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ABSTRACT

In this paper, we present a perceptual distortion mea-
sure that predicts image integrity far better than mean-
squared error. This perceptual distortion measure is based
on a model of human visual processing that fits empirical
measurements of the psychophysics of spatial pattern de-
tection. The model of human visual processing proposed
involves two major components: a steerable pyramid trans-
form and contrast normalization. We also illustrate the
usefulness of the model in predicting perceptual distortion
in real images.

1. INTRODUCTION

A variety of imaging and image processing methods are
based on measures of image integrity (distortion measures).
Examples include: image data compression, dithering algo-
rithms,; flat-panel display and printer design. In each of
these cases, the goal is to reproduce an image that looks as
much as possible like the original.

It has long been accepted that distortion measures like
mean-squared error (MSE) are inaccurate in predicting per-
ceptual distortion. For example, in the context of image
data compression, a number of methods have exploited the
human visual system’s insensitivity to higher spatial fre-
quencies to achieve higher compression rates than schemes
that simply used MSE as their distortion measure. Re-
cently, some researchers have found that they were able to
tolerate coarser quantization in areas of higher “texture en-
ergy” and still achieve the same perceptual results [12, 11].
However, these techniques have often been rather ad hoc.
A mnotable exception is recent work by Watson [15] that is
based on psychophysical masking data.

In this paper, we present a perceptual distortion mea-
sure that predicts image integrity far better than MSE. Our
distortion measure is a generalization of the model used by
Watson [15], and it encompasses the “texture energy” mask-
ing phenomenon mentioned above [11, 12].

Our perceptual distortion measure is based on fitting
empirical measurements of: (1) the response properties of
neurons in the primary visual cortex (also called visual area
V1), and (2) the psychophysics of spatial pattern detection,
that is, peoples’ ability to detect a low contrast visual stim-
ulus. We will present only the latter in this paper.
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It is important to recognize the relevance of these empir-
ical spatial pattern detection results to developing measures
of image integrity. In a typical spatial pattern detection ex-
periment, the contrast of a visual stimulus (called the tar-
get) is adjusted until it is just barely detectable. In some
experiments (called masking experiments), the target is also
superimposed on a background (called the masker). Again,
the contrast of the target is adjusted (while the masker con-
trast is held fixed) until the target is just barely detectable.
Typically, a target is harder to detect (i.e., a higher contrast
is required) in the presence of a high contrast masker. A
model that predicts spatial pattern detection is obviously
useful in 1mage processing applications. In the context of
image compression, for example, the target takes the place
of quantization error and the masker takes the place of the
original image.

In recent years, we and others have developed a non-
linear model of early vision, hereafter referred to as the
normalization model, to explain a large body of data [2,
3, 6, 7, 8]. The normalization model explains three gen-
eral classes of spatial pattern detection results. First, it
explains baseline contrast sensitivity (detection of a target
when there is no masker). Second, the model explains the
usual phenomena of contrast masking (when the target and
masker have the same orientation). Third, and unlike pre-
vious models of spatial masking (like that used by Watson
[15]), the normalization model explains the masking effect
that occurs when the target and masker have very different
orientations.

2. THE MODEL

The model consists of four stages: (1) front-end linear fil-
tering, (2) squaring, (3) normalization, and lastly (4) detec-
tion. The first stage of the model decomposes the image lo-
cally into its spatial frequency and orientation components.
The coefficients of the linear filtering are then squared to
yield local energy measures. Because the human visual sys-
tem is differentially sensitive to local image frequency com-
position, the third stage normalizes the squared coefficients
accordingly. Both the reference and distorted images are
subjected to the first three stages; the final detection stage
then determines the amount of distortion visible in the dis-
torted image.

2.1. Linear Transform

Many researchers have suggested a variety of linear trans-
forms which resemble the orientation and spatial frequency



Figure 1: Analysis/synthesis representation of the steerable
pyramid transform implemented. Hy is a high-pass filter;
the L;’s represent low-pass filters and the B;’s represent
orientation selective filters.

tuning of cortical receptor fields [10, 9, 16] or psychophysi-
cally determined visual sensors [5]. These linear transforms
often have the following characteristics: (1) octave spacing
and frequency bandwidths and (2) narrow orientation se-
lectivity. In addition to these considerations, we are also
concerned about the computational efficiency of the trans-
form (and its inverse).

In our previous work, we used a quadrature mirror filter
suite on a hexagonally-sampled image [14]. The transform
is orthogonal and thus is compact in its representation and
efficiently computed. Unfortunately, being orthogonal, the
basis functions describing a local region of an image severely
alias one another.! Moreover, as noted previously, the ori-
entation bandwidth of the hex-QMF’s are a little too broad.

In this paper, we adopt the steerable pyramid trans-
form introduced by Simoncelli et al [13]. The transform
decomposes the image locally into several spatial frequency
levels within which each level is further divided into a set
of orientation bands. Figure 1 shows an analysis/synthesis
representation of the transform. The basis functions for
each level of the pyramid have octave bandwidths and are
separated from those of neighboring levels by an octave as
well. In our implementation, we divide every level into six
orientation bands with bandwidths of approximately thirty
degrees. The orientation decomposition at each level is
steerable [4], i.e. the response of a filter tuned to any ori-
entation can be obtained through a linear combination of
the responses of the six basis filters computed at the same
location. This property is important as it implies that the
orientation decomposition is locally rotationally-invariant.
The pyramid is also designed to minimize the amount of
aliasing within each subband. Thus, the steerable pyramid,
unlike the hex-QMF transform, is overcomplete and non-
orthogonal. Even so, the transform is self-inverting which
allows the inverse to be efficiently computed despite its non-
orthogonality.

2.2. Squaring and Normalization

The front-end linear transform yields a set of coefficient val-
ues for every region in the image. These coefficients are next

1In quadrature mirror filters, the aliasing introduced during
subsampling is cancelled only during reconstruction.
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Figure 2: Response of the four normalized sensors as a func-
tion of log contrast for a sinusoidal grating image. The
responses saturate for high contrasts. The dynamic range
(the range of contrasts for which this sensor can discrim-
inate contrast effectively) of each sensor is limited to the
rising portion of each curve.

squared to obtain energy measures of the local orientation
and spatial frequency components.

Since the front-end transform is linear, a coefficient’s
magnitude increases linearly with the contrast of the input
image. Furthermore, these linear coeflicients are equally
sensitive (or insensitive) to perturbations of the input re-
gardless of image contrast. Squaring introduces a simple
contrast-dependence on sensitivity. However, squaring alone
does not account for masking effects. Furthermore, the
magnitude of the response of each sensor can potentially
be very large. On the other hand, the dynamic range of
the mechanisms in the visual system is limited. Normal-
ization is required to predict masking effects and to restrict
the range of response magnitudes of our hypothetical visual
Sensors.

The normalization scheme is divisive and is determined
by two parameters: an overall scaling constant, &k, and a
saturation constant, o2. Let A% be a coefficient of the front-
end linear transform. The squared and normalized output,
R? is computed as follows:
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where ¢ ranges over all sensors tuned to different orienta-
tions. In our implementation, ¢ € {0, 30, 60,90,120,150}.
We treat each spatial frequency level of the pyramid
separately and conduct this pooling only over sensors tuned
to different orientations. Hence, the normalized output of
a sensor tuned to orientation 6 is computed by dividing its
original squared response, (A9)2, by the sum of the squared
responses of a pool of sensors over all orientations in the
same region of the image. Since this summation, Z¢ (A¢)2,

includes the term, A%, that appears in the numerator (ie.,
each sensor suppresses itself), as long as o is nonzero, the
normalized sensor response will always be a value between
0 and k, saturating at high contrasts.

Each of the normalized sensors has a limited dynamic
range as shown in Figure 2. In other words, each sensor is
able to discriminate contrast differences only over a narrow



range of contrasts. This range is determined by the scal-
ing and saturation constants, k and o2, respectively. Hence,
several contrast normalization mechanisms, each having dif-
ferent k;’s and o2’s, are required to discriminate contrast
changes over the full range of contrasts. In the current im-
plementation of the model, we have four different contrast
discrimination bands (that is, four different choices of o?
and k;).

In summary, the front-end linear transform yields a set
of coefficients which measure the different orientation and
spatial frequency components in each local region of the im-
age. With squaring and multiple normalizations, the num-
ber of measurements for each local region is increased four-
fold. However, these local image measurements now ana-
lyze the image into its orientation, spatial frequency and
contrast components. Furthermore, masking effects over
orientation are captured by the pooling step in the normal-
ization.

2.3. Detection

The detection mechanism determines locally if a distortion
is visible. Let R,.r be a vector of normalized sensor re-
sponses from a local region in the reference image. Let Rg;st
be the vector of normalized responses from the correspond-
ing region in the distorted image. The detection mechanism
adopted by the model is the simple squared-error norm (i.e.,
the vector distance between R,.; and Rdist):

AR =||Ryes — Rasetl” (2)

One might include all of the normalized sensor responses
(all spatial positions, spatial frequencies, orientations, and
contrast discrimination bands) in the vectors, Ro and R1,
and compute a single number representing the overall de-
tectability of differences between the two images. We find
it more informative, however, to implement the detection
mechanism independently for each local patch (or block) of
the images.

The vector distance detection mechanism can be justi-
fied in terms of an ideal observer model.?> The vector of
normalized sensor responses from each image correspond to
the mean responses of noisy sensors. For the purposes of
the model, we assume the noise to be additive, independent,
identically-distributed, zero-mean Gaussian noise. Further-
more, the standard deviation of the noise is independent of
the mean response. With these assumptions and an ideal
observer model, the vector distance detection mechanism
gives the likelihood that the ideal observer would detect
the distortion. For example, assuming a standard devia-
tion of one for the noise, the observer is able to detect the
distortion 76% of the time when the squared difference is
exactly one. In signal detection theory, this corresponds
to a d' of one. In our model, we assume detection at this
efficiency. Hence, AR in equation (2) is equal to one at

threshold.

2 An ideal observer is assumed to have knowledge of the joint
probability distribution of all its mechanisms in response to each
stimulus. It then makes its decision so as to minimize its proba-
bility of error.

3. RESULTS

3.1. Model Fitting

The parameters of the model were fit to psychophysical
data from spatial pattern detection experiments [3, 1]. In
particular, data on contrast and orientation masking were
measured by Foley and Boynton [3]. The task in their ex-
periments was to detect a target Gabor pattern superim-
posed on a sinusoidal masker pattern. Target threshold
contrast versus masker contrast (TvC) curves for several
masker orientations were obtained from these experiments.
When the masker and target have the same orientation, the
TvC curve characterizes the sensitivity of the visual system
to the target as a function of contrast, a phenomenon known
as contrast masking. With different masker and target ori-
entations, the set of TvC curves together record the effect
of orientation masking. Baseline sensitivity to the target
is captured by all the TvC curves when masker contrast is
ZETO.

These TvC curves were used to tune the performance of
the model. The only free parameters of the model are the
pairs of scaling and saturation constants (kl and cri). We
found experimentally that four was the minimum number of
pairs required to fit the data. Since each level of the steer-
able pyramid has six orientation bands, there are a total
of twenty-four normalized sensor responses at each spatial
position. The task, therefore, was to pick the k;’s and o;’s
such that the model accurately predicts the empirical TvC
curves at various masker orientations.

Figure 3 shows the result of fitting the model to empir-
ical TvC data at different masker orientations. The fit to
0-degree masker orientation TvC data (0-degree TvC data)
is extremely good. The overall goodness of fit indicates that
four contrast tuning mechanisms are sufficient to reproduce
the properties described by the TvC data.

One important characteristic of the TvC data is the
presence (or absence) of a “dipper”. The presence of a dip-
per indicates that within that range of masker contrasts,
the masker facilitates the detection of the target. A pro-
nounced dipper can be observed in the 0-degree and 11.25-
degree TvC data indicating that facilitation occurs at low
contrasts for similarly oriented stimuli. The dipper is al-
most absent in the 22.5-degree TvC data (not shown) and
completely absent in TvC data involving greater orientation
differences.

3.2. Demonstration

In order to assess the model, we added bandpass distor-
tion to a reference image and then computed the percep-
tual distortion between the original and distorted images.
In particular, we distorted the second level of the steerable
pyramid in two ways: first to maximize perceptual distor-
tion, and second to minimize it. Figure 4 shows the original
Einstein image along with the two distorted images. The
perceived distortion is very different, yet the distortion was
added so that standard distortion measures (mean squared
error and peak signal-to-noise ratio) were very nearly the
same. These standard distortion measures are, therefore,
poor predictors of the perceived distortion.
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Figure 3: Result of fitting the model to empirical data.
Empirical data are denoted by filled circles. Solid curves
denote predicted target threshold contrasts.

Figure 4 also shows the perceptual distortion images
for the minimally and maximally distorted Einstein images.
Darker regions correspond to areas of lower perceptual dis-
tortion while brighter regions indicate areas of greater per-
ceptual distortion.

4. CONCLUSION

We have described a model of perceptual distortion that
is consistent with spatial pattern psychophysics. In par-
ticular, we have shown that the model explains both con-
trast and orientation masking. However, the accuracy of
the model with regard to spatial frequency masking has
not been determined. Also, the effects of spatial summa-
tion and different mean luminances have not been explored.
While the detection mechanism can be explained in terms
of an ideal observer model, its accuracy in predicting empir-
ical psychometric curves needs to be verified as well. These
modeling issues and practical concerns such as demonstrat-
ing the usefulness of the model in applications like image
data compression we defer to future work.
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Figure 4: (Top) Original Einstein image. (Middle-left) Image was distorted so as to minimize perceptual distortion (RMSE
= 9.01, peak-SNR = 29.04 dB). (Middle-right) Image was distorted so as to maximize perceptual distortion (RMSE =
8.50, peak-SNR = 29.54 dB). Both distorted images have nearly identical mean-squared error and peak-SNR. The overall
perceptual-distortion-measures for the left and right images are 3.59 and 4.64 respectively. (Bottom-left) Perceptual dis-
tortion measured from the minimally distorted image. Darker regions correspond to areas of lower perceptual distortion
while brighter regions indicate areas of greater perceptual distortion. (Bottom-right) Perceptual distortion measured from
the maximally distorted image.



