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The past year has seen great advances in the use of functional
magnetic resonance imaging (fMRI) to study the functional
organization of the human visual cortex, to measure the
neuronal correlates of visual perception, and to test
computational theories of vision. Activity in particular visual
brain areas, as measured with fMRI, has been found to
correlate with psychophysical performance, with visual
attention, and with subjective perceptual experience.
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Abbreviations
d¢ discriminability index
fMRI functional magnetic resonance imaging
MT+ human homolog of monkey MT; also called V5
V1 primary visual cortex

Introduction
The vast majority of neuroimaging experiments have
focused on which parts of the brain respond to a particular
sensory stimulus or are active during the performance of a
particular cognitive or perceptual task. Although this has
been an important first step, perception and cognition
depend not only on which brain areas are active, but also
on how neuronal activity within each of those areas varies
over space and time. Functional magnetic resonance imag-
ing (fMRI) is now being used routinely to measure
variations in the level of brain activity with a spatial reso-
lution of several millimeters and a temporal resolution of
several seconds. This technological advance is enabling a
new era of computational neuroimaging research [1••],
complementary to electrophysiology in awake behaving
monkeys [2•], for exploring the relationship between brain
and behavior in humans. Here, I review quantitative fMRI
methods and summarize some recent results that illustrate
the promise of this new approach.

fMRI methods
Two main paradigms have been adopted for computational
neuroimaging experiments: periodic and event-related. I
will use examples from my lab to demonstrate the reliabili-
ty and sensitivity of these two types of measurement.

Periodic paradigm
In the periodic paradigm, the modulation of brain activity
is measured as the stimulus or task alternates between two
states. A sequence of functional images is acquired during
each scan. For a given fMRI voxel, corresponding to a

small (e.g. 1 × 1 × 4 mm) brain volume, the image intensi-
ty changes over time and comprises a time-series of data.
The fMRI responses are quantified by making three cal-
culations: first, dividing each voxel’s time-series by its
mean intensity to convert from arbitrary (image intensity)
units to units of fractional signal change; second, averaging
the resulting time-series over the set of voxels correspond-
ing to a predefined visual area (see below); and then, third,
calculating the amplitude and phase of the best fitting
sinusoid with a period equal to that of the stimulus/task
alternations (Figure 1a).

To control for a subject’s attentional state, they are typically
required to perform a series of trials of a difficult perceptual
task throughout each fMRI scan. Each trial of the task might
consist of two brief (e.g. 500 ms) stimulus intervals followed
by a brief (e.g. 750 ms) response interval. Alternating brief
stimulus presentations with blank intervals in this way has
the added benefit of minimizing any effects of adaptation by
visual neurons.

The data in Figure 1, for example, represent modulations
in brain activity in primary visual cortex (V1) while a sub-
ject viewed stimuli that alternated between high and low
contrasts. Throughout each scan, the subject performed a
contrast discrimination task, first discriminating between
stimuli with contrasts of 90% and 92%, and then discrimi-
nating between a uniform gray field (0% contrast) and a
0.8% contrast stimulus. Figure 1a shows that the fMRI sig-
nal increases for the higher contrasts, and then decreases
for the lower contrasts. This is to be expected because the
responses of most V1 neurons increase monotonically with
contrast. Parts b and c of Figure 1 plot 30 repeated mea-
surements in the same subject, and under identical
conditions. The resulting fMRI data are reliable, tightly
clustered and well characterized by a normal distribution.

Event-related paradigm
In an event-related experiment, a particular stimulus is
presented for a short period of time (e.g. 500 ms), the sub-
ject makes a perceptual judgement based on the stimulus
presentation, and then remains idle for a time period
(e.g. 14.5 s) sufficient to allow the fMRI signal to subside
before the next trial. Two or more different trial types are
randomly interleaved during each scan. The data are ana-
lyzed by, first, dividing each voxel’s time-series by its mean
intensity, second, splitting the resulting time series at each
voxel into a collection of shorter (e.g. 15 s) epochs that
each correspond to a particular trial, and finally, averaging
over all repeats of each of the trial types and over all vox-
els within one of the identified visual areas.

Figure 2 plots V1 responses from a contrast detection exper-
iment: on half the trials (randomly interleaved), a

Linking visual perception with human brain activity
David J Heeger



Linking visual perception with human brain activity Heeger    475

low-contrast target pattern was presented; on the other half,
no target was presented. The subject pressed one of two
buttons to indicate whether or not they saw the target. The
target, when present, was just barely detectable (d′ = 1).
The trials were sorted according to whether or not a stimu-
lus was presented. There are two notable results. First,
there was a reliable increment in response when the just-
noticeable stimulus was presented. Second, the response
was surprisingly large even when no stimulus was present-
ed. From control experiments in which the subject passively

viewed the same stimulus, we know that these responses
were largely driven by the subject’s engagement in the task
(see below for further discussion of such attentional effects).

Some event-related fMRI experiments have been per-
formed with very brief inter-trial intervals, thereby
avoiding the long idle periods between trials [3,4•]. The
analysis then relies on an assumption that the fMRI signal
linearly sums the responses to closely spaced trials — that
is, it assumes that the fMRI signal is proportional to the
local average neuronal activity, averaged (or blurred) over a
period of time. There is empirical support for this assump-
tion in some brain areas [5], but other brain areas may well
violate this assumption, particularly for brief inter-trial
intervals [6•].

Defining visual brain areas
Both the periodic and event-related paradigms require that
the visual brain areas be predefined. Methods are well
established for routinely defining several visual brain
areas, such as the early, retinotopically organized brain
areas (V1, V2, V3, V3A, V4v, and V8) [1••,7,8], area MT+
(also called V5), which is a motion-sensitive area that may
be homologous to monkey areas MT, MST and FST [1••],
and an area in the ventral occipital lobe that responds
strongly to pictures of faces [9–13]. Most studies have con-
cluded that this latter brain area is specifically and
selectively involved in face recognition, but recent evi-
dence suggests otherwise [14,15•]. A variety of additional
visual brain areas have been identified, but standardized
methods for routinely localizing these areas have not yet
been established.

Figure 1

Periodic paradigm. (a) The solid curve represents the time-course of
V1 brain activity from one fMRI scan. The dashed curve represents the
best fit sinusoid. Stimuli were contrast-reversing grating patterns that
alternated (36 s/cycle) between high (90–92%) and low (0–0.8%)
contrasts. (b) V1 responses from 30 repeated scans across three
separate scanning sessions. Response amplitude (percent MR signal
modulation) is indicated by the radial distance from the origin, and
response temporal phase is indicated by the angle from the horizontal
axis. The thick dashed line passes through the vector mean of the 30
data points. Slight counterclockwise phase-shift of the fMRI responses
relative to the horizontal axis is attributable to the temporal lag that is
characteristic of the hemodynamic delay [5,6•,61,62,63•]. (c) fMRI
response amplitude components, computed as the orthogonal
projection of each data point in the polar plot onto the dashed line that
accounts for the hemodynamic delay.
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Figure 2

Event-related paradigm. V1 responses from a total of 440 trials in
24 scans across three separate scanning sessions, while a subject
performed a series of contrast detection trials. The filled symbols
represent the average time-course of response for trials on which a just
noticeable (0.9% contrast, restricted to a peripheral annulus of the
visual field) target pattern was presented. The open symbols represent
average response for trials on which no pattern was presented. The
error bars indicate typical standard error of the mean response at each
time point.
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Neuronal correlates of psychophysical
performance
The quantitative methods described above have been adopt-
ed to correlate brain activity with performance in various
visual discrimination tasks, including color discrimination
[16••], reading [17,18,19•], motion discrimination
[17,19•,20,21,22••], and pattern discrimination [23,24•].

Early psychophysical studies [25] and electrophysiologi-
cal studies in anesthetized cats and monkeys (see [2•])
provided indirect evidence that pattern discrimination
judgements are limited by neuronal signals in early cor-
tical visual areas (e.g. V1). To establish a firmer link
between pattern discrimination and brain activity, we
used a combination of fMRI and psychophysics to mea-
sure perceptual performance and brain activity in the
same subjects [24•]. The psychophysical experiments
measured contrast discrimination thresholds (i.e. con-
trast changes that were just barely detectable). The
fMRI experiments measured response as a function of
stimulus contrast for the same stimuli.

The results demonstrate that neuronal signals appropriate for
limiting contrast discrimination performance appear to be
present as early as V1. Figure 3a plots the psychophysical
contrast discrimination thresholds. Thresholds initially drop
slightly at low baseline contrasts and then rise dramatically
for higher baseline contrasts, forming the familiar ‘dipper
function’ commonly reported in the literature [25]. Figure 3b
plots the V1 responses. The smooth curves were fit simulta-
neously to both the fMRI and psychophysical data under the
hypothesis that a contrast change is detectable when the
brain activity increases by a criterion amount. At low con-
trasts, the slope of the V1 activity is steep, so a small contrast
increment evokes a criterion response increment. At high
contrasts, a much larger contrast increment is needed to
evoke a criterion response increment. Variants of this hypoth-
esis have served as the basis for interpreting psychophysical
data for over a century. The fMRI measurements provide
additional data that help to constrain the interpretation.

Neuronal correlates of spatial attention
Our ability to perform a visual discrimination task is
improved when we are cued to attend, without moving
our eyes, toward the spatial location of the relevant stim-
ulus [25,26]. Shifts in attention are correlated with
systematic changes in brain activity that have been mea-
sured in a number of brain areas using a variety of
methods [27–42,43•,44•,45•].

Only within the past year have human neuroimaging
[39–42,43•,44•] and monkey electrophysiology [31,32]
studies unambiguously demonstrated that spatial atten-
tion affects V1 activity. Some theories suggest that
attention is mediated entirely by selection very early in
the visual pathways. Attentional effects have, however,
been notoriously difficult to measure in monkey V1 neu-
rons. Indeed, the attentional effects measured with
fMRI in humans are considerably stronger than those
measured electrophysiologically in awake behaving
monkeys under similar conditions. There are at least five
possible explanations for this discrepancy. First, because
little is known about the relationship between fMRI
responses and the underlying neuronal firing rates (see
below), it is possible that the fMRI measurements could
be overestimating the effects of attention. Second, small
shifts in eye position, equal in size to the V1 receptive
fields, present a difficulty for the electrophysiology
experiments. If eye position is systematically correlated
with shifts in spatial attention, then the responses of
individual V1 neurons will modulate as the receptive
fields are shifted toward and away from the stimulus
[28]. These potential biases can be avoided by carefully
accounting for eye position [31], but perhaps at the cost
of underestimating the magnitude of the attentional
effects. Small shifts in eye position do not present a dif-
ficulty in the fMRI experiments because they have a
negligible effect on measurements of pooled neuronal
activity. Third, it is difficult to train a monkey to perform
a threshold discrimination task in which, by definition,
they can be correct and get rewarded on only a fraction
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Figure 3

Neuronal correlate of visual pattern
discrimination. (a) Contrast discrimination
thresholds for one subject, measured
psychophysically using a conventional two-
alternative, forced-choice paradigm. Error
bars, standard error of the mean of several
repeated threshold measurements. (b) fMRI
responses in V1 for the same subject, as a
function of baseline contrast. Each data point
is the result of a single scan. Error bars,
estimates of the standard error of the mean
response for each scan. Smooth curves,
simultaneous fit to fMRI and psychophysical
data. Adapted from [24•].
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(e.g. 80%) of the trials. Therefore, the monkeys in the
electrophysiology experiments may not have been per-
forming tasks that were sufficiently demanding to fully
engage attention. Fourth, the monkeys may have been
overtrained so that the usual attentional mechanisms
were no longer needed to perform the task; training can
have a critical impact on measurements of attentional
modulation [32]. Fifth, there may be genuine
species differences.

Neuronal correlates of subjective
perceptual phenomena
Quantitative fMRI methods have also been adopted to
correlate brain activity with subjective visual experi-
ence. First, activity in human MT+ is correlated with
the subjective percept of illusory motion in stationary
displays [46–49]. Second, activity in several visual brain
areas is correlated with the illusory percept of contours
in a blank region of the visual field [50,51]. Third, activ-
ity modulates with the spontaneously reversing
perception of bistable visual stimuli ([52••,53–55];
M Castelo-Brano et al., Soc Neurosci Abstr 1997, 23:460).
Fourth, particular visual areas respond selectively when
subjects simply imagine different kinds of visual stimuli
([56–59,60•]; N Kanwisher, KM O’Craven, Soc Neurosci
Abstr 1998, 24:530).

Conclusions
fMRI provides an empirical approach for probing the
neuronal basis of perception that complements electro-
physiology in awake behaving monkeys. fMRI has
limited spatial and temporal resolution compared with
electrophysiology. However, the relatively coarse spatial
resolution of fMRI allows one to measure activity simul-
taneously in several different brain areas at once. The
sequence of events from neuronal response to fMRI
response is complicated and only partially understood
[61,62,63•]. With the recent advances in performing
fMRI measurements on monkeys, however, we can soon
expect to know much more about the relationship
between the fMRI signal and the underlying neuronal
activity ([64,65,66•]; W Vanduffel et al., Soc Neurosci Abstr
1998, 24:11). In addition, human subjects, unlike mon-
keys, are easily instructed to perform a range of
perceptual tasks and can report on their phenomenologi-
cal perceptual experiences. We are now faced with an
unprecedented opportunity in visual neuroscience to
move seamlessly from human perception and psy-
chophysics, to fMRI measurements of activity in the
human brain and in the more familiar monkey brain, and
then to conventional electrophysiological measurements
of neuronal activity.
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