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When the corresponding retinal locations in the two eyes are
presented with incompatible images, a stable percept gives way to
perceptual alternations in which the two images compete for
perceptual dominance. As perceptual experience evolves dynami-
cally under constant external inputs, binocular rivalry has been used
for studying intrinsic cortical computations and for understanding
how the brain regulates competing inputs. Converging behavioral
and EEG results have shown that binocular rivalry and attention are
intertwined: binocular rivalry ceases when attention is diverted
away from the rivalry stimuli. In addition, the competing image in
one eye suppresses the target in the other eye through a pattern of
gain changes similar to those induced by attention. These results
require a revision of the current computational theories of binocular
rivalry, in which the role of attention is ignored. Here, we provide a
computational model of binocular rivalry. In the model, competition
between two images in rivalry is driven by both attentional modu-
lation and mutual inhibition, which have distinct selectivity (feature
vs. eye of origin) and dynamics (relatively slow vs. relatively fast).
The proposed model explains a wide range of phenomena reported
in rivalry, including the three hallmarks: (i) binocular rivalry requires
attention; (ii) various perceptual states emerge when the two im-
ages are swapped between the eyes multiple times per second;
(iii) the dominance duration as a function of input strength follows
Levelt’s propositions. With a bifurcation analysis, we identified the
parameter space in which the model’s behavior was consistent with
experimental results.
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Binocular rivalry is a visual phenomenon in which perception
alternates between incompatible monocular images pre-

sented to the two eyes. During binocular rivalry, perceptual ex-
perience evolves dynamically while the external inputs are held
constant. Binocular rivalry thereby provides an opportunity to
gain insights about the intrinsic cortical computations underlying
visual perception (1, 2).
In conventional models of binocular rivalry, the competition

between two percepts has been characterized as mutual inhibition
between two populations of neurons selective for each of the two
stimuli (3–11). Notwithstanding the differences in their details,
these models consider the neural processing underlying binocular
rivalry to be an automatic process. These models predict, there-
fore, that the dynamics of binocular rivalry are influenced mainly
by bottom-up sensory inputs.
Converging experimental evidence has shown, however, that

binocular rivalry also depends on attention (for a review, see ref.
12). First, EEG has been used to measure a neural correlate of the
perceptual alternations during binocular rivalry when observers pay
attention to the rival stimuli (13). However, this rivalry-induced
modulation of the EEG signal is largely or entirely eliminated
when attention is diverted away from the stimuli (14). Second,
behavioral experiments comparing the perceptual consequences
induced by attended and unattended rival stimuli also support the
notion that binocular competition in general, and binocular rivalry
in particular, requires attention (15–18). These findings demon-
strate that visual attention, the neural and cognitive process that

selectively prioritizes information under natural viewing conditions,
is critical for binocular rivalry.
Here, we propose a computational model of binocular rivalry in

which there are two processes that drive perceptual competition:
attention and mutual inhibition. (i) Attention: According to the
model, the two rival stimuli compete for attentional resources.
Attention is modeled as multiplicative gains (attention gain factors;
ref. 19) that fluctuate between neural populations selective for the
two rival stimuli. At a given moment, the stimulus associated with
stronger sensory responses attracts a greater share of attention and
reduces the attention allocated to the other stimulus. This stimulus-
driven attentional modulation is presumed to be active when ob-
servers attend the stimuli, but silent when attention is diverted. (ii)
Mutual inhibition: In the model, mutual inhibition is mediated
through opponency neurons (20). The opponency neurons take
conflicting information between two eyes as inputs and suppress the
activity of monocular neurons that respond to one or the other eye.
We show that the model exhibits three experimental hallmarks of

binocular rivalry: (i) Rivalry (i.e., response alternations between two
competing neural representations) occurs for attended stimuli with
interocular conflict, but not without interocular conflict and not for
unattended stimuli (12, 14–16). (ii) When the stimuli are rapidly
swapped back and forth between the two eyes, the simulated per-
cept either follows one image across the swapping or it follows the
stimuli in one eye, depending on the temporal characteristics of the
stimuli (21–24). (iii) The simulated dominance duration changes as
a function of stimulus strength, following Levelt’s propositions (25,
26). Bifurcation analysis was used to explore all of the possible
behaviors of the model as a function of the strength of sensory
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inputs, the amount of attentional modulation, and the amount of
mutual inhibition. We identify the parameter regime in which the
behavior of the model was consistent with empirical findings. Fi-
nally, we show that previous computational models of bistable
perception fall short of explaining this full suite of phenomena.

Methods
Model. The model had three classes of neurons responsible for sensory repre-
sentation, attentionalmodulation, andmutual inhibition, respectively (Fig. 1). The
response of each individual neuron in the model is intended to represent the
mean activity (instantaneous firing rate) of an ensemble of neurons with similar
response properties. The responses of the neurons were computed by the same
canonical motif, divisive normalization (27). The model is intended to charac-
terize neural activity in visual cortex in terms of the signal-processing computa-
tions that are performed, not in terms of the underlying circuit, cellular,
molecular, and biophysical mechanisms. For example, we do not intend for in-
dividual elements in the model to be interpreted as specific cell types, and the
various model parameters (e.g., orientation selectivity, time constants) might
emerge from a neural circuit rather than being intrinsic biophysical properties of
individual neurons. See Table S1 for the values of all of the model parameters.
Sensory representations. Sensory representations consisted of three pop-
ulations: twomonocular [left eye (LE) and right eye (RE)] populations and one
binocular-summation population. Each population contained two neurons,
each selective for one of two orthogonal orientations.

The response of the left-eye monocular neuron Rl1 selective for orienta-
tion 1 was computed as follows:

τs
d
dt

Rl1 =−Rl1 +
αEl1

Sm +Hn
l1 + σn

El1 =
�
Dn

l1 −woOr
�
+

�
1+waRa1

�
+

Sm =
X

k=1,2

Elk +
X

k=1,2

Erk

τh
d
dt

Hl1 =−Hl1 +whRl1.

[1]

The responses of all four monocular neurons (Rl1, Rl2, Rr1, Rr2) are characterized
by similar expressions in which the subscripts l and r specify left eye and right
eye, respectively, and the subscripts 1 and 2 specify the two orientations. The
first line is an equation for calculating the response over time in terms of ex-
citatory drive (E), suppressive drive (S), and adaptation (H). The subsequent lines
provide expressions for the excitatory drive, suppressive drive, and adaptation,
respectively. The excitatory drive (E) was determined by the input (D). The
amplitude of the input was assumed to increase monotonically with stimulus
contrast. The excitatory drive was modulated by two factors. First, the pooled
responses of the opponency neurons (Or) that responded to the opposite eye
(Mutual inhibition) were subtracted from the input. Second, the resulting ac-
tivity after this subtractive suppression was multiplied by an attention gain
factor (1 + waRa1), in which 1 was the baseline attention gain, and Ra1 was the
response of the attention neuron that was selective for the same orientation

(Attentional modulation). The values of wo and wa determined the amount of
subtractive mutual inhibition and attentional modulation, respectively. The
notation ½ �+ represents half-wave rectification. The suppressive drive (S) of each
monocular neuron was the sum of the excitatory drives of all of the monocular
neurons. The values of n and σ determined the slope and the contrast gain of
the contrast-response functions of the neurons, and α was a scaling factor that
determined the maximum response. The value of τs was the time constant of
the monocular and binocular summation neurons. The sensory neurons slowly
self-adapted through the adaptation term H with time constant τh and
magnitude wh.

The response of the binocular summation neuron Rb1 selective for ori-
entation 1 was computed as follows:

τs
d
dt

Rb1 =−Rb1 +
Eb1

Sb1 +Hn
b1 + σn

Eb1 = ðRl1 +Rr1Þn

Sb1 = Eb1

τh
d
dt

Hb1 =−Hb1 +whRb1,

[2]

where the responses of both binocular neurons (Rb1, Rb2) are characterized by
similar expressions in which the subscript b specifies that it is a binocular neuron,
and the subscripts 1 and 2 specify the two orientations. The excitatory drive (E)
summed the responses of monocular neurons selective for the same orientation.
The suppressive drive (S) was the same as the excitatory drive. Similar to mon-
ocular neurons, binocular summation neurons self-adapted through the adap-
tation term H. Unlike a previous model (4) that used mutual inhibition between
binocular neurons to model a swapping experiment, there was no mutual in-
hibition between binocular neurons in our model. The functions of the binocular
summation neurons in our model were only to represent sensory responses and
provide inputs to neurons in the attention layer.
Attentional modulation. According to the model, attention gain fluctuated
between two sensory representations when observers attended to the rival
stimuli. Whichever orientation had stronger sensory responses, at any mo-
ment, received a greater share of attention gain. We implemented themodel
in this way because a competing stimulus in one eye can suppress a target in
the other eye by increasing the attention gain for the orientation of the
competitor while decreasing the attention gain of the target (17, 18).

There were two neurons in the attention layer selective for orthogonal
orientations (Fig. 1 A and B). The response of the attention neuron Ra1 that
preferred orientation 1 was computed as follows:

τa
d
dt

Ra1 =−Ra1 +
Ea1

Sa + σna

Ea1 = ðRb1 −Rb2Þn

Sa =
X

k=1,2

�
Eak

�
+.

[3]

We used a similar expression to compute the responses of the other attention
neuron Ra2. The excitatory drive (Ea1) was the difference between the

Attentional modulation Mutual inhibition
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Left monocular Right monocular
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+ ++ +

++
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B C

Fig. 1. Model structure. (A) General structure of the model. For illustration, only some connections between neurons are depicted. The details of the at-
tentional modulation and mutual inhibition are depicted in B and C. (B) Attentional modulation. There are two attention neurons selective for orthogonal
orientations. Each attention neuron receives excitatory inputs from the binocular summation neuron that is selective for the same orientation, and sup-
pressive inputs for different orientation. Monocular neurons selective for the same orientation receive the same attention gain factor (blue lines) determined
by the response of the attention neuron with the same orientation preference. (C) Mutual inhibition. There are two groups of opponency neurons (RE–LE and
LE–RE). Here, only the RE–LE opponency neurons are illustrated. Opponency neurons compute the response difference between the two eyes for a particular
orientation. The left-eye (right-eye) monocular neurons are inhibited by the RE–LE (LE–RE) opponency neurons.
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responses of two binocular-summation neurons. The two orientation-selective
neurons in the attention layer showed a trade-off. When the response of
one neuron (e.g., Ra1) was positive, the response of the other neuron (Ra2)
was negative, and vice versa. Hence, depending on their preferred orien-
tation, monocular neurons in sensory layers received attention gain that
fluctuated around a baseline value (Eq. 1). The negative responses of the
attention neurons can be accommodated with complementary pairs of
neurons that are each half-wave rectified, analogous to standard models of
ON- and OFF-center retinal ganglion cells. τa (=150 ms) was the time con-
stant of attentional modulation.
Mutual inhibition. Mutual inhibition was mediated through opponency neu-
rons (20). There were four opponency neurons in total: a pair of left-minus-
right (LE-RE) opponency neurons and a pair of right-minus-left (RE-LE)
opponency neurons, each with a pair of neurons selective for orthogonal
orientations (Fig. 1 A and C). The response of the RE-LE opponency neuron
Ror1 selective for orientation 1 was computed as follows:

τo
d
dt

Ror1 =−Ror1 +
Eor1

Sor + σn

Eor1 = ½Rr1−Rl1�n+
Sor =

X

k=1,2

Eork

Or =
X

k=1,2

Rork ,

[4]

where the subscript o denotes that it is an opponency neuron, the subscript r
indicates that it is the RE-LE opponency neuron (not an LE-RE opponency neu-
ron), and the subscript 1 specifies the orientation preference. We used a similar
expression to compute the responses of the other opponency neurons (Ror2, Rol1,
Rol2). The excitatory drive of the opponency neurons was the difference of the
responses between LE and RE monocular neurons. The value of Sor was the
suppressive drive of both RL opponency neurons. τo (=20 ms) was the time
constant of the opponency neurons. The response of the two RL opponency
neurons were pooled asOr and subtracted from the left-eye monocular neurons
(Eq. 1). The subtractive suppression (−woOr in Eq. 1) was analogous to mutual
inhibition in previous models (3–8). However, previous models exhibited re-
sponse alternations (in a magnitude similar to the response alternations for ri-
valry stimuli) for stationary, monocular-plaid stimuli (Fig. 2B), inconsistent with
perceptual phenomena. Here, instead, the subtraction was mediated by the
opponency neurons, which elicited mutual inhibition only when conflicting
orientation information was present between the eyes (see details in ref. 20).
These opponency neurons have been proposed to play a role in other perceptual
functions outside the context of rivalry (e.g., ref. 28).

Noise. A stochastic term, an Ornstein–Uhlenbeck process (8, 10), simulating
neural noise, was added to the input drive for some of the simulations (Figs.
3A and 5B and Figs. S7 and S8): τn d

dt n=−n+ σ
ffiffiffiffiffiffiffiffi
2τn

p
ξðtÞ, where τn = 100 ms,

σ= 0.02, and ξðtÞ was a Gaussian white-noise process. We assumed that the
EEG signal was a noisy version of the simulated neural responses. In addition
to the neural noise, we simulated the EEG measurements (14) by adding low-
pass–filtered Gaussian noise, representing measurement noise, to the re-
sponses of the binocular summation neurons (Fig. 3A).

Inputs. The inputs (D) to the model were assumed to be the responses of sub-
cortical visual neurons. When the stimuli were swapped or flashed, the inputs
exhibited an onset transient response [modeled by an α function ðt=ταÞeð1−t=ταÞ,
τα = 3 ms], which was 1.5 times greater than the designated sustained input
strength (Fig. S1A). The transient response dropped rapidly to a sustained level of
input strength. After stimulus offset, a decay was modeled by a hyperbolic tangent
functionwith a half-life of 15ms. The onset transient and the offset decay captured
the delay and the time course of the responses of subcortical neurons (29, 30).

Simulations. The model can be simulated as a system of 18 ordinary differ-
ential equations (four monocular variables and two binocular variables, each
with an intrinsic adaptation variable, two attention variables, and four
opponency variables). Neural responses were simulated in MATLAB using
forward Euler’s method with a time step of 1 ms. Further reducing the time
step did not change the results. Parameter values are listed in Table S1.

Rivalry Index. We followed the procedure in a previous EEG study (14) to
simulate the rivalry index. The simulated responses of two binocular summa-
tion neurons (with neural and measurement noise; Methods, Noise) were first
low-pass filtered with a Gaussian kernel (1.2-s SD). We then searched for local
peaks in the time course of the neural responses. We segmented the time

course into 6-s epochs, centered at the local peaks. For each epoch, the time
course of the neuron associated with stronger responses (with the local peak)
was defined as the “aligned signal,” and the response of the other neuron
(with weaker response) was defined as the “rival signal.” The aligned signals
were averaged across all epochs. The rival signals were also averaged across
epochs. The rivalry index was computed by the amplitude (distance between
the peak and trough) of the averaged aligned signal divided by the amplitude
of the averaged rival signal.

Bifurcation Analysis.Weusedbifurcation analysis to investigate the dynamics of
the model, as a function of the strength of input, the weight of attentional
modulation, and the weight of mutual inhibition. The steady-state responses
were tracked as the model parameters were varied, and the boundaries where
the system’s steady state changed qualitatively (bifurcations) were identified.
This approach produced phase diagrams showing parameter values for which
the model exhibited qualitatively different dynamical behaviors. Bifurcation
analysis was performed using the freely available software AUTO-07p (31).

Results
Binocular Rivalry Requires Attention. We simulated neural responses
under two attention conditions, attended and unattended. In the
attended condition, attention gain fluctuated between monocular
neurons selective for different orientations. In the unattended
condition, the attention gain of all of the monocular neurons stayed
at baseline (=1). This was accomplished by setting the weight of
attention feedback (wa) to 0. The simulations were performed for
two types of stimuli: dichoptic gratings (a pair of stationary, or-
thogonal gratings, presented in different eyes; Fig. 2A) and plaids
(a pair of stationary, orthogonal gratings, presented simulta-
neously to one or both eyes; Fig. 2B and Fig. S1C).
The simulated responses of the binocular summation neurons

and monocular neurons exhibited response alternations over time,
consistent with perceptual alternations (Fig. 2C and Fig. S2A),
when the stimuli were dichoptic gratings and were attended. For
unattended dichoptic gratings, the responses alternated only briefly
following stimulus onset, after which the competing neurons (the
two binocular summation neurons or the two monocular neurons
receiving inputs) exhibited responses that converged to the same
steady-state level (Fig. 2E and Fig. S2). The initial phase of re-
sponse alternations (Fig. 2E) is consistent with a psychophysical
study reporting that withdrawing attention does not eliminate onset
rivalry (32), even though withdrawing attention is effective in
abolishing ongoing rivalry.
Neither monocular plaids (Fig. 2 D and F) nor binocular plaids

(Fig. S1C) exhibited response alternations regardless of the atten-
tion condition. For these stimuli, the model is in line with mea-
surements of cross-orientation suppression (reviewed in ref. 27).
Specifically, the steady-state response of a neuron selective for the
target is given by Eq. 1, which reduces to El1/(Sm + σn) in the ab-
sence of mutual inhibition and attentional modulation. Adding a
cross-orientation mask suppresses the target through an increment
of the normalization pool (Sm), which is computed as the
summed excitatory drive across orientations and eyes (Eq. 1).
In the model, attention and mutual inhibition both facilitated

competition, but their effects interacted nonlinearly. The attention
gain was found to fluctuate only for attended dichoptic gratings,
not for attended monocular plaids (Fig. S2 A and B). That is, the
initiation of attentional modulation required an imbalance be-
tween the two orientations that was triggered by mutual inhibition.
In addition, when the orientations presented to the two eyes were
different, the presence of attention amplified the responses of the
opponency neurons. The attention-dependent dynamics depicted
in Fig. 2 was robust with respect to changes in the time constants:
The model exhibited similar results (only attended dichoptic
gratings generated ongoing rivalry) when τs, τa, and τo were in-
dependently adjusted to be nearly instantaneous (1 ms), or when
τa and τo were changed to be double their original values. The
values of the time constants were further constrained when sim-
ulating the eye-swapping experiments. In Operating Regime for
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Binocular Rivalry, we fully characterize how the strength of atten-
tional modulation and mutual inhibition determined the dynamics
of binocular rivalry in the model.
The model simulated human EEG measurements of neural

activity when rival stimuli were attended and unattended (Fig. 3).
To simulate the empirical EEG results (14), we added both
neural noise to the input drive and measurement noise to the
responses of the binocular summation neurons (Methods, Noise).
We then analyzed the noisy responses of the binocular summa-
tion neurons using the same analysis as the EEG study. Specif-
ically, we computed a rivalry index that quantified the amplitude
of competition in rivalry (see Methods, Rivalry Index, and ref. 14
for details). In the attended condition, the peak of the response
of one binocular summation neuron (Fig. 3A, aligned signal) was
accompanied by the trough of response of the other neuron (Fig.
3A, rival signal). This counter phase time-course represented a
neural signature of binocular rivalry. This pattern was greatly
reduced in the unattended condition and resulted in substantially
smaller rivalry index (Fig. 3A, Middle and Right). The simulated
attended and unattended responses resemble the empirical
findings (Fig. 3B). Following the empirical study by Zhang et al.
(14), we also simulated a replay condition, in which the two
stimuli physically alternated irregularly to simulate rivalry.
Consistent with that study, the simulated counter phase time-
courses were not influenced by attention in the replay condition.

Mutual Inhibition Supports Eye Dominance and Attention Stabilizes
Perceptual State. Swapping the stimuli between the two eyes
rapidly and repetitively (Fig. 4) has been used to dissect the
neural processing contributing to binocular rivalry (21–24). Two
types of percept have been reported under these conditions. In
fast alternation (FA), one eye dominates for a period, and ob-
servers report perceiving a rapid alternation between two images
at a frequency equal to the swap rate. In slow alternation (SA),
the perceptual dominance of one stimulus persists across swap-
ping, and observers report seeing one image for a few seconds
similar to conventional binocular rivalry. SA has been taken as
evidence that binocular rivalry cannot be explained simply by
mutual inhibition between neurons that respond selectively to
each of the two eyes. The proportion of time that observers ex-
perience FA and SA depends on the temporal characteristics of
the stimuli. If the stimuli are static images, presented to alternate
eyes immediately when swapped (Fig. 4A), then observers report

FA most of the time. Using flickering images (Fig. 4B), with an
on-off flicker rate higher than the swap rate, increases the pro-
portion of SA (21–24).
Neural responses simulated with our model exhibited slow

alternations (SA) for some stimulus conditions and fast alter-
nations (FA) for other stimulus conditions, consistent with em-
pirical results. We simulated the eye-swapping experiment with a
swap rate of 3.3 Hz, and with flicker rates of either 18 or 0 Hz
(i.e., static). For static stimuli, the simulated percept followed the
stimuli in one eye for a few seconds, such that the orientation
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“perceived” by the model changed rapidly with each swap (Fig.
4D, top row, alternating blue and green peaks). For flickering
stimuli, the “perceived” orientation was maintained across swap-
ping (Fig. 4E, top row, extended periods during which the green
curve is above the blue curve and vice versa), resembling the SA
percept. During simulated SA, the dominant orientation can be
observed in both binocular-summation neurons (Fig. 4E, top
row), and in monocular neurons (Fig. 4E, second and third
rows). This result was consistent with the empirical findings that
monocular populations are involved in the maintenance of the
dominant percept in SA (33).
According to the model, the temporal dependence of FA and SA

resulted from the different temporal characteristics of mutual in-
hibition and attention. The opponency neurons (mutual inhibition),
when activated, suppressed the weaker eye regardless of the pre-
ferred orientations of the monocular neurons. This process cap-
tured the feature-invariant component in rivalry (34), and thereby
supported FA. The attentional modulation, on the other hand,
supported SA because the attention neurons were selective for
orientation but not for eye-of-origin. The responses of the oppo-
nency neurons had a short time-constant, and thus mutual in-
hibition decayed rapidly after stimulus offset. The attention neurons
had a comparatively long time-constant. For flicker stimuli, there
was a gap before the swap, which allowed the eye-specific sup-
pression from the opponency neurons to decay, while the activity of
the attention neurons was sustained. So the alternations were pri-
marily controlled by the attentional modulation under these con-
ditions (Fig. S3D, fourth row), simulating SA. With static stimuli
and no gap, the alternations were dominated by the activity of the
opponency neurons (Fig. S3C, bottom row), simulating FA.
Due to the temporal dynamics described above, using static

stimuli with a short blank before the swap could also induce SA
(Fig. 4C). Our model showed SA for a range of blank durations
from 35 ms to 150 ms, with a fixed swap rate (Fig. 4F). This result
is consistent with previous studies reporting that blank duration
around 100–150 ms gave rise to the greatest proportion of SA;
blank durations longer than about 200 ms resulted in plaid
percepts (22, 23).

Perceptual states in the swapping experiments depend on the
timing of the stimuli, so the empirical results from these experi-
ments constrain the time constants in the model. The results in Fig.
4 held when τs was ≤10 ms, and when the time constant of at-
tentional modulation (τa) was doubled, but the response alterna-
tions in the 150-ms-blank-only condition (Fig. 4C) disappeared if τa
dropped below 70 ms. The time constant of opponency neurons
(τo) had to be shorter than the time constant of attentional mod-
ulation, as explained above. However, for the condition with a
static image and 3.3-Hz swap rate, if τo was too short (<10 ms), the
dominant eye in FA remained dominant for only one swap, rather
than over a few seconds as in Fig. 4D (second and third rows).
Two previous models (4, 33) also aimed to explain perception in

swapping experiments. We found that they were able to capture the
perceptual dynamics in some, but not all, of the conditions dem-
onstrated here. Specifically, Wilson’s model (4) generated SA
with flicker stimuli, but did not generate FA with static images.
Instead, the model predicted that the “perceived” orientation
alternated with a frequency half of, but not equal to, the swap
rate (Fig. S4 A–C). With blank intervals inserted before each
swap, the model did not exhibit SA for either short or long blank
duration (Fig. S4 D and E). The model proposed by Brascamp
et al. correctly predicted FA with static images (Fig. S5B) and SA
with 18-Hz flicker (Fig. S5C). However, their model generated
SA only when the blank was short (35 ms in Fig. S5D), not when
the blank duration was lengthened (100 ms in Fig. S5E). In
contrast, empirical studies have reported that SA increases with
longer blank durations (22, 23). In addition, these two models
exhibited strong competition for stationary plaid stimuli. Spe-
cifically, in response to monocular plaids, Wilson’s model
exhibited behavior in which one of the gratings suppressed the
other indefinitely (Fig. S6C). For binocular plaids, Wilson’s model
exhibited response alternations, similar to dichoptic gratings
(Fig. S6E), and Brascamp’s model exhibited behavior in which
the representation of the plaid in one eye suppressed the plaid in
the other eye indefinitely (Fig. S6F). These results are inconsistent
with empirical observations that rivalry does not occur when the
images in the two eyes are compatible (35, 36). See details of the
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simulations and results on these two models in Supporting
Information.

Levelt’s Propositions. Levelt’s four propositions characterize how
dominance durations (average duration of all of the individual
periods for which one of the rivalry stimuli dominates) depend
on stimulus contrast (25). We investigated the range of input
strength (D) for which our model exhibited Levelt’s propositions.
We used the updated version of Levelt’s propositions (26) as the
standard. Levelt’s first three propositions (LI–LIII) describe how
dominance durations change when the contrasts of the stimuli in
two eyes vary independently of one another. In Supporting In-
formation, we show that the model exhibited dominance dura-
tions consistent with LI–LIII (SI Levelt’s Propositions and Fig.
S7). Here, we focus on model behavior as the inputs in both eyes
are varied simultaneously.
Levelt’s Proposition IV (L-IV). Increasing stimulus strength in

both eyes while keeping it equal between eyes will generally increase
the perceptual alternation rate, but this effect may reverse at near-
threshold stimulus strengths.
We performed bifurcation analysis to characterize the steady-

state responses of the binocular summation neurons as a func-
tion of input strength (D). The model exhibited three types of
behavior (regimes) when the input strength was varied. (i) At the
lowest and the highest input strength, the two binocular sum-

mation neurons maintained at equal activity [black solid curves,
labeled as both-down (BD) and both-up (BU) in Fig. 5A; also see
Fig. S1B]. (ii) The BD state became unstable when input strength
increased through a critical value (∼0.15), and a winner-take-all
(WTA) state emerged—a so-called steady-state bifurcation (37).
In the WTA regime, depending on the initial conditions, one
binocular summation neuron dominated over the other indefi-
nitely (green curves in Fig. 5A; also see Fig. S1B). (iii) There was
an oscillatory regime in which the responses of two summation
neurons alternated, resembling the perceptual alternations in ri-
valry (solid blue curves, labeled as “Oscillation” in Fig. 5A; also
see Fig. 2C). In more detail, the BU state became unstable as
input strength decreased through a critical value (Hopf bifurcation
in Fig. 5A). Here, the dynamic response, locally near the BU
state, changed from damped to growing oscillations and a small-
amplitude oscillation state emerged—a so-called Hopf bifurcation
(37). In this case, the emergent oscillation was unstable (dashed
blue curves). It merged with the stable large-amplitude oscillation
regime at a higher input strength (fold of limit cycles in Fig. 5A),
defining the upper boundary of the oscillation region.
Critically, in the oscillation regime where the model exhibited

rivalry-like response alternations, the dominance duration de-
creased with increasing input strength [Fig. 5A, blue solid curves,
and Fig. 5B, black solid curve labeled as decreasing duration
(DD)], consistent with L-IV.
Adding noise to the model resulted in the following effects (Fig.

5B, gray dashed line): First, noise eliminated the WTA regime, as
the noise prevented indefinite dominance by either of the two
binocular summation neurons. Second, noise reduced the domi-
nance duration. Third, a new regime emerged in which dominance
duration increased with input strength [labeled as increasing
dominance (ID) in Fig. 5B]. This corresponded to the lower part
of the WTA regime with no noise. We suggest that input strengths
corresponding to this short ID branch were below the threshold
for visibility (see Operating Regime for Binocular Rivalry).

Operating Regime for Binocular Rivalry. Bifurcation analysis over a
wide range of parameter values allowed us to explore all possible
behaviors of the model. We characterized the dynamics of the
model as a function of three parameters that controlled input
strength (D), attentional modulation (wa), and mutual inhibition
(wo). In a subspace of the 3D volume defined by these three
parameters, the behavior of the model was consistent with em-
pirical findings. Here, we illustrate this subspace by depicting 2D
slices of the parameter space, and by indicating the boundaries
that differentiate distinct model behaviors.
We defined a boundary between different regimes in the pa-

rameter space as follows. In some cases, one regime turned into the
other through loss of stability of one state and emergence via bi-
furcation to a stable state of a different type (e.g., the transition from
BD to WTA in Fig. 5A) or to oscillatory responses [e.g., the tran-
sition fromWTA to DD, the Hopf bifurcation (HB), in Fig. 5A]. We
traced the bifurcation points and plotted them as boundaries in Figs.
6 and 7. In some cases, the stable oscillatory response of the neurons
in the oscillatory region was not directly connected to the steady-
state response of the equal-activity regime at the transition (e.g., the
transition from oscillation to BU regimes in Fig. 5A). We identified
such boundaries by tracing the outermost bound of the oscillatory
responses (fold of limit cycles in Fig. 5A; blue curves in Figs. 6 and
7). In other cases, for example close to HB in Fig. 5A, bifurcations
on several branches occurred within a small parameter range. This
remained true along the Hopf bifurcation boundaries in Figs. 6 and
7. In the interest of parsimony, we plot only the Hopf curves, while
noting that the explicit bifurcation mechanism for the transition
between different regions can also involve other bifurcations.
Under a fixed input strength (D = 0.5, same as in the simu-

lations in Figs. 2–4), the binocular summation neurons respon-
ded equally, and there were no response alternations when the
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attentional modulation and mutual inhibition were both weak
(Fig. 6, gray zone). The model exhibited oscillations or WTA as
the weight of attentional modulation or mutual inhibition in-
creased (Fig. 6, blue and red zones). The boundary between
these regimes had a negative slope, indicating that attention and
mutual inhibition both facilitate competition in rivalry, and
jointly determined the model’s behavior.
The shapes of these regimes also depended on input strength

(Fig. 7). The WTA and oscillatory regimes extended to larger
input strengths with increasing mutual inhibition (from Fig. 7A
to Fig. 7C) or attentional modulation (within each panel). There
were two distinct equal-activity regimes. When the input strength
was low, the binocular summation neurons responded equally

with small responses (BD, gray strip on the Left of each panel in
Fig. 7). When the input strength was high, and when attentional
modulation was small, the binocular summation neurons
exhibited equally large responses (BU, gray region at the bottom
of each panel in Fig. 7).
There was a 3D region within the parameter space for which

the model exhibited the critical phenomenology of binocular
rivalry (Figs. 6 and 7, in which the black star corresponds to the
parameters used for the simulation results in Figs. 2–5). First,
the weight of attentional modulation (wa) was chosen so that the
model did not exhibit oscillations for monocular or binocular
plaids (Figs. 6 and 7B, black star below dashed gray boundaries).
Second, the weight of mutual inhibition (wo) was chosen so that
there were no response alternations for unattended dichoptic
gratings (Fig. 6, black star to the Left of red dashed line, so as to be
in an equal-activity regime when wa = 0 directly below the black
star). Third, there was a lower bound on the input strength to avoid
responses alternations for unattended stimuli (Fig. 7B, black star to
the Right of the red dashed line, so as to be in an equal-activity
regime when wa = 0 directly below the black star). Input strengths
below this level were assumed to be below the threshold for visi-
bility. Fourth, within the volume defined by the previous three
criteria, we chose a combination of attentional modulation and
mutual inhibition (black star in Figs. 6 and 7), so the model
exhibited distinctly different behaviors corresponding to the FA and
SA percepts in the swapping experiment. We found that to fulfill
this criterion the model had to operate close to the boundary be-
tween oscillatory and WTA regimes (Figs. 6 and 7, black star near
solid red curve). Fifth, binocular rivalry has been reported up to the
highest contrast level testable, imposing an upper bound of the
input strength (Fig. 7B, input strength increases along the green
dashed line but cannot exceed the value where the green dashed
line intersects the blue curve). Input strengths above this level were
presumed to be physically unrealizable.
In summary, when the rival stimuli were attended, the model

operated close to the boundary between oscillatory and WTA
regimes (Figs. 6 and 7B, black star). A previous study, in which
the authors independently varied the strength of adaptation and
noise to fit the statistics of dominance durations (9), also led to
a similar conclusion. When attention was diverted, the model
moved to an equal-activity regime that was near the boundary of
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an oscillatory regime. We only specified the relative position of
this volume and did not aim to illustrate its size and shape. The
phases and regimes in the bifurcation diagram stretch or squeeze
depending on the other parameters in the model including the
exponent (n) and suppression constant (σ). For example, we
assumed that the input to the neurons increased monotonically
with stimulus intensity. Changing the mapping between stimulus
intensity (e.g., contrast) and neural input strength would scale
and/or warp the x axis in Figs. 5 and 7 (38, 39).

Discussion
We propose a computational model of rivalry, in which perceptual
competition is driven by both attentional modulation and mutual
inhibition. Attention (with a relatively slow time constant) re-
currently amplifies the imbalance between the two rival stimuli
triggered by the mutual inhibition (with a relatively fast time
constant). This model captures three signatures of binocular ri-
valry simultaneously. (i) Diverting attention greatly reduces or
eliminates response alternations (14–16). The model exhibits this
phenomenon because of the recurrent amplification from atten-
tion. (ii) When rival stimuli are swapped rapidly between the two
eyes, the dominant percept either follows the same eye or the
same image, depending on the temporal characteristics of the
stimuli (21–24). The model exhibits these phenomena because of
the different temporal dynamics of mutual inhibition and atten-
tion. (iii) The relationship between dominance duration and input
strength follows Levelt’s propositions (10, 25, 26). These propo-
sitions are satisfied because of a combination of competition (from
attentional modulation and mutual inhibition), recurrent excita-
tion (from attentional modulation), and slow adaptation (6, 38,
39). Levelt’s proposition IV, in particular, depends on having
some degree of recurrent excitation (38, 39).

Attentional Modulation. In our model, attentional modulation
depends on the sensory responses, a form of stimulus-driven
attention. Reducing stimulus-driven attention mimics the effect
of diverting attention away from the rival stimuli. This is con-
sistent with findings that an attention-demanding task diminishes
the stimulus-driven attention triggered by the stimuli outside the
focus of attention (40–42). The notion that bottom-up inputs
strongly influence the deployment of attention in rivalry may
explain why binocular rivalry is only weakly biased by instructions
[e.g., attend to the left-tilted grating (43)].
Attentional modulation in the model is selective for orientation

but not for eye of origin. In previous psychophysical experiments,
we measured how a competing image in one eye modulated the
discriminability of a target image in the other eye. We found that a
model with feature-selective attention, not eye-based attention,
best explained the data (18). Some behavioral studies have sug-
gested that attention can modulate eye-specific information (44,
45). However, these studies placed different stimuli not only in
different eyes but also in different retinal locations. This is dif-
ferent from binocular rivalry in which conflicting information is
presented in corresponding retinal locations. Moreover, with such
experimental conditions, an apparent attention effect might be the
result of a combination of spatial attention and interocular divisive
normalization (46–49).
The present model extends the normalization model of at-

tention (19) to a dynamical system. The time constant of the
attentional modulation chosen here (∼150 ms) is consistent with
the temporal dynamics of stimulus-driven attention measured in
psychophysical experiments. Stimulus-driven attention peaks
around 100–120 ms after a trigger stimulus, whereas goal-driven
attention requires more time (∼300 ms) to be deployed (50–52).
The speed of stimulus-driven attention in rivalry could be slower
than that typically measured in studies of exogenous attention,
because the changes in neural activity during rivalry are less
abrupt than those evoked by a high-contrast brief cue typically

used to summon attention. In any case, the temporal dynamics
of attention are much slower than the speed of the mutual in-
hibition [<50 ms in the present and previous models (reviewed in
ref. 6)]. Because the attentional modulation is computed re-
currently (via feedback) with a time constant longer than the
sensory responses, the model is in line with neurophysiological
findings that stimulus-driven attentional modulation has little or
no impact on the early transient part of the response evoked by
stimulus onset (53).
The simulation results indicated that the prevalence of two types

of percepts (FA vs. SA) in swapping experiments depends on the
balance between attention and mutual inhibition. This idea may
explain two additional aspects of phenomenology observed in
swapping experiments. First, observers usually report that the per-
ceptual state fluctuates between FA and SA during a single trial,
even when the stimuli are optimized for one particular percept (22,
23, 54). This might result from fluctuations in the strength of at-
tention and arousal. Attention and arousal are known to vary over
time during an experiment (55, 56). Increasing the strength of at-
tention would amplify SA and reduce FA, and vice versa. Second,
the depth of suppression is weaker (57, 58), and the dominance
durations are shorter (54) in swapping experiments compared with
conventional binocular rivalry. Likewise in our simulations, SA re-
sponses had shorter dominance durations than conventional rivalry
responses, indicating a weaker competition in SA (Figs. 2C and 4E).
Future work might extend the current model to explain em-

pirical observations regarding the deployment of endogenous at-
tention in rivalry. Manipulating observers’ endogenous attention
by asking observers to “hold on” to one of the two images can bias
the percept in ongoing rivalry (43, 59, 60). However, the effects of
biasing endogenous attention (to one of the rivalry stimuli) are not
as pronounced as those of withdrawing attention, which can
abolish ongoing rivalry (14–16). This difference in the magnitude
of attentional effect might result from the differences in experi-
mental designs: First, the perceptual report when observers are
instructed to hold on to one percept has been usually compared
with a neutral condition (in which observers are not instructed to
hold on). It has been assumed that observers’ voluntary attention
is equally deployed to the two images in this neutral condition, but
this might not be the case. Given the stochastic nature of the
perceptual alternations in rivalry, voluntary attention may partic-
ipate when observers attempt to track and report their percept.
Consequently, the effect of endogenous attention could be
underestimated. Second, in the hold-on condition, the to-be-
attended image went through a period in which it was less visi-
ble than the to-be-ignored image presented at the same location
(43, 59, 60). In contrast, in the withdraw-attention procedure the
to-be-ignored rivalry stimuli were presented at other locations
(14–16). Thus, the withdraw-attention procedure, involving spatial
and feature-based attention, could be stronger than the hold-on
condition, involving only feature-based attention.

Extensions and Limitations of the Model. By modeling neurons se-
lective for dimensions other than orientation (e.g., motion), one can
extend the current model to investigate other forms of bistable
phenomena, such as motion-plaid rivalry (10, 61–63) and ambiguous
structure from motion (64). The strength of mutual inhibition might
vary across different bistable stimuli. If the mutual inhibition is strong
enough, response alternations and thus bistable percepts can exist
without attention (Fig. 6). This may explain why some bistable phe-
nomena, such as motion-induced blindness and ambiguous structure
frommotion, persist when attention is diverted or withdrawn (64, 65).
For a stationary plaid (Fig. 2B), observers can sometimes ex-

perience weak perceptual alternations [monocular rivalry (66)].
The model can capture this effect by adjusting the strength of
attention to a value above the gray dashed lines in Figs. 6 and 7.
In that regime, attentional modulation alone induces response
alternations for a plaid stimulus.
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We remain agnostic as to the mechanism contributing to the
stochastic characteristics of binocular rivalry. Similar to previous
oscillator models (3–6), we focused primarily on characterizing the
deterministic response alternations exhibited by our model. Adding
noise to this type of system generates a gamma-like distribution of
dominance durations (7, 9). One could finely tune the strength of
adaptation and the amplitude of the noise to reproduce the dom-
inance duration statistics found in behavioral data. Alternatively, a
mechanism based on assemblies of stochastic, bistable neurons can
generate gamma-like distributions of dominance durations and can
account for the scaling properties (i.e., constant skewness and co-
efficient of variation) of the dominance durations observed across
input strengths and across different bistable phenomena (67).
Introducing noise to the model does not change the qualitative

organization of the bifurcation diagrams: In general, noise in-
duces small fluctuations in the equal-activity regime, response
alternations in the WTA regimes [if sufficiently close to the os-
cillation regime (9)], and some variability to the alternations in
the oscillatory regime. Simulations with noise showed that
withdrawing attention reduced the strength of competition and
the probability (proportion of time) that rivalry was observed
(Fig. S8 and SI Effect of Noise on Model Behavior).
The current model only assumes that withdrawing attention

abolishes the fluctuations of attention gain, but distributing atten-
tion can also lead to a decrease of effective or perceived contrast
(68). Because our model follows Levelt’s fourth proposition, one
can extend the model—for example, by reducing the baseline of
attention gain or input drive (69) while still allowing the attention
neurons to be active—to simulate the finding that adding a con-
current task could slow down the reported perceptual switches (70).

Neural Mechanisms. In the present model, the neurons in the at-
tention layer were selective for orientation, and their inputs were
linear combinations of the responses of the early sensory neurons.
Visual neurons in areas downstream from V1 (e.g., V2–V4 and LO)
could be responsible for such computations. Stimulus-driven at-
tention in the model might reflect enhanced communication be-
tween early and late visual cortical areas. This idea is supported by
studies that demonstrated greater interarea correlations of activity
between visual areas with attention (71–73). An alternative, but not
mutually exclusive, hypothesis is that attentional modulation is
mediated by neural signals from frontoparietal cortices (74, 75).
Neurons in frontoparietal regions not only exhibit control signals
but also feature-selective representations (76, 77). However,
whether the frontoparietal cortices are directly involved in binocular
rivalry is controversial (78, 79).
Neural activity in visual cortex, measured with single-cell elec-

trophysiology, exhibits rivalry-like alternations (80, 81), and neural
responses in visual cortex also exhibit interocular suppression (82,
83). However, some of these experiments were performed with
anesthetized animals. One should be careful about comparing these
results with those from human neuroimaging and psychophysics
because responses of neurons in visual cortex depend on brain state

(84–86). The dynamics of our model depend on multiple factors,
stimulus strength, attentional modulation, and mutual inhibition
(Fig. 7), which could have very different effects under anesthesia.

Binocular Rivalry as a Gateway for Understanding Perceptual Inference.
Perception is unconscious inference (87). Sensory stimuli are in-
herently ambiguous so there are multiple (often infinite) possible
interpretations of a sensory stimulus. Multistable phenomena (e.g.,
binocular rivalry) can be used to probe the intrinsic neural dynamics
of cortical processing and the neural processes underlying perceptual
inference (88–90), and neural networks with mutual inhibition as the
main ingredient have been designed to perform perceptual inference
(89). The present model adds attentional modulation as a critical
component, not only to explain a large body of literature on the
phenomenon of binocular rivalry but also toward developing a
neural-based computational theory of perceptual inference.
Binocular rivalry is rare in everyday visual experience. Outside

the laboratory, discrepancies between monocular images from the
two eyes often occur when a foreground object occludes the
background of a visual scene, leaving some regions of the back-
ground visible to only one eye and other regions visible to only the
other eye. At corresponding retinal locations with conflicting in-
puts in the two eyes, the retinal image with lower strength (e.g.,
contrast) is usually suppressed for a prolonged period. Even
though perceptual alternations are rarely experienced in this case,
the interocular suppression might arise from the same processes
that drive the suppression in binocular rivalry (91).

Conclusions
Attention has long been known to affect binocular rivalry (59, 92).
However, not until recently was it recognized that attention is nec-
essary for rivalry (14–18). These findings require a revision of the
computational framework for binocular rivalry. In the model we
propose here, attention plays a role that amplifies visual competition
by biasing attention gain toward one of the rival stimuli. This is similar
to the role of attention in natural viewing: attention regulates com-
peting information and allocates limited neural resources (93, 94).
Our model exhibited attention-dependent dynamics and cap-

tured the dynamics of binocular rivalry in a wide range of ex-
perimental conditions. The computations in the model (divisive
normalization, mutual inhibition, and attentional modulation)
have been hypothesized to be canonical motifs underlying in-
formation processing at multiple stages of the visual processing
hierarchy (19, 27, 38). Consequently, this framework can be ex-
tended to understand the spatiotemporal dynamics of interac-
tions between attention and perception in conditions other than
binocular rivalry.
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SI Levelt’s Propositions
Levelt’s Propositions I–III. L-I. Increasing stimulus strength for one
eye will increase the perceptual predominance of that eye’s stimulus.
L-II. Increasing the difference in stimulus strength between the two
eyes will primarily act to increase the average perceptual dominance
duration of the stronger stimulus. L-III. Increasing the difference in
stimulus strength between the two eyes will reduce the perceptual
alternation rate (25, 26).
Levelt’s propositions I–III can be summarized in an experi-

ment in which dominance duration is measured when the
contrast of the stimulus in one eye is fixed, while the contrast of
the stimulus in the other eye varies across a range, encom-
passing contrasts both lower and higher than the fixed-contrast
image (10, 26).
We simulated such an experiment by varying the input strength

of a stimulus in one eye from 0.2 to 0.9 (stimulus A) while fixing
the input strength of the stimulus in the other eye at 0.5 (stimulus
B). We added noise to the simulated neural responses, and
computed the mean dominance durations of A and B.We plotted
the dominance duration of stimulus A and stimulus B as a
function of their input strength. Following Moreno-Bote et al.
(10), we transformed the input strength of stimulus A to “Pro-
portion A” (see the legend of Fig. S7).
Consistent with L-I, increasing the strength of A increased the

proportion of time that A was “perceived” by the model and
lengthened the mean dominance duration of A (Fig. S7). In
agreement with L-II, the change in dominance duration was more
pronounced for the image with the higher contrast. That is, the
change of A’s dominance duration was more pronounced right of
the equidominance point (fraction A = 0.5), and the change of B’s
dominance duration was more pronounced left of the equi-
dominance point. We also observed that the dominance durations
of A and B were approximately symmetric around the equi-
dominance point (Fig. S7 A and B). This symmetry relied on
normalization, due to the suppressive drive of the monocular
neurons in the model (Eq. 1), similar to the “input normalization”
in a previous model (10). In accordance with L-III (Fig. S7C), the
mean alternation rate was fastest at the equidominance point. All
of these simulation results resemble previous experimental results
(10) (Fig. S7 D–F).
In the absence of noise, response alternations were constrained

to a narrow range of input strengths (input A = 0.45–0.55). The
model exhibited WTA behavior outside this range. This occurred
because the model operated close to the boundary between an
oscillator (adaptation-driven) and an attractor (noise-driven), as
shown in the main text (Results, Operating Regime for Binocular
Rivalry).

Levelt’s Proposition IV. Some previous conventional mutual in-
hibition models of binocular rivalry predict an increased duration
(ID) regime; ID corresponds to oscillatory behavior in which
dominance duration increases with input, in violation of Levelt’s
proposition IV (reviewed in ref. 6). Although ID is absent in Fig.
5A, we found ID in a very limited parameter space in the present
model. For example, in Fig. 7A, if one takes a horizontal slice at
wa = 1, the WTA regime is flanked by two oscillatory regimes.
The very small oscillatory regime to the left of the WTA regime,
exhibited ID. The other, a large oscillatory regime to the right of
the WTA regime, exhibited DD. We found that increasing the
strength of attention reduced ID. This might be related to pre-
vious findings that recurrent positive feedback (from attention in
our case) could reduce ID (38, 39). In addition, we also found

that changing the slope and threshold of the neural response
functions (by manipulating n and σ) changed the relative sizes of
the different regimes. These results are consistent with obser-
vations suggesting that ID may depend on which stimulus di-
mension is manipulated in an experiment (95, 96) and how one
specifies the mapping between stimulus intensity and neural in-
puts in the model (38, 39).
At the lower end of the input strength, the model had a WTA

regime (Fig. 5A). There are two potential interpretations of this
regime. First, in the presence of noise, WTA does not occur
because the noise will cause the percept to alternate eventually
(6, 8). Second, in the absence of noise, the WTA regime offers a
possible explanation for the so-called “rivalry memory” (97).
Neurons exhibit nonzero resting-state firing rate (the background
activity) in the absence of sensory input. After stimulus offset, the
background activity might correspond to the WTA regime such
that the dominant percept before stimulus offset would remain
dominant (at a low overall firing rate) after stimuli offset, and
become dominant again when the rival stimuli reappear.

SI Effect of Noise on Model Behavior
We investigated how the presence of noise changed the general
organization of the (wa −wo) bifurcation diagram. Neural noise was
modeled as an Ornstein–Uhlenbeck process and added to the in-
put drive (Methods, Noise). We varied the strength of attentional
modulation (wa) and mutual inhibition (wo) from 0 to 2 in steps of
0.05. For each combination of wa and wo, we simulated neural
responses using dichoptic gratings as the inputs (Fig. 2A) with a
duration of 10 min. Two approaches were used to quantify the
model behavior: (i) We computed a competition index to represent
the magnitude of competition observed in the simulated neural
responses. The competition index was computed as follows:

Competition  index=
Δt
T

XN

j=1

jRb1 −Rb2j
Rb1 +Rb2

,

where Rb1 and Rb2 were the responses of the two binocular
summation neurons, T was the total simulation duration, Δt
was the duration of a time step, N was the total number of time
steps, and j indexed the time steps. The value of the competition
index was bounded between 0 and 1, with a larger value indicating
a stronger competition between two neural populations. (ii) We
used the switches of Rb1 and Rb2 (Rb1 > Rb2 and Rb1 < Rb2) to
segment the simulated responses into epochs. We computed the
duration and competition index for individual epochs. We de-
fined an epoch exhibiting rivalry to be an epoch with a duration
longer than 300 ms (10) and a competition index larger than a
criterion (competition index > 0.3 in Fig. S8B and competition
index > 0.5 in Fig. S8C). We computed the proportion of rivalry
time by summing the durations of all of the epochs that exhibited
rivalry based on these criteria, and divided the summed duration
by the total simulation duration (10 min).
The general organization of the bifurcation diagram was preserved

in the presence of noise (Fig. S8). The change of competition index
was generally parallel to the boundaries identified through bi-
furcation analysis in a no-noise system (compare the change of color
and the two curves in Fig. S8A). Both attention and mutual inhibition
enhanced the competition and increased the competition index. With
the wa = 0.6 and wo = 0.55, values chosen for the simulations in the
no-noise system, the simulated responses had a competition index of
0.63 (black star in Fig. S8A) and a proportion of rivalry time of 97%
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or 96% depending on the criteria (Fig. S8 B and C). When wa and wo
were set to 0 and 0.55, respectively (withdrawing attention), the
competition index dropped to 0.19, and the proportion of rivalry time
decreased to 10% or 0% depending on the criteria.

SI Previous Models for Swapping Experiments
Wilson’sModel.There were two populations of monocular neurons
and one population of binocular summation neurons in Wilson’s
model (4). Each population had a pair of neurons tuned to or-
thogonal orientations (Fig. S4A). There were two types of mu-
tual inhibition. First, monocular neurons selective for different
eyes and orthogonal orientations suppressed each other (Fig.
S4A, red connections at Bottom). Second, two binocular sum-
mation neurons inhibited each other (Fig. S4A, red connections
at Top). The neural responses were as follows:

τ
d
dt
El1 =−El1 +

100½Vl1−gIr2�2+
ð10+Hl1Þ2 + ½Vl1−gIr2�2+

τI
d
dt
Il1 =−Il1 +El1

τH
d
dt
Hl1 =−Hl1 + hEl1.

The asymptotic firing rate of the excitatory neurons was com-
puted according to a Naka–Ruston function. El1 was the firing
rate of the excitatory neuron selective for the left eye l and orien-
tation 1. The excitatory neuron received input Vl1, and subtractive
drive Ir2 as inhibition from the neuron selective for the orthogonal
orientation 2 and for the right eye r. g determined the strength of
mutual inhibition. This excitatory neuron drove an inhibitory
neuron Il1. Hl1 described the slow self-adaptation of this neuron.
The binocular summation neuron selective for orientation 1

was computed as follows:

τ
d
dt
Eb1 =−Eb1 +

100½αEl1+αEr1−gIb2�2+
ð10+Hb1Þ2 + ½αEl1+αEr1−gIb2�2+

τI
d
dt
Ib1 =−Ib1 +Eb1

τH
d
dt
Hb1 =−Hb1 + hEb1.

These computations were similar to the monocular neurons, ex-
cept that the inputs to the binocular summation neurons were the
responses (weighted by α) of the two monocular neurons selec-
tive for the same orientation.
We used the parameter values reported by Wilson (4): input

V = 10 when the stimulus was presented, inhibitory weight g =
0.45 (we assumed that the g = 45 reported in ref. 4 was a typo)
for monocular neurons and 1.53g for the binocular neurons,
adaptation strength h = 0.47, excitatory input gain monocular
to binocular neurons α = 0.75, time constant for monocular and
binocular excitatory neurons τ = 20 ms, time constant for in-
hibitory neurons τI = 11 ms, and time constant of adaptation
τh = 900 ms.
We replicated the findings from Wilson (4) demonstrating that

this model exhibited SA in the flickering image condition (Fig.
S4C). In this condition, the mutual inhibition between monocular
neurons was too weak to produce suppression; SA was achieved
by the mutual inhibition between two binocular neurons.
The model did not exhibit FA for static images. The dom-

inant orientation changed every 666 ms (Fig. S4B, top row,
alternations of blue and green curves). That is, the simulated
neural activity alternated every other swap (i.e., every 666 ms),
not in pace with the swap rate (every 333 ms). This is different

from what has been found empirically; observer’s perceived the
image in one eye for a prolonged period with static images (22,
23, 32). There were several reasons leading to this failure: First,
the mutual inhibition between monocular neurons was only be-
tween orthogonal orientations across eyes. Thus, if orientation
1 was dominant in the left eye (Rl1) at one particular moment
and orientation 2 was suppressed in the right eye (Rl2), then
there was no mechanism to determine which one of the neurons,
Rl2 and Rr1, should win after the two images were swapped.
Second, the simulated neural activity was forced to alternate
every 666 ms. If Rl1 was dominant during one interval (e.g.,
0–333 ms), then the same orientation 1 was presented to the left
eye again after the second swap (666–999 ms). In this interval
(666–999 ms), the same orientation 1 had to be suppressed be-
cause the adaptation term Hl1 (or Hb1) was stronger than Hr2
(or Hb2; due to the most recent dominance phase of Rl1 during
0–333 ms). Which neuron would be dominant between 333–
666 ms, in this case, depended on the initial condition. In some
cases (not shown here), the two orientations in this period
maintained an equal low level of activity.
With blank intervals inserted before each swap, the model

showed responses similar to those in the static image condition,
except that the responses dropped at the time of blank (Fig. S4 D
and E; also see Fig. 4C for the stimulus). These results were not
consistent with studies reporting a high proportion of SA in the
presence of the blank (22, 23).
The model generated winner-take-all behavior for monocular

plaids as one orientation dominated over the other indefinitely
(Fig. S6C). In addition, the model exhibited response alterna-
tions for binocular plaids with the same amplitude as the response
alternations to dichoptic gratings (Fig. S6E). These results were
not consistent with the perceptual phenomena of rivalry: strong
alternations for dichoptic gratings and weak or no alternations
for stationary monocular and binocular plaids.

Brascamp et al.’s Model. This model had two populations of
monocular (Fig. S5A) and no binocular neurons (33). The for-
mulation of this model was very similar to Wilson’s model, ex-
cept that each monocular neuron drove three types of inhibitory
neurons and also received three types of inhibition:

τ
d
dt
El1 =−El1 +

100½Vl1−gxxIr2xx−gxsIr1xs−gsxIl2sx�2+
ð10+Hl1Þ2 + ½Vl1−gxxIr2xx−gxsIr1xs−gsxIl2sx�2+

τxx
d
dt
Il1xx =−Il1xx +El1

τxs
d
dt
Il1xs =−Il1xs +El1

τsx
d
dt
Il1sx =−Il1sx +El1

τH
d
dt
Hl1 =−Hl1 + hEl1.

For the neuron selective for left eye l and orientation 1, there
were three sources of inhibition: First, there was inhibition from
the neuron selective for the right eye r and orientation 2. The
weight of this inhibition was gxx (in which xx represented cross-
eye and cross-orientation; Fig. S5A, red curves). Second, there
was inhibition from the neuron selective for the right eye r and
orientation 1. The weight of this inhibition was gxs (in which xs
represented cross-eye and same-orientation; Fig. S5A, orange
curves). Third, there was inhibition from the neuron selective
for the left eye l and orientation 2. The weight of this inhibition
was gsx (in which sx represented same-eye and cross-orientation;
Fig. S5A, purple curves).
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We used the parameter values reported by Brascamp et al. (33):
input V = 10 when the stimulus was presented; cross-eye–cross-
orientation inhibition had a weight gxx = 0.9 and time constant
τxx = 11 ms; cross-eye–same-orientation inhibition had a weight
gxs = 0.55 and time constant τxs = 4 ms; same-eye–cross-orientation
inhibition had a weight gsx = 0.25 and time constant τsx = 26 ms;
adaptation term had a gain of h = 2.4, and time constant τH = 4 s.
We used the Euler method with a 0.2-ms time step for the sim-
ulations [Brascamp et al. (33) used a time step of 0.25 ms]. Further
reducing the time step did not change the results. We plotted the
responses of the left- and right-eye monocular neurons separately
(Fig. S5 B–E, second and third row) and overlaid (Fig. S5 B–E,
top row)
We replicated the findings reported by Brascamp et al. (33),

demonstrating that this model exhibited SA for flickering images
(Fig. S5C). The dominant orientation can be observed in the
responses of the monocular neurons (instead of only in binocular
neurons in Wilson’s model), consistent with psychophysical re-
sults (33). The model also correctly predicted FA for static im-
ages (Fig. S5B).
The distinction between SA and FA depended on two types of

inhibition in the model. Because of cross-eye–same-orientation
inhibition (gxs), the simulated percept tended to stay within the
same eye when the images were swapped. Because of same-eye–
cross-orientation inhibition (gsx), the orientation of the percept
tended to be maintained when swapping. The value of gxs was
larger than gsx so when there was no blank (static image condi-
tion), the dominant percept stayed in one eye supporting FA.
However, cross-eye–same-orientation inhibition had a very short
time constant (4 ms). Hence, cross-eye–same-orientation in-
hibition decayed when there was a blank before the swap (e.g.,
the blank resulted from flicker), allowing the same-eye–cross-
orientation inhibition to take over, resulting in SA (see details
in ref. 33). Consequently, the model also exhibited SA when a
short blank was inserted before the swap (Fig. S5D; also see Fig.
4C for the stimulus).

One drawback of the model was that it exhibited SA only for
blank durations less than 72 ms. For blank duration longer than
that (e.g., 100 ms in Fig. S5E), the model did not predict the
prevalence of SA. This was inconsistent with empirical findings
that the proportion of SA was higher than FA up to 200-ms
blank duration (22, 23). One possible remedy for the model was
to let the decay of same-eye–cross-orientation inhibition (τsx) to
be even slower so that SA could exist for longer blank durations.
However, when we gradually increased the value of τsx, we found
that τsx could not be set longer than 32 ms. If τsx was longer than
32 ms, FA did not occur with the static image condition. The
reason behind this observation might be that if τsx was too slow,
the mutual inhibition (between the two orientations) accumu-
lated within one eye would prevent a single eye from being
dominant for longer than two swaps. This resulted in a percept in
which the dominant orientation switched every 666 ms (similar
to the simulation results with Wilson’s model; Fig. S4 D and E).
Constraining the value of τsx ≤ 32 ms, Brascamp et al.’s model
exhibited SA up to 90 ms.
For monocular plaids, the model exhibited equal activity for

both orientations (Fig. S6D). Thus, even though the two mon-
ocular neurons in a single eye had mutual inhibitory connections,
its weight gsx was too small to generate response alternations. For
binocular plaids, the model exhibited winner-take-all behavior as
the plaid in one eye suppressed the plaid in the other eye in-
definitely (Fig. S6F). This can be understood as two populations
(two left-eye monocular neurons vs. two right-eye monocular
neurons) competing with each other through the combination of
two mutual inhibition processes: cross-eye–cross-orientation and
cross-eye–same-orientation. The competition here was stronger
than that from dichoptic plaids (binocular rivalry) in which only
one mutual inhibition process (cross-eye–cross-orientation) was
involved. These results with binocular plaids were not consistent
with the empirical findings that binocular competition does
not occur when the both eyes are presented with compatible
images (35, 36).
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are performed in the presence of neural noise (see SI Levelt’s Proposition and Methods, Noise).

Li et al. www.pnas.org/cgi/content/short/1620475114 10 of 11

www.pnas.org/cgi/content/short/1620475114


0

1

2

A
tte

nt
io

na
l m

od
ul

at
io

n 
(w

a)

Competition index

Mutual inhibition (wo)
0 1 2

Proportion of rivalry timeA B C Proportion of rivalry time

Mutual inhibition (wo)
0 1 2

Mutual inhibition (wo)
0 1 2

0

1

0.5

Fig. S8. Effect of noise on system behavior. See SI Effect of Noise on Model Behavior for the details of the simulation with noise. (A) Competition index as a
function of the attentional modulation (wa) and the mutual inhibition (wo), with fixed input strength (D = 0.5) and noise. The red and blue curves, copied from
Fig. 6, were identified by bifurcation analysis of the noise-free system. Blue curve, boundary representing transitions from equal activity to oscillation. Red
curve, boundary representing transitions from oscillation to WTA. (B) Proportion of time that rivalry was observed in the entire simulation (10-min duration).
(C) Same as B, but with different criteria for defining rivalry responses (SI Effect of Noise on Model Behavior). In B and C, the parameter values at which one
binocular summation neuron dominated over the other for the entire simulation were colored as white, representing WTA behavior. Black star, parameters
used for simulations in Figs. 2–5.

Table S1. Parameter values

Parameter Values for simulation Description

D 0.5 Input strength
n 1 for monocular neurons; 2 for all

of the other neurons
Exponent

σ 0.2 for attention neurons; 0.5 for all
of the other neurons

Suppression constant

α 2 Scaling factor of monocular neurons
τs 10 (ms) Time constant of monocular and binocular

summation neurons
τa 150 (ms) Time constant of attention neurons
τo 20 (ms) Time constant of opponency neurons
τh 2,000 (ms) Time constant of adaptation
wa 0.6 Weight of attentional modulation
wo 0.65 Weight of mutual inhibition
wh 2 Weight of adaptation
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