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ABSTRACT

In this paper� we present a perceptual distortion measure that predicts image integrity far better
than mean�squared error� This perceptual distortion measure is based on a model of human visual
processing that �ts empirical measurements of� 	
� the response properties of neurons in the primary
visual cortex� and 	�� the psychophysics of spatial pattern detection� We also illustrate the usefulness
of the model in measuring perceptual distortion in real images�

� INTRODUCTION

A variety of imaging and image processing methods are based on measures of image integrity 	dis�
tortion measures�� Examples include� image data compression� dithering algorithms� at�panel display
and printer design� In each of these cases� the goal is to reproduce an image that looks as much as
possible like the original�

It has long been accepted that distortion measures like mean�squared error 	MSE� are inaccurate in
predicting perceptual distortion� For example� in the context of image data compression� a number of
methods have exploited the human visual system�s insensitivity to higher spatial frequencies to achieve
higher compression rates than schemes that simply used MSE as their distortion measure� Recently�
some researchers have found that they were able to tolerate coarser quantization in areas of higher
�texture energy� and still achieve the same perceptual results������ However� these techniques have often
been rather ad hoc� A notable exception is recent work by Watson�� that is based on psychophysical
masking data�

In this paper� we present a perceptual distortion measure that predicts image integrity far better
than MSE� Our distortion measure is a generalization of the model used byWatson��� and it encompasses
the �texture energy� masking phenomenon mentioned above������

Our perceptual distortion measure is based on �tting empirical measurements of� 	
� the response
properties of neurons in the primary visual cortex 	also called visual area V
�� and 	�� the psychophysics
of spatial pattern detection� that is� peoples� ability to detect a low contrast visual stimulus�

It is important to recognize the relevance of these empirical results for developing measures of
image integrity� First� we discuss the relevance of the psychophysical data� In a typical spatial pattern
detection experiment� the contrast of a visual stimulus 	called the target� is adjusted until it is just
barely detectable� In some experiments 	called masking experiments�� the target is also superimposed
on a background 	called the masker�� Again� the contrast of the target is adjusted 	while the masker
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contrast is held �xed� until the target is just barely detectable� Typically� a target is harder to detect
	i�e�� a higher contrast is required� in the presence of a high contrast masker� A model that predicts
spatial pattern detection is obviously useful in image processing applications� In the context of image
compression� for example� the target takes the place of quantization error and the masker takes the
place of the original image�

Next we discuss the relevance of the neurophysiological data� The primary visual cortex is a bottle�
neck in the primate visual pathway� Neural signals pass from the eyes to V
� from there� information
fans out to a number of other cortical visual areas of the brain� Since V
 is a bottleneck� everything
we see is mediated by neurons in that area of the brain� Two images will appear identical if they yield
identical responses for all of the neurons in V
� Likewise� two images will appear very similar if they
yield nearly identical responses in V
 neurons� A model that predicts the responses of V
 cells is�
therefore� useful in developing a perceptual distortion measure�

An enormous amount of e�ort has been devoted over the past thirty years to research on spatial
pattern psychophysics and on V
 physiology� A longstanding view is that the early stages of the visual
system perform a linear transform� a frequency and orientation subband decomposition� This view has
been supported by a variety of physiological���� and psychophysical�� results�

However� this linear transform model falls short of a complete account of early vision� One major
fault with the linear model is the fact that V
 cell responses saturate at high contrasts 	e�g�� see
Albrecht and Hamilton��� The responses of ideal linear operators� on the other hand� increase with
stimulus contrast over the entire range of contrasts� A second fault with the linear model is revealed by
testing superposition� A typical V
 neuron responds vigorously to its preferred orientation but not at all
to the perpendicular orientation� According to the linear model� the response to the superimposed pair
of stimuli 	preferred plus perpendicular� should equal the response to the preferred stimulus presented
alone� In fact� the response to the superimposed pair is about half that predicted 	e�g�� see Bonds	��
a phenomenon known as cross�orientation inhibition� A third failure of the linear model is revealed by
spatial masking psychophysics experiments��

In recent years� we and others have developed a nonlinear model of early vision 	actually� an extension
of the linear transform model�� hereafter referred to as the normalization model� to explain a signi�cantly
larger body of data������
��The normalization model has four stages� Here we introduce these four stages�
each of the stages is described in detail later in the paper� The �rst stage of the model is a subband
transform� In the second stage of the model� each coe�cient of the subband transform is squared�
The third stage of the model is a divisive normalization mechanism in which each squared coe�cient is
divided by the sum of a large number of squared coe�cients� Each squared and normalized coe�cient
represents the response of a hypothetical V
 neuron� In physiological terms� normalization means that
each V
 neuron is suppressed by the pooled activity of a large number of V
 neurons� The fourth and
�nal stage of the normalization model is a detection mechanism�

The importance of normalization is that it preserves the essential features of linearity in a system
	the brain� that has limited dynamic range� It is commonly believed that information about a visual
stimulus� other than its contrast� is represented in terms of the relative responses of a collection of
neurons� For example� the orientation of a stimulus might be represented as the ratio of the responses
of two neurons� each with a di�erent orientation preference� Indeed the ratio of a neuron�s responses to
two stimuli is largely independent of stimulus contrast�� Cortical neurons have a limited dynamic range



and their responses saturate at high contrasts� Normalization makes it possible for response ratios to
be independent of stimulus contrast� even in the face of response saturation�

The normalization model explains response saturation of V
 neurons because the pooled activity 	the
sum of the squared coe�cients� increases with stimulus contrast� The model explains cross�orientation
inhibition because a given neuron is suppressed by many other neurons including those with perpendic�
ular orientation tunings 	see Heeger�� for details��

The normalization model also explains spatial masking psychophysics� Foley and Boynton� recently
performed an extensive series of spatial masking experiments� The normalization model provides a good
�t to nearly all of his data 	see Figures � and ��� By contrast� previous models of spatial masking 	in�
cluding a model that Foley himself proposed in the early 
����s� fail to explain his new data� According
to the normalization model� spatial masking is a simple consequence of normalization 	divisive suppres�
sion�� The response of a neuron increases with target contrast� but it is suppressed by superimposing a
masker� Hence� in the presence of a masker� the target must have a higher contrast to evoke a criterion
response�

In particular� the model explains three general classes of spatial pattern detection results� First�
it explains baseline contrast sensitivity 	detection of a target when there is no masker�� Second� the
model explains the usual phenomena of contrast masking 	when the target and masker have the same
orientation�� Third� and unlike previous models of spatial masking 	like that used by Watson���� the
normalization model explains the masking e�ect that occurs when the target and masker have very
di�erent orientations�

In Section �� we derive the normalization model in detail and describe a perceptual distortion measure
based on the model� In Section �� we present the psychophysical methods used to collect spatial masking
data� In Section �� we demonstrate that the normalization model �ts this psychophysical data� For
examples of using the normalization model to �t neurophysiological data� see Heeger��
�� and Albrecht
and Geisler�� In Section �� we also demonstrate that our perceptual distortion measure predicts image
integrity far better than MSE�

� THE MODEL

The model consists of four steps� 	
� a front�end linear transform consisting of a suite of linear
sensors tuned to di�erent spatial orientations and frequencies� 	�� squaring� 	�� a divisive contrast
normalization mechanism� and �nally 	�� a detection mechanism� Hence� the input images undergo
both a linear and a non�linear transformation� The perceptual distortion of an image with respect to a
reference is computed by passing both images through the model� The �nal detection step determines
the extent to which the distortion is visible�

Linear Transform� In many signal processing applications� a signal is decomposed into a set of
subbands� and the information within each subband is processed more or less independently of that in
the other subbands� Recently it has become popular to use discrete subband decompositions that are
critically sampled� i�e�� in which the number of transform coe�cients is equal to the number of samples
in the original signal� Quadrature mirror �lters 	QMF�s� and wavelets� which are closely related� are
examples of critically sampled transforms that have proven to be useful in various signal processing
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Figure 
� Example of a QMF pyramid analysis�synthesis cascade 	reproduced from Simoncelli and
Adelson���� An input signal x�n� is convolved with two shift�invariant linear �lters� The frequency
responses of these �lters are denoted by F�	�� and F�	��� The �ltered signals are each subsampled
by a factor of two� Then one of these �ltered and subsampled signals is passed through the same
set of operations 	�ltering and subsampling� again� The coe�cients of the transform are denoted by
y��n�� y���n�� and y���n�� The original signal may be reconstructed 	if so desired� from the transform
coe�cients by inverting the operations�

applications�

For the linear transform front�end of our model� we use the hexagonally sampled quadrature mirror
�lter transform 	hex�QMF� designed by Simoncelli and Adelson��� Quadrature mirror �lters� originally
introduced by Crosier et al����� are used in an analysis�synthesis system that decomposes a signal into
high�pass and low�pass frequency subbands� Vetterli was the �rst to propose the use of QMF�s for
image decomposition��	 Mallat�� related QMF transforms to wavelet theory and proposed their use in
machine vision�

The hex�QMF has a number of desirable properties� First� the hex�QMF transform is a pyramid
transform�� and hence it can be computed e�ciently as a cascade of �ltering and subsampling operations�
An example of this recursive �ltering and subsampling algorithm is diagramed in Figure 
�

A second desirable property of the hex�QMF is that the basis functions of the transform are jointly
localized in space� spatial frequency� and orientation� The concept of joint localization in space and
spatial frequency was introduced by Gabor��� Most applications of wavelets�QMF�s to two or more
dimensions have used separable �lters� some of the basis functions of these separable transforms are not
localized in orientation 	they are non�oriented�� For our perceptual distortion measure� it is important
that all of the transform�s basis functions be oriented� Figure � shows a diagram of the partition of the



spatial frequency plane created by the hex�QMF pyramid�

A third desirable property of the hex�QMF transform is self�similarity� the basis functions of the
transform are translations� dilations� and rotations of a common kernel� This property of self�similarity
is the de�ning property of wavelets 	see Strang�� for an introduction�� A consequence of self�similarity
is that the bandwidths of the basis functions are equal on a logarithmic frequency scale 	in particular�
the hex�QMF basis functions have octave bandwidths�� Many authors in signal processing� computer
vision� and biological vision have argued for the importance of such equal logarithmic�width 	constant
Q� transforms��������������

A fourth desirable property of the hex�QMF transform is that the set of basis functions collectively
tiles all possible orientations and frequencies�

Unfortunately� the hex�QMF also has some undesirable properties� One major drawback of using
any transform with spatially localized� orthogonal basis functions 	wavelet� QMF� blocked DCT� is
the lack of translation invariance��� A second problem with the hex�QMF� for our purpose� is that
the orientation bandwidth of the �lters is too broad� The frequency and orientation bandwidths are
particularly important as we shall see when we �t the model to psychophysical data 	see Section �

below�� For these two reasons� we plan to develop a better perceptual distortion measure using an
overcomplete� steerable pyramid��� The steerable pyramid transform retains the desirable properties of
the hex�QMF 	for our application�� but alleviates the undesirable properties�

Squaring and Normalization� The front�end linear transform yields a set of coe�cient values�
Each squared and normalized coe�cient represents the response of a visual sensor 	a hypothetical neuron
in primary visual cortex��

Since the front�end transform is linear� a coe�cient�s magnitude increases linearly with the con�
trast of the input image� Furthermore� these linear coe�cients are equally sensitive 	or insensitive� to
perturbations of the input regardless of image contrast� Contrast normalization results in a nonlinear
relationship between input contrast and sensor output� It also assures a moderate level of sensitivity to
inputs of smaller contrast�

The normalization scheme is divisive and is determined by two parameters� an overall scaling con�
stant� k� and a saturation constant� ��� Let A� be a coe�cient of the front�end linear transform� The
squared and normalized output� R�� is computed as follows�

R� � k
	A���

�� 	A��� � ��
	
�

In words� the normalized output of a sensor tuned to orientation � is computed by dividing its
original squared response� 	A���� by the sum of the squared responses of a pool of sensors over all
orientations� This summation� �� 	A���� includes the term� A� � that appears in the numerator 	i�e��
each sensor suppresses itself�� As long as � is nonzero� the normalized sensor response will always be a
value between � and k� saturating for high contrasts�

Contrast normalization has a simple geometrical interpretation� It can be viewed as an embedding
of the vector of transform coe�cients into a space one dimension higher� the value of the extra di�
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Figure �� Diagram 	reproduced from Simoncelli and Adelson��� of the partition of the spatial frequency
plane created by the hex�QMF pyramid� The recursive �ltering and subsampling algorithm gives rise to
equal bandwidths on a logarithmic frequency scale� At each level� the bands are tuned to orientations
of �� ��� and 
�� degrees with respect to the vertical�



mension�s coordinate being set to �� For example� since the hex�QMF transform has three orientation
bands� a vector of linear transform coe�cients is 	A�� A��� A���� and the higher dimensional vector is
	A�� A��� A���� ��� This vector is then normalized 	in the usual sense of vector normalization� to obtain
a unit vector 	in the higher dimensional space� which is then projected back onto the original lower
dimensional space� Lastly� each coordinate of the resultant vector is squared�

The normalized sensors� like real neurons� each has a limited dynamic range� as shown in Figure �	a��
Each sensor is able to discriminate contrast di�erences only over a narrow range of contrasts� This range
is determined by the scaling and saturation constants� k and ��� respectively� Hence� several contrast
normalization mechanisms� each having di�erent ki�s and ��

i �s� are required to discriminate contrast
changes over the full range of contrasts� In the current implementation of the model� we have four
di�erent contrast discrimination bands 	that is� four di�erent choices of ��

i and ki��

The full set of normalized sensors is tuned for di�erent spatial positions� spatial frequencies� orienta�
tions� and contrast discrimination bands� The outputs of these normalized sensors are then used by the
detection mechanism to determine the level of perceptual distortion present between a pair of images�

Detection Mechanism� Let R� be a vector of normalized sensor responses for an input image
I�� Let R� be the corresponding vector of normalized responses for input I�� The detection mechanism
adopted by the model is the simple squared�error norm 	i�e�� the vector distance between R� and R���

�R � jjR��R�jj
�
� 	��

The threshold at which distortion is visible is arbitrarily set at unity in the model� Hence� �R in
equation 	�� is 
 at threshold�

One might include all of the normalized sensor responses 	all spatial positions� spatial frequencies�
orientations� and contrast discrimination bands� in the vectors� R� and R�� and compute a single
number representing the overall detectability of di�erences between the two images� We �nd it more
informative� however� to implement the detection mechanism independently for each local patch 	or
block� of the images� For each block� we compute the vector di�erence between Rj

� and R
j
�� where the

superscript j indexes over all the blocks� and where each of the R vectors includes the normalized sensor
responses from that block�

� METHODS

The empirical data used to �t the model were obtained from contrast masking experiments conducted
by Foley and Boynton�� The task in the experiments was to detect a target pattern superimposed on
a masker pattern� The maskers were � cycle per degree 	cpd� sinusoidal gratings 	� degrees high by
� degrees wide� of several orientations 	�� 

���� ����� �� and �� degrees re vertical�� The target was
a vertically oriented � cpd Gabor patch with vertical and horizontal 
�e halfwidths of ��� degrees�
Background luminance was �� cd�m�� The target and masker were presented simultaneously as �� ms
pulses and were viewed at a distance of 
�� cm� A two�alternative temporal forced�choice paradigm with
an adaptive threshold�seeking algorithm was used to measure target threshold contrast as a function
of masker contrast� the TvC 	threshold vs� contrast� curve�
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Figure �� Result of �tting the model to empirical data� Empirical data are denoted by �lled circles�
Solid curves denote predicted target threshold contrasts�

� RESULTS

Hexagonal Quadrature Mirror Filters� The free parameters of the model are the pairs of
scaling and saturation constants 	ki and �i�� We found experimentally that four was the minimum
number of pairs required to �t the data� Since the hex�QMF�s have three orientation bands per level�
there are a total of twelve normalized sensor responses for each spatial position and spatial frequency
band� The task was to pick the ki�s and �i�s to predict the empirical TvC curves for each of the various
masker orientations 	namely� at �� 

���� ����� �� and �� degrees re vertical��

Figure � shows the result of �tting the model to empirical TvC data at masker orientations of �� 

���
and �� degrees� The �t to ��degree masker orientation TvC data 	��degree TvC data� is extremely good�
The overall goodness of �t indicates that four contrast tuning mechanisms are su�cient to reproduce
the properties described by the TvC data�
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Figure �� 	a� Response of the four normalized sensors as a function of log contrast for a sinusoidal
grating image� The responses saturate for high contrasts� The dynamic range 	the range of contrasts
for which this sensor can discriminate contrast e�ectively� of each sensor is limited to the rising portion
of each curve� 	b� Squared�error di�erence between responses to masker�only and masker with target
	at threshold contrast� for each of the four contrast discrimination bands�

Figure �	b� shows the squared di�erence between the responses to masker�only and masker with
target 	at threshold contrast� for each of the four contrast discrimination bands� These graphs sum
to ��� since we �tted the parameters to predict target threshold contrast at a mean squared di�erence
of 
��� The graphs also show that each contrast discrimination band is di�erentially responsive only
within a certain range of masker contrasts�

One important characteristic of the TvC data is the presence 	or absence� of a �dipper�� The
presence of a dipper indicates that within that range of masker contrasts� the masker facilitates the
detection of the target� A pronounced dipper can be observed in the ��degree and 

����degree TvC
data indicating that facilitation occurs at low contrasts for similarly oriented stimuli� The dipper
is almost absent in the �����degree TvC data and completely absent in TvC data involving greater
orientation di�erences� The best �tting choice of parameters could generally be determined by simply
�tting to the ��degree TvC data alone� The shapes of the other TvC curves are largely determined by
the orientation bandwidth of the front�end �lters� This simpli�es the task of �tting the model to the
data�

While the �ts to the ��degree and 

����degree TvC data are impressive� the �ts to the other curves
are not as good� Although the shapes of the predicted TvC curves are similar to the empirical data�
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Figure �� 	a� Orientation tuning of the hex�QMF� 	b� Orientation tuning of the synthetic Cosine �lter�

they are shifted by some amount� We believe that this is caused by the relatively broad orientation
bandwidth of the hex�QMF�s� Figure �	a� shows a graph of the orientation selectivity of the vertical
hex�QMF� The orientation selectivity of the �lter is rather poor� the �dB bandwidth is about �� degrees�
i�e�� �� degrees re vertical in each direction� Furthermore� there is a non�zero response to maskers at
approximately �� degrees re vertical� We hypothesize that a better �t can be obtained by using �lters
with narrower orientation bandwidths�

Synthetic Cosine Filter� In order to verify this hypothesis� we designed a synthetic orientation
tuning curve with a smaller and sharper bandwidth that does not have the anomaly at �� degrees
re vertical� Equation � gives the response of a vertically tuned �lter to sinusoidal gratings of various
orientations�

f	�� �

���
��


�� if j�j � �

cos �
�

j�j��

�
if � � j�j � � � �

��� otherwise�

	��

where � is half the width of the pass band and � is the width of the transition band beyond the pass
band� Because this �lter is more narrowly tuned� we require a suite of six �lters� tuned to �� ��� ��� ���

�� and 
�� degrees re vertical� to tile all orientations�

Figure �	b� shows the orientation tuning of our synthetic cosine �lter� With this �lter� the �ts to
all the curves are much better as can be seen in Figure ��

As before� we found the best �tting choice of normalization parameters simply by �tting to the ��
degree TvC data alone� The other TvC data were predicted from the model based on those parameters�
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Figure �� Result of �tting the data using the synthetic cosine �lters as the front�end linear transform�
Empirical data are denoted by �lled circles� Solid curves denote predicted target threshold contrasts�

This supports our previous claim that the shapes of these other TvC curves are governed largely by the
orientation tuning of the front�end linear �lters�

Demonstration In order to assess the model� we added bandpass distortion to a reference image
and then computed the perceptual distortion between the original and distorted images� In particular�
we distorted the second level of the hex�QMF pyramid in two ways� �rst to maximize perceptual
distortion� and second to minimize it� Figure � shows the original Einstein image along with the
two distorted images� The perceived distortion is very di�erent� yet the distortion was added so that
standard distortion measures 	mean squared error and peak signal�to�noise ratio� were very nearly the
same� These standard distortion measures are� therefore� poor predictors of the perceived distortion�

Figure � also shows the perceptual distortion images for the minimally and maximally distorted
Einstein images� Darker regions correspond to areas of lower perceptual distortion while brighter regions
indicate areas of greater perceptual distortion�



 

Figure �� 	Top� Original Einstein image� 	Middle�left� Image was distorted so as to minimize perceptual
distortion 	RMSE � 
���� peak�SNR � ���� dB�� 	Middle�right� Image was distorted so as to maximize
perceptual distortion 	RMSE � 
���� peak�SNR � ���� dB�� Both distorted images have nearly identical
mean�squared error and peak�SNR� The overall perceptual�distortion�measures for the left and right
images are ���� and 
��� respectively� 	Bottom�left� Perceptual distortion measured from the minimally
distorted image� Darker regions correspond to areas of lower perceptual distortion while brighter regions
indicate areas of greater perceptual distortion� 	Bottom�right� Perceptual distortion measured from the
maximally distorted image�



 

Figure �� 	Top� Original Flowers image� 	Middle�left� Image was distorted so as to minimize perceptual
distortion 	RMSE � 
���� peak�SNR � ���� dB�� 	Middle�right� Image was distorted so as to maximize
perceptual distortion 	RMSE � 
���� peak�SNR � ���� dB�� Both distorted images have nearly identical
mean�squared error and peak�SNR� The overall perceptual�distortion�measures for the left and right
images are ���� and ��

 respectively� 	Bottom�row� Perceptual distortion measured from the minimally
and maximally distorted images�



Figure � shows another example of minimally and maximally distorted images with nearly identical
MSE�

� CONCLUSION

We have described a model of perceptual distortion that is consistent with empirical �ndings in
the physiology of V
 cells and in spatial pattern psychophysics� In particular� we have shown that the
model explains orientation and contrast masking� We plan on using this model further to explain other
psychophysical data 	e�g� summation experiments� and to explore the advantages of using a better front�
end linear transform like the steerable pyramid� In addition to investigating spatial pattern detection
phenomena� we also intend to demonstrate the usefulness of the model in more practical applications
like image data compression and other image processing tasks�
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