters
as are used to fit a single “control” response versus contrast rela-
tion [see egn. (10)].

The forms of the suppression curves can be more complicated
than is shown in Fig. 8, especially when higher activating contrasts
are used. Figs. 9 and 10 show the results of several experiments
performed on two other simple cells. For each neuron (Fig. 9A and
Fig. 10A), the relation between response and activating contrast
was studied in the presence of suppressing gratings of several
different contrasts (e5). These results are similar to that in Fig. 8,
with the obvious extra finding that the amount of response sup-
pression increased as the suppressing contrast was increased (Mor-
rone et al., 1982; Bonds, 1989; Carandini et al., 1997). This is
examined explicitly in Figs. 9B and 10B, which show how the
response to one or two activating contrasts (c,) was affected as a
function of the contrast of the suppressing grating.
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Fig. 9. A: The open circles show the relation between response amplitude
and activating contrast for gratings moving in the preferred direction at
2 Hz. The filled symbols show how that relationship was changed by the
presence of suppressing gratings moving in the nonpreferred direction at
2.5 Hz. The three suppressing CORNITasis werc studied in three scparatc
experiments, each of which included a full “control” curve; the open circles
are the averages of the measurements in the three experiments. The sup-
pressing contrasts were 0.11 (filled circles), 0.18 (filled triangles), and 0.5
(filled squares). The neuron had no spontancous activity and the suppress-
ing gratings evoked no response when presented alone (overlaid points
plotted on the ordinate). B: For the same simple cell, the response to an
activating grating of 2 Hz and contrast 0.18 is reduced by the simultancous
presence of suppressing gratings (2.5 Hz) at a variety of contrasts. The
response to the activating grating alone is shown on the ordinate. The five
curves drawn in this figure are the single best-fit solution of the nermal-
ization model [eqn. (12)] with only three parameters: Roaw = 13.11,n =
6.44, o = 0.12. The paramelers are shared by all five curves which differ
in the experimental variables ¢, and c¢;.
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Fig. 10. Like Fig. 9 but for another simple cell recorded in the same animal.
A: The effects of only two suppressing contrasts were studied, so that the
open circles show the average of two measuremcnts of response. B: The
action of suppressing gratings was studied for two activating contrasts in
the same experiment. The five curves in the figure arc the single best-fit
solution of the normalization model [eqn. {12)] with only three parameters:
R = 16.87, n = 5.81, 0 = 0.12.

The curves drawn through the data in Figs. 9 and 10 are the best
fits of the contrast-narmalization model [egn. (12)]. For each sim-
ple cell, the five data sets have been fit with a single set of three
parameters (Ruuax, 11, and o); the five curves differ only because
they use the specific values of the experimental variables ¢, and ¢
appropriate to that data set. Obviously, the fits in Figs. 9 and 10 are
not perfect and the model may need some refinement. In particular,
the fits to the filled circles and filled triangles in Fig. 9A are poor,
where a suppressing contrast of 0.11 often had a greater effect than
a suppressing contrast of 0.18 (the results of Fig. 9B show a more
consistent trend). We will consider in the Discussion whether the
experimental design may have contributed to this apparent prob-
lem with the normalization model.

However, the model fits well overall, and it is particularly
successful in describing the sigmoidal form of the graphs in
Figs. 9B and 10B. The threshold model may be able to account for
these data, but it is not exactly clear how.

Discussion

In this paper, we have reexamined a variety of experimental ob-
servations on cat simple cells, which all show some departure from
the predictions of a linear theory. Originally, these departures had
been explained on the hypothesis that the neuron had a threshold;
that is, the neuron would not produce a measurable response until
its underlying linear response exceeded a threshold value (e.g.
Movshon et al., 1978a; Tolhurst & Dean, 1987, 1991; Robson
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et al., 1988). It has since been proposed that these same phenom-
ena may also be consistent with the more general proposal that
simple cell responses are subject to half-squaring and to contrast
normalization (Heeger, 1991, 1992a,b). It is proposed that the
squared response of each neuron is scaled by a normalizing signal
based on the total contrast energy of the stimulus.

Half-squaring is a specific implementation of a more general
model, where the output might be subject to expansion with an
exponent () other than 2 (Albrecht & Hamilton, 1982; Albrecht &
Geisler, 1991). The exponent of 2 has theoretical attractions since
it relates specifically to stimulus energy, but it is true that the
expansive normalization model has fit our data better when the
exponent was free to find some other value. Even so, the resulting
best-fit values of the exponent have generally been close to 2.0,
especially as the quality of the fits (value of x?) was generally
tolerant of changes in n.

We have tried to distinguish between the normalization and
threshold models by a head-to-head comparison of their fits to the
various experimental data.

Half-squaring and other expansive nonlinearities

In experiments where the stimuli all have the same contrast, we
often do not need to consider the full effects of normalization (e.g.
Figs. 3 and 5). Then, we need only compare the expansive non-
linearity per se with the threshold model. For many of the data
sets, the expansive nonlinearity and threshold gave fits that were
almost equally good. Overall, the expansive nonlinearity gave the
better values of x2, even when we fixed the exponent (r1) in the
model to the value of 2 needed for exact half-squaring. This may
suggest that the expansive nonlinearity is the better description of
the actual mechanisms of action potential generation.

The threshold model did produce acceptable descriptions of the
results in many individual experiments. However, the value of the
threshold parameter T needed to achieve those fits often seemed to
be unrealistically large, as was noted by Robson et al. (1988) and
Tadmor and Tolhurst (1989). In many cases, we would have to
accept that up to 75% of the neuron’s response to high-contrast
stimuli remained below threshold. Furthermore, the fits for two
different experiments on the same neuron often produced very
different estimates of the threshold parameter (e.g. Figs. 6B vs.
TA).

This is somewhat paradoxical, since there is no biophysical
evidence that neurons show a squaring or expansive relation be-
tween membrane potential and firing rate. There is, however, much
evidence that neurons do require a threshold amount of depolar-
ization before action potentials are generated (see Introduction for
citations). The biophysical threshold may represent a neuronal ap-
proximation to the desirable operation of squaring.

Sometimes, one model seemed to fit better than the other only
because it was a better description of a single low-amplitude re-
sponse at a single stimulus condition. For instance, in Fig. 5, the
expansive nonlinearity gives the better fit to the data (x* of 0.81
compared to 2.24 for the threshold model). But this difference in
x* may hinge on the response to a single stimulus condition (at a
spatial phase of 0 deg), where the neuron produced only 25 action
potentials during a total period of 50 s. If, in fact, the neuron had
produced eight action potentials for that stimulus condition, the
threshold model would have become the better fit (x> of 1.34
compared to 1.49 for the expansive nonlinearity). Similarly, the
data of Fig. 2 are better fit by the threshold model (x? of 1.21 vs.
1.64 for the expansive nonlinearity); but if the ncuron had given a
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response to a contrast of 0.056 of only one action potential per
stimulus trial instead of one action potential every three trials, the
expansive nonlinearity would have become the better fit (x* of
1.36 vs. 1.37 for the threshold model).

One crucial feature in the fits of the different models is how
suddenly or gradually the neuron begins to give reliable responses
to stimuli that evoke little activity (e.g. at low contrasts). A more
gradual transition between activity and inactivity is indicative that
an expansive nonlinearity will fit better than the abrupt-threshold
model. Unfortunately, it is very difficult to measure the crucial
small responses reliably enough to allow a definitive proof that one
model really is a better fit than the other. The dependence of the
fits on low-amplitude responses is especially problematic since we
have weighted the data in the fits according to our estimates of the
variances of the responses. We suspect that these estimates of
variance are not fully accurate, especially for very low-response
amplitudes when the statistics of response are not normally dis-
tributed (Dean, 1981b; Tolhurst, 1989). In addition, the respon-
siveness of cortical neurons often changes repeatedly during the
time scale of an experiment (e.g. Tolhurst et al., 1981, 1983), and
this might easily obscure the abruptness of a true threshold.

The receptive-field data (Fig. 3) were better fitted by the ex-
pansive output model than by the threshold model originally em-
ployed by Tadmor and Tolhurst (1989). But this may not be due to
the superiority of the expansive nonlinearity per se. Tadmor and
Tolhurst (1989) could not compensate for the threshold output
nonlinearity on the neuron’s spatial-frequency tuning data; they
would have had to “invent” the thresholded tails of the tuning
curves. They recognized that this interfered with the quality of
their fits. With the expansive nonlinearity, on the other hand, it was
quite easy to account for the output nonlinearity in the bar and in
the grating data (simply by computing the square roots of re-
sponses). The ease of working with the expansive output model is
one good reason for preferring it, all other things being equal.

We have compared the space- and frequency-domain measure-
ments, but only up to an arbitrary amplitude scaling-factor since
the temporal properties of the bar and grating stimuli were very
different (see Movshon et al., 19784 for discussion). In particular,
we used two unconstrained scale-factor parameters (Ag and Ag) to
fit the data. In the design of future experiments, by choosing the
bar and grating stimuli to have the same temporal properties, we
might fit the data with only one scale factor (the ratio of even to
odd component). Better yet, by measuring response phase as well
as amplitude (Hamilton et al., 1989), we might be able to dispense
with both of these scale factors, which would allow for stronger
tests of the models.

Contrast normalization and response suppression

The basic mathematical formulation of the normalization model
[e.g. eqn. (10)] is more elegant and is easier to apply than that for
the threshold model [eqn. (4)]. The normalization model is, then,
preferable if only as an empirical description of data. This is es-
pecially the case for the phcnomena of response saturation and
nonspecific suppression. These phenomena are outside the scope
of the threshold model, but the normalization model provides a
coherent theory to account for them.

We have examined a number of experimental situations where
we have had to consider the effects of normalization as well as the
expansive nonlincarity: i.e. whenever the stimuli under compari-
son have differed in their total space-averaged or time-averaged
contrast energy. It is in these experiments that the normalization
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model has been particularly successful, and that the threshold model
has been most disadvantaged. For instance, the normalization model
has given an explanation for the slight divergence in the functions
relating response to contrast in the experiment with pairs of bar
stimuli (Fig. 2). The threshold model does not predict such behavior.

The normalization model has also been successful in explaining
the relationships between the responses L0 moving and modulated
gratings (Tables 1 and 2). Simple linear theories (Reid et al., 1987,
1991; Tolhurst & Dean, 1991) consistently find discrepancies in
estimates of the directional index and in the predicted and mea-
sured amplitudes of responses 10 moving gratings. We have con-
firmed (Table 1) that the discrepancies in the estimates of directional
index can be accounted for by expansive nonlinearities alone (Al-
brecht & Geisler, 1991; DeAngelis et al., 1993). However, the
normalization model must be implemented fully to account for the
discrepancies in the predictions of the amplitudes of the responses
to moving gratings from the responses to modulated gratings, since
the time-averaged encrgy of moving and modulated gratings is
different (Tolhurst & Heeger, 1997). Indeed, the normalization
model did perform reasonably well, while the threshold model
performed very poorly (Table 2).

We have described in detail some experiments designed to
examine the suppressive action of gratings moving in the nonpre-
ferred direction for simple cells with profound directional selec-
tivity. The results were interpreted by Dean et al. {1980) as showing
that the suppressing grating caused a reduction in the neuron’s gain
or responsivity, by an arithmetic operation similar to division,
When the suppressing contrast (¢;) is high compared to the acti-
vating contrast (c,) or semisaturation contrast (), the prediction of
the full normalization model [eqn. (12)] can be approximated to

_ _ Ca L
e o) i

Cs

which does indeed show a divisive action of the suppressing grating.

However, the normalization model makes much more specific
predictions than were envisaged by Dean et al. (1980). Figs. 8-10
show experiments with a variety of combinations of activating and
suppressing contrasts. The normalization model, expressed simply
as eqn. (12), is very successful at describing the pattern of results.
In particular, the model properly predicts the magnitude of the
suppressing cffect and the way in which it depends upon the con-
trast of the suppressing grating (Figs. 9B and 10B). The most
dramatic justification of the model is that it provides a reasonable
description of up to four different experiments on a single neuron
with many different combinations of activating and suppressing
contrast, using only three variable parameters (R.ax» 1, and o).
Furthermore, these are the same paramelers as would be used to fit
the control relation between response and contrast for gratings
moving in the preferred direction.

The fits of the model curves in Figs. 9 and 10 are not perfect,
of course. Either the model or the experiments need refinement.
The effects of different suppressing contrasts in Figs. 9A were
examined in different experiments performed at different times. It
is possible that the neuron’s responsiveness may have changed
between experiments, and this may explain the poor fits to the
results for suppressing contrasts of 0.11 and 0.18. It would be
better to perform a single experiment with all the stimulus condi-
tions interleaved, rather than to run several differenl experiments
sequentially.

We could certainly devise an equation that would be a better fit
to the data than is eqn. (12). This might need extra variable pa-
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rameters to differentially weight the suppressing actions of given
contrasts, or we might give different exponents to the numerator
and denominator in the equation. For instance, we have found
good fits to some of the data in this paper using models based on
the following alternative to eqn. (10):

= c”
R=Ragms 7 (25)
The difference between eqns. (10) and (25) is subtle: does
normalization occur before [eqn. (10)] or after [eqn. (25)] the
expansive nonlinearity. The latter formulation allows better fits in
some neurons where the responses continue to crecp upwards at
high contrasts without saturating totally. However, we are not try-
ing to provide an empirical description of the data; we are evalu-
ating a specific model of neuronal interactions, and we should
change the equations only if there is a physiological or theoretical
basis to justify it

Other forms of nonlinearity

Thus, we have found that the expansive, contrast-normalization
model (Heeger, 1991, 1992a,b, 1993; Carandini & Heeger, 1994,
Carandini et al., 1997; Tolhurst & Heeger, 1997) can account very
successfully for a wide range of phenomena. However, we should
not be led into believing that the normalization model is capable of
explaining everything. Some simple cells do show undoubted signs
of nonlinear spatial summation, perhaps because of [ailures in
push—pull synaptic arrangements (Movshon et al., 19784; Dean &
Tolhurst, 1983; Mullikin et al., 1984; Tolhurst & Dean, 1990; Atick
& Redlich, 1990),

For instance, we have found that the half-squaring, contrast-
normalization model gives an excellent description of one of the
receptive-field profiles shown by Tadmor and Tolhurst (1989, their
Fig. 4, our Fig. 3). However, the model does not explain the second
profile shown in that paper (their Fig. 6); that neuron was found by
Tolhurst and Dean (1987) to be subject to serious nonlinearities of
spatial summation. We have also shown an example (Fig. 6,
Tables | and 2) where the normalization model has been quite
successful in describing the detailed relationships between the re-
sponses to moving and modulated gratings for one of the simple
cells described by Tolhurst and Dean (1991, their Fig. 1A). But
again, Tolhurst and Dean (1991, their Fig. 1B) and McLean et al.
(1994) found that some simple cells show pronounced directional
selectivity even though their responses suggested that their recep-
tive fields were spatiotemporally separable. This would be difficult
to explain by a simple output nonlinearity such as half-squaring or
contrast normalization.

Indeed, if we look critically at the way in which the various
models dealt with the polar plot of response phase and amplitude
(Fig. 6), we see various inconsistencies. The threshold model needed
a very high threshold to fit the “wasp-waist” of the distorted ellipse
(Fig. 6B), and this high value was not confirmed by the same
neuron’s response versits contrast relationship (Fig. 7A). The nor-
malization model needed a very high exponent (4-10, in Fig. 6D)
to fit the wasp-waist, but a low value (1.30) to fit the response
versus contrast curve (Fig. 7B). This low exponent also accounted
for relationships between directional index and the amplitudes of
response to moving and modulated gratings (Tables 1 and 2).
Perhaps, there are other nonlinear phenomena that make the polar
plot nonelliptical (Emerson & Huang, 1997). It will take careful
experimentation at a variety of stimulus contrasts to dissect such
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additional nonlinearities from those that we are currently attribut-
ing to contrast normalization.

Conclusions

Heeger (1991, 19924.b) suggested that the contrast-normalization
model (Robson, 1988; Bonds, 1989; Albrecht & Geisler, 1991)
might be capable of explaining many observations on cat simple
cells, which were previously attributed to a threshold model. We
have shown that the normalization model does, indeed, provide a
good description of actual experimental data and that it is capable
of providing a satisfying explanation for a very wide variety of
phenomena. However, by applying the model rigorously to real
data, we have found some instances where the normalization model,
although impressive, does not perform quite well enough. This
suggests that there are other, more subtle nonlinearities in simple
cell behavior which need to be recognized.
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