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Simple cells in cat striate cortex are selective for spatial frequency. It is widely believed that this
selectivity arises simply because of the way in which the neurons sum inputs from the lateral
geniculate nucleus. Alternate models, however, advocate the need for frequency-specific inhibitory
mechanisms to refine the spatial frequency selectivity. Indeed, simple cell responses are often
suppressed by superimposing stimuli with spatial frequencies that flank the neuron’s preferred
spatial frequency. In this article, we compare two models of simple cell responses head-to-head. One
of these models, the flanking-suppression model, includes an inhibitory mechanism that is specific to
frequencies that flank the neuron’s preferred spatial frequency. The other model, the nonspecific-
suppression model, includes a suppressive mechanism that is very broadly tuned for spatial
frequency. Both models also include a rectification nonlinearity and both may include an additional
accelerating (e.g., squaring) output nonlinearity. We demonstrate that both models can be
consistent with the apparent flanking suppression. However, based on other experimental results,
we argue that the nonspecific-suppression model is more plausible. We conclude that the
suppression is probably broadly tuned for spatial frequency and that the apparent flanking
suppression is actually due to distortions introduced by an accelerating output nonlinearity. © 1997
Elsevier Science Ltd.
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INTRODUCTION frequency-specific inhibition (Movshon et al., 1978b;
DeValois & Tootell, 1983; DeValois et al., 1985;
Bauman & Bonds, 1991). Bauman & Bonds (1991), for
example, recorded from simple cells while presenting
tuning curves typically have relatively narrow band- stimuli made of superimposed pairs of moving grating
widths (e.g., Campbell ¢ al.. 1969: Maffei & Fiorentini, patterns. The first grating _(C'd““? the base .gratmg) was
1973; Robson et al.. 1988). However. different models choseq to hgvc the neuron’s preferred s:patlal frequency
and orientation. The second (mask) grating had the same
orientation, but its spatial frequency was varied. Bauman
and Bonds found that the response to the base grating was
often suppressed by superimposing the mask grating. The
suppression depended on the spatial frequency of the
mask grating, and it was greatest for mask frequencies
that flanked the neuron’s preferred spatial frequency.
need for frequency-specific inhibitory mechanisms to Thes§ resu.lts., of Course, v.'iolate a strictly linea'r model. A
refine the spatial frequency selectivity (c.g.. Bauman & plausnblc 1nterpretat101.1‘ls. th:dI. the suppression results
Bonds. 1991). from a frequency-specific inhibitory mechanism.

On the other hand. there is evidence that the
suppression is broadly tuned for spatial frequency. Bonds
- (1989), for example, performed an experiment much like
“Instituto de Optica “Daza de Valdes™ (C.S.L.C.). Serrano 121. 28006, that described above. in which suppression was quanti-
- Mudrid. Spain. . . fied by superimposing a pair of moving gratings. In this
+tDepartment of Psvchology. Stanford University. Stanford. CA 94305, ] .

US.A. ’ case, however, the mask grating was rotated to a very
$To whom all correspondence should be addressed [Fax: +1-415-725- differcnt orientation, at the limit of the neuron’s

5699 Email: heegert white stanford.edu. orientation tuning curve, so that the mask grating never

Simple cells in cat striate cortex (area 17) are selective for
spatial frequency: each neuron responds most vigorously
to a preferred spatial frequency. and the spatial frequency

have been proposed for the mechanism(s) underlying
spatial frequency selectivity. Lincar models (c.g., Mov-
shon er al., 1978a) purport to explain spatial frequency
selectivity simply in terms of the widths and the number
of the ON and OFF subregions. For example, a neuron
with many, thin subregions would be narrowly tuned for
high spatial frequencies. Alternate models advocate the

Indeed. there is some evidence that appears to support
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evoked a response on its own. Suppression from the mask
grating in this case was found to be broadly tuned for
spatial frequency. The results of these two experiments
can be reconciled by assuming that the suppression might
depend on flanking spatial frequencics near the neuron’s
preferred orientation. but on a broad range of spatial
frequencies at different orientations.

In this article. we offer a different explanation: that the
suppression is broadly tuned for spatial frequency at all
orientations and that the apparent flanking suppression is
actually due to distortions infroduced by an accelerating
output nonlincarity.

We compare two models of simple cell responses
hecad-to-head.” One of these models includes an inhibi-
torv mechanism that is specific to frequencies that flank
the neuron’s preferred spatial frequency. We will refer to
this model as the flanking-suppression model. The other
model also includes a suppressive mechanism, but it is
not specific to flanking spatial frequencies. We will refer
to this model as the nonspecific-suppression model. Both
models also include a rectification nonlinearity and both
may include an additional accelerating (e.g.. squaring)
output nonlinearity. We demonstrate that both models
can be consistent with the apparent flanking suppression
in the data reported by Bauman & Bonds (1991). Through
a careful analysis of the various nonlinearities in the two
models, we explain why each of the models succeeds in
explaining these results.

However. based on other experimental data, we argue
that the nonspecific-suppression model is more plausible.
The most critical failure of the flanking-suppression
model is that it predicts. contrary to experimental results
(Albrecht & Hamilton. 1982: Skottun ¢r al.. 1987), that
spatial frequency tuning bandwidth should vary system-
atically with stimulus contrast.

MODELS

The two models that we compare are similar to one
another. In fact, they are both special cases of a more
general model as discussed below. Here, we do not
attempt to make the models biologically realistic: they
are presented as mathematical abstractions, whose goal is
to describe the information transformations rather than
the details of the neuronal mechanisms that perform those
transformations. The models can. however, be imple-
mented with biologically reasonable mechanisms (Car-
andini & Heeger, 1994 Carandini er al., 1997).

In both models. an underlving linear response serves as
the basis for spatial frequency (and orientation) selectiv-
ity. Then. in both models. the linear responses are
rectified and normalized to produce an overt (firing rate)
response. The exact form of normalization is what differs
between the two models.

The response of a linear visual neuron is a weighted
sum. over local space and recently past time, of the

“A software implementation of the two models is available via
anonvmous  ftp from  directory  fip: -white stanford.edu’uscrs
heeger/mestares-model.
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distribution of light intensity values in the stimulus.
According to the linear model. spatial frequency,
temporal frequency. and orientation selectivity arise
from the shape and location of excitatory (positively
weighted) and inhibitory (negatively weighted) subre-
gions of the receptive field.

Simple cells have often been characterized as rectified
linear operators (c.g.. Movshon et al.. 1978a). The
rectification guarantees that model responses are always
positive, reflecting the fact that extracellular neural
responses  (firing rates) are by definition positive.
Variants of this characterization have used different
types of rectification. For example. over-rectification is
haltwave-rectification but with a threshold: the neuron
has to reach a certain level of excitation before it will fire
action potentials. Half-squaring (halfwave-rectification
followed by squaring) is quite similar to over-rectifica-
tion, but with a “softer” threshold (e.g., Heeger, 1992b).
In this article, we consider rectification nonlinearities
with a variable exponent in which exponents of 1 and 2
vield perfect halfwave-rectification and half-squaring,
respectively.

There are a number of problems with the (rectified)
linear model of simple cells. One major fault with this
model is the fact that simple cell responses saturate (level
off) at high contrasts. The response of a halfwave-
rectified linear neuron would increase in proportion to
stimulus contrast over the entire range of contrasts. The
response of a half-squared linear ncuron would increase
as the square of contrast. A second major fault with the
lineur model is revealed by testing superposition. A
typical simple cell responds vigorously to its preferred
orientation but not at all to the perpendicular orientation.
For a rectified linear neuron, regardless of the exponent,
the response to the superimposed pair of grating stimuli
(preferred plus perpendicular) would equal the response
to the preferred stimulus presented alone. However, the
response of a simple cell to a superimposed pair of
orthogonal gratings is about half that predicted (e.g.,
Bonds, 1989). a phenomenon known as cross-orientation
inhibition.

Response normalization was originally proposed by
Robson (1988) to provide explanations for these failures
of the linear model. This idea has been expanded and
formalized by one of us (Heeger, 1991, 1992a,b, 1993;
Carandini & Heeger, 1994; Carandini et al., 1997) and by
Albrecht & Geisler (1991). These papers and others (e.g.,
Bonds, 1989: DeAngelis er al., 1992; Tolhurst & Heeger,
1997a.b) have shown that response normalization is
capable, in principle. of explaining a wide variety of
empirical phenomena. The overall motivation of the
normalization model and its detailed synaptic mechan-
isms are surprisingly similar to Marr’s (1970) general
theory of cerebral neocortex. and to much of Grossberg’s
theoretical work on nonlinear neural networks (for
review see Grossberg, 1988).

Response normalization means that each neuron’s
underlying response is divided by a quantity proportional
to the pooled activity of a large number of other neurons
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FIGURE 1. Cross-frequency suppression. (A) Spatial frequency tuning curve of a cat simple cell (data replotted from Bauman &
Bonds, 1991). (B) Responses of the same neuron to pairs of moving sine gratings, a 2 Hz base grating of optimal spatial
frequency superimposed on a 3 Hz mask grating of variable spatial frequency. Base and mask gratings had the same contrast.
Dashed line indicates response to base grating alone. (C. D) Simulated responses for the nonspecific-suppression model with
n = 2 [Eqgs (1) and (2)]. Spatial frequency bandwidth of the underlying linear receptive ficlds were chosen by hand to be 1.2
octaves so that the bandwidth of the overt responses was (1.9 octaves (full-width at half-height). The different curves (virtually
superimposed) in (D) correspond to different initial, relative. spatial phases between the base and mask gratings: 0 deg (circles),
45 deg (squares), 90 deg (triangles). 135 deg (diamonds).

from the nearby cortical “neighbourhood”. The normal-
ization pool includes neurons tuned to all different
orientations and a range of spatial frequencies. Activity in
this large pool of neurons partially suppresses the
response of each individual neuron. The effect of this
divisive suppression is that the response of each neuron is
normalized (rescaled) with respect to stimulus contrast.
The normalization model exhibits response saturation
because the divisive suppression increases with stimulus
contrast. The normalization model exhibits cross-orienta-
tion inhibition because the normalization pool includes
neurons with a wide variety of tuning properties, many of
which respond to orthogonal gratings.

In the nonspecific-suppression model, the normal-
ization pool includes neurons with a broad range of
spatial frequency preferences. In the flanking-suppres-
sion model. the normalization pool primarily includes
those neurons tuned for particular spatial frequencies
flanking the preferred spatial frequency. In both models,
the normalization limits the dynamic range of the
responses. In the flanking-suppression model, the nor-
malization plays the additional role of sharpening the
spatial frequency tuning curve.

The nonspecific-suppression model

According to the nonspecific-suppression model with

strict half-squaring, the overt response of a simple cell to
any stimulus is given by:

Lt

b'z*z[vE,‘(” (1>

R(t) =K

where K and s are constants, |-| means halfwave-
rectification, L(#) is the underlying (orientation and
spatial frequency tuned) linear response, and i indexes
over the spatial frequencies and orientations included in
the normalization pool. The energy. E(r), in Eq. (1) is the
sum of four half-squared, linear responses with phases in
steps of 90 deg, but with otherwise identical tuning
propertics. The summation, 2,£4¢). in the denominator
includes the term |L(r)]7 that appears in the numerator
(i.e.. each neuron suppresses itself).

For a moving grating stimulus. simple cell responses
are often summarized by the amplitude of the first
harmonic (equal to the stimulus temporal frequency) of
the response time-course. From Eq. (1), response
amplitude can be expressed as:

R :RI ax "'wﬁH I 2
Rl = R HUF ) 2

where ¢ is the contrast of the grating, f is the
spatiotemporal frequency and orientation of the grating,
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H(f) is the amplitude and phase ot the underlying linear
response. R . is the maximum attainable response. and
o is a new constant that depends on K and s. As long as o
is nonzero, the normalized response will always be a
value between 0 and R,,,,. saturating for high contrasts.
The o parameter is often referred to as a semi-saturation
constant because it equals the contrast of a moving
grating stimulus that evokes half the maximum attainable
(fully saturated) response. For the simulation results
reported below, we chose a value of o = (.1, near to the
average value for cat simple cells of 0.15 (Albrecht &
Hamilton. 1982). However, this is not a critical choice
because. as explained below, stimulus contrasts were
chosen in proportion to the semi-saturation constant.

The squaring in the above equations is mathematically
convenicnt, but in fact, the exponent fit to response-vs-
contrast data varies from one neuron to the next (Albrecht
& Hamilton, 1982; Sclar er al., 1990:; Albrecht & Geisler.
1991; Tolhurst & Heeger, 1997b), ranging typically
between 1 and 4. Based on a mechanistic description of
the synaptic processes underlying response normaliza-
tion. Carandini er al. (1997) developed a related
formulation with a variable exponent »:

R() =K L] (3)

TS ]

Note that when # =2 this simplifies to Eq. (1). The
response amplitude for moving gratings is now given by:

W

Vol £ ¢2)

IR‘ :Rmu\ ( i |H(f)[” (4)

When the exponent n is increased (e.g., 3 instead of 2),
the slope of the response-vs-contrast curve is steeper and
the effective spatial frequency bandwidth is narrower.
The flanking-suppression model

This model can be generalized to allow for spatial
frequency-dependent suppression by assigning different

weights to the different spatial frequency bands in the
normalization pool:

[Lit)]"

R(t) =K~
NVGEDITD N AT)

(5)

n- s

where we have separated the summation over spatial
frequency (indexed by ¢) from the summation over
orientation (indexed by k). so that the weights w; depend
only on spatial frequency.

The response amplitude for moving gratings is now
expressed as:

s

R‘ = Ry S T |H(]l”” (6]

\///U: + ('2}‘\'2 (f )

where w(f) accounts tor the frequency-dependent weight-
ing on the suppression.

O. NESTARES and D. J. HEEGER

An unfortunate complication in this formulation is that
when w(f)# | or when n# 2. ¢ no longer corresponds to
the semi-saturation contrast. In the simulations, we
always adjusted the value of ¢ so that a moving grating
with the preferred spatial frequency and a contrast of 0.1
would evoke half the maximum attainable response.

Detailed methods

The underlying linear receptive fields were typically
chosen to have spatial frequency bandwidths of 2 octaves
(full-width at half height). but for Fig. 1 we chose the
spatial frequency bandwidths by hand to match the
physiological data. The orientation bandwidths of the
underlying linear receptive fields were 60 deg (full-width
at half height), and the temporal frequency bandwidths
were large so that the amplitudes of the underlying linear
responses would be identical for 2 and 3 Hz gratings.

The overt responses of the simulated neurons exhibit
somewhat narrower bandwidths due to the various
nonlinearities. Specifically, for our particular choice of
the underlying linear receptive fields. using n = 2 in Eq.
(4) reduces the bandwidth by a factor of 3/4 and using
n = 3 reduces the bandwidth by a factor of 5/8. Flanking
suppression also reduces the bandwidth of the overt
responses, particularly for high contrasts (see Fig. 3).

These choices for the bandwidths are not critical for
our conclusions. Even so, these values are generally
consistent with the range of spatial frequency, temporal
frequency, and orientation bandwidths of cat simple cells
(Campbell er al., 1968, 1969; Maffei & Fiorentini, 1973;
Ikeda & Wright, 1975a,b: Tolhurst & Movshon, 1975;
Movshon et al.. 1978b; Holub & Morton-Gibson, 1981;
Tolhurst & Thompson, 1981; Berardi et al., 1982;
Webster & DeValois, 1985; Jones et al., 1987; Robson
et al., 1988; Baker, 1990; Saul & Humphrey, 1992).

We simulated the responses of 18 neurons tuned for six
orientations (30 deg spacing between preferred orienta-
tions) at each of three spatial frequencies (in which the
middle of the three frequency bands was tuned for 0.5 ¢/d
and the spacing between bands depended on the
bandwidths). We plot simulated responses of one of the
neurons trom the middle of the three spatial frequency
bands. In the nonspecific-suppression model, the simu-
lated neurons were suppressed equally by the entire
population (weights set to 1 for all three spatial frequency
bands). In this way. the suppression was constant for
mask gratings within a broad (depending on the chosen
bandwidths) range ot spatial frequencies. When the mask
spatial frequency was beyond this range, the suppression
graduallv (again, depending on the chosen bandwidths)
decreased.

For the flanking-suppression model, we set the weight
corresponding to the middle of the three frequency bands
to (1.1 while the other two weights. corresponding to the
lowest and highest spatial frequency bands, were sct
cqual to I. In this way. the simulated neurons were
suppressed mainly by the two flanking (higher and lower)
spatial frequency bands.

The full set of linear receptive fields were designed so
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that the summation in the denominator of Eq. (1) would
equal the Fourier energy of the stimulus within an
annulus of spatial frequencies. In particular, the radial
parts of the frequency responses were truncated, raised
cosine functions on a logarithmic frequency scale, and
the angular parts of the frequency responses were cosines
raised to an integer power, i.e.:

nonspecific-suppression model with an exponent # =2
and an overt spatial frequency bandwidth of 0.9 octaves
(full-width at half-height, chosen by hand so that the
simulated responses would appear similar to the physio-
logical data). For a purely linear neuron. there would be
no suppressive effect at all; superimposing a 3 Hz mask
grating on a 2 Hz base grating would have no effect on

/
sy T
H(f.0) = 005’(9)\/5[1 + cos((m

0

Here fis radial frequency,  is angular frequency, p is an
integer constant that determines the orientation band-
width, p+ 1 is the number of orientation bands, b
determines the spatial frequency bandwidth, and f, is the
preferred spatial frequency.

RESULTS

Spatial frequency-dependent suppression

Both models were used to simulate the cross-frequency
suppression experiment of Bauman & Bonds (1991).
Following Bauman and Bonds™ experimental design, we
simulated responses to pairs of moving sine gratings, a
2 Hz base grating of optimal spatial frequency super-
imposed on a 3 Hz mask grating of variable spatial
frequency, both optimally oriented. Bauman and Bonds
chose the contrasts of their stimuli with respect to the
contrasts that caused each neuron’s responses to saturate.
Since the model neurons’ responses approach saturation
asymptotically. we defined the saturation contrast to be
that which evoked 97.5% of the maximum attainable
response, and we picked the base and mask contrasts with
respect to that value. Following Bauman and Bonds, we
picked the base contrast to be 37.5% of the contrast that
caused our model neurons’ response to saturate, and we
used three different contrasts for the mask grating. The
middle of the three mask contrasts was equal to the base
contrast, and the other two were 10% higher and lower so
that the sum of the base and mask contrasts was between
65 and 85% of the saturation contrast. We have obtained
similar simulation results with all three mask contrasts, so
we plot the results only for the middle of the three mask
contrasts. Following Bauman and Bonds, the amplitude
of the 2 Hz component of the response time—course was
used to summarize the responses. We also varied the
initial, relative, spatial phases of the two gratings. As
shown below, the initial, spatial phase relationship can
have a significant etfect on the simulated responses.

Figure 1(A) replots (Bauman & Bonds, 1991) the
spatial frequency tuning curve of of a cat simple cell.
Figure 1(B) replots responses of the same neuron to pairs
of gratings, as a function of the mask grating’s spatial
frequency. There is a large effect of superimposing the
mask grating when its spatial frequency is slightly above
or below the neuron’s preferred spatial frequency.

Figure 1(C) and (D) plot the simulation results for the

//))l()g](f/f'.')‘ for “Ogg(f/f())‘ <b

(7)

otherwise

the 2 Hz component of the response. The shape of the
curve in Fig. 1(D) arises from a combination of the
nonlinear operations, i.e., rectification, squaring, and
normalization.

First, we will consider the effect of half-squaring,
ignoring the normalization for a moment. Half-squaring
gives rise to a 2 Hz distortion product, cross-talk between
the two (2 and 3 Hz) components of the response time-
course. Even though the mask gratings have the wrong
temporal frequency (3 Hz instead of 2 Hz), superimpos-
ing a mask grating of optimal spatial frequency enhances
the 2 Hz component of the response. This enhancement
of the response depends very little on the initial, relative,
spatial phases of the two component sinusoids, as can be
seen by the complete overlap of the different curves in
Fig. (D).

Now, we will consider the combined effects of half-
squaring and normalization. In the nonspecific-suppres-
sion model, the normalization pool is very broadly tuned
for spatial frequency. The “W™ shapec in Fig. 1(D)
therefore arises from a broad “U” shaped spatial
frequency suppression provided by the normalization,
combined with enhancement near the optimal spatial
frequency due to the distortion product provided by half-
squaring.

Figure 2 shows simulations for both the nonspecific-
and flanking-suppression models with exponents ranging
from 1 to 3. Figure 2(A), for example, shows the
simulated responses of the nonspecific suppression model
with halfwave-rectification (n = 1). Halfwave-rectifica-
tion also gives rise to a 2 Hz distortion product, but it is
phase dependent as can be seen by the differences
between the curves in Fig. 2(A). For some initial, relative,
spatial phases of the base and mask gratings, the
distortion product is positive, i.e., the 2 Hz component
of the response is enhanced by superimposing the 3 Hz
mask. But for other initial phases, the distortion product
is negative, i.c., the 2 Hz component of the response is
suppressed by superimposing the 3 Hz mask. Even for
initial phases that provide the greatest enhancement
[squares in Fig. 2(A)]. however, the increase in the
response is not large enough to account for the “W” shape
in the experimental measurcments.

Figure 2(B) shows the simulated responses of the
flanking-suppression model with n = 1. The “W” shape,
largely consistent with the physiological data, is mainly
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FIGURE 2. Cross-frequency suppression simulations for a variety of model parameters. (A, C. E) Nonspecitic suppression with

exponents of 7 — 1. 2. and 3. respectively [Eqgs (3) and (4)). (B. D. F) Flanking suppression with exponents of 27 = 1, 2, and 3,

respectively [Egs (5) and (6)]. For all panels. the spatial frequency bandwidths of the underlving linear receptive fields were 2

octaves (full-width at half-height). The bandwidths of the overt responses are plotted in Fig. 3. The ditferent curves in each

panel correspond to different initial. relative. spatial phases between the base and mask gratings: 0 deg (circles). 45 deg
(squares). 90 deg (triangles). 135 deg (diamonds).

due to the flanking suppression. There are three weights
corresponding the three spatial trequency bands that
contribute to the normalization pool. For the simulation
results in Fig. 2(B. D. F). the weights on the flanking
frequency bands were set to one. and the weight on the
center frequency band was set to 0.1 (although center
band weights in the range 0.05-0.2 all produced similar
results).

The simulated responses in several panels of Fig. 2 are
qualitatively consistent with the physiological data. In
particular, the nonspecific-suppression model produced
reasonable results with # = 2 [Fig. 2(C)] and with i =
[Fig. 2(E)]. With 7 =2 and with the base and mask
gratings having equal contrasts, the nonspecific-suppres-
sion model predicts 0.5 as a lower limit for the relative
suppression, producing a "W shape that is perhaps not
quite deep enough [compare with Fig. 1(A)]. A higher
exponent (11 = 2.5 or 3). however. produces a sufficient

amount of suppression. The Hanking-suppression model
produced reasonable results with n = 1 [Fig. 2(B)]. For
larger values of n [Fig. 2(D, F)], flanking suppression
produces too much suppression (the "W is too deep).
Our simulations also demonstrate that the rectification
and accelerating nonlinearities (c.g.. haltwave-rectifica-
tion or half-squaring) can give rise to substantial
distortions which can result in suppression or enhance-
ment of the response amplitudes. depending on the
relative frequencies and the initial, relative, spatial
phases of the stimulus components. Bonds (1989) found
no phase dependence when using 2 and 3 Hz gratings.
However, using different combinations of temporal
frequencies. DeValois & Tootell (1983) and Pollen et
al. (1988) did find phase-dependent suppression and
enhancement of simple cell responses. These results were
interpreted as “phase-dependent inhibition” by DeValois
& Tootell. Pollen er al. (1988) later argued that
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FIGURE 3. Simulated spatial frequency bandwidths (full-width at half-height) tor a variety of model paramelers (same format

as Fig. 2). For all pancls. the spatial frequency bandwidths of the underlying lincar receptive fields were 2 octaves (full-width at

half-height). Overt responses of the simulated neurons exhibit somewhat narrower bandwidths due to the various nonlincaritics,

as discussed in Detailed Methods. (A. C. E) For the nonspecitic-suppression model the bandwidths are independent of stimulus

contrast. (B. D. F) For the flanking-suppression model, the bandwidths depend on stimulus contrast inconsistent with
physiological data.

rectification alone might be responsible for these effects.
For the particular combination of temporal frequencies
(2 and 3 Hz) used for the simulations in Fig. 2, the
distortion produced by an exponent of 7 = 2 was mostly
phase-independent *[Fig. 2(C. D)]. whereas exponents
other than 2 yielded phase-dependent distortions (other
panels in Fig. 2). With different combinations of
temporal frequencies the accelerating nonlinearities
produced different patterns of phase dependence. For
example, in other simulations (not shown in the figures)
with 1 and 3 Hz gratings, an exponent of # = | produced
phase-independent distortions, while exponents of # = 2
and 3 produced phase-dependent distortions.

In summary, it appears that both models can account
for the “W™ shaped curves, but for different reasons. In
the nonspecific-suppression model. both the rectification
and the normalization are critical for the "W shape. In

the flanking-suppression model, the “W arises mainly
because of the flanking suppression. However, other
experimental results favor the nonspecific suppression
model, as we discuss next.

Spatial frequency bandwidth vs contrast

A critical failure of the flanking-suppression model is
the fact that spatial frequency bandwidths are invariant to
changes in contrast (Albrecht & Hamilton, 1982; Skottun
et al.. 1987). The nonspecific-suppression model is
perfectly consistent with this result, and it was one of
the main motivations for proposing the normalization
model (Heeger. 1992a). The reason for this behavior of
the nonspecific-suppression model can be understood by
considering the equations for the response amplitude,
Eqgs. (2) and (4). These equations express the response as
the product of two factors, one that depends only on
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stimulus contrast and the other that depends on stimulus
spatiotemporal frequency and orientation. Changing the
contrast affects only the first factor. thereby scaling up/
down the responses by the same amount for all
frequencies and orientations.

Figure 3 shows the bandwidths of simulated spatial
frequency tuning curves as a function of contrast. For all
panels, the bandwidths of the underlying linear receptive
fields were 2 octaves (full-width at half-height). The
overt responses of the simulated neurons exhibited
somewhat narrower bandwidths owing to the various
nonlinearities, as discussed in “Detailed Mcthods™. For
the nonspecific-suppression model [Fig. 3(A. C, E)] the
bandwidths are independent of stimulus contrast, as
expected.

For the flanking-suppression model [Fig. 3(B. D. F)|.
however. spatial frequency bandwidth does depend on
stimulus contrast. The reason for this behavior can be
understood by considering Eq. (6). When the weight w(/)
in the denominator of Eq. (6) is equal to | (i.c.. for
flanking frequencies). the contrast dependence of the
response is given by:

(.3 AN
(7e)

However, when the weight is much less than one (i.e..
near the optimal spatial frequency). the contrast depen-
dence of the response is given by:

) - L
a4+ w-c¢-

Thus, changing the contrast produces a larger perturba-
tion in the response for frequencies that are closer to the
optimal spatial frequency.

DISCUSSION

Two different models, nonspecific-suppression and
flanking-suppression can account (qualitatively) for the
apparent frequency-specific suppression in cat simple
cell responses. Other experimental results favor the
nonspecific-suppression model. The most critical failure
of the flanking-suppression model is that it predicts.
contrary to experimental results (sce Results or Introduc-
tion for citations). that spatial frequency bandwidths
should vary systematically with stimulus contrast.

[t is commonly believed that information about a visual
stimulus. other than its contrast. is represented in terms of
the relative responses of collections of neurons. For
example, the spatial frequency of a stimulus might be
represented with the relative responses of several simple
cells tuned for different pretferred spatial frequencies. For
this view to be correct. spatial frequency bandwidths
must be invariant with respect to stimulus contrast.
Nonspecific-suppression makes it possible for response
ratios to be independent of stimulus contrast. even in the
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face of response saturation. But flanking suppression fails
to provide such invariance.

We conclude that the suppression is probably broadly
tuned for spatial frequency and that the apparent flanking
suppression is actually due to distortions introduced by an
accelerating output nonlinearity with an exponent of
n =2 or more. It is possible that a modest amount of
flanking suppression (i.e.. with a central weight in our
simulations slightly smaller than the flanking weights)
could contribute. But it is also possible that the
suppression could be strongest at the preferred spatial
frequency (i.e., with a central weight in our simulations
slightly Jarger than the flanking weights), as long as the
exponent in the output nonlinearity was larger (e.g.,
i =3 or more).

Quantitative fits of the data are needed 1o discriminate
between these subtle differences. Unfortunately, the
currently published data sets are probably not sufficient.
To constrain the fits, one would need to do a series of
measurements all with the same neuron: (1) responses to
moving gratings as a tunction of contrast and spatial
frequency: and (2) responses to pairs of gratings, varying
the relative spatial frequencies, the relative temporal
frequencies, and the initial, relative. spatial phases of the
two component gratings. Altogether. these measurements
would over-constrain the model parameters: semi-
saturation constant, exponent, spatial frequency tuning
of the underlying linear receptive fields, and spatial
frequency tuning of the normalization pool. For example,
the slope of the response-vs-contrast curve, the depth of
the "W shaped spatial frequency suppression curve, and
the phase dependence of the enhancement/suppression all
depend on the exponent parameter.
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