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Supplemental Data
Figure S1. Additional contrast-response functions (see Figure 4)
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Figure S1

A. Comparing the effects of different zero-response subtractions on the contrast-response function.  A.1 
Contrast-response functions for all visual areas (V1, V2, V3, and hV4) for one representative observer. Top row, the 
response to the zero-contrast stimulus (blank) focal non-target was subtracted from all  focal-target and non-target 
responses. The response to the zero-contrast stimulus distributed  non-target was subtracted from all distributed-target 
and non-target responses. Bottom row, the response to the zero-contrast stimulus focal non-target was subtracted 
from all cue conditions.   A.2  Contrast-response function for all visual areas (V1, V2, V3, and hV4) averaged across 
observers. Same conventions as A.1. See also Supplemental Experimental Procedures: Minimizing the potential 
effects of anticipatory BOLD components.   

B. Effect of attention on the contrast-response function at several coherence cut-offs.   B.1 V1 contrast-
response function from one representative observer. Each panel displays contrast-response functions averaged 
across all voxels which met or exceeded the specified coherence cutoff (coherence, co = 0.3, 0.5, 0.7, 0.9) in the 
phase mapped localizer.   B.2  Effect of attention on the contrast-response functions (average across observers) at 
two different coherence cut-off levels (co = 0.5 and 0.7, at which it was possible to reliably define ROIs in each 
observer and visual  area). See also Supplemental Experimental Procedures: Separating BOLD cortical 
responses to spatially distant stimuli.
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Figure S2. Additional model fits (See Figure 8)

Figure S2
A. Robustness of the sensitivity- and selection-
model results to removing global anticipatory 
activity separately for focal and distributed cue 
trials. Data in these panels are obtained after the 
response to the focal  cue, non-target 0-contrast 
stimulus was subtracted from the focal  cue target 
stimulus and the response to the distributed cue, 
non-target 0-contrast stimulus was subtracted from 
the distributed cue target stimulus. A.1 Sensitivity 
model results. Sensory noise standard deviations 
(σf) for the focal-cue condition plotted against that 
of the distributed-cue (σf) condition. Shades of 
color indicate different visual  areas V1 to hV4. 
Symbols indicate different observers, averages 
across subjects are represented by the larger 
circles.   A.2 Ratio of noise standard deviation (σ) 
for focal- to the distributed-cue trials estimated by 
the selection (left) and the sensitivity (right) models. 
Same conven t i ons as F ig 8 . See a l so 
Supplemental Experimental Procedures: 
Minimizing the potential effects of anticipatory 
BOLD components.

B. Robustness of the sensitivity- and selection-
model results to the choice of coherence cut-
off.   
Panels left to right show results from three 
coherence cut-off used in the localizer scan to 
accept voxels for the analysis (0.3, 0.5 and 0.7). 
Same conven t ions as above . See a lso 
Supplemental Experimental Procedures: 
Separating BOLD cortical responses to 
spatially distant stimuli.

C. Robustness of the sensitivity- and selection-
model results to the choice of functional form 
used to interpolate data.   To ensure that our 
conclusions about the sensitivity and selection 
models were not biased by the particular functional 
form used to interpolate the data, we either used a 
fit based on Eqs. 3 and 4 (left column) or two 
simpler and not theoretically motivated equations 
that fit the data reasonably well and could be used 
to interpolate the contrast-discr iminat ion 
performance for fitting the sensitivity model; a 
skewed gaussian function, (middle column, see Eq. 
S2) or a third order polynomial, (right column). 

Each functional  form was first fit to the contrast-
discrimination data by least-squared error minimization. Then the sensitivity model  was used to fit the forms to the 
fMRI contrast-response functions. These fits were then used to interpolate the contrast-response functions for the 
selection model. Individual panels have same conventions as above.
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A  Effects of different zero-response subtractions

B  Robustness of the models results to the choice of coherence cut-off 

C  Models results with different functional forms of the contrast-
    discrimination functions
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Supplemental Experimental Procedures

Behavioral protocol

Observers performed a contrast-discrimination task while fMRI responses were measured. For the 

duration of  each scan (6.5 minutes, 8-10 scans per session), observers maintained fixation on a black-

cross (0.5° x 0.5° of visual angle, 1.24 cd/m2) presented at the center of a gray screen (550 cd/m2). Each 

trial lasted 4 s and the intertrial interval was pseudo-randomized (ITI: 4, 6.4 or 8 s). Each trial started with a 

1 s cue-interval; an interval long enough to ensure an asymptotic sustained spatial attention effect. During 

this cue interval (and lasting through the end of the presentation of the discrimination stimuli), either one 

(focal-cue) or four (distributed-cue) black arrows appeared at fixation (1.24 cd/m2, 0.7° long and 0.5° wide, 

appearing 0.5° offset from fixation along the 45° diagonals, see Fig. 2). Single arrow  focal-cues indicated 

with 100% validity the target location.  The distributed cues indicated that the target was equally likely to 

appear at any of  the 4 locations. Immediately after, the stimuli appeared at 6º  eccentricity in two 600 ms 

intervals (1st and 2nd intervals) separated by a 200 ms inter-stimulus-interval (ISI). Stimuli were 2-cpd 

vertical sinusoidal gratings (5º diameter), counter-phase flickering at 5 Hz. A response cue appeared 

400 ms after stimulus offset and indicated the target location. Observers were given 1200 ms to respond.

Observers performed a 2-interval-forced-choice discrimination task on these stimuli. On each trial 

the contrasts of  the four stimuli were randomly selected out of eight possible contrasts (pedestal contrasts, 

0, 1.75, 3.5, 7, 14, 28, 57 and 84%). One of  the four stimuli (target) was presented with a slightly higher 

contrast (i.e., a small contrast increment, Δc, was added to the pedestal contrast) in one of the two 

intervals. The rest of the stimuli (non-targets) maintained the same contrast in both stimulus intervals. The 

response cue indicated the target location. Observers were instructed to report the interval in which the 

target contrast was higher by pressing the “1” or “2” key on an MRI compatible keypad to indicate that the 

contrast was higher in the 1st or the 2nd interval. The Δc presented in each trial was set by sixteen 

independent and randomly interleaved adaptive staircase procedures (QUEST (Watson and Pelli, 1983)), 

one for each pedestal contrast and cue condition. These independent staircases were set to maintain 

Pestilli, Carrasco, Heeger & Gardner (2011) Neuron                                         ! Supplemental Information

3/18



observers performance at 76% correct, which under the assumption of  normally-distributed and 

statistically-independent noise without bias, is equivalent to a discriminability (d´) of  1. This procedure 

ensured that we tested many Δc’s near threshold contrast and balanced task difficulty across pedestals 

and cue conditions, which prevented a potential confound between attentional effects and task difficulty.

To minimize spatial and temporal uncertainty, the task design included the following two features. 

First, to reduce the spatial uncertainty associated with the stimulus locations, we presented four circular 

frames (6° eccentricity, 5° internal diameter, 5.1° external diameter, 1.24 cd/m2) around the stimulus 

locations throughout the duration of the scan, and the response-cue (green arrow, in interval 7) always 

indicated the target location. Second, to reduce temporal uncertainty, the time from cue onset to stimulus 

presentation was fixed, and the fixation cross turned white (1100 cd/m2) to indicate the time intervals during 

which the stimuli were presented (Fig. 2, intervals 3 and 5). 

To ensure that no information about the target location could be gained by comparison with the 

contrasts of neighboring distracters, their pedestal contrasts were randomized. On each trial we chose the 

distracter contrasts from the set of  pedestal contrasts such that one would have the same contrast as the 

target, another would have a lower contrast and the third would have a higher contrast. On trials in which 

the target contrast was set to the highest or lowest contrast in the set of pedestals, we set the distracter 

contrasts to 28, 57 and 84% and 0, 1.75 and 3.5%, respectively. 

 To test the effect of high contrast distracters on behavioral performance, we used a slightly modified 

behavioral protocol. We used pedestal contrasts of  0.044, 7, 14, 28 and 84% contrast. In the control (low 

contrast distracter) condition, we paired these with distracters chosen to be ¼, ½  and 1.5 times the 

pedestal contrast (except in the case of the 84% contrast pedestal in which we used an 84% contrast 

distracter because 1.5 times the pedestal contrast was not achievable). In the high contrast distracter 

condition the lowest contrast distracter from the control condition was replaced with a distracter of 84% 

contrast. To prevent observers from adopting a cognitive strategy in which they recognized that an 84% 

contrast is unlikely to be a target (e.g., by directing focal attention away from that location), we interleaved 

two “decoy” conditions for each cue condition in which the target was made to be 84% and paired with the 
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same low  contrast distracters as presented in the two lowest pedestal conditions. These trials were 

discarded in subsequent analysis. Each observer ran several hundred training trials before running the 

experiment which consisted of between 2000-4000 trials. All other details of  the experiment were as 

described above.

Psychophysical contrast-discrimination functions

 Contrast-discrimination thresholds were computed separately for each pedestal contrast and each 

cue condition. During each scanning session, one staircase of forty trials was completed for each cue 

condition and each pedestal contrast, for a total of  80 staircases per observer (5 staircases per pedestal 

contrast x 8 pedestals x 2 attention cue conditions). Thresholds were computed from the subject’s 

responses by fitting a Weibull function using a maximum likelihood procedure:

 
p Δc( ) = 1

2
+
1
2
−δ

$

%
&

'

(
) 1− e− Δc ε( )β( )

,   [S1]

where p(Δc) is the probability of being correct for contrast increment Δc, δ is the fraction of errors at the 

highest Δc, ε is the midpoint of the abscissa as defined by the position of the upper- and lower-asymptote 

and it determines the contrast threshold, and β controls the steepness of  the psychometric function. 

Thresholds were computed by reading out of  Eq. S1 the contrast (Δc) corresponding to 76% correct. This 

was repeated for each pedestal contrast, and contrast-discrimination functions were constructed by plotting 

these thresholds as a function of pedestal contrast.

MRI acquisition and preprocessing

 MRI data were acquired on a 3 Tesla Allegra head-only scanner (Siemens, Erlangen, Germany) 

using an NM-011 head coil to transmit and an NMSC-021 four-channel phased array surface coil to receive 

(NOVA Medical, Wakefield, MA). Padding was used to minimize observers’ head movements; in addition, a 

bite bar was used with observer 1.

 A high resolution anatomy of each observer’s brain was used to generate flattened representations 

of the cortex and to align data across scanning sessions. We acquired three 3D T1-weighted anatomical 

Pestilli, Carrasco, Heeger & Gardner (2011) Neuron                                         ! Supplemental Information

5/18



volumes (MPRAGE TR 1.5 s, TI 900 ms, TE 3 ms, flip angle 1º, voxel size 1x1x1 mm) in a single scanning 

session for each observer. These three images were coregistered and averaged. We then used the public 

domain software FreeSurfer (URL:surfer.nmr.mgh.harvard.edu), to segment the gray matter from these 

averaged anatomical volumes. All subsequent analyses were constrained only to voxels that intersected 

with the gray matter.

 An anatomical volume with the same slice prescription as the functional images was acquired at the 

beginning of  each scanning session (2D T1-weighted image, MPRAGE slice selective inversion recovery, 

TR 1400 ms, TI 900 ms, TE 3.79 ms, 14 or 27 slices, voxel size 1.5x1.5x2.5 mm with 0.5 mm gap between 

slices). We used image-based registration to find the best transformation that aligned these “in-plane” 

anatomical images to the “canonical” (high resolution) anatomical volume. 

 Functional scans were acquired with T2*-weighted, gradient recalled echo-planar imaging to 

measure blood oxygen level-dependent (BOLD) changes in image intensity. We performed retinotopic 

mapping by acquiring 27 slices with a TR of  1.5 s (TE 30 ms, FA 75º, voxel size 3x3x3 mm, grid size 

64x64). We performed the contrast-discrimination experiment by acquiring 14 slices with a TR of 0.8 s (TE 

30 ms, FA 57º, voxel size 3x3x3 mm, grid size 64x64). Slices were perpendicular to the calcarine sulcus. 

The first two volumes in each scan were discarded to allow  longitudinal magnetization to reach steady-

state. 

 Functional data for each scan were preprocessed using standard procedures for motion 

compensation, linearly detrended and high-pass filtered with a cutoff frequency of  0.01 Hz to remove low 

frequency drifts, and converted to percent signal change by dividing the time-course of  each voxel by its 

mean image intensity over the length of one scan. Time-courses from each session of  the main experiment 

were co-registered using linear interpolation and then concatenated.

Stimulus presentation

Visual stimuli were presented on a 10-bit LCD projector (Eiki LC-XG100, Rancho Santa Margarita, CA; 

resolution 1024x768 pixels). Observers viewed the stimuli through a mirror (attached to the head coil) as 

projected on a TechPlex 150 rear-projection screen (Stewart Film Corp., Torrance, CA). The screen was 
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attached at the end of the magnet bore at a viewing distance of 57 cm, yielding a field of  view  of  29x22°. 

Stimuli were generated using Matlab (The Mathworks Inc., Natick, MA) and MGL (URL:http://

justingardner.net/mgl). The projector was gamma-corrected with custom Matlab code using a PR650 

SpectraColorimeter  (Photo Research, Chatsworth, CA).

Retinotopic mapping

 Visual areas V1-hV4 were identified, separately for each observer, based on retinotopic mapping of 

visual field eccentricity and polar angle (Wandell et al., 2007).  Visual area boundaries were drawn by hand 

by examining coherence, amplitude, and phase maps on flattened representations of the cortical surface. 

We used published conventions for defining visual field boundaries based on phase reversals of the 

response to rotating wedge stimuli (Wandell et al., 2007). Data were acquired and analyzed for visual areas 

V1, V2, V3 and hV4. We note that there is some controversy over the definition of  area hV4. We used the 

definition of hV4 proposed by Wandell et al. (Wandell et al., 2007), because the combined results of  our 

retinotopic mapping and of our stimulus localizer agreed with such definition. Our conclusions would not 

have differed qualitatively had we adopted any of the other proposed definitions.

Visual field quadrant localizer

 The locations of the visual stimuli in the main experiment (5° in diameter gratings centered at 6° 

eccentricity along the four 45° diagonals) were mapped using a phased-locked, block-design localizer. 

Localizer scans (5 minutes and 20 s long, 400 0.8 s TRs) were run at the beginning and end of each 

scanning session, leading to a total of 30 localizer-scans per observer (20 for observer 2).  Each localizer 

scan started with a grating stimulus presented in the top-right quadrant. Grating stimuli were presented 

contrast reversing at 5 Hz, and moved in clockwise direction from the top-right to the top-left quadrants, 

with a period of  24 s and a 50% duty cycle. This stimulus cycle was repeated 13 times in each scan. The 

first 40 TRs were then discarded to allow  for magnetic saturation and steady state response. Data were 

averaged across all scans and analyzed using the same methods (coherence and phase maps) as for the 

retinotopic mapping.  We restricted each visual area to regions corresponding retinotopically to the stimulus 

aperture in one quadrant by mapping the phase of the localizer data to the corresponding stimulus 

Pestilli, Carrasco, Heeger & Gardner (2011) Neuron                                         ! Supplemental Information

7/18

http://justingardner.net/mgl
http://justingardner.net/mgl
http://justingardner.net/mgl
http://justingardner.net/mgl


quadrant.  All analyses in the main experiment were performed on data sampled from the gray matter 

portion of these regions using different coherence cutoff thresholds (see online Supplemental Data and 

Fig. S1B and S2B for more details).

Separating BOLD cortical responses to spatially distant stimuli

 Our analyses depended on the ability to clearly separate voxels responding to different stimulus 

locations. In the current study we: (a) tested (in pilot experiments) a range of stimulus parameters (stimulus 

size, eccentricity, duration and flicker rate) to find those parameters that would allow  us to most reliably 

define independent hemodynamic responses to each stimulus location. (b) Used a phase-mapped localizer 

to define regions responding to each stimulus location, (c) Repeated all the analyses reported in the main 

text with different voxel-selection criteria (localizer coherence level, see Experimental Procedures for more 

details) to ensure that the size of the region used to represent each location would not change our 

conclusions.

 The phase-mapped localizer we 

used consisted of two 5-Hz counter-

phasing flickering gratings that were 

presented at each of the stimulus 

locations in sequence (Fig. S3 A, see 

Visual field quadrant localizer 

above for details). Voxels were 

selected for further analysis if they 

responded to the stimulus (coherence 

value 0.7 or 0.5) and intersected the 

gray matter. Voxels were classified 

according to which stimulus they 

responded to (phase of response to 

localizer, Fig. S3 B). Overall, we found very little overlap between phases (different colors, Fig. S3 B) that 
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coded different stimulus locations. Nonetheless, at the coherence levels tested (0.3, 0.5 and 0.7), it was 

possible to identify some voxels showing a phase inconsistent with the rest of  the voxels for the same 

stimulus location (black ovals). These mislocalized voxels, likely due to partial-voluming artifacts across a 

sulcus, were removed from further analysis. 

fMRI contrast-response functions

The mean fMRI response time-courses were estimated using deconvolution, i.e., linear regression. 

Specifically, we computed the mean responses for 20.8 s following the stimulus presentations (any 

response overlaps were assumed to sum linearly), averaged across trials and across voxels in each visual 

area, but separately for each pedestal contrast and each stimulus-cue combination. The response time-

course for the 0% contrast focal-cue condition was used as a baseline and was subtracted from each of  the 

other response time-courses, to remove any non-selective component of  the responses, i.e., any 

component of the responses not dependent on the pedestal contrast or stimulus-cue combination, but time 

locked to the beginning of each trial. More specifically, we computed a baseline response time-course that 

consisted of the response to the 0% contrast focal-cue condition at every trial, by convolving the response 

to the 0% contrast focal-cue condition estimated by deconvolution with a time-course that had a one at the 

beginning of  each trial and zeros elsewhere. We then subtracted this baseline response time-course from 

the original time-course and recomputed the deconvolution to obtain the baseline subtracted responses. 

For some of  the analyses we also subtracted the response to the 0% contrast in the distributed-cue 

condition (see Fig. S1A). This resulted in a set of response time-courses that showed a monotonic increase 

in response amplitudes for each cue condition (Fig. 4). The error bars on these curves corresponded to ±1 

standard error of  the mean across stimulus repetitions, and were computed by multiplying the inverse of 

the covariance of  the regression matrix with the sum of squares of  the residual of  the model fit divided by t–

m, where t is the number of time points in the scan and m is the number of volumes (26) for which the 

mean response time courses were computed multiplied by the number of different response types (32). 

Response amplitudes were extracted from these response time-courses. Specifically, we computed 

the mean response time-course, averaging across pedestal contrasts and stimulus-cue combinations, and 

used that as an estimate of  the hemodynamic response function for each visual area and each observer. 
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The response amplitudes were then computed with linear regression, scaling the average response time-

course to fit each individual response time-course (corresponding to a single pedestal contrast and 

stimulus-cue combination). Contrast-response functions were obtained by plotting these response 

amplitudes (Fig. 4B,C).

The contrast-response functions were fit (nonlinear least-squares) using Eq. 3 (see Fig. 4). There 

were a total of  32 data points for each visual cortical area: 8 pedestal contrasts X 4 stimulus-cue 

combinations. These data were fit with 8 free parameters: bft (baseline response for focal-cue target), bfn 

(baseline response for focal-cue non-target), bdt (baseline response for distributed cue target), bdn (baseline 

response for distributed cue non-target), gr, gc, s, and q (response-gain, contrast-gain, and exponents for 

all stimulus-cue combinations). The responses were averaged across trials in which slightly different 

contrasts were presented so we used the average contrast (averaged across the two stimulus intervals and 

averaged across trials) when plotting and fitting the contrast-response functions.

Minimizing the potential effects of anticipatory BOLD components

Sirotin and Das (Sirotin and Das, 2009) reported a spatially global hemodynamic activity in V1 of monkeys 

trained in a periodic fixation task. This activity was present even in the absence of  visual stimulation, 

preceded the beginning of  each trial, and did not correlate with either single or multi-unit activity or local 

field potentials. There has been some debate regarding the nature of this anticipatory hemodynamic activity 

(Handwerker and Bandettini, 2011; Kleinschmidt and Muller, 2010; Logothetis, 2010).  To avoid any 

potential confound that this might have created for our data analysis, we took the following steps:  (1) The 

effect reported by Sirotin and Das (2009) was shown only for extremely periodic trials. We randomized trial 

onset so that the observer could not anticipate the timing of  the start of the next trial. (2) The hemodynamic 

activity observed by Sirotin and Das was reported to be spatially global. We used the response to the 0% 

contrast focal-cue condition as a baseline (i.e. a measurement of any potential spatially-global anticipatory 

hemodynamic activity) and subtracted that response out from all of  the other locations/conditions (see fMRI 

contrast-response functions, above for details). (3) The effect reported by Sirotin and Das was 

anticipatory, i.e. it started before the beginning of a trial. We randomized the order of the focal-cue and 
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distributed-cue trials so that if  this anticipatory hemodynamic activity emerged it would have been constant 

for both types of trials.  Nonetheless, to test whether our results were robust to any anticipatory activity that 

was different between the two trial types, we subtracted the response to the 0% contrast distributed non-

target stimuli from all responses from the distributed cue trials and subtracted the response to the 0% 

contrast focal non-target stimuli from all responses from the focal cue trials; hereafter we will refer to this 

subtraction as “by-trial.”  As expected, the by-trial subtraction nearly eliminated the difference between 

distributed non-target and focal non-target conditions (by definition these two curves started from the same 

baseline).  The overall shape of the various contrast-response functions was very similar between the 

original and the by-trial subtractions (Fig. S1 A.1 and A.2).  The results of  the fits of the sensitivity (Fig. S2 

A.1) and the selection model (Fig. S2 A.2) were qualitatively similar with both subtraction procedures, thus 

demonstrating that removing anticipatory hemodynamic activity separately for the focal-cue and distributed-

cue trials did not affect our main conclusions.

Alternate functional forms used to fit contrast-response

To ensure that our conclusions about the sensitivity and selection models were not biased by this 

particular functional form of  the contrast-discrimination functions, we also used two less theoretically 

motivated equations to fit the data: a skewed gaussian and a polynomial of third order.  The skewed 

Gaussian, 

 Δc(c)=Δcmaxe
− log(c cmean )

csd +ω log(c cmean )
$

%
&

'

(
)
2

− e
−
1
ω2

,  [S2]

had 4 free parameters for each cue condition, where c is the pedestal contrast, ∆cmax is the maximum 

measured discrimination threshold, cmean and csd are the center and the spread of  the contrast-

discrimination function, and ω controls the skew  of the function. The third-order polynomial had 2 free 

parameters for each cue condition. Both functions fit the data reasonably well and provided a smooth 

representation of the data. 
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Fit procedure for the sensitivity model

The sensitivity model predicted contrast-response functions from the measured contrast-

discrimination functions by applying the d’ equation (Fig. S4, blue box). The main parameters of  the model 

were the standard deviation of the noise (σ in the d’ equation) and the baseline response (b), which were 

adjusted to achieve the best fit of the contrast-response functions. To interpolate intermediate values, 

contrast-discrimination functions were fit with a parameterized form (Eqs. 3 and 4, the exact form of which 

was not critical for our conclusions – see Fig. S2C). 

More specifically, For each cortical area we fit the focal-cue and distributed-cue target contrast-

response functions (16 data points) using 4 free parameters in the sensitivity model: bft (baseline response 

for focal-cue target), bdt (baseline 

response for distributed cue 

ta rge t ) , σ f (no ise s tandard 

deviation for focal cue), σd (noise 

standard deviation for distributed 

cue). The contrast-discrimination 

functions (16 data points) which 

these fits were based on were 

interpolated with smooth functions 

for extrapolating intermediate 

values needed by the sensitivity 

model using Eqs. 3-4 (a total of 6 

parameters, gr, s, q, gc, �, and ρ, 

see above, for each contrast-

discrimination function).

The fit routine proceeded as 

follows: for any particular value of 
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Figure S4. Sensitivity model fit procedure. Contrast-Response Functions (right column, B, 
D, F) were predicted from fits of contrast-discrimination functions (left  column A, C and E) 
using an iterative procedure that adjusted  the noise standard deviation (σ, middle panels) and 
baseline response, b, to achieve the best fit  to  the measured contrast-response functions (see 
text for details) by minimizing the least-squares error between the predicted contrast-response 
function and the measured data.



σ and b, the first point on the contrast-response function (c0=0% contrast) was set to be the baseline 

response (b; Fig. S4 B, in red). The next contrast for which a response was estimated was taken from the 

contrast-discrimination function (Fig. S4 C, blue); c1=c0+Δc0 where Δc0 was the discrimination threshold for 

contrast c0. The contrast response at c1 was then estimated using the equation for d’ (blue box) as R(c1)=b

+σ (Fig. S4 D, blue). The next contrast was then chosen in the same way, by adding to c1 the contrast 

threshold value Δc1 obtained from the contrast-discrimination function (Fig. S4 E, green); c2=c1+Δc1. The 

response at contrast c2 was then estimated by using the d’ equation  R(c2)= R(c1) +σ. This procedure was 

iterated until a full contrast-response function was predicted. σ and b were then adjusted to minimize the 

least-squares error between the predicted contrast-response function and the measured data. 

Fit procedure for the selection model 

 The selection model predicted contrast discrimination performance based on measured contrast-

response functions by first combining responses from different locations together using a pooling equation 

(Eq. 1) and then applying the equation for d’ to these pooled responses. The main model parameters were 

the standard deviation of the response at each stimulus location (σ) and the degree to which the pooling 

rule implemented an equally-weighted average to a winner-take-all weighting (k). σ and k were adjusted to 

provide the best fit of  the contrast-discrimination functions. To interpolate intermediate values, a 

parameterized form of the measured contrast-response function was used (Eq. 3 without the exponent s). 

 More precisely, for each cortical area we fit the contrast-discrimination functions (16 data 

points, 8 pedestal contrasts X 2 cues) using the two parameters of the selection model; σ (a single 

noise standard deviation for both the focal cue and distributed cue) and k  (the exponent for the 

max-pooling rule which controls whether the pooling rule acts  like averaging or max-pooling). The 

three contrast-response functions (focal-cue target, focal-cue non-target and distributed) were 

interpolated using a simplified version of Eq. 3 (a Naka-Rushton type equation), which lacked the 

exponent s, and therefore had 4 parameters b, gr, q, and gc. For the main analysis, this Naka-

Rushton equation was fit simultaneously to the contrast-response function data with the rest of the 
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model. The particular form of the 

parameterization used to interpolate the 

contrast-response functions was not 

essential for our results, nor was it 

important to simultaneously fit the 

contrast-response function with the rest 

o f t h e m o d e l . U s i n g t h e 

parameterization fit by the sensitivity 

model (a combination of Eqs. 2-4) or 

simplified forms based on a skewed-

gaussian (4 parameters) and a 2nd 

order polynomial whose parameters 

were fixed before fitting the selection 

model, did not qualitatively change the 

results (see Supplemental Data Fig. 

S2C).

 The fit procedure simulated the performance of an ideal observer on 10,000 randomly created trials, 

ensuring that the simulated percent correct did not vary more than approximately 1/100th of  a percent. The 

response at each stimulus location and in each interval was taken as a random draw  from a gaussian 

distribution whose mean was set to that of the response for each contrast from the relevant measured 

contrast-response function and whose standard deviation was the model parameter σ (Fig. S5 A,C and D). 

The four responses in each interval were then pooled using Eq. 1 (Fig. S5 B) into a single value. If the 

larger of these two pooled responses was in the same interval as the increment in contrast, the trial was 

marked as correct. We then found the ∆c that produced  correct responses in 76% of  the simulated trials 
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Figure S5. Selection model fit procedure. A. Idealized representation of the 
contrast-response functions measured at each stimulus location. Vertical gray 
arrows show the contrast at each stimulus location for the simulated trial. 
Horizontal arrows show the mean response. i is an index used in equation B. The 
pooling rule implements  a way in which responses can be combined; responses to 
each stimulus in each interval are summed and elevated to an exponent, k. When 
k is large the largest response dominates the pooling operation, when k is 1 
responses are averaged together with equal weighting. c Pooled response 
distributions  for the two intervals of the trial taken from the contrast-response 
functions in  (A) using the pooling rule in  (B). Contrast-Discrimination Functions 
(E) can be fit by finding the σ and k such that the distributions  in c have a d’  of 1 
(the d’ value at which thresholds were collected during the experiment).



(d’=1, assuming unbiased responses and independent identically distributed gaussian noise) for each 

pedestal contrast c (Fig. S5 E). Finally, σ and k were adjusted to produce the best fit of the contrast 

discrimination data using least-squares minimization.

Statistical tests

Statistical tests were performed to assess three separate effects of stimulus-cue combination on the 

contrast-response functions; specifically,  whether the response differences could be explained only by (1) 

a change in gr (a response-gain change (Williford and Maunsell, 2006)), (2) a change in gc (a contrast-gain 

change (Martinez-Trujillo and Treue, 2002; Reynolds et al., 2000; Williford and Maunsell, 2006)), (3) a 

change in b (a baseline shift (Buracas and Boynton, 2007; Murray, 2008)). Using a nested hypothesis test, 

each effect (1, 2 or 3) was compared with the “full” model in which all three parameters were allowed to 

freely vary across stimulus-cue combinations to fit the data. An F-test statistic was used to compare the r2 

obtained with the full model to that obtained with the reduced models (1, 2 or 3):

 ,  [S3]

where df1=ka–ki, df2=n–ka–1, ka is the number of  parameters for the full model, ki is the number of 

parameters for the reduced models, and n is the number of observations (8 contrasts times 4 stimulus-cue 

combinations). The parameter ka was set to 14: 4 stimulus-cue combinations times the number of free 

parameters (gc, gr, b) plus the 2 parameters set to be identical across stimulus-cue combinations (s, q). The 

parameter ki was set to 8: 4 stimulus-cue combinations times the 1 free parameter (either gr, gc or b) plus 

the 4 parameters fixed across cue conditions (s, q and the other parameters not being tested). We then 

used the F distribution to estimate the probability that the full model did not differ significantly from the 

reduced model.

Statistical tests in individual observers

We used a parametric resampling method to test whether the results of the sensory noise reduction 

and efficient selection fits were statistically significant in each individual observer and visual area. To do so, 

for each stimulus contrast and cue condition we resampled (with replacement) 100 times from a gaussian 
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distribution with the mean response amplitude and standard deviation computed (using linear regression) 

for each of the 4 trial types and 8 contrasts. From each of  these simulated data sets, we fit contrast-

response functions and estimated the models’ parameters, using the same analyses as for the real data. 

We then compiled the bootstrap distributions of the baseline differences, bd-bf, and sensory noise ratios, σd/

σf, and computed p-values based on the number of  baseline differences less than 0 and the number of 

noise ratios less than 1

Model comparisons

Model fits were compared in two different ways, accounting for differences in number of model 

parameters. One, we computed cross-validated r2 in which we fit each model on half  the data and 

evaluated the explained variance on the other half of  the data (any over-fitting with more model parameters 

would tend to reduce the r2 of the model on the left-out data). Second, we computed AIC (An Information 

Criteria) values with the model residuals and number of parameters using a standard formula which 

assumes normally distributed errors with constant variance (Burnham, 2002). Smaller AIC values indicate 

better model fits. AIC is only valid as a relative measure, so we report differences in AIC.

Eye position monitoring

 Eye position was monitored using an MRI-compatible, infrared-video eye tracking system (ASL 

Model-504, Applied Science Laboratories, Bedford, MA). At the beginning of  each functional scan, eye 

position was calibrated; observers fixated a yellow  dot that appeared first at the center of the screen and 

then moved to 5° eccentricity to the left, right, above, and below  screen center. Data from this calibration 

were used to find the best affine transformation (translation, rotation, linear scaling, and linear shear) of the 

raw  eye data to eye position in degrees of visual angle. Stable corneal- and pupil-reflection data were 

collected during 24 scans. Trial-triggered average (vertical and horizontal) eye position was computed for 

each trial from stimulus onset to offset, collapsing trials across scans in each scanning session. The 

standard deviation of  the horizontal and vertical eye positions across trials was less then 0.75º of visual 

angle. The eye position was at central fixation for both focal- and distributed-cue trials. The average eye 

position in either trial type did not significantly differ from the central fixation (two-tailed 95% confidence 
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intervals computed by Hotelling T2 statistics), and there was no systematic difference in average eye 

position between focal- and distributed-cue trials (single-tailed 95% confidence intervals computed by 

Hotelling T2 statistics).
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