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Visual processing, at all stages, involves selection of relevant infor-
mation. When humans navigate in the environment, the visual
system analyzes only a small fraction of the incoming stimula-
tion1,2 because cortical resources are limited, as is the time win-
dow during which one can respond appropriately and effectively
to outside stimuli. It is therefore crucial that this initial selection
be carried out efficiently. Salient features in the retinal image are
those most likely to be important to the animal3. For example, a
strong variation in luminance giving rise to an edge in the image
is likely to be associated with the boundary of an object, and
therefore with an important characteristic of the three-dimen-
sional layout of the environment.

To investigate how the human visual system detects and iden-
tifies such simple image features, we assessed those aspects of the
stimulus that are important in the detection of bright and dark bars
briefly flashed on a screen. We used an extension of a technique
known as noise-image classification4,5, a psychophysical variant of
noise-based reverse correlation6. In the first of two experiments,
we asked subjects to detect the presence or absence of a bar embed-
ded in spatiotemporal noise. We found that detection of this simple
object involved two stages: an early stage at which subject respons-
es were influenced by variance in noise intensity, followed by a later
stage at which performance depended on the polarity of the noise.
We then tested the hypothesis that these two stages reflect the two
different processing steps of detecting and subsequently identify-
ing the feature7. In a second experiment, subjects carried out these
two tasks (detection and identification) on every trial8,9. We ana-
lyzed which properties of the noise influenced performance in each
of these two tasks, and found that detection judgments depended on
early variance in noise intensity, whereas identification judgements
depended on the polarity of the noise after 50–100 ms. These results
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Our visual system constantly selects salient features in the environment, so that only those features
are attended and targeted by further processing efforts to identify them. Models of feature
detection hypothesize that salient features are localized based on contrast energy (local variance in
intensity) in the visual stimulus.This hypothesis, however, has not been tested directly. We used psy-
chophysical reverse correlation to study how humans detect and identify basic image features (bars
and short line segments). Subjects detected a briefly flashed `target bar´ that was embedded in
`noise bars´ that randomly changed in intensity over space and time. By studying how the intensity
of the noise bars affected performance, we were able to dissociate two processing stages: an early
`detection´ stage, whereby only locations of high-contrast energy in the image are selected,
followed (after ~100 ms) by an `identification´ stage, whereby image intensity at selected locations is
used to determine the identity (whether bright or dark) of the target.

are consistent with a large body of literature on bottom-up, exoge-
nous attention10–13, as well as with models of feature detection14

and models of attentional selection15–17.

RESULTS
Subjects viewed stimuli consisting of a temporal sequence of
nine frames, each containing eleven vertical, spatially adjacent
bars. On half the trials, a bright bar (target) appeared in the
middle of the central frame in the stimulus (Fig. 1a), and sub-
jects reported its presence or absence. Their task was made more
difficult by adding a random intensity to all bars in all frames,
thus generating a noisy stimulus that varied in both space and
time (Fig. 1b). The spatiotemporal profile for the noise bars
(Fig. 1c) varied from trial to trial owing to the random sam-
pling procedure. Some of these variations in the noise distrib-
ution had no effect on detection performance, but others were
highly influential. After each trial, the computer recorded the
intensity of noise bars at each location in each frame. The indi-
vidual trials were sorted into the four possible outcomes—hit,
false alarm, miss or correct rejection. The individual noise dis-
tributions were separately averaged (µ) for each of these four
classes, and we computed the variance (σ2) of the noise distri-
butions within each class (Fig. 1d).

We then combined the four averages of the noise images,
adding the average noise distributions associated with ‘yes’
responses and subtracting those associated with ‘no’ responses,
to yield a mean kernel: a function that describes how first-order
statistics (that is, average) in the noise affect performance4. Sim-
ilarly, we combined the variances of the noise images to yield a
variance kernel, which describes the effect of second-order sta-
tistics (that is, variance) in the noise on subjects’ performance.
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the two peaks was statistically significant, for both subjects and
for both bright and dark bar targets (dotted ellipses in Fig. 2).

The temporal offset between peaks in the mean and vari-
ance kernels suggests that the two kernels probably reflect dif-
ferent mechanisms. Because peaks in variance kernels do not
carry information about the polarity of the target and occur
before peaks in mean kernels, which do carry such informa-
tion, we reasoned that the two kernels reflect two separate pro-
cessing steps7,13. The first step detects and localizes salient visual

features based on the contrast energy in the stimulus, and the
second step identifies those features based on the pattern of stim-
ulus intensities (bright or dark bars, in this case).

To test this hypothesis, we performed an experiment that
addressed the issues of detection and identification8,9 directly.
In experiment 2, the target bar appeared bright or dark, and
either to the left or to the right of fixation. Subjects were asked to
determine both the location and the polarity of the target on
each trial9. Noise distributions were then analyzed separately for
the two tasks of detecting and identifying the target (Methods).
Detection generated pronounced modulations in the variance
kernel, but not in the mean kernel (Fig. 3a, upper plots). The
opposite was true for identification (Fig. 3a, lower plots). The
lack of significant modulation in the variance kernel for identi-
fication was not due to lack of a sufficiently large data set,
because the smaller data set in experiment 1 generated signifi-
cant modulations. This confirms our hypothesis that these two
stages are separately reflected by the two kernels. Specifically,
detection judgements (when subjects reported ‘left’ or ‘right’)
were not differentially dependent on polarity (whether the noise
was bright or dark); hence the mean kernel for detection is zero.

Fig. 1. Stimuli and reverse-correlation technique. The stimulus
consisted of a sequence of 9 frames, each divided into 11 vertical
bars (a and b). (a) The target was a bright bar in the middle of the
central frame in the sequence. A red fixation cross marked the cen-
ter of the stimulus (target location), and never disappeared. 
(b) Noise consisted of a random luminance modulation of all bars
in all frames. (c) Each noise image spanned 250 ms (27 ms per
frame) in time and 1 degree in space. (d) The target was added to
the noise on half the trials (left), and subjects were asked to detect
its presence. Noise images for each trial were classified according
to the response class (hit, false alarm, miss, correct rejection).
Mean (µ) and variance(σ2) kernels were computed from the noise
images for each response class, as indicated (Methods).

The noise statistics (mean and variance kernels) indicated
whether the particular spatiotemporal distribution of noise inten-
sity on each trial assisted or hindered detection of the target. We
found that particular spatiotemporal noise distributions tended
to cause subjects to make particular behavioral responses, thus
allowing us to infer some properties of the visual detection and
identification mechanisms for salient features. First, ‘yes’ respons-
es (hits and false alarms) were more frequent than ‘no’ respons-
es when there happened to be an excess of noise intensity close
to the spatiotemporal location of the target. This is evident in the
mean kernels, which had a positive peak at the spatiotemporal
location of the target, and negative flanks across the spatial
dimension (Fig. 2, top row, first and third panels). Variance ker-
nels also showed a peak, but this peak was mainly confined to a
temporal period that preceded the target by ∼ 100 ms (Fig. 2, top
row, second and fourth panels). In a similar experiment, subjects
were asked to detect a bar of the opposite polarity (dark rather
than bright), and mean kernels showed a negative peak at the
spatiotemporal location of the target (Fig. 2, lower plots). Vari-
ance kernels were very similar to those seen for detecting a bright
bar, again showing an early peak. The temporal offset between
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Fig. 2. Mean and variance kernels for two subjects. Insets, each dot reports probability of hit versus probability of false alarm28 for an individual block
of 200 trials. Upper plots, detecting a bright bar (5,000 trials per subject); lower plots, detecting a dark bar (5,000 trials per subject). For each sub-
ject, both mean and variance kernels are shown. Color (linearly interpolated data), Z scores (–21 to 21) for |Z| > 2. Arrows indicate the largest peak
in each plot. Dotted ellipses are 95% confidence intervals for the peaks (Methods).
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What matters to the localization judgement is vari-
ance early in the stimulus, as demonstrated by the
variance kernel. Similarly, the lack of modulation in
the variance kernel for identification implies that
identification judgements (when subjects reported
‘bright’ or ‘dark’, after the target had been localized)
are not differentially dependent on variance, but
rather on polarity (as shown by the mean kernel).
Notably, detection (variance kernel) peaked before identifica-
tion (mean kernel) for both subjects.

DISCUSSION
The measured variance kernels reflect a non-optimal strategy for
our psychophysical task. When the stimulus had a high level of
contrast energy, subjects were more inclined to report that the
target was present. This tendency, however, led to more errors in
detection because contrast energy presented ∼ 100 ms before the
target provides no information about the target itself. The ideal
strategy would involve monitoring stimulus intensity only at the
precise time and location of target presentation. This indicates
that our experiments probed built-in mechanisms that are auto-
matically engaged by stimulus presentation, and which are prob-
ably useful in many real-life contexts2,15,16. These mechanisms
are not subject to cognitive strategies and cannot be ‘switched
off ’ in conditions in which they are inefficient.

We think our results are best interpreted with relation to
automatic, exogenous, bottom-up attentional capture by high-
contrast cues10. An early burst of contrast energy can be
thought of as a high-contrast cue that drives subjects’ atten-
tion to its location, thus affecting further processing10,11. The
temporal offset of ∼ 100 ms between detection and identifica-
tion is consistent with a large body of literature on exogenous
cueing10–13. Moreover, neurons that are selective for a target
among distractors have been shown to manifest this selectivi-
ty roughly 100 ms after an initial nonspecific increase in firing

Fig. 3. Experiment 2. (a) Mean and variance kernels for
two subjects (5,000 trials for each subject) for both detect-
ing (upper plots) and identifying (lower plots) the target
bar. Color indicates linearly interpolated data, Z scores
(–23 to 23) for |Z| > 2. Format as in Fig. 2. Detection
involved significant modulation only in variance kernels, and
identification only in mean kernels. (b) Model used to sim-
ulate the experimental data. Stimuli underwent two stages,
contrast energy extraction and linear matched filtering.
Contrast energy modulated (after some temporal delay 
τ = 100 ms) the gain (×) of the matched-filters, and the out-
put from the latter was used to simulate behavioral
responses. (c) Simulated kernels (compare with experi-
mental kernels in a). Percent correct for detection, 64%
(PN), 60% (BZL); for identification on correctly detected
trials, 69% (PN), 68% (BZL); for identification on mislocal-
ized trials, 50% (PN), 49% (BZL) (consistent with ref. 8).

for both target and distractors18. This 100-ms temporal offset
is also consistent with a variety of electrophysiological studies
of attentional selection2,19–22.

To illustrate our interpretation of these psychophysical data,
we implemented a model of target detection and identification,
which shares some elements with previous models of attention15–17

and with previous models of feature detection14. In our model,
detection and localization depend on extracting contrast energy
from the stimulus, and identification depends on matched filtering
(Fig. 3b). The responses of the matched filters are modulated, after
a brief delay, by the extracted contrast energy so that detection by
the latter leads to subsequent identification (and behavioral deci-
sion) by the former. We ran the same experimental procedure with
this model, using exactly the same values for all parameters. The
model captured most aspects of the psychophysical results 
(Fig. 3c). To generate the temporal offset between peaks in the two
kernels, the delay (τ in Fig. 3b) was set to 100 ms. The critical fea-
tures of this model are that (i) the detection mechanism depends
largely on stimulus contrast energy, and (ii) detection precedes
identification by ∼ 100 ms. The implementation presented here is
only intended as a basic starting point, not as a comprehensive or
quantitative description of the complex perceptual processing that
must be operating in human subjects.

Our results offer insight into the way in which the human
visual system achieves fast and efficient processing of basic image
features. Because neural resources are limited and processing
must be completed quickly to generate appropriate behavioral
responses, the visual system cannot carry out detailed process-
ing of all stimuli that reach our eyes2,16. Early processing is there-
fore aimed at detecting and selecting salient features in the
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Fig. 4. Mean and variance images for false alarm trials only, from exper-
iment 1, bright bar target. Detection of a dark bar was similar, only with
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in Figs. 2 and 3. The variance image reports variance modulations
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image15–17,23, allowing cortical resources to be subsequently
directed only to behaviorally relevant locations1,2,16. Our results
indicate that this early selection stage involves contrast energy
extraction. Contrast energy is a robust indicator of the presence
of salient features in the image, although it is a poor indicator of
their exact structure24. Once salient parts of the image have been
selected (possibly leading to eye-movement planning25–27), fur-
ther processing is carried out at those locations to identify the
exact nature of the feature (for example, whether it is a bright or
a dark line). The neuronal mechanisms underlying these process-
es, along with their precise computations, are sure to be the sub-
ject of further study.

METHODS
Task. Stimuli were generated by a VSG graphics card and presented on
a CRT monitor (Vision Master 17, Iiyama, Cambridge Research Systems,
Rochester, UK) at a viewing distance of 57 cm. Subjects fixated a central
red cross against a gray background (35 cd/m2). This fixation marker
was centered on the stimulus (Fig. 1) and never disappeared. In the con-
text of experiment 1, this means that there was no spatial uncertainty as
to the location of the target. Stimuli consisted of nine frames (27 ms
each). For experiment 1 (Fig. 2), each frame contained 11 vertical, spa-
tially adjacent bars (0.1° × 1.1° each), centered around fixation. Each bar
in each frame was assigned a random luminance value drawn from a dis-
crete uniform distribution spanning ± 4 cd/m2 around background lumi-
nance (Fig. 1b), in 0.4 cd/m2 steps. The target consisted of a 4 cd/m2

increase (or decrease, when subjects were asked to detect a dark bar) in
the central bar of the middle frame in the temporal sequence (Fig. 1a),
randomly applied on half of the trials. For experiment 2 (Fig. 3), each
frame contained 22 bars of the same size, 11 to the left and 11 to the right
of fixation. Each bar in each frame was assigned a random luminance
value over the range ± 3.6 cd/m2. The target bar consisted of either an
increase or a decrease of 4 cd/m2 in the bar centered on either the 11 bars
to the left or those to the right of fixation, again only for the middle frame
in the sequence. A target was present on each trial, but randomized for
polarity and location.

At the end of each presentation, subjects made a forced-choice deci-
sion. For experiment 1 (subjects had knowledge of the polarity of the bar),
the decision was between presence or absence of the target bar. For exper-
iment 2, subjects reported whether the target bar appeared to the left or to
the right of fixation and whether it was bright or dark. Subjects indicated
their decision with a button press which then triggered the next stimulus
presentation after an interval randomly varying between 200 and 500 ms.
No feedback was provided. Blocks consisted of 200 trials. Every 25 trials,
a target bar without noise was presented so as to remind the subject of its
appearance and to help to maintain vigilance28. All experiments were sub-
ject to Human Subjects Protocol Approval by the National Institutes of
Health, and all subjects gave informed written consent.

Reverse-correlation analysis. Our technique is an adaptation and exten-
sion of a previous technique4 that was developed for a Vernier acuity
task. For the experiments involving detection only (Fig. 2), the spa-
tiotemporal intensity distribution of the noise for each presentation was
stored and sorted according to which response class had occurred (hit,
false alarm, miss or correct rejection). We then computed both average
(µ) and variance (σ2) for the noise distributions (Fig. 1c) correspond-
ing to each response class, and combined them as follows:

Mean kernel (x.t)= µ[1,1](x.t)+ µ[0,1](x.t)– µ[1,0](x.t)– µ[0,0](x.t)
Variance kernel (x.t)= σ2

[1,1](x.t)+ σ2
[0,1](x.t)– σ2

1,0](x.t)– σ2
[0,0](x.t)

where µ[s,r] and σ2
[s,r] are the mean and variance images across noise

images of trial type [s,r], where s refers to the target (0 for absent, 1 for
present), and r to the response from the subject.

For the experiments involving simultaneous detection and identifi-
cation (Fig. 3), each noise image was divided in two halves: one to the left
and one to the right of fixation. For computing kernels for detection
(Fig. 3a, upper plots), these halves were separately classified by taking
subjects’ responses as double statements of the sort “Target present on

the left, target absent on the right” or “Target absent on the left, target
present on the right” (equivalent to ref. 29). This made it possible for
each half on each trial to be sorted into one of the four response classes.
For example, if the target bar was presented on the left and the subject
reported its presence on the right, the left-half noise image was classi-
fied as a miss, and the right-half noise image as a false alarm. For iden-
tification (Fig. 3a, lower plots), kernels were computed using the
equations above (with s and r = 1 for bright target, = 0 for dark target),
only on those trials and for those half images corresponding to correct
detection. For example, when a bright bar was correctly detected on the
left but misidentified by the subject to be dark, the left-half noise image
was classified as a miss.

Statistical analysis. We used a statistical bootstrapping procedure30 to
estimate the reliability of the resulting kernels. That is, we estimated the
standard deviation of each kernel separately for each point in space and
time. These standard deviations were then used to compute the Z scores
in Figs. 2–4. Bootstrapping was also used to derive a probability function
for the location of the peak in each kernel. We then fitted to this function
an elliptic Gaussian and plotted its contour at 95% of its volume.

Modeling. Psychophysical data were simulated using a spatial array of
energy extractors and matched filters (Fig. 3b). Matched-filter respons-
es were computed by convolving the stimulus images, generated exactly
as for the psychophysical experiments, with a linear filter (even-
symmetric in space and monophasic in time). Energy responses were
modeled as the squared sum of a quadrature pair of linear filters31,32,
feven and fodd. Separate computations were done for each (left and right)
half of each stimulus, yielding a pair of spatiotemporal maps of energy
and matched-filter responses, one for each half of each stimulus in each
simulated trial of the experiment. The spatiotemporal map of energy
responses was shifted temporally by τ = 100 ms, and was then used to
modulate the gain of the matched-filter responses (via multiplication).
The resulting gain-adjusted, matched-filter responses were then multi-
plied by a ‘discriminability’ map D that weighed each point in space and
time according to the information it could possibly provide about the
target. The discriminability map was computed to make optimal use of
the matched-filter responses, based on the average and standard deviation
of the responses across trials28. The final output for the left half of the
stimulus can be expressed as:

Output left =

f even (x,t) = G(σt, t) · G(σx, x) · cos(ωx, x), f odd(x, t) = G(σt, t) · 
G(σx, x) · sin(ωx x)

G(σ, x) is a Gaussian function (σt = 40 ms, σx = 1.5 arcmin, ωx = 4.5
cycles/°). The subscripts ‘left’ and ‘right’ refer to the left- or right-half
stimulus image; when the superscript is specified, it refers to presence of
a bright (1) or dark (–1) target bar. The output for the stimulus right-
half image was computed by substituting Iright for Ileft, obtaining Out-
putright. The following decisional rule was then applied: location of the
target is on the side yielding the largest absolute output (|Output left | ver-
sus |Output right | ), and identity of the target is bright if this value is
greater than 0, dark otherwise.

Alternative models. As an alternative possibility, we considered models
based on a single mechanism with temporal and/or spatial uncertainty33

to explain the results in experiment 1. False alarms comprise the class that
is the most informative and for which uncertainty effects (expected to be

∫∫[(feven(x,t –   ) ∗  Ileft (x,t))2
 + (fodd (x,t –   ) ∗  Ileft (x,t))2] ⋅ 

[feven (x,t) ∗  Ileft (x,t)]D(x,t)dxdt

D(x,t) = 
E(feven (x,t) ∗  I1

left (x,t))–E(feven (x,t) ∗  I–1
left (x,t)) 

           (feven (x,t) ∗  I–1
left (x,t)) 

τ

σ

τ
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constant across trials of the same type) are most pronounced34. The exper-
imental mean and variance images for the false alarm class averaged across
subjects show that two mechanisms were still clearly segregated by the
two images (Fig. 4). This is inconsistent with a single-mechanism hypoth-
esis, and thus confirms the main result in Fig. 2.
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