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SUMMARY

Making sense of the world requires us to process
information over multiple timescales. We sought to
identify brain regions that accumulate information
over short and long timescales and to characterize
the distinguishing features of their dynamics.
We recorded electrocorticographic (ECoG) signals
from individuals watching intact and scrambled
movies. Within sensory regions, fluctuations of
high-frequency (64–200 Hz) power reliably tracked
instantaneous low-level properties of the intact and
scrambled movies. Within higher order regions, the
power fluctuations were more reliable for the intact
movie than the scrambled movie, indicating that
these regions accumulate information over relatively
long time periods (several seconds or longer). Slow
(<0.1 Hz) fluctuations of high-frequency power with
time courses locked to the movies were observed
throughout the cortex. Slow fluctuations were rela-
tively larger in regions that accumulated information
over longer time periods, suggesting a connection
between slow neuronal population dynamics and
temporally extended information processing.

INTRODUCTION

The human brain must process information that arrives over a

wide range of timescales. In understanding speech, for example,

one must not only identify each of the three to six syllables

spoken per second (Tauroza and Allison, 1990) but also under-

stand their meaning as a sequence of words. Each word only

achieves full meaning in the context of a sentence, and each

sentence in the context of a conversation. Thus, the information

we gather at each moment is most meaningful in relation to prior

events. For the purposes of control, many laboratory experi-

ments reduce stimulus complexity and ignore neural processes

that extend beyond individual experimental trials. There is
a growing realization, however, of the importance of the neural

mechanisms by which information can be accumulated over

time (Ben-Yakov et al., 2012; Bernacchia et al., 2011; Brody

et al., 2003; Maass et al., 2007; Wang, 2002). Temporally

accumulating information is necessary not only for decision-

making (de Lange et al., 2010; Donner et al., 2009; Gold and

Shadlen, 2007; Sugrue et al., 2004) but also for inferring cause

and effect (Fonlupt, 2003), perceiving event boundaries (Zacks

et al., 2001), maintaining mnemonic context (Manning et al.,

2011), and comprehending the structure of real-life events

(Caplan and Dapretto, 2001; Hasson et al., 2008; Mazoyer

et al., 1993; Xu et al., 2005).

Using functional magnetic resonance imaging (fMRI) we

previously demonstrated that neural circuits differ in the extent

to which they accumulate information over time (Hasson et al.,

2008; Lerner et al., 2011). In regions nearer to the sensory

periphery, cortical activity is reliablymodulated by instantaneous

physical parameters (e.g., the acoustics of a word), but process-

ing is largely independent of temporal context (e.g., whether that

word occurs in a meaningful sentence). These more peripheral

regions have been said to have short ‘‘temporal receptive

windows’’ (TRWs). Further up the processing hierarchy, more

and more of the sensory history is found to affect processing in

the present moment. In areas with especially ‘‘long TRWs,’’

such as the temporoparietal junction, the cortical activity at

each moment may depend on information that arrived over prior

tens of seconds.

In this study, we aimed to map the large-scale topography of

TRWs using electrocorticographic (ECoG) recording of the

human brain. We further asked whether regions with longer

TRWs have distinctive properties in their population dynamics,

which may be important for their capacity to accumulate in-

formation over long timescales. In particular, we hypothesized

that slow components of neuronal dynamics would be more

evident in regions with long TRWs, relative to regions with short

TRWs.

We tested this hypothesis by performing ECoG recordings

from the cerebral cortex of humans watching intact and scram-

bled audiovisual movie clips (Figure 1A). In quantifying local

neuronal dynamics, we measured multiple signal com-

ponents, but focused on fluctuations of power within the broad
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Figure 1. Slow and Fast Responses to Intact

and Scrambled Stimuli

(A) Illustration of the coherent segments used in the

intact, coarse-scrambled and fine-scrambled

movies. Movie stills are pixelated in this panel for

copyright reasons.

(B) Electrode coverage from five subjects, illus-

trated on an average MNI brain. Electrode colors

indicate different subjects.

(C) Example time courses from an early auditory

region, illustrating the fast, medium and slow com-

ponents of the single-trial neural response to a

complex audiovisual stimulus. The responses to the

first and second presentations are shown in yellow

and gray, and Pearson correlation values across

presentations are shown for each component.
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high-frequency range of 64–200Hz. Human andmonkey electro-

physiology suggest that power fluctuations in the 64–200 Hz

band are a distinct phenomenon from the g oscillations found

in visual cortices, and that shifts in this nonrhythmic broadband

component index the population spike rate near an electrode

(Crone et al., 2011; Manning et al., 2009; Miller, 2010; Nir et al.,

2007; Ray and Maunsell, 2011; Whittingstall and Logothetis,

2009). Thus, when we mention fast or slow components of

neuronal population dynamics, we are referring to faster and

slower fluctuations of broadband high-frequency power, which

indexes the population spike rate.

By measuring the ECoG responses to intact and scrambled

movie clips, we confirmed, first, the presence of shorter TRWs

in more sensory areas, and longer TRWs in higher order percep-

tual and cognitive cortices. Second, we observed that regions

with long TRWs exhibit relativelymore slow (<0.1 Hz) fluctuations

of high-frequency power for both intact and scrambled movie

clips. Third, we observed that these slow fluctuations of power

were modulated with reliable time courses across repeated

presentations of the movie. The slow fluctuations were more

reliable for the intact than for the scrambled movie, suggesting

that they may be connected to the processing of information

over long timescales.

RESULTS

Wemeasured neural responses to stimuli with intact information

and with scrambled information structure. An intact audiovisual

movie clip (330 s of continuous narrative content from Dog Day

Afternoon (Lumet, 1975) was scrambled at two timescales

(Figure 1A): coarse-scale (reordering of 7–20 s segments) or

fine-scale (reordering of 0.5–1.5 s segments).

Electrocorticographic (ECoG) field potentials were recorded

from subdural arrays in five patients with intractable epilepsy,

each of whom watched the intact, coarse-scrambled and fine-

scrambled movie clips twice (see Experimental Procedures).

Between 132 and 256 subdural electrodes had been implanted

in each patient (interelectrode spacing 10mm) according to their
424 Neuron 76, 423–434, October 18, 2012 ª2012 Elsevier Inc.
clinical needs (total of 922 electrodes; Fig-

ure 1B; additional information in Table S1

available online). Aggregating data across
subjects produced dense coverage of ventral and lateral

temporal and occipitotemporal cortex, extensive coverage of

somatomotor cortex, and sparse coverage of prefrontal and pari-

etal regions. Voltage signalswere amplified and digitally sampled

at 30 kHz using a custom-built 256-channel digital acquisition

streamand subsequently downsampled to 400Hz. Power fluctu-

ations over time were calculated for the q (4–8 Hz), a (8–12 Hz),

low b (12–20 Hz), high b (20–28 Hz), and g (28–56 Hz) bands. In

addition, power fluctuations across a range of high-frequency

(64–200 Hz) bands were calculated, and normalized signals

were averaged to produce an estimate of ‘‘broadband’’ power

fluctuations (see Experimental Procedures). Finally, we also

calculated band-passed voltage time courses in the ranges 0–

4 Hz, 4–8 Hz, and 8–12 Hz up to 196–200 Hz.

We estimated the repeat reliability of the power time courses

and the voltage time courses evoked by the intact movie. Repeat

reliability was operationalized as the Pearson correlation

between the time courses elicited by the first and second

presentations of each clip. Higher repeat reliability for a particular

movie clip at a particular site indicates that nearby neural circuits

exhibited more consistent response time courses that were time

locked to that movie. Statistical significance was assessed using

a nonparametric permutation procedure and was corrected for

multiple comparisons by controlling the false discovery rate

(FDR, q < 0.01).

Response Reliability of Different Signal Components
Fluctuations of power were more reliable than fluctuations in raw

voltage, and the broadband power fluctuations were the most

reliable overall. Significantly reliable responses (q < 0.01, FDR

corrected) were observed within auditory, visual, multimodal,

and higher order brain regions for the q power (39 electrodes;

Figure 2A), a power (28 electrodes; Figure 2B), low b power (35

electrodes, Figure 2C), and g power (50 electrodes, 28–56 Hz;

Figure 2E). The band with the least reliable and least widespread

responses was the high b band (seven electrodes; Figure 2D),

while the most reliable and most widespread responses were

observed for the broadband power time courses (74 electrodes;



Figure 2. Topography of Reliable Movie-

Evoked Responses

(A) Reliability of 4–8 Hz q power time courses

across two presentations of the intact movie clip.

(B) Reliability of 8–12 Hz a power time courses.

(C) Reliability of 12–20 Hz low b power time

courses.

(D) Reliability of 20–28 Hz high b power time

courses.

(E) Reliability of 28–56 Hz g power time courses.

(F) Reliability of 64–200 Hz broadband power time

courses. For each signal component, only elec-

trodes reliable at the level q < 0.01 after FDR

correction are shown.

See also Figure S1.
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Figure 2F). The reliability of the voltage time course was much

weaker than the reliability of the power time courses (Figure S1).

Because the broadband power fluctuations provided the most

robust signal component and because they index the population

firing rate (Manning et al., 2009; Miller, 2010; Nir et al., 2007; Ray

and Maunsell, 2011; Whittingstall and Logothetis, 2009), we

focused on the broadband component as our measure of neural

activity in the main text and figures. The Supplemental Informa-

tion contains additional analyses of other signal components.

Response Reliability and Coupling to the Stimulus
In early sensory areas the reliability of broadband power was

similar for the scrambled and intact movies, while in higher order

areas the response reliability was greater for the intactmovie. For

the intact movie, reliable broadband power fluctuations were

observed throughout the lateral cerebral cortex (Figure 3A).

The most reliable responses were in early auditory and visual

areas, but significant reliability extended to the superior temporal

gyrus, ventral occipitotemporal cortex, somatomotor cortex,

and posterior and inferior prefrontal cortices. For the scrambled

movie, the reliability in early auditory and visual cortices was

similar to the intact movie (Figure 3D). However, in a number of

higher order areas, such as the posterior medial frontal gyrus

(pMFG), the scrambled movie elicited less reliable responses

than the intact movie.

Single-subject, single-trial power time courses from two

electrodes illustrate the general pattern. In an electrode near

primary auditory cortex (Electrode A1+; Figures 3B, 3E, and

3H) the response time courses were aligned across stimulus

presentations (blue and red traces) for both the intact and scram-

bled stimuli. By contrast, for an electrode in the pMFG, the

responses were 70% less reliable in the scrambled condition

than in the intact condition (Electrode pMFG; Figures 3C, 3F,

and 3G).

Gradient of Audio Correlations
The responses in early auditory areas tracked the low-level

acoustic properties of the movie soundtracks, while in higher

order areas the correlation with the stimulus was weak. We

correlated the amplitude of the movie soundtracks (‘‘audio enve-

lope,’’ see Experimental Procedures) with the broadband com-

ponent of the neural responses. It is clear from the time courses

of amplitude modulation (Figures 3B and 3E, dark gray lines) that
early auditory areas faithfully tracked the audio amplitude modu-

lations, and with similar fidelity in the intact and scrambled

conditions (Figure 3H). By contrast, in higher order areas such

as pMFG, the relationship between neural responses and the

low-level acoustic properties was weaker, especially when the

movie was scrambled (Figures 3C, 3F, and 3G). Significant

correlations with the soundtrack envelope were observed

primarily along the superior temporal gyrus (STG) and at two pre-

central sites. Within the STG, audio correlations were strongest

in the vicinity of primary auditory cortex (A1+; Figure 4A; and

see Nourski et al. [2009]), and they decreased along ventral,

anterior and posterior gradients toward higher order brain

regions (Figure 4B, top).

Topography of TRWs
The observation that correlations with the audio envelope

decrease from early to higher order auditory processing areas

is consistent with hierarchical models of auditory processing in

which early auditory areas encode the lower level acoustic prop-

erties while higher order areas extract more abstract information

(Chevillet et al., 2011; Hickok and Poeppel, 2004; Pallier et al.,

2011). Previous work suggests that the capacity to accumulate

information over time increases gradually from early sensory

areas to higher order perceptual and cognitive areas (Hasson

et al., 2008; Lerner et al., 2011). Therefore, the gradient of

weakening audio correlations within the STG should correspond

to a gradient of lengthening temporal receptive windows (TRWs).

To examine this relationship in our data, we defined the ‘‘TRW

index’’ of each electrode as the difference of its repeat reliability

for the intact and fine-scrambled movie clips. Thus, TRW(i) =

rINTACT(i) � rFINE(i) where rINTACT(i) and rFINE(i) are the repeat reli-

ability of the i-th electrode in the intact and fine-scrambled

conditions (Figure 4A, bottom inset).

Within the STG, areas with longer TRWs exhibited smaller

audio correlations (Figures 4A–4C). A strong and significant anti-

correlation was found between the TRW index of each electrode

in the STG and the strength of its coupling to the intact movie

soundtrack (Figure 4B, black dashed line; r = �0.62, p =

0.010, n = 16) and scrambled movie soundtrack (Figure 4B,

green dashed line; r = �0.51, p = 0.04, n = 16). These results

support the existence of a hierarchy of progressively longer

TRWs within the STG. Areas nearer primary auditory cortex

have shorter TRWs and are more sensitive to instantaneous
Neuron 76, 423–434, October 18, 2012 ª2012 Elsevier Inc. 425



Figure 3. Response Reliability and Relation to the Audio

(A) Reliability of responses across two presentations of the intact movie clip. Single-subject, single-electrode data is aggregated across five subjects on an MNI

surface.

(B and C) Single-electrode single-trial time courses of broadband power modulation in response to the first presentation (red curve) and second presentation

(blue curve) of the stimulus, along with the time course of the audio envelope (black curve).

(D–F) Reliability map and power time courses for the fine-scrambled movie clip, with same format as (A)–(C).

(G and H) Bar plots show the correlation across stimulus repeats (blue bar), as well the correlation between ECoG power and the stimulus audio envelope (gray

bar) for example electrodes in pMFG (G) and near primary auditory cortex (A1+, H). Electrodes that did not respond reliably to the intactmovie are not shown. Error

bars on the inset bar plots are SEM across 20 s sub-blocks. The same auditory electrode provides the example data for (B), (E), and (H); the same frontal electrode

provides the example data for (C), (F), and (G).

pMFG, posterior middle frontal gyrus; pOcc, posterior occipital cortex; FG, fusiform gyrus. See also Figure S5.
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transients of the stimulus, while areas with longer TRWs respond

less to instantaneous stimulus transients, and more to the long-

range temporal structure that is needed to follow the meaning of

the story.

Within the cerebral cortex as a whole, TRW values tended to

be smaller in the vicinity of early sensory cortices and larger in

higher order brain regions. Thus, by and large, the broadband

response reliability in early auditory and visual regions was

high at all scrambling levels (Figure 4C, blue). By contrast, in

higher order areas nearer the anterior fusiform gyrus, the angular

gyrus and frontal cortex (Figure 4C, red), the response reliability

to the intact clip was larger than the reliability to the scrambled

clips. Three visual electrodes exhibited significantly greater

reliability for the scrambled movie than for the intact movie

clip, possibly because the discontinuous fine-scrambled condi-

tion provided more opportunities to respond to the onset of

a preferred stimulus.

We confirmed the presence of a TRW gradient by clustering

electrodes into regions of interest (ROIs) based on their anatom-

ical location (Figure 5A). In the auditory pathway, the ROI anal-

ysis revealed an increase in average TRW values from early to

mid-level areas (t11 = 2.0, p = 0.04) and higher order areas

(t10 = 2.6, p = 0.01). Although we lacked coverage of early visual

areas in the medial and posterior cortex, we observed a trend
426 Neuron 76, 423–434, October 18, 2012 ª2012 Elsevier Inc.
from midlevel visual areas in the ventral and dorsal stream

toward larger TRWs in higher order visual areas. The TRW values

from frontal cortical electrodes were higher than in all other ROIs

(Figure 5B).

Slow Fluctuations Are More Pronounced in Areas with
Long TRWs
Having found TRW patterns in ECoG that substantially match

prior neuroimaging results (Hasson et al., 2008; Lerner et al.,

2011), we next tested the hypothesis that regions with longer

TRWs should exhibit a shift toward a slower timescale of

dynamics. We assessed the timescales of neuronal population

dynamics using two metrics: first, a measure of low-frequency

variance in the power time courses, and second, a measure of

temporal autocorrelation in the power time courses.

To measure the low-frequency variance in the power fluctua-

tions, we first calculated the ‘‘modulation spectrum’’ of each

electrode: this is the power spectrum of the 64–200 Hz power

fluctuations at each site. After dividing the electrodes via

a median split on TRW values (median TRW value = 0.11), we

averaged the modulation spectra within the ‘‘long TRW’’ and

‘‘short TRW’’ groups.

The group of long TRW electrodes showed relatively more

slow fluctuations than the group of short TRW electrodes



Figure 4. Topography of Stimulus Coupling and Temporal Receptive Windows

(A) Surface map showing correlation between neural responses and the amplitude of the stimulus audio. Top zoom inset: the audio correlation on the superior

temporal gyrus; bottom zoom inset: TRW values on the superior temporal gyrus. The dotted arrows provide a visual reference for the proposed audio and TRW

gradients.

(B) TRW values of electrodes on superior temporal gyrus, plotted versus their correlation with stimulus audio in the intact condition (black circles) and

fine-scrambled condition (green squares). For both intact and scrambled clips, regions with longer TRW show a weaker coupling to the audio envelope.

(C) TRW topography aggregated across five individual subjects. Shorter TRWs are predominantly found nearer primary sensory areas, while longer TRWs

predominate further away from sensory areas. The TRW index is defined as the difference in response reliability between the intact and scrambled stimuli. Error

bars on bar plots indicate the SEM across 20 s sub-blocks of the data.

STS, superior temporal sulcus; ANG, angular gyrus; CS, central sulcus. See also Figure S4.
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(Figure 6A). The increase was most apparent below 0.1 Hz, and

was seen in both the intact and fine-scrambled conditions.

To quantify the strength of the slow fluctuations, we computed

the fraction of the modulation spectrum that was below 0.1 Hz

at each site. We refer to this normalized amplitude of slow fluc-

tuations as ‘‘LowFq’’ (see Experimental Procedures; and also

Zuo et al. [2010]). LowFq values range from 0 (indicating faster

dynamics) to 1 (indicating slower dynamics).

LowFq values were higher in the long TRW group than in the

group of short TRW electrodes (Figure 6B). This was evident

for both the intact and fine-scrambled movie conditions. These

observations were confirmed in a 2-way ANOVA with factors of

stimulus (intact/fine-scrambled) and TRW (long/short): both

factors significantly modulated LowFq (p < 0.01) but the interac-

tion was not significant (p = 0.24).

The fraction of slow fluctuations in power was also associated

with TRWs on an electrode-by-electrode basis. LowFq values
measured during the intact movie were robustly correlated

across electrodeswith TRWvalues (r = 0.46, p = 3e-5; Figure 6C).

The same effect was observed when measuring LowFq in the

fine-scrambled movie (r = 0.37, p = 0.001; Figure 6D). Partial

correlations between LowFq and TRW values, with repeat

reliability (rINTACT or rFINE) included as a covariate, were also

highly significant (p < 0.01 all comparisons). This indicates that

the relationship between LowFq and TRW was not due to a

link between LowFq and electrode responsiveness within a

single condition. Electrodes with longer TRWs also exhibited

greater temporal autocorrelation in their dynamics. The temporal

autocorrelation function indexes the timescale over which prior

states of the dynamics predict future states (see Experimental

Procedures). We calculated autocorrelation width (ACW) values

by measuring the full-width-at-half-maximum of the temporal

autocorrelation function of each electrode, and found that elec-

trodes with longer TRWs had greater autocorrelation width,
Neuron 76, 423–434, October 18, 2012 ª2012 Elsevier Inc. 427



Figure 5. ROI Analysis of TRW Differences

(A) Parcellation of reliable electrodes into ROIs.

(B) Average TRW index within each ROI. We noted a progression of larger TRW

indices for higher order cortical areas, with largest TRWs observed in frontal

cortex. Error bars indicate SEM across electrodes within ROIs. *p < 0.05.
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regardless of whether ACW was measured during the intact clip

(r = 0.33, p < 0.01; Figure 6F), the coarse-scrambled clip (r = 0.25,

p < 0.05), or the fine-scrambled clip (r = 0.21, p = 0.07; Figure 6G).

The LowFq and ACW measures are connected via the Wiener-

Khinchin theorem, but this relationship is not always simple. In

the current data, we found that the ACW and LowFq parameters

were robustly positively correlated (Figure S2), and the ACW

analysis confirmed the finding that power fluctuations occurred

more slowly on average in regions that accumulate information

over longer timescales.

Together, the results above identify features of neural

dynamics (LowFq and ACW) that are associated on a site-by-

site basis with the processing of temporal information in a stim-

ulus (TRW). A similar relationship between dynamic timescale

and the TRW index was observed in the power fluctuations of

the q, a, low b, and g bands, although the smaller number of reli-

able electrodes in these bands diminished the statistical power

(Figure S3). In addition, a comparable relationship between

LowFq and the TRW parameter was observed when the TRW

indexwas defined as rCOARSE� rFINE rather than as rINFACT� rFINE
(Figure S4).

Dynamic Timescales Measured During Fixation Predict
TRWs
To rule out the possibility that the relationship between the

timescale of neural dynamics and the TRW index was driven

by temporal statistics of the stimulus (which differ across con-
428 Neuron 76, 423–434, October 18, 2012 ª2012 Elsevier Inc.
ditions; Figure S5), we measured LowFq and ACW values during

30 s fixation periods that preceded each stimulus (see Experi-

mental Procedures). The fixation-period ACW parameter

showed a robust correspondence with the TRW index (r =

0.29, p = 0.01; Figure 6H); this correlation between ACW and

TRW values was as strong as those in the movie-stimulated

data. Estimates of LowFq parameter during fixation were less

precise, because of shorter data windows and fewer overall

data points, but we nonetheless observed a weak correlation

across electrodes between fixation-period LowFq and the

TRW index computed from the movie-viewing data (r = 0.19,

p = 0.10; Figure 6E). In addition, both LowFq and ACW values

in each electrode were highly correlated between states of fixa-

tion and movie viewing (Figure S6).

Both short TRW and long TRW regions exhibited increased

values of LowFq for the intact stimulus relative to the fine-scram-

bled stimulus (Figure 6B), which indicated that the dynamics of

the stimulus can alter the timescales of the neural responses.

However, the fixation data demonstrated that, while environ-

mental stimuli may induce widespread increases or decreases

in the timescales of neural dynamics, the relative ordering of

regional timescales was preserved across states of task and

fixation. Thus, although stimulus dynamics modulated neural

dynamics, they did not drive the relationship between the

dynamic timescale and the TRW index.

Increase in Reliability of Slow Power Fluctuations
for the Intact Movie
The LowFq and ACW properties of the dynamics during movie

viewing reflect a mixture of stimulus-locked and stimulus-

independent dynamics at each electrode, and so we next aimed

to extract the component of the dynamics that was time-locked

to the stimuli. We therefore separately computed the repeat

reliability of slow (<0.1 Hz) and fast (>0.1 Hz) dynamics in each

condition. The repeat reliability within each electrode in each

condition was recomputed after low-pass filtering (slow) or

high-pass filtering (fast) the broadband power fluctuations at

0.1 Hz (see Experimental Procedures; Figure 1C shows a slow

time course).

Slow fluctuations of power showed larger changes in reliability

across conditions than did the faster fluctuations (Figure 7A). In

the fine-scrambled movie, the slower and faster dynamics

exhibited the same average level of reliability (t73 = 0.94, p =

0.35); however, in the intact movie the slow component of the

signal was far more reliable than the fast component (t73 =

12.6, p « 0.01). A reliability advantage was also observed for

the slow dynamics over faster dynamics within the coarse-

scrambled condition (t73=7.95, p « 0.01), but this advantage

was smaller than it was in the intact movie condition (t73 =

3.37, p « 0.01). Together these data suggest that when long

timescale information is present in a stimulus, then neural activity

is increasingly dominated by slow fluctuations that are specific

to the stimulus.

The same enhancement in stimulus-specific slow fluctuations

can be seen in individual electrodes. Figure 7B shows the reli-

ability of each electrode in the intact and fine-scrambled movies

before and after low-pass and high-pass filtering. After high-

passing the broadband fluctuations most of the electrodes



Figure 6. Intrinsic Slow Dynamics and the TRW

(A) Spectra showing the fraction of variance in the broadband fluctuations at frequencies between 0.01–1 Hz. Lines show the average of the normalized

modulation spectra for two groups of electrode (long TRW in red and short TRW in blue) in two conditions (intact clip and fine-scrambled clip). Colored areas

indicate SEM across 18 data samples, each 60 s.

(B) The average amplitude of low-frequency fluctuations (LowFq, fraction of variance <0.1 Hz) for short TRW and long TRWelectrodes. Error bars are SEM across

electrodes. Asterisks indicate the significance of the comparison across electrode groups or conditions; *p < 0.05; **p < 0.01. The asterisk across the two pairs of

bars indicates the aggregate difference across the intact and fine-scrambled conditions.

(C–H) TRW of individual electrodes plotted versus their LowFq values in the intact movie (C) fine-scrambled movie (D) and fixation (E) conditions. (F–H) are for

(C–E) with TRW plotted against ACW values.

See also Figures S2–S6.
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have values near the main diagonal of the scatter plot. By

contrast, for the slow component of the signals most electrodes

are found in the lower quadrant of the scatter plot, indicating

greater response reliability for the intact movie clip. Thus, the

faster dynamics were elicited with equal reliability by intact and

scrambled movie clips, while the slower dynamics were far

more reliable for the intact clip. This was confirmed in a 2-way

ANOVA on repeat reliability with factors of condition (intact/

fine-scrambled) and timescale (faster/slower); the interaction

term was highly significant (p < 0.01), confirming that the differ-
ence in reliability between the fast and slow components was

greater for the intact movie clip.

Regions with the longest TRWs showed the least coupling to

low-level stimulus properties (Figure 3B), and yet they showed

the largest changes in the reliability of their slow dynamics, as

measured by the reliability after low-passing the power fluctua-

tions (Figure 7C, gray dots). This suggests that the changes

across conditions in the reliability of slow dynamics (Figures 7A

and 7B) are not driven by differences in low-level properties

(e.g., the audio envelope; Figure S5) of the stimuli.
Neuron 76, 423–434, October 18, 2012 ª2012 Elsevier Inc. 429



Figure 7. Fast and Slow Components of Response Reliability

(A) Average reliability across electrodes for all conditions. The reliability of power time courses (red bars) is increased after low-pass filtering at 0.1 Hz (gray bars)

and decreased after high-pass filtering (blue bars), and this effect is strongest in the intact movie condition. Error bars indicate the SEM across electrodes.

Asterisks indicate the significance of the comparison between low-pass and high-pass; *p < 0.05; **p < 0.01.

(B) Reliability of individual electrodes to the intact stimulus versus their reliability in response to the fine-scrambled stimulus, with reliability computed after

low-passing (gray dots) and high-passing (blue dots). The faster component of the power time course shows only a small difference in reliability between intact

and scrambled movie, while the slow component shows a large difference.

(C) Comparison of TRW values computed after low-pass and high-pass filtering plotted as a function of the original TRW values. Electrodes with large TRW

values exhibited even larger TRW values after low-pass filtering.

See also Figures S5 and S6.
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DISCUSSION

Slow (<0.1 Hz) fluctuations in population activity are a ubiquitous

feature of neural dynamics, but their functional role is uncertain

(Bullmore et al., 2001; He, 2011; He et al., 2010; Leopold et al.,

2003; Nir et al., 2008; Weisskoff et al., 1993; Zarahn et al.,

1997). We mapped the TRWs of human cortical regions using

ECoG and tested whether regions with shorter and longer

TRWs differ in their slow dynamics. Consistent with fMRI studies

(Hasson et al., 2008; Lerner et al., 2011), the electrophysiological

measurements revealed that TRWs increased from sensory

toward higher order cortices. Notably, regions with longer

TRWs exhibited relatively more slow fluctuations and greater

temporal autocorrelation, even during resting fixation. Although

the slow fluctuations were observed in the absence of any stim-

ulus, they became time-locked to the content of audiovisual

movie stimuli. Moreover, the slow timecourses were highly

reliable in response to movie clips that contained long-range

contextual information structure, but they were significantly

less reliable in response movie clips had been scrambled.

The relationship between long TRWs and slow fluctuations of

power was observed regardless of whether the slow fluctuations

were measured during the intact or scrambled movie clips

(Figures 6C, 6D, 6F, and 6G) or during a fixation period (Figures

6E and 6H). In addition, the LowFq and ACW values were highly

correlated across states of fixation and movie viewing (Fig-

ure S6). These data suggest that the dynamic timescale in

each region is determined in part by circuit properties which

shape dynamics in a similar way, regardless of the state of

external stimulation. This finding is also consistent with the

idea that sensory circuits, which tend to have shorter TRWs,

are optimized for rapid transient responses to the environmental

state, while higher order circuits, which tend to have longer

TRWs, more readily maintain and accumulate information over

time (Huk and Shadlen, 2005; Ogawa and Komatsu, 2010;

Romo et al., 1999; Shadlen and Newsome, 2001; Wang, 2002).
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Although the regional ordering of dynamic timescales was

well-preserved across states of task and fixation, the dynamic

timescales in individual electrodes did change across condi-

tions. Both short TRW and long TRW regions exhibited relatively

more slow fluctuations of broadband power during the intact

than during the scrambled stimuli (Figures 6A and 6B). Elec-

trodes with short TRWs responded to low-level stimulus proper-

ties such as the audio amplitude (Figure 4A), which changes

more rapidly in the scrambled condition (Figure S5). Thus, the

change in slow fluctuations in short TRW areas may be attribut-

able to changes in low-level stimulus properties. However, a

comparable increase in slow fluctuations was observed for areas

with long TRWs, despite the fact that these areas showed little

coupling to low-level stimulus properties (Figure 4B). Thus,

because the boost in slow fluctuations in the intact-movie is

widespread, it may reflect a process in which sensory and higher

order areas work together to understand a temporally complex

real-life stimulus.

What is the origin of the slow fluctuations of power observed in

sensory and higher order cortical regions? One mechanism for

lengthening time-constants is to introduce recurrent feedback

into a neural circuit (Brody et al., 2003; Durstewitz et al., 2000;

Shu et al., 2003; Wang, 2002). Differences in the tuning of recur-

rent activity could account for the differences in the amplitude of

slow fluctuations across brain regions. However, we cannot rule

out other causes for slow neural change, such as short-term

synaptic plasticity (Zucker and Regehr, 2002) or relaxation

processes in membrane excitability (Marom, 1998). In addition,

slow fluctuations of power are coupled across brain regions

even in the absence of stimulation (Leopold and Maier, 2012;

Leopold et al., 2003; Nir et al., 2008; Schölvinck et al., 2010),

which indicates that the dynamic timescale of each region is

influenced by interregional interactions.

Although their mechanistic basis is uncertain, the slow fluctu-

ations of power are reliable across stimulus repetitions (Fig-

ure 7A), which immediately suggests that they are not simply
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noise. In addition, the slow dynamics in response to the intact

stimulus were significantly more reliable than those evoked by

the scrambled stimulus, which lacks the contextual information

structure of a real-life narrative. Finally, the faster fluctuations

of broadband power showed amuch smaller change in reliability

between the intact and scrambled stimuli (Figure 7B). These data

suggest a connection between slow fluctuations of neuronal

population activity and temporally extended information pro-

cessing. Similarly, it has been proposed that slow changes in

the spatial pattern of high-frequency power reflect a gradually

drifting mental context (Manning et al., 2011). If slow fluctuations

of power reflect a drifting mental context, this may explain why

they are larger and more reliable during the intact movie, whose

context shifts gradually as narrative information is accumulated.

We have focused on the slow fluctuations that compose the

dominant portion of the variance in neural activity (Figure 6,

and see Leopold et al., 2003). Firing rates and high-frequency

power are not only modulated on these slow timescales: they

also vary with the phase of cortical rhythms on the scale of

tens to hundreds of milliseconds (Canolty et al., 2006; He

et al., 2010; Miller et al., 2010; Murthy and Fetz, 1992; Osipova

et al., 2008; Panzeri et al., 2010). However, these faster rhythmic

effects do not dominate the variance of high-frequency power:

the peak-to-trough effect of rhythmic modulation is typically

<20% of the SD of the power time course (Miller et al., 2010)

and phase-amplitude coupling strength is typically <10% of

the maximum possible coupling (Voytek et al., 2010). Thus,

although the faster rhythmic modulations may be important for

regulating neural activity (Canolty and Knight, 2010; Miller

et al., 2012; van der Meij et al., 2012) they have little direct effect

on the measurements that are our focus here.

Power fluctuations occur on both fast and slow timescales in

all regions. Thus, the 0.1 Hz cutoff employed in the LowFq

parameter is somewhat arbitrary, and the ACW parameter

does not identify a single, dominant timescale for any cortical

region. Moreover, timescales of neural dynamics can be affected

by stimulus dynamics and by the temporal smoothing usedwhen

estimating power time courses. For these reasons, the differ-

ences in timescale we report (Figures 6 and 7) do not indicate

the absence of fast or slow dynamics in any area, but rather

differences in the balance of faster and slower dynamics.

Finally, we note the promising implications of these findings for

functional neuroimaging research. During real-life cognition and

perception, very slow fluctuations in population activity make up

a large fraction of the neural population dynamics (Figure 6A) and

real-life cognition reliably modulates these slow dynamics (Fig-

ure 7A). Hemodynamic mediation of the BOLD signal reduces

the signal-to-noise of more transient (>1 Hz) neural dynamics,

but should have a much smaller effect on the slow (<0.1 Hz)

dynamics whose reliability we report here. Therefore, given the

relationship between ECoG power fluctuations and the BOLD

signal (He et al., 2008; Hermes et al., 2012; Logothetis et al.,

2001; Mukamel et al., 2005; Niessing et al., 2005) it is likely

that a substantial fraction of the dynamics relevant to real-life

cognition are not obscured by hemodynamic filtering.

To conclude, the electrophysiological data presented here

establish that slow (<0.1 Hz) fluctuations of broadband power

are disproportionately expressed in regions with long TRWs,
and that these slow fluctuations of population activity are reliably

modulated by real-life stimuli that require the accumulation of

information over long timescales.

EXPERIMENTAL PROCEDURES

Subjects

Five patients (four female; 20–47 years old) experiencing pharmacologically

refractory complex partial seizures were recruited via the Comprehensive

Epilepsy Center of the New York University School of Medicine. Their clinical

and demographic information is summarized in Table S1. Patients had elec-

ted to undergo intracranial monitoring for clinical purposes and provided

informed consent both pre- and postelectrode implantation in accordance

with National Institutes of Health guidelines administered by the local Institu-

tional Review Board. For each patient, electrode placement was determined

by clinicians based on clinical criteria. We focus here on patients with entirely

or predominantly left-lateralized coverage, all of whom had left-lateralized

language function, excluding data from two patients with right-hemisphere-

only coverage.

Stimuli

Audiovisual stimuli were generated from a 325 s clip selected from the 1975

commercial film Dog Day Afternoon (Lumet, 1975). The original intact clip

was segmented into 24 coarse units (length 7.1–22.3 s) that were temporally

permuted to produce a coarse-scrambled stimulus. The coarse clips were

further subdivided to produce a total of 334 fine units (length 0.53–1.62 s)

which were permuted to produce a fine-scrambled stimulus. The boundaries

between the coarse and fine subsegments were manually selected to coincide

with the natural boundaries created by cuts in the movie or by word and sen-

tence onsets and offsets.

Experimental Design

Subjects viewed six movie clips (three clips, two presentations per clip)

at bedside on a MacBook laptop located 40–60 cm from their eyes.

PsychToolbox Extensions (Kleiner et al., 2007) extensions for MATLAB

(MathWorks, Natick, MA) were used to display the movies and trigger their

onsets. Clips were presented in a fixed order: Intact, Coarse, Intact, Fine,

Coarse, Fine. Presentation of each clip was preceded by a 30 s period in which

participants fixated on a central white square (<1� visual angle) on a black

background.

ECoG Acquisition

Signals were recorded from 922 electrodes across all five subjects (see Table

S1 for subject-level details). Subdural arrays of platinum electrodes embedded

in silastic sheeting (83 8 square grids, 43 8 rectangular grids, or 13 8 strips)

were placed purely according to clinical criteria. Electrodes had an exposed

diameter of 2.3 mm and were spaced 10 mm center-to-center. Depth record-

ings were not analyzed in the present study. Screws in the skull served as

reference and ground. Signals were sampled at 30 kHz using a custom-built

digital acquisition system (based on the open-source NSpike framework

(L.M. Frank and J. MacArthur, Harvard University Instrument Design Labora-

tory, Cambridge, MA) that included a 0.6 Hz high-pass filter in hardware.

Note that this high-pass filter applies to the raw voltage signal, and does not

affect the detection of slow fluctuations in 64–200 Hz power.

Electrode Localization

T1-weighted images were acquired from each subject both before and after

the implantation of electrodes. Electrodes were localized on the individual

cortical surfaces using a combination of manual identification in the T1images,

intraoperative photographs, and a custom MATLAB tool based on the known

physical dimensions of the grids and strips (Yang et al., 2012). Subsequently,

the individual-subject T1 images were nonlinearly registered to an MNI

template using the DARTEL algorithm via SPM (Ashburner, 2007), and the

same transformation was applied to map individual electrode coordinates

into MNI space.
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ROI Assignment

Electrodes were manually assigned to clusters according to their proximity to

anatomical landmarks (Figure 5A). Auditory stream electrodes were assigned

to Early (n = 7), Middle (n = 6), and Higher (n = 8) clusters. Visual stream elec-

trodes were assigned only to Middle (n = 17) and Higher (n = 14) clusters, as

coverage of the medial occipital wall was lacking. Frontal electrodes were

defined as those anterior of the posterior bank of the precentral gyrus (n =

12). Five electrodes could not be designated to a sensory pathway and were

labeled Other (n = 5).

Preprocessing

Data were analyzed inMATLABR2010a using custom scripts and the FieldTrip

signal processing toolbox (Oostenveld et al., 2011). The raw voltage signals

were downsampled to 400 Hz using a set of anti-aliasing finite impulse

response filters.

Electrode Exclusion Procedure

Because our measure of repeat reliability is a correlation across only two indi-

vidual presentations of a stimulus, with no averaging, it was important to

exclude electrodes with signal contamination. Electrodes were excluded in

the following order: (1) electrodes from the right hemisphere, (2) electrodes

exhibiting manifestly artifactual or epileptiform signals, (3) electrodes exhibit-

ing no signal, and (4) electrodes for which conclusive MRI localization was

not possible. After these exclusions, 573 of the original 922 electrodes

remained.

In an approach similar to global average referencing, the mean voltage time

course across all remaining channels within each subject was then projected

(via linear regression) from the time course of each individual channel.

Subsequently, power time courses were calculated in each channel (see

below). An analysis was performed on each individual channel, to detect

spectral bursts, whichmay indicate epileptiform activity or an intermittent elec-

trode contact. A spectral burst was defined as a power value more than six

times the interquartile range away from the median of the power time course

in any frequency band. Of the 573 channels entered into spectral analysis,

291 electrodes exhibited at least one spectral burst during the experiment

and were excluded.

The remaining 231 electrodes were entered into an analysis of repeat

reliability. Of the 231 electrodes entered into the reliability analysis, 74

exhibited significantly (false-discovery rate, q < 0.01) correlated response

time courses between the first and second presentations of the intact movie

clip in single subjects. These 74 electrodes are used for the analyses pre-

sented in Figures 3, 4, 5, 6, and 7.

Calculations of Power Time Courses

Time courses of signal power modulation generally constitute a useful

currency for characterizing neural dynamics (Donner and Siegel, 2011). In

particular, the broadband power fluctuations observable in the high-frequency

64–200 Hz range provide a spatiotemporally local estimate of variations in

population spike rate near each electrode (Manning et al., 2009; Miller, 2010;

Nir et al., 2007; Ray and Maunsell, 2011; Whittingstall and Logothetis, 2009).

Using FieldTrip, power spectra were estimated every 100ms using 3 Slepian

tapers in windows with 1 s temporal width and 4 Hz frequency width, with

center frequencies of 2, 6, 10, ..., 198 Hz. Power modulation in the 56–64,

116–124, and 176–184 Hz bands were excluded from analysis because of their

proximity to line noise and its harmonics.

Power estimates are not normally distributed across time samples, and

thus we took the logarithm of power estimates in order to normalize

their distributions (Miller et al., 2009). Prior to computing logarithms, each

time course was divided by its mean value. This effective whitening of the

high-frequency spectrum is not essential, but it slightly improved signal-to-

noise in the estimate of high-frequency power, because it corrects for the

fact that lower frequencies exhibit larger fluctuations than higher frequencies.

After whitening, one is combining spectral estimates across equally weighted

independent samples of the underlying broadband process. Without whit-

ening, the independent samples of the broadband process are not equally

weighted. Broadband power was thus calculated as the average across all

normalized time courses with center frequencies in the range 64–200 Hz.
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High-Pass, Low-Pass, and Band-Pass Filtering

High-pass, low-pass, and band-pass filtering of power time courses (Figure 7)

and voltage time courses (Figure 2) was performed directly in Fourier space, by

computing a discrete fast Fourier transform (DFFT), separating the phase and

amplitude of each Fourier component, multiplying the set of component ampli-

tudes with the desired spectral profile, and then inverting the DFFT. To

attenuate time-domain ripples, a Gaussian taper was applied. For the 0.1 Hz

cutoff, this taper produced 75% signal attenuation at 0.11 Hz, and >99%

attenuation at 0.13 Hz. Comparable results were obtained using a time-

domain Butterworth filter.

Repeat Reliability Analysis

The reliability of the power time courses evoked by each movie clips was then

assessed using the Pearson correlation coefficient

r =
P1ðtÞ3P2ðtÞ
kP1ðtÞkkP2ðtÞk;

where P1(t) and P2(t) are time courses of broadband power modulation evoked

by the first and the second presentation of each clip. To avoid onset transients

and horizon effects, the first 15 s and last 10 s of powermodulation in response

to each movie clip were excluded from all analyses. For analyses of the 30 s

fixation periods, the first 5 s and last 5 s of each period were excluded.

Correlating ECoG Power and Audio Amplitude

An audio amplitude time course was calculated separately for each sound-

track and then compared against the neural response time courses. Audio

power modulations were estimated within 25 frequency bands (200 Hz to

5 kHz center frequencies, 200 Hz frequency width, 50 ms time width) using

multi-tapers in FieldTrip. The logarithm was taken of the audio power time

course in each band, and the ‘‘audio envelope’’ was computed as the mean

across the audio power time courses in all bands. The audio envelope was

then downsampled to the 10 Hz sampling rate of the neural power time

courses. Finally, for each movie clip and each electrode, a Pearson correlation

was computed between (1) the time course of the audio envelope, and (2) the

average time course of broadband power for the first and second presenta-

tions of the clip.

Computing LowFq

LowFq was defined as the fraction of the modulation spectrum of broadband

ECoG power time courses below 0.1 Hz. To calculate LowFq, each 64–200 Hz

power time courses was decomposed into nine 60 s blocks, with 30 s overlap

of consecutive blocks. First, the mean time course value was subtracted from

each 60 s block. Second, each block was multiplied by a 60 s Hamming

window. Third, a 600-point DFFT was computed for each block. Fourth, to

compute the modulation spectrum of each block, we averaged the power

spectra across all blocks in the first and second presentations of the movie.

Finally, using this averaged modulation spectrum, we computed LowFq as

the power in the modulation spectrum below 0.1 Hz divided by the total power

in the modulation spectrum. Estimations of LowFq in the fixation data were

performed in the same way, but using 20 s data windows with 10 s overlap.

Computing ACW

The ACW was defined as the full-width-at-half-maximum of the temporal

autocorrelation function of the power time course. To calculate ACW, each

64–200 Hz power time courses was decomposed into 20 s blocks with 10 s

of overlap. We computed the autocorrelation function, Ri(t), of the power

fluctuations of the i-th electrode within each block:

RiðtÞ= corrðPiðtÞ;Piðt � tÞÞ;
and then averaged the Ri(t) functions across all blocks obtained from all runs

within a condition. Finally, the ACW for the i-th electrode was defined as

ACWi = 2min
t

�
t jRiðtÞ< 1

2

�
;

whereRiðtÞ is the average of all autocorrelation functionsRi(t) computedwithin

individual blocks for that electrode. Spectral power was estimated in 1 s



Neuron

Slow Dynamics and Information Accumulation
windows stepping by 0.1 s, so that t values increment by 0.1 s and the

minimum value of ACW is 0.2 s.

The Wiener-Khinchin theorem connects the autocorrelation function and

power spectrum of a time series, and so the LowFq and the ACW parameters

are related measures of the dynamical timescale. In the present data the

LowFq and ACW parameters are robustly correlated (Figure S2), but we

present both measures because they are differently parameterized (LowFq

requires a frequency cutoff while the ACW measure requires an autocorre-

lation cutoff) and they do not always provide the same information.

Statistical Testing of Correlation Values

Because of the autocorrelation in the power modulation time courses, the

statistical significance of r-values was assessed using a permutation pro-

cedure (Efron and Tibshirani, 1993) that preserved the autocorrelation

structure of the original data within the surrogate data. Time courses were

subdivided into blocks of 20 s length and the blocks were randomly permuted

to produce a surrogate time course. For each empirical time course a set of

2,000 surrogate time courses was generated. For every empirical correlation,

2,000 surrogate correlations were computed using the surrogate time courses.

p values were assigned to each r-value by comparing the observed correlation

against the distribution of correlations under the null model. Comparable

results were obtained when surrogate data were generated by phase-random-

ization of empirical time courses (Theiler et al., 1992). The Benjamini-Hochberg

FDR procedure was applied (qcrit = 0.01) to correct for multiple statistical

comparisons (Benjamini and Hochberg, 1995).

To estimate the error of correlation calculations, time courses were

partitioned into 20 s blocks, and correlations were computed within each

block to produce a sampling distribution of correlations. The SE of the

sampling distribution provides the half-width of the error bars in Figures 3G

and 3H.
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