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ABSTRACT

In this paper� we present a perceptual distortion mea�
sure that predicts image integrity far better than mean�
squared error� This perceptual distortion measure is based
on a model of human visual processing that �ts empirical
measurements of the psychophysics of spatial pattern de�
tection� The model of human visual processing proposed
involves two major components� a steerable pyramid trans�
form and contrast normalization� We also illustrate the
usefulness of the model in predicting perceptual distortion
in real images�

�� INTRODUCTION

A variety of imaging and image processing methods are
based on measures of image integrity �distortion measures��
Examples include� image data compression� dithering algo�
rithms� �at�panel display and printer design� In each of
these cases� the goal is to reproduce an image that looks as
much as possible like the original�

It has long been accepted that distortion measures like
mean�squared error �MSE� are inaccurate in predicting per�
ceptual distortion� For example� in the context of image
data compression� a number of methods have exploited the
human visual system�s insensitivity to higher spatial fre�
quencies to achieve higher compression rates than schemes
that simply used MSE as their distortion measure� Re�
cently� some researchers have found that they were able to
tolerate coarser quantization in areas of higher 	texture en�
ergy
 and still achieve the same perceptual results ��� ����
However� these techniques have often been rather ad hoc�
A notable exception is recent work by Watson ���� that is
based on psychophysical masking data�

In this paper� we present a perceptual distortion mea�
sure that predicts image integrity far better than MSE� Our
distortion measure is a generalization of the model used by
Watson ����� and it encompasses the 	texture energy
 mask�
ing phenomenon mentioned above ���� ���

Our perceptual distortion measure is based on �tting
empirical measurements of� ��� the response properties of
neurons in the primary visual cortex �also called visual area
V��� and �� the psychophysics of spatial pattern detection�
that is� peoples� ability to detect a low contrast visual stim�
ulus� We will present only the latter in this paper�
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It is important to recognize the relevance of these empir�
ical spatial pattern detection results to developing measures
of image integrity� In a typical spatial pattern detection ex�
periment� the contrast of a visual stimulus �called the tar�
get� is adjusted until it is just barely detectable� In some
experiments �called masking experiments�� the target is also
superimposed on a background �called the masker�� Again�
the contrast of the target is adjusted �while the masker con�
trast is held �xed� until the target is just barely detectable�
Typically� a target is harder to detect �i�e�� a higher contrast
is required� in the presence of a high contrast masker� A
model that predicts spatial pattern detection is obviously
useful in image processing applications� In the context of
image compression� for example� the target takes the place
of quantization error and the masker takes the place of the
original image�

In recent years� we and others have developed a non�
linear model of early vision� hereafter referred to as the
normalization model� to explain a large body of data ��
�� �� �� ��� The normalization model explains three gen�
eral classes of spatial pattern detection results� First� it
explains baseline contrast sensitivity �detection of a target
when there is no masker�� Second� the model explains the
usual phenomena of contrast masking �when the target and
masker have the same orientation�� Third� and unlike pre�
vious models of spatial masking �like that used by Watson
������ the normalization model explains the masking e�ect
that occurs when the target and masker have very di�erent
orientations�

�� THE MODEL

The model consists of four stages� ��� front�end linear �l�
tering� �� squaring� ��� normalization� and lastly ��� detec�
tion� The �rst stage of the model decomposes the image lo�
cally into its spatial frequency and orientation components�
The coe�cients of the linear �ltering are then squared to
yield local energy measures� Because the human visual sys�
tem is di�erentially sensitive to local image frequency com�
position� the third stage normalizes the squared coe�cients
accordingly� Both the reference and distorted images are
subjected to the �rst three stages� the �nal detection stage
then determines the amount of distortion visible in the dis�
torted image�

���� Linear Transform

Many researchers have suggested a variety of linear trans�
forms which resemble the orientation and spatial frequency
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Figure �� Analysis�synthesis representation of the steerable
pyramid transform implemented� H� is a high�pass �lter�
the Li�s represent low�pass �lters and the Bi�s represent
orientation selective �lters�

tuning of cortical receptor �elds ���� �� ��� or psychophysi�
cally determined visual sensors ���� These linear transforms
often have the following characteristics� ��� octave spacing
and frequency bandwidths and �� narrow orientation se�
lectivity� In addition to these considerations� we are also
concerned about the computational e�ciency of the trans�
form �and its inverse��

In our previous work� we used a quadrature mirror �lter
suite on a hexagonally�sampled image ����� The transform
is orthogonal and thus is compact in its representation and
e�ciently computed� Unfortunately� being orthogonal� the
basis functions describing a local region of an image severely
alias one another�� Moreover� as noted previously� the ori�
entation bandwidth of the hex�QMF�s are a little too broad�

In this paper� we adopt the steerable pyramid trans�
form introduced by Simoncelli et al ����� The transform
decomposes the image locally into several spatial frequency
levels within which each level is further divided into a set
of orientation bands� Figure � shows an analysis�synthesis
representation of the transform� The basis functions for
each level of the pyramid have octave bandwidths and are
separated from those of neighboring levels by an octave as
well� In our implementation� we divide every level into six
orientation bands with bandwidths of approximately thirty
degrees� The orientation decomposition at each level is
steerable ���� i�e� the response of a �lter tuned to any ori�
entation can be obtained through a linear combination of
the responses of the six basis �lters computed at the same
location� This property is important as it implies that the
orientation decomposition is locally rotationally�invariant�
The pyramid is also designed to minimize the amount of
aliasing within each subband� Thus� the steerable pyramid�
unlike the hex�QMF transform� is overcomplete and non�
orthogonal� Even so� the transform is self�inverting which
allows the inverse to be e�ciently computed despite its non�
orthogonality�

���� Squaring and Normalization

The front�end linear transform yields a set of coe�cient val�
ues for every region in the image� These coe�cients are next

�In quadrature mirror �lters� the aliasing introduced during
subsampling is cancelled only during reconstruction�
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Figure � Response of the four normalized sensors as a func�
tion of log contrast for a sinusoidal grating image� The
responses saturate for high contrasts� The dynamic range
�the range of contrasts for which this sensor can discrim�
inate contrast e�ectively� of each sensor is limited to the
rising portion of each curve�

squared to obtain energy measures of the local orientation
and spatial frequency components�

Since the front�end transform is linear� a coe�cient�s
magnitude increases linearly with the contrast of the input
image� Furthermore� these linear coe�cients are equally
sensitive �or insensitive� to perturbations of the input re�
gardless of image contrast� Squaring introduces a simple
contrast�dependence on sensitivity� However� squaring alone
does not account for masking e�ects� Furthermore� the
magnitude of the response of each sensor can potentially
be very large� On the other hand� the dynamic range of
the mechanisms in the visual system is limited� Normal�
ization is required to predict masking e�ects and to restrict
the range of response magnitudes of our hypothetical visual
sensors�

The normalization scheme is divisive and is determined
by two parameters� an overall scaling constant� k� and a
saturation constant� ��� Let A� be a coe�cient of the front�
end linear transform� The squared and normalized output�
R�� is computed as follows�

R
� � k

�A���P
�
�A��� � ��

���

where � ranges over all sensors tuned to di�erent orienta�
tions� In our implementation� � � f�� ��� ��� ��� ��� ���g�

We treat each spatial frequency level of the pyramid
separately and conduct this pooling only over sensors tuned
to di�erent orientations� Hence� the normalized output of
a sensor tuned to orientation � is computed by dividing its
original squared response� �A���� by the sum of the squared
responses of a pool of sensors over all orientations in the
same region of the image� Since this summation�

P
�
�A����

includes the term� A�� that appears in the numerator �i�e��
each sensor suppresses itself�� as long as � is nonzero� the
normalized sensor response will always be a value between
� and k� saturating at high contrasts�

Each of the normalized sensors has a limited dynamic
range as shown in Figure � In other words� each sensor is
able to discriminate contrast di�erences only over a narrow



range of contrasts� This range is determined by the scal�
ing and saturation constants� k and ��� respectively� Hence�
several contrast normalization mechanisms� each having dif�
ferent ki�s and ��i �s� are required to discriminate contrast
changes over the full range of contrasts� In the current im�
plementation of the model� we have four di�erent contrast
discrimination bands �that is� four di�erent choices of ��i
and ki��

In summary� the front�end linear transform yields a set
of coe�cients which measure the di�erent orientation and
spatial frequency components in each local region of the im�
age� With squaring and multiple normalizations� the num�
ber of measurements for each local region is increased four�
fold� However� these local image measurements now ana�
lyze the image into its orientation� spatial frequency and
contrast components� Furthermore� masking e�ects over
orientation are captured by the pooling step in the normal�
ization�

���� Detection

The detection mechanism determines locally if a distortion
is visible� Let Rref be a vector of normalized sensor re�
sponses from a local region in the reference image� LetRdist

be the vector of normalized responses from the correspond�
ing region in the distorted image� The detection mechanism
adopted by the model is the simple squared�error norm �i�e��
the vector distance between Rref and Rdist��

�R � jjRref �Rdistjj
� ��

One might include all of the normalized sensor responses
�all spatial positions� spatial frequencies� orientations� and
contrast discrimination bands� in the vectors� R� and R��
and compute a single number representing the overall de�
tectability of di�erences between the two images� We �nd
it more informative� however� to implement the detection
mechanism independently for each local patch �or block� of
the images�

The vector distance detection mechanism can be justi�
�ed in terms of an ideal observer model�� The vector of
normalized sensor responses from each image correspond to
the mean responses of noisy sensors� For the purposes of
the model� we assume the noise to be additive� independent�
identically�distributed� zero�mean Gaussian noise� Further�
more� the standard deviation of the noise is independent of
the mean response� With these assumptions and an ideal
observer model� the vector distance detection mechanism
gives the likelihood that the ideal observer would detect
the distortion� For example� assuming a standard devia�
tion of one for the noise� the observer is able to detect the
distortion ��� of the time when the squared di�erence is
exactly one� In signal detection theory� this corresponds
to a d� of one� In our model� we assume detection at this
e�ciency� Hence� �R in equation �� is equal to one at
threshold�

�An ideal observer is assumed to have knowledge of the joint
probability distribution of all its mechanisms in response to each

stimulus� It then makes its decision so as to minimize its proba�
bility of error�

�� RESULTS

���� Model Fitting

The parameters of the model were �t to psychophysical
data from spatial pattern detection experiments ��� ��� In
particular� data on contrast and orientation masking were
measured by Foley and Boynton ���� The task in their ex�
periments was to detect a target Gabor pattern superim�
posed on a sinusoidal masker pattern� Target threshold
contrast versus masker contrast �TvC� curves for several
masker orientations were obtained from these experiments�
When the masker and target have the same orientation� the
TvC curve characterizes the sensitivity of the visual system
to the target as a function of contrast� a phenomenon known
as contrast masking� With di�erent masker and target ori�
entations� the set of TvC curves together record the e�ect
of orientation masking� Baseline sensitivity to the target
is captured by all the TvC curves when masker contrast is
zero�

These TvC curves were used to tune the performance of
the model� The only free parameters of the model are the
pairs of scaling and saturation constants �ki and �i�� We
found experimentally that four was the minimum number of
pairs required to �t the data� Since each level of the steer�
able pyramid has six orientation bands� there are a total
of twenty�four normalized sensor responses at each spatial
position� The task� therefore� was to pick the ki�s and �i�s
such that the model accurately predicts the empirical TvC
curves at various masker orientations�

Figure � shows the result of �tting the model to empir�
ical TvC data at di�erent masker orientations� The �t to
��degree masker orientation TvC data ���degree TvC data�
is extremely good� The overall goodness of �t indicates that
four contrast tuning mechanisms are su�cient to reproduce
the properties described by the TvC data�

One important characteristic of the TvC data is the
presence �or absence� of a 	dipper
� The presence of a dip�
per indicates that within that range of masker contrasts�
the masker facilitates the detection of the target� A pro�
nounced dipper can be observed in the ��degree and �����
degree TvC data indicating that facilitation occurs at low
contrasts for similarly oriented stimuli� The dipper is al�
most absent in the ���degree TvC data �not shown� and
completely absent in TvC data involving greater orientation
di�erences�

���� Demonstration

In order to assess the model� we added bandpass distor�
tion to a reference image and then computed the percep�
tual distortion between the original and distorted images�
In particular� we distorted the second level of the steerable
pyramid in two ways� �rst to maximize perceptual distor�
tion� and second to minimize it� Figure � shows the original
Einstein image along with the two distorted images� The
perceived distortion is very di�erent� yet the distortion was
added so that standard distortion measures �mean squared
error and peak signal�to�noise ratio� were very nearly the
same� These standard distortion measures are� therefore�
poor predictors of the perceived distortion�
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Figure �� Result of �tting the model to empirical data�
Empirical data are denoted by �lled circles� Solid curves
denote predicted target threshold contrasts�

Figure � also shows the perceptual distortion images
for the minimally and maximally distorted Einstein images�
Darker regions correspond to areas of lower perceptual dis�
tortion while brighter regions indicate areas of greater per�
ceptual distortion�

�� CONCLUSION

We have described a model of perceptual distortion that
is consistent with spatial pattern psychophysics� In par�
ticular� we have shown that the model explains both con�
trast and orientation masking� However� the accuracy of
the model with regard to spatial frequency masking has
not been determined� Also� the e�ects of spatial summa�
tion and di�erent mean luminances have not been explored�
While the detection mechanism can be explained in terms
of an ideal observer model� its accuracy in predicting empir�
ical psychometric curves needs to be veri�ed as well� These
modeling issues and practical concerns such as demonstrat�
ing the usefulness of the model in applications like image
data compression we defer to future work�
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Figure �� �Top� Original Einstein image� �Middle�left� Image was distorted so as to minimize perceptual distortion �RMSE
� ����� peak�SNR � ���� dB�� �Middle�right� Image was distorted so as to maximize perceptual distortion �RMSE �
����� peak�SNR � ���� dB�� Both distorted images have nearly identical mean�squared error and peak�SNR� The overall
perceptual�distortion�measures for the left and right images are ���� and ���� respectively� �Bottom�left� Perceptual dis�
tortion measured from the minimally distorted image� Darker regions correspond to areas of lower perceptual distortion
while brighter regions indicate areas of greater perceptual distortion� �Bottom�right� Perceptual distortion measured from
the maximally distorted image�


