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Abstract

A number of researchers have proposed models of early motion sensing based on
direction�selective� spatiotemporal linear operators
 Others have formalized the problem
of measuring optical �ow in terms of the spatial and temporal derivatives of stimulus
intensity
 Recently� the spatiotemporal �lter models and the gradient�based methods
have been placed into a common framework
 In this chapter� we review that framework
and we extend it to develop a new model for the computation and representation of
velocity information in the visual system
 We use the model to simulate psychophysical
data on perceived velocity of sine�grating plaid patterns� and to simulate physiological
data on responses of simple cells in primary �striate� visual cortex







� Introduction

More than forty years ago� Gibson ������ ���	� noted that visual motion perception is
essential for an observer�s ability to explore and interact with his�her environment
 As
an observer moves and explores the environment� the visual stimulation in his�her eye
is constantly changing
 Somehow he�she is able to perceive the spatial layout of the
scene� and to discern his�her movement through space
 Imagine� for example� that you
are watching a scene from a movie that was shot with the camera in motion
 The visual
stimulation in your eye is an array of light that changes over time� yet you experience a
sense of moving through a three dimensional space


Since Gibson�s initial work� perception of motion has been studied extensively by re�
searchers in the �elds of visual psychophysics� visual neurophysiology� and computational
vision
 It is now well�known that the visual system has mechanisms that are speci�cally
suited for analyzing motion �see Nakayama ����� for review�� and that human observers
are capable of recovering accurate information about the world �e
g
� three�dimensional
trajectory� relative distance� shape� from visual motion �e
g
� Wallach and O�Connell
����� Johansson ��	�� Warren and Hannon ����� �����


The �rst stage of motion perception is generally believed to be the measurement of
optical �ow
 Optical �ow is a �eld of two�dimensional velocity vectors� indicating the
speed and direction of motion for each small region of the visual �eld


A number of machine vision algorithms have been developed for measuring optical
�ow �elds from sequences of �e
g
� video� images
 At the same time� psychophysicists
and neurophysiologists have performed experiments to study the manner by which peo�
ple and animals sense velocity
 Little e�ort� however� has gone into integrating the
results from the three disciplines of computational vision� visual psychophysics� and
visual neurophysiology


In this chapter� we describe a model for the computation and representation of veloc�
ity information in the primate visual system that accounts for a variety of psychophysical
and physiological observations
 We use the model to simulate psychophysical data on
perceived velocity of sine�grating plaid patterns� and to simulate physiological data on
responses of simple cells in primary �striate� visual cortex


� The Model

In this section� we review two algorithms for measuring �ow �elds� the gradient�based
methods and the spatiotomporal �ltering methods
 Following Adelson and Bergen
������� and Simoncelli and Adelson �����a� ����b�� we show that these two methods
can be expressed in a common mathematical framework
 Finally� we introduce some
extensions to this framework to develop our new model of biological motion sensing
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��� Gradient�Based Methods

Researchers �Horn and Schunk ����� Lucas and Kanade ����� Nagel ���	� and others�
have proposed algorithms that compute �ow from the spatial and temporal derivatives
of intensity
 Following the standard gradient formulation� we assume that the stimulus is
shifted �locally translated� over time� and that the shifted intensity values are conserved

This intensity conservation assumption is expressed as follows�

f�x� y� t� � f�x � v�� y � v�� t� ��� ���

where f�x� y� t� is stimulus intensity as a function of space and time� and v � �v�� v�� is
velocity
 Note that this intensity conservation assumption is only approximately true in
practice
 For example� it ignores possible changes in intensity due to lighting changes


We further assume that the time�varying stimulus intensity is well approximated by
a �rst�order Taylor series expansion�

f�x� v�� y � v�� t� �� � f�x� y� t� � v�fx�x� y� t� � v�fy�x� y� t� � ft�x� y� t��

where fx� fy� and ft are the spatial and temporal derivatives of stimulus intensity

Substituting this approximation into equation ��� gives�

v�fx�x� y� t� � v�fy�x� y� t� � ft�x� y� t� � �� �
�

This equation relates the velocity� at one point in the visual �eld� to the spatial and
temporal derivatives of stimulus intensity
 We refer to equation �
� as the gradient
constraint


Combining Constraints� It is impossible to recover velocity� given the gradient
constraint at only a single position� since equation �
� o�ers only one linear constraint
to solve for the two unknown components of velocity
 Gradient�based methods solve
for velocity by combining information over a spatial region
 The di�erent gradient�
based methods use di�erent combination rules
 A particularly simple rule for combining
constraints from two nearby spatial positions is��

fx�x�� y�� t� fy�x�� y�� t�
fx�x�� y�� t� fy�x�� y�� t�

� �
v�
v�

�
�

�
ft�x�� y�� t�
ft�x�� y�� t�

�
� �� ���

where the two coordinate pairs �xi� yi� correspond to the two spatial positions
 Each
row of equation ��� is the gradient constraint for one spatial position
 Solving this
equation simultaneously for both positions gives the velocity that is consistent with
both constraints


Lucas and Kanade ������ suggested combining constraints from more than just two
spatial positions� by squaring and summing�

R�v�� v�� �
X
x�y

�v�fx�x� y� t� � v�fy�x� y� t� � ft�x� y� t��
�� ���

�



Each squared term in the summation is a constraint on the �ow from a di�erent �nearby�
position
 The summation is taken over a local spatial region� e
g
� in a Gaussian weighted
window
 Since there are now more constraints than unknowns� there may not be a
solution that satis�es all of the constraints simultaneously
 In other words� R�v�� v�� will
typically be non�zero for all �v�� v��
 The choice of �v�� v�� that minimizes R�v�� v�� is
the least squares estimate of velocity


Least Squares Estimate� One way to �nd the minimumof R�v�� v�� is to evaluate
the function at a number of points �say� on a �xed square grid� and to pick the smallest
result
 Figure � shows some examples
 Figures ��a� and �b� depict sine�grating plaid
stimuli
 The component gratings in the two stimuli have di�erent orientations and
spatial frequencies� but the speeds of the component gratings were chosen so that both
plaids moved rightward with the same velocity
 Figures ��c� and �d� show R�v�� v�� for
�a� and �b�� respectively
 Each point in �c� and �d� corresponds to a di�erent velocity�
with the center of each image corresponding to zero velocity
 Brightness at each point
is inversely proportional to R�v�� v��� and the locations of the peaks correspond to the
velocity estimates
 The peaks correspond to the correct velocity in both cases� despite
of the di�erence in the spatial structures of the two stimuli�


�� Figure � About Here ��

Since equation ��� is a quadratic expression� there is a simple analytical expression
for the velocity estimate
 The solution is derived by taking derivatives of equation ���
with respect to v� and v�� and setting them equal to zero�

�R�v�� v��

�v�
�
X
xy

�v��fx�
� � v��fxfy� � �fxft�� � �

�R�v�� v��

�v�
�
X
xy

�v��fy�
� � v��fxfy� � �fyft�� � �

These equations may be rewritten as a single equation in matrix notation�

M � v � b � ��

where

M �
�
m�� m��

m�� m��

�
� b �

�
b�
b�

�
�

and where

m�� �
X
�fx�

�

m�� �
X
�fy�

�

m�� �
X
�fxfy�

b� �
X
�fxft�

b� �
X
�fyft��
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The least�squares solution is then given by

�v � �M��b� ���

presuming that M is invertible


Aperture Problem� When the matrix M in equation ��� is singular �or ill�
conditioned�� there are not enough constraints to solve for both unknowns
 This sit�
uation corresponds to what has been called the aperture problem
 For some patterns
�e
g
� a very gradual curve� there is not enough information in a local region �small
aperture� to disambiguate the true direction of motion
 For other patterns �e
g
� an
extended grating or edge� the information is insu�cient regardless of the aperture size


The latter case is illustrated in �gure 
�a�
 The diagonal line indicates the locus of
velocities compatible with the motion of the grating
 At best� we may extract only one of
the two velocity components
 Figure 
�b� shows how the motion is disambiguated when
there is more spatial structure
 The plaid pattern illustrated in �gure 
�b� is composed
of two moving gratings
 The lines give the possible motion of each grating alone
 Their
intersection is the only shared motion


�� Figure 
 About Here ��

Combining the gradient constraints according to the summation in equation ��� is
related to the intersection of constraints rule depicted in �gure 

 The gradient con�
straint� equation �
�� is linear in both v� and v�
 Given measurements of the derivatives�
�fx� fy� ft�� there is a line of possible solutions for �v�� v��� analogous to the constraint line
illustrated in �gure 
�a�
 For each di�erent position� there will generally be a di�erent
constraint line
 Equation ��� gives the intersection of these constraint lines� analogous
to �gure 
�b�


Prior Bias� To deal with the aperture problem� we could consider combining con�
straints over a larger spatial area �e
g
� Horn and Schunk �����
 Instead� we add a slight
prior preference for slower speeds
 The resulting velocity estimate is approximately equal
to the normal �ow� the component of motion parallel to the spatial intensity gradient


The prior preference is implemented by adding a small o�set to each of the diagonal
entries of M
 Elsewhere �Simoncelli� Adelson� and Heeger� ������ we formally prove
that adding this o�set gives a Bayesian estimate for velocity
 The Bayesian estimator
incorporates a prior likelihood for each possible velocity
 The o�set is the �inverse�
variance of this prior probability distribution
 Adding the o�set yields a slight bias
toward lower speeds
 The bias is greater for low contrast stimuli� i
e
� when the entries
of M are small


�



�� Figure � About Here ��

Figure � illustrates the e�ect of the prior
 Figure ��a� shows �R�v�� v��� from equa�
tion ���� for a drifting sine grating stimulus
 Since the velocity of the grating is am�
biguous �due to the aperture problem�� there is no peak in the distribution
 Rather
the distribution is shaped like a ridge
 Any velocity along this ridge is an equally good
interpretation of the stimulus� motion
 Figure ��b� shows that including the prior gives
a distribution with a broad peak
 The location of the peak corresponds approximately
to the normal �ow� but at a very slightly slower speed


��� Space�Time Filtering Methods

In this section� we reformulate the gradient�based �ow algorithm� this time in terms of
biological mechanisms
 We �rst review the spatiotemporal linear model of biological
motion sensing
 Then we relate that model to the gradient method


Space�Time Orientation A number of authors have proposed models of biolog�
ical motion sensing based on direction selective� spatiotemporal linear operators �Fahle
and Poggio ����� Watson and Ahumada ����� ����� Adelson and Bergen ����� van
Santen and Sperling ����� Heeger ���	� ����� Grzywacz and Yuille �����
 
 These
authors have explained that visual motion is like orientation in space�time� and that
spatiotemporally�oriented� linear operators can be used to detect and measure it


�� Figure � About Here ��

Figure � shows a simple example
 Figure ��a� depicts a vertical bar moving to the
right over time
 Imagine that we �lm a movie of this stimulus and stack the consecutive
frames one after the next
 We end up with a three�dimensional volume �space�time cube�
of intensity data like that shown in �gure ��b�
 Figure ��c� shows an x�t slice through this
space�time cube
 The slope of the edges in the x�t slice equals the horizontal component
of the bar�s velocity �change in position over time�
 Di�erent speeds correspond to
di�erent slopes


Spatiotemporal Linear Operators� The response of a linear operator is ex�
pressed as a weighted sum� over local space and recently past time� of the stimulus
intensities
 Speci�cally� the response� L�t�� is the inner product in space and the con�
volution in time of a stimulus� f�x� y� t�� with the spatiotemporal weighting function of
the operator� g�x� y� t��

L�t� �
Z Z Z

�

��

g�x� y� � �f�x� y� � � t� dx dy d�� ���

	



The triple integral in the above equation is simply a weighted sum of the stimulus
intensities over space and time


The linear operators that we consider in this chapter have weighting functions with
positive and negative subregions
 The positive and negative weights are balanced� so the
operators give no output for a constant intensity stimulus
 Rather� their responses are
proportional to stimulus contrast� for stimuli that vary in intensity over space and�or
time


The spatiotemporal weighting function of a linear operator determines its selectivity
�e
g
� for orientation or direction of motion�
 A linear operator is direction selective
if its subregions are tilted along an oblique axes in space�time
 For example� �gure
��c� illustrates the weighting function of a direction selective operator� that responds
preferentially to rightward motion


A spatial array of identical linear operators �sampling the entire visual �eld� can be
thought of as a linear �lter that performs a convolution �over both space and time� with
the stimulus�

g�x� y� t� � f�x� y� t� �
Z Z Z

�

��

g��� �� � �f�� � x� � � y� � � t� d� d� d��

where � means convolution


Space�time Filters and the Gradient Method� Following Adelson and Bergen
������� and Simoncelli and Adelson �����a� ����b�� we now show that the gradient�
based solution can be expressed in terms of the outputs of a set of space�time oriented
linear operators
 To this end� note that the derivative operators may be written as
convolutions
 Furthermore� we can pre�lter the stimuli to extract some spatiotemporal
subband� and perform the analysis on that subband
 Consider� for example� pre�ltering
with a space�time Gaussian function
 Abusing the notation somewhat� we de�ne�

fx�x� y� t� �
�

�x
�g�x� y� t� � f�x� y� t�� � gx�x� y� t� � f�x� y� t��

where � is convolution and gx is the x�derivative of a Gaussian
 In words� we compute
fx by convolving with gx� a spatiotemporal linear �lter
 We compute fy and ft similarly


Note also that derivatives in oblique space�time orientations can be expressed as
linear sums of fx� fy� and ft
 For example� the derivative of a Gaussian in a diagonal
spatial orientation is given by�

gp � �gx � gy��

where gp is a diagonally oriented derivative operator
 Finally� note that products of
derivatives in the x�� y�� and t� directions can be written as combinations of the obliquely
oriented derivatives
 For example�

�fxfy � �fx � fy�
� � �fx � fy�

�

� ��gx � gy� � f �
� � ��gx � gy� � f �

��

�



Now we rewrite the entries of M and b in terms of a set of squared linear �lter
outputs�

m�� �
X
�fx�

� �	�

m�� �
X
�fy�

�

m�� � �

�

X
��fx � fy�

� � �fx � fy�
��

b� � �

�

X
��fx � ft�

� � �fx � ft�
��

b� � �

�

X
��fy � ft�

� � �fy � ft�
���

In primary visual cortex� there are no cells with receptive �elds that behave like products
of derivatives �e
g
� fxfy�
 Thus� rewriting the solution as in equation �	� brings us closer
to a model of the physiology
 Each linear �lter in equation �	� is orientation tuned� with
oriented spatial subregions
 Four of the operators are direction selective with weighting
functions that are tilted obliquely in space�time� e
g
� �gx� gt� and �gx� gt� are selective
for leftward and rightward motion


The linear operators in equation �	� are� therefore� similar to the receptive �elds of
cortical cells
 There are� however� some important di�erences
 As we shall see �Section
�
��� higher order derivative operators are a better model of cortical receptive �elds


��� Using Higher Order Derivatives

In this section� we extend the spatiotemporal �lter method to use higher order derivative
operators


Consider using gxx� gxy and gyy as pre�lters and writing three gradient constraint
equations� in terms of derivatives of each these pre�lters�

v�fxxx � v�fxxy � fxxt � � ���

v�fxxy � v�fxyy � fxyt � �

v�fxyy � v�fyyy � fyyt � ��

where fxxx should be interpreted as f � gxxx� and likewise for the other derivatives

Equation ���� written in terms of third derivatives� gives three constraints on velocity


The gradient constraint� equation �
�� is based on the intensity conservation assump�
tion� i
e
� it assumes that the stimulus intensity shifts �locally translates� from location
to location over time
 The third derivative constraints� equation ���� are based on con�
servation of the second spatial derivatives of intensity� i
e
� that �fxx� fxy� fyy� shifts over
time


An advantage of using higher order derivatives is that� in principle� there are enough
constraints at a single spatial position
 Even so� there are stimuli for which there will

�



not be enough constraints locally
 There is still a need� therefore� to combine constraints
over a local spatial region


Combining constraints over a local spatial region gives�

R�v�� v�� �
X
x�y

�v�fxxx � v�fxxy � fxxt�
�

�
X
x�y

�v�fxxy � v�fxyy � fxyt�
�

�
X
x�y

�v�fxyy � v�fyyy � fyyt�
�

The least�squares estimate of velocity� minimizing this expression is

�v � �M��b�

where M and b are now de�ned as�

m�� �
X
��fxxx�

� � �fxxy�
� � �fxyy�

��

m�� �
X
��fxxy�

� � �fxyy�
� � �fyyy�

��

m�� �
X
��fxxx��fxxy� � �fxxy��fxyy� � �fxyy��fyyy��

b� �
X
��fxxx��fxxt� � �fxxy��fxyt� � �fxyy��fyyt��

b� �
X
��fxxy��fxxt� � �fxyy��fxyt� � �fyyy��fyyt���

Note the similarity with equation ���
 The solutions using �rst and third derivates are
essentially the same
 The main di�erences are� ��� that the third derivative solution
uses a greater number of linear operators� and �
� that the third derivative operators
are more narrowly tuned �with more subregions� for spatiotemporal orientation


As with �rst derivatives� each element of M and b may be rewritten as a sum
of squared outputs of spatiotemporally�oriented operators
 As above� we rewrite the
products� e
g
�

�fxxx��fxxt� �
�

�
��fxxx � fxxt�

� � �fxxx � fxxt�
���

For the third derivative operators� we also rewrite the spatial cross�derivatives �e
g
� fxxy
and fxyy� in terms of spatially oriented operators
 To this end� we de�ne gp and gq to
be to be derivative operators in diagonal orientations�

gp � gx � gy

gq � gx � gy�

The third derivatives in the diagonal orientations are�

gppp � gxxx � �gxxy � �gxyy � gyyy

gqqq � gxxx � �gxxy � �gxyy � gyyy �

��



Spatial cross�derivative operators may then be expressed in terms of the oriented oper�
ators�

gxxy � �

�
�gppp � gqqq � 
gyyy �

gxyy � �

�
�gppp � gqqq � 
gxxx��

Using a set of identities like these� we can express the velocity estimate in terms of the
squared outputs of a set of spatiotemporally�oriented operators
 Figure � shows the
spatiotemporal weighting functions of a representative set of those operators


On the other hand� we have no a priori theoretical basis for choosing Gaussian
third derivatives
 Other operators could be used just as well �e
g
� third or fourth
derivatives of some smooth� unimodal� non�Gaussian function�
 One set of operators or
another may provide a stronger constraint on velocity in di�erent situations� depending
on the local image structure
 For machine vision applications� we advocate using several
pre�lters� with di�erent preferences for spatial frequency �scale�� di�erent orientation
tuning widths� and di�erent �e
g
� even and odd� phases


��� Normalization and Recti�cation

The model that we advocate in this chapter is an extension of the spatiotemporal �lter
method described above
 In this section� we brie�y describe two additional steps in
the computation of the model � normalization and recti�cation
 Both extensions are
needed for a realistic model of physiological data


Recti�cation� The linear model of simple cell physiology is attractive because the
response of a linear operator can be completely characterized with a relatively small
number of measurements
 Unfortunately� the linear model falls short of a complete
account of simple cell responses
 One major fault with the linear model is that cell �ring
rates are by de�nition positive� whereas linear operators can have positive or negative
outputs


A linear cell with a high maintained �ring rate could encode the positive and negative
values by responding either more or less than the maintained rate
 Cells in primary visual
cortex� however� have very little maintained discharge so they can not truly act as linear
operators


Rather� the positive and negative outputs can be encoded by two halfwave�recti�ed
operators
 One mechanism encodes the positive outputs of the underlying linear op�
erator� and the other one encodes the negative outputs
 These two mechanisms are
complements of one another� that is� the positive weights of one weighting function are
replaced by negative weights in the other
 Due to the recti�cation� only one of the two
has a non�zero response at any given time


��



In this chapter� we consider half�squaring as an alternative form for the recti�cation

The output of a half�squared linear operator is given by�

A�t� � bL�t�c� � ���

where bxc � max�x� �� is halfwave�recti�cation� and L�t� is the linear response de�ned
in equation ���


Normalization� A second major fault with the linear model of simple cells is the
fact that cell responses saturate at high contrasts
 The responses of ideal linear operators�
on the other hand� increase proportionally to stimulus contrast over the entire range of
contrasts
 To explain response saturation� several researchers �Robson� ����� Bonds�
����� Heeger� ���
a� have suggested that cells in primary visual cortex mutually inhibit
one another� e�ectively normalizing their responses with respect to stimulus contrast


Normalization of striate cell responses is also motivated from a theoretical point of
view
 It is commonly believed that information about a visual stimulus� other than its
contrast� is represented as the relative responses of collections of cells
 For example�
the orientation of a grating might be represented as the ratio of the responses of two
cells� each with a di�erent orientation tuning
 Indeed physiologists have found that the
ratio of a cell�s responses to two stimuli is largely independent of stimulus contrast �see
Section �
��
 But cortical cells� unlike linear operators� have a limited dynamic range�
their responses saturate for high contrasts
 Normalization makes it possible for response
ratios to be independent of stimulus contrast� even in the face of response saturation


Consider a collection of half�squared linear operators with various receptive �eld
centers �covering the visual �eld� and with various spatiotemporal frequency tunings

Let Ai�t� be the squared output of mechanism i
 Normalization is achieved by dividing
each output by the sum of all of the outputs�

Ai�t� �
Ai�t�

�� �
P

i Ai�t�
� ����

where �� is called the semi�saturation constant
 As long as � is nonzero� the normalized
output will always be a value between � and �� saturating for high contrasts


The underlying linear operators can be chosen so that they tile the frequency do�
main� i
e
� the sum of their squared frequency responses is the unit constant function
�everywhere equal to one�
 In that case� summing the squared outputs over all spatial
positions and all frequencies gives the total Fourier energy of the stimulus
 The normal�
ization can also be computed �locally� by summing over a limited region of space and a
limited range of frequencies


There is a problem with normalization� as it has been presented thus far
 Equations
��� and ���� express the normalization in a feed�forward manner
 First� the half�squared
outputs are computed� using equation ���
 Then the half�squared outputs are combined

�




to give the normalized outputs� using equation ����
 However� the unnormalized outputs
can not be represented by mechanisms with limited dynamic range �e
g
� neurons�
 The
solution is to use a feedback network to do the normalization so that the unnormalized
outputs need not be explicitly represented as cell output �ring rates �see Heeger ���
a�
for details�


� Results

In the previous section� we describe a model for computing velocity from visual stimuli

In this model� velocity estimates are computed from the outputs of a set of normalized�
half�squared� linear operators
 The normalized outputs are summed to get the entries
of M and b
 In addition� a small o�set �the prior� is added to the diagonal entries of
M
 Finally� the velocity estimate is given �M��b


This section reports on simulations of both physiological and psychophysical experi�
ments
 We show that our model explains a variety of experimental results


��� Simple Cell Physiology

For over thirty years� physiologists have been measuring response properties of simple
cells in primary �striate� visual cortex
 A longstanding view of simple cells is that their
responses can be characterized as a weighted sum �over local space� of the intensity values
in a visual stimulus �Hubel and Wiesel� ���
� Campbell et al
� ����� �����
 A currently
popular model of simple cells is that they act like halfwave�recti�ed� spatiotemporal
linear operators
 However� some experiments have revealed blatant violations of linearity


The model that we advocate is based on spatiotemporal linear operators� but with two
important modi�cations
 First� the outputs of the linear operators are half�squared �not
halfwave�recti�ed�
 Second� the responses are normalized
 Heeger ����
a� ���
b� has
demonstrated that this new model� with half�squaring and normalization� is qualitatively
consistent with a signi�cantly larger body of physiological data


In this section� we review some measurements of simple cell responses
 First� we com�
pare physiological data with the Gaussian third derivative operators
 We conclude that
the third derivative operators are a reasonable model for the linear weighting functions
that underlie simple cells responses
 Then� we demonstrate that response saturation can
be explained by the nonlinearities �half�squaring and normalization� in the model


Responses to Impulses� Many researchers have used impulses ��ashed spots or
bars� and white noise stimuli to map simple cell weighting functions �e
g
� Hubel and
Wiesel� ���
� Heggelund� ����� Jones and Palmer� ���	� McLean and Palmer� �����

��



Shapley et al
 �����
 Here� we compare physiological data with the weighting functions
of the third derivative operators


Hubel and Weisel ����
� discovered that simple cells have clearly de�ned excitatory
and inhibitory spatial subregions
 Bright �brighter than the mean intensity� light in an
excitatory region or dim �darker than the mean� light in an inhibitory region enhances
the cell�s response� whereas bright light in an inhibitory region or dim light in excita�
tory region inhibits its response
 These results are readily explained by the model
 The
underlying linear stage of the model predicts that excitation to a bright light is comple�
mented by inhibition to a dim light
 Due to recti�cation� the inhibition can be measured
only by �rst driving the operator to a nonzero response with an excitatory stimulus


According to the model� cells are direction selective because of the underlying linear
stage
 McLean and Palmer ������ and Shapley et al
 ������ measured full �D spa�
tiotemporal weighting functions of simple cells using white�noise stimuli
 They found
some simple cells with weighting functions tilted along an oblique axis in space�time�
like that illustrated in �gure ��c�
 The model predicts that these cells be direction se�
lective� that is� that they prefer motion in one direction over the other
 In fact� since a
spatiotemporal linear operator is completely characterized by its impulse response� the
model allows one to predict a cell�s preferred direction and speed of motion from the
cell�s spatiotemporal weighting function
 When McLean and Palmer ������ measured
simple cell responses to moving bars� they could� for most cells� correctly predict the
preferred bar motion from the weighting function


�� Figure � About Here ��

McLean and Palmer ������ and Shapley et al
 ������ also found some simple cells
with space�time separable weighting functions
 Space�time separable functions can be
expressed as the product of a spatial function multiplied by a temporal function
 In the
model� the direction selective linear operators are constructed by summing space�time
separable operators
 For example� �gxxx � gxxt� is a third derivative operator that is
selective for leftward motion
 This operator is constructed by summing the outputs
of two linear operators� gxxx and gxxt
 Figure � shows space�time slices through the
weighting functions of each of these three operators
 Although gxxx and gxxt are each
space�time separable� their sum is tilted in space�time �not space�time separable��


�� Figure � About Here ��

Figure � shows examples of other linear operators used in the model
 The top row
shows spatial slices through the weighting functions� and the bottom row shows space�
time slices through the weighting functions
 The operators depicted in �gure � are
representative of all of the operators used in the model
 Some of these operators are
Gaussian third derivatives �like gxxx and gxxt�� while others are constructed by summing

��



third derivatives �like gxxx�gxxt�
 The outputs of these operators �and others like them�
there are a total of ��� are half�squared� normalized� and then summed to give the entries
of M and b


For the most part� these linear operators resemble physiological measurements of
simple cell weighting functions� such as those measured by McLean and Palmer �������
Shapley et al
 ������� and others
 First� all of the operators in �gure � are spatially ori�
ented� with two or more spatial subregions
 Second� some of the operators are direction
selective �they are tilted in space�time�� while others are not direction selective �they
are space�time separable�
 Third� the operators have temporal responses that are either
monophasic �like gxxx� or biphasic �like gxxt or gxxx � gxxt�
 And fourth� there is quite a
lot of variability in the model�s weighting functions�


There are� however� some di�erences between the model operators and simple cell
weighting functions
 First� some of the operators have irregular spatial structure �e
g
�
second and third from the left in �gure ��
 Second� some of the operators have impulse
responses that rotate slightly over time
 For example� the operator farthest to the right
in �gure � has an impulse response that rotates �rst clockwise by ��� radians� and then
counter�clockwise by the same amount
 Simple cells with this property have not been
reported in the literature


Responses to Gratings� The response of a spatiotemporal linear operator� to a
drifting grating� varies sinusoidally over time with the same temporal frequency as that
of the stimulus
 A halfwave�recti�ed linear operator responds over only half of each cycle�
remaining silent during the other half�cycle
 A half�squared operator also responds over
only half of each cycle� but the shape of the response waveform is distorted
 Simple
cells� like recti�ed linear operators� also respond over approximately half of each cycle
�Movshon et al
� ��	�� Andrews and Pollen� ��	�� Kulikowski and Bishop� ����b�


Spatiotemporal linear operators� like the linear operators in the model� respond pref�
erentially to gratings with certain orientations� spatial frequencies� and temporal fre�
quencies
 In other words� the linear operators are tuned for spatial frequency� temporal
frequency� and orientation
 The tuning curves of the operators can be computed by
taking the Fourier transform of the operator�s weighting functions
 In this section� we
compare simple cell tuning curves with those of �rst and third derivative operators

In contrast with the third derivative operators� the �rst derivative operators are not a
satisfactory model of simple cell weighting functions for two reasons�

�
 There are two few spatial subregions in the �rst derivative operators
 In other
words� they are too broadly tuned for orientation and spatial frequency




 Researchers have found that a simple cell�s spatial frequency tuning �measured
with gratings drifting only in one direction� is largely independent of the stimulus
temporal frequency
 This is not the case for the �rst derivative operators� but it

��



is very nearly true for the third derivative operators


�� Figure 	 About Here ��

Figure 	�a� shows a series of spatial frequency tuning curves� measured from a simple
cell �data replotted from Hamilton et al
� �����
 Note that the shape of the spatial
frequency curves are largely independent of temporal frequency
 Other physiologists
�Tolhurst and Movshon� ��	�� Holub and Morton�Gobson� ����� Ikeda and Wright� ��	��
Foster et al
� ����� have noted this same result� that spatial frequency and temporal
frequency tuning curves �measured with gratings drifting only in one direction� are
independent of one another�


Figure 	�b� shows an analogous series of spatial frequency tuning curves for one
of the model�s third derivative operators
 Like the simple cell data� these simulated
tuning curves are largely independent of temporal frequency
 Figure 	�c�� on the other
hand� shows a series of tuning curves for one of the �rst derivative operators
 The
spatial frequency tuning of the �rst derivative operator is much broader and it shifts
systematically as a function of temporal frequency


�� Figure � About Here ��

Figure ��a� shows the orientation�direction tuning of a simple cell �data replotted
from Movshon et al
� �����
 Figure ��b� shows an analogous tuning curve for one of
the model�s third derivative operators
 Although there are some di�erences �the model
operator responds slightly to motion in the non�preferred direction�� the shape of the
tuning curve is quite similar
 Figure ��c�� on the other hand� shows that for a �rst
derivative operator� the tuning curve is much broader


Responses to Plaids� Movshon et al
 ������ also measured direction tuning
curves for sine�grating plaid patterns
 Figure ��a� shows an example of their results� for
a typical cell in primary visual cortex
 The plaid stimuli consisted of a pair of orthogonal
gratings� each of the cell�s preferred spatial and temporal frequency
 For each di�erent
stimulus condition� the entire plaid pattern was rotated so that it moved in a di�erent
direction
 Figure ��b� shows an analogous tuning curve for one of the third derivative
operators� and �gure ��c� shows the tuning curve for a �rst derivative operator
 The
�rst derivative operator is so broadly tuned that it does not respond independently to
the two component gratings


�� Figure � About Here ��

Movshon et al
 ������ classi�ed cells into two types �component��ow and pattern�
�ow� by observing their responses to sine�grating plaid stimuli
 Component��ow cells
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respond independently to each of the component gratings
 Pattern��ow cells do not
respond independently to the components
 According to this classi�cation� the third
derivative operator would be classi�ed as a component��ow cells� and the �rst derivative
operator would be classi�ed as a pattern��ow cell
 Movshon et al
� however� found that
all cells in primary visual cortex are of the component��ow type
 Pattern��ow cells were
found in a di�erent area of primate visual cortex� area MT


Figure � raises some doubt about the interpretation of these experimental results

Movshon et al
�s ������ argued that pattern��ow cells respond to the direction of motion
of the plaid as a whole� i
e
� to the intersection of constraints direction
 The result in
�gure ��c� suggests that this might not be the case
 The �rst derivative operator is
not solving for the intersection of constraints
 Rather since it is very broadly tuned
for orientation�direction� the �rst derivative operator responds to the average of the
two component directions
 Moreover� Movshon et al
 ������ did not �nd a sharp di�
chotomy between component� and pattern��ow cells
 It might be that the continuum of
component�pattern types re�ects a continuum of orientation tuning widths


Response Saturation� The contrast�response function is a plot of response as a
function of contrast� typically measured using sine�grating stimuli
 Here� we demonstrate
that contrast�response of simple cells can be explained by the nonlinearities �divisive
normalization and half�squaring� in our model


�� Figure �� About Here ��

Figure ���a� plots typical experimental contrast�response data� and �gure ���b�
shows results of model simulations
 The simulated responses saturate with increased
contrast because of normalization


The hyperbolic ratio function�

R � Rmax

cn

�n � cn
�M� ����

has been used to �t contrast�response data� for cells in both cat and primate �Albrecht
and Hamilton� ���
� Chao�yi and Creutzfeldt� ����� Sclar et al
� ������ R� in equation
�� is the evoked response� c is the contrast of the test grating�M is maintained discharge�
n is a constant exponent� �n is the semi�saturation constant� and Rmax is the maximum
attainable response
 From the �ts� experimenters have found that the exponent� n� is 

on average �Albrecht and Hamilton� ���
� Sclar et al
� �����


The contrast�response of a model cell is given exactly by the hyperbolic ratio with
parameters n � 
 and M � �
 This is easily demonstrated by recalling that the summa�
tion�

P
Ai�t�� in the denominator of equation ���� is proportional to c�
 The exponent

is 
 in the model because of half�squaring
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In addition� it can be shown that the contrast�response curve of a model cell shifts
mostly downward �on log�log axes� if the orientation or frequency of the test grating
is non�optimal �see Heeger� ���
a for details�
 This downward shift is again due to
divisive normalization in the model
 Downward shifts of contrast�response have been
measured physiologically in several labs
 Albrecht and Hamilton ����
�� for example�
measured contrast�response curves for stimuli of non�optimal spatial frequency
 Their
data is replotted in �gure ���a�� and �gure ���b� shows the contrast�response curves of
a model cell
 For both model cells and real cells� the curves shift mostly downward


This downward shift of contrast�response has important consequences
 Consider the
response of a linear operator when presented with two di�erent stimuli
 If both stimuli
are multiplied by the same factor then the ratio of the responses to the two stimuli
remains unchanged
 The downward shift in �gure �� demonstrates that this is also true
for normalized operators and for real cells
 In spite of saturation� the response ratio to
two di�erent stimuli is largely independent of stimulus contrast
 In this way� information
about a visual stimulus� other than its contrast� is represented as the relative responses
of a collection of cells


��� Perceived Velocity of Plaids

The perceived velocity of a moving pattern depends on its spatial structure
 Adelson and
Movshon ����
� conducted psychophysical experiments to study this dependence using
sine�grating plaid patterns
 Since then� a number of other psychophysicists have measure
human velocity judgements using plaids
 Stone et al
 ������� in particular� measured
the e�ect of contrast on perceived direction
 By varying the relative contrasts of the
two component gratings� they found that the plaid motion direction is biased away from
the intersection of constraints rule �illustrated in �gure 
b�� toward the higher contrast
grating
 In this section� we show that our model is consistent with their data


The nominal stimulus in this experiment was a sine�grating plaid made up of two
component gratings with equal contrasts and temporal frequencies
 This plaid stimulus
appeared to move directly upward �in accordance with the intersection of constraints
rule�
 Stone et al
 varied both the relative contrast and the relative temporal frequency
of the two gratings
 These stimuli �with di�erent contrasts or temporal frequencies�
appeared to move either slightly right of vertical or slightly left of vertical
 The subject�s
task was to indicate� for each stimulus presentation� whether the plaid appeared to move
rightward or leftward


The total contrast of the plaid was also varied �total contrast was de�ned by Stone
et al
 to be the sum of the contrasts of the two components�
 For each total contrast�
Stone et al
 varied the contrast ratio of the two components
 For each contrast ratio�
they adjusted the relative temporal frequency �in a staircase procedure� until the pattern
appeared to move directly upward
 In other words� they varied the relative temporal
frequency to compensate for the bias introduced by the relative contrast di�erence


��



Figure ���a� shows data from Stone et al
 ����� averaged over four subjects
 Each curve
is the inferred bias� for a �xed total contrast� as a function of contrast ratio


�� Figure �� About Here ��

There are two parameters in the model� the semi�saturation constant for the nor�
malization� and the prior
 Both of the parameters in the model contribute to deviations
from the intersection of constraints rule
 If the normalized responses are small relative
to the prior� then there is a large bias
 If the normalized responses are large� then there
is a small bias
 For appropriate values of the two parameters the model behaves like
human observers� as shown in �gure ���b�


On the other hand� there are di�erences between the simulation results and the actual
data
 At the highest total contrast ��� � and for small contrast ratios� the human
observers often saw the the plaid motion direction biased toward the lower contrast
grating
 This is evident in �gure ���a� where the �� curve dips below zero bias
 For
all of the conditions that we have simulated� the model predicts a bias toward the higher
contrast grating


� Summary

This chapter presents a model for the computation and representation of velocity in�
formation in the primate visual system that accounts for a variety psychophysical and
physiological observations
 The �rst stage of the model uses spatiotemporal linear op�
erators to compute a linear sum of the stimulus intensities over a local region of space
and recently past time
 The outputs of the linear operators are half�squared and then
normalized
 A slight prior preference for slower speeds is introduced by adding a small
o�set to two of the normalized outputs
 The normalized outputs are then combined�
according to a simple formula� to give �nal velocity estimates


Our model is consistent with recent psychophysical experiments by Stone et al

������ on the perception of sine�grating plaid velocities
 When the component grat�
ing contrasts are unequal� the velocity estimated by the model is biased toward the
higher contrast grating
 The bias occurs in the model because the model includes a
slight prior �preference� for slower speeds
 For appropriate values of the model�s two
parameters� the model behaves like human observers ��gure ���


Ferrera and Wilson ������ ����� have also measured perceived speed and direction
of plaids
 We are currently working toward explaining their psychophysical results with
the same model �Simoncelli and Heeger� ���
�


Our model is also consistent with physiological data on responses of simple cells in
primary �striate� visual cortex
 In this chapter� simple cells are modeled as normalized�
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half�squared linear operators
 We consider two sets of linear operators� �rst and third
spatiotemporal derivatives of a Gaussian
 Although somewhat more cumbersome be�
cause of the larger number of �lters� the third derivative operators are a better model
of simple cells than the �rst derivative operators
 The third derivative operators are
consistent with a variety of physiological results�

� According to the model� a simple cell�s selectivity is due to an underlying spa�
tiotemporal� linear stage
 There are a variety of physiological results that are
consistent with the linear hypothesis �see Heeger� ���
b for review�
 McLean and
Palmer ������� in particular� were able to predict a cell�s preferred speed and di�
rection of motion from measurements of its underlying spatiotemporal weighting
function


� The third derivative operators in the model resemble simple cell weighting func�
tions ��gures � and ��
 First� all of the operators are spatially oriented� with two
or more spatial subregions
 Second� some of the operators are direction selective
�they are tilted in space�time�� while others are not direction selective �they are
space�time separable�
 Third� the operators have temporal responses that are ei�
ther monophasic or biphasic
 And fourth� there is quite a lot of variability in the
model�s weighting functions


� Researchers �e
g
� Hamilton et al
� ����� have found that spatial frequency and
temporal frequency tuning curves are largely independent of one another
 This is
approximately true of the third derivative operators as well ��gure 	�


� The third derivative operators have orientation tuning curves that resemble those
of real cells ��gure ��


� The third derivative operators are su�ciently narrowly tuned for orientation� so
that they act like �component��ow� cells ��gure ��� responding independently to
each component of a sine�grating plaid stimulus


� Responses of both model cells and real cells saturate at high contrasts� according
to the hyperbolic ratio function ��gure ���


� The contrast�response curve� for either a model cell or a real cell� shifts mostly
downward for non�optimal stimuli ��gure ���
 In other words� the ratio of responses
produced by two di�erent stimuli is largely invariant with respect to stimulus
contrast
 In this way� information about a visual stimulus� other than its contrast�
is represented as the relative responses of a collection of cells


Our model has also been used to compute optical �ow �elds from image sequences
�Simoncelli� Adelson� and Heeger �����
 It is important to keep in mind� however�
that the gradient constraint� equation �
�� is only approximately valid
 The constraint
is based on the intensity conservation assumption� that changes in intensity are due


�



only to local translation
 This ignores possible changes in lighting and re�ectance

Moreover� the assumption of local translation is not valid near motion boundaries nor
for transparent motions
 The gradient constraint is also based on a planar approximation
to the �pre�ltered� intensity values
 The velocity estimated by the model is in error when
these assumptions are not satis�ed


In our future research� we plan to extend the model to make it more robust with
respect to these assumptions
 We also plan to use the model to explain further exper�
imental results
 From our point of view� �tting psychophysical or physiological data is
not� by itself� a satisfactory goal of computational modeling
 The model must also give
reliable velocity estimates
 Although primates do not always perceive velocity veridically
�e
g
� �gure ���� we do quite well for most stimuli
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Footnotes

�
 Some algorithms do not always compute the correct velocity for sine grating plaid
patterns
 In particular� models proposed by Watson and Ahumada ������� by
Heeger ����	�� and by Grzywacz and Yuille ������ give the wrong solution unless
the spatial frequencies of the gratings equal the preferred spatial frequency of the
�lters
 Grzywacz and Yuille ������ claim that their method does not depend on
the spatial frequency content of the stimulus� but in fact that claim is not true for
sine grating stimuli




 Watson and Ahumada ������ ����� and Adelson and Bergen ������ proposed
the quadrature model of direction selectivity� in which direction selective linear
operators are constructed by summing the outputs of two space�time separable
subunits
 These subunits are related to one another by a quadrature phase shift
both in space and in time
 In our model� the direction selective operators are also
constructed by summing the outputs of two space�time separable subunits� but the
subunits are not quadrature pairs


�
 An extension of the model would predict even greater variability in the weighting
functions
 The model operators need not be Gaussian derivatives
 Other operators
could also be used �e
g
� third or fourth derivatives of some smooth� unimodal� non�
Gaussian function�
 Moreover� di�erent pre�lters could be used at di�erent spatial
positions
 At a given position� the operators must all be derivatives of a common
pre�lter� but the pre�lters at di�erent spatial positions need not be the same


�
 Figure 	 demonstrates that spatial and temporal frequency tuning curves �mea�
sured with gratings drifting only in one direction� are largely independent of one
another
 Some researchers have summarized this result by saying that the spa�
tiotemporal frequency tuning is �space�time separable�
 Note� however� that this
is di�erent from requiring space�time separability of an operator�s weighting func�
tion
 The spatiotemporal frequency tuning �for gratings drifting only in one direc�
tion� can be separable even if the weighting function is inseparable
 The frequency
domain measurements �in �gure 	� are separable only when considering one di�
rection of motion
 The full spatiotemporal frequency tuning �for gratings drifting
in all directions� is space�time separable if and only if the weighting function is
space�time separable �i
e
� nondirection selective�
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Figure Captions

Figure �� Distributed representations of velocity for rightward moving plaid stimuli

�a� and �b� Plaid stimuli made from pairs of gratings
 Both plaids moved right�
ward with the same velocity
 �c� and �d� Distributed representations corresponding
to stimuli in �a� and �b�� respectively
 Each point corresponds to a di�erent ve�
locity �center corresponds to zero velocity�
 Brightness at each point is inversely
proportional to R�v�� v�� in equation ���
 Locations of the peaks correspond to the
correctly perceived velocities


Figure �� �a� Single moving grating
 The diagonal line indicates the locus of velocities
compatible with the motion of the grating
 �b� Plaid composed of two moving grat�
ings
 The lines give the possible motion of each grating alone
 Their intersection
is the only shared motion


Figure �� Distributed representations of velocity for a vertical grating stimulus moving
to the right
 �a� Since the velocity is ambiguous� there is no peak in the distri�
bution
 �b� Responses are biased slightly by adding a small o�set to the diagonal
elements ofM
 This corresponds to a broad prior probability distribution centered
at zero
 Including the prior gives a broad peak in the distribution


Figure �� Orientation in space�time �based on an illustration by Adelson and Bergen�
�����
 �a� A vertical bar translating to the right
 �b� The space�time cube of
stimulus intensities corresponding to motion of the vertical bar
 �c� An x�t slice
through the space�time cube
 Orientation in the x�t slice is the horizontal com�
ponent of velocity
 Motion is like orientation in space�time� and spatiotemporally
oriented �lters can be used to detect and measure it


Figure 	� Space�time slices through weighting functions of third derivative operators

�a� gxxx� the third spatial derivative of a Gaussian� is monophasic and space�time
separable
 �b� gxxt is biphasic and space�time separable
 �c� �gxxx � gxxt� is tilted
in space�time �not space�time separable�� and selective for leftward motion


Figure 
� Spatial slices �top row� and space�time slices �bottom row� through weight�
ing functions of linear operators representative of the �� operators used in the
model
 Some of these operators are Gaussian third derivatives� while others are
constructed by summing third derivatives
 The operators resemble physiological
measurements of simple cell weighting functions


Figure �� �a� Spatial frequency tuning of a simple cell� measured with sine�grating
stimuli drifting in the cell�s preferred orientation �data replotted from Hamilton
et al
� �����
 Each curve is for a di�erent stimulus temporal frequency� and each
was shifted vertically for ease of viewing
 Spatial frequency tuning is largely inde�
pendent of temporal frequency
 �b� Spatial frequency tuning for third derivative
operator �gxxx � gxxt� is likewise independent of temporal frequency
 �c� Spatial
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frequency tuning for �rst derivative operator �gx � gt� is much broader and varies
systematically with temporal frequency


Figure �� �a� Orientation�direction tuning of a simple cell� measured with sine�grating
stimuli of preferred spatial and temporal frequency �data replotted from Movshon
et al
� �����
 Direction of motion is represented by the angular coordinate and
relative response is plotted radially
 �b� Orientation�direction tuning for third
derivative operator �gxxx � gxxt� is similar
 �c� Orientation�direction tuning for
�rst derivative operator �gx � gt� is much broader


Figure 
� �a� Direction tuning of a simple cell� measured with sine�grating plaid stimuli
�data replotted from Movshon et al
� �����
 Direction of motion of the plaid
pattern is represented by the angular coordinate and relative response is plotted
radially
 �b� Plaid direction tuning for third derivative operator �gxxx � gxxt� is
similar
 �c� Plaid direction tuning for �rst derivative operator �gx� gt� is so broad
that it does not respond independently to the two component gratings


Figure ��� Response versus contrast as the spatial frequency� 	� of the stimulus is
varied
 �a� Data replotted from Albrecht and Hamilton ����
�
 �b� Model sim�
ulation
 For both model cells and real cells� the contrast�response curve shifts
mostly downward in the log�log plot if the spatial frequency of the test grating is
non�optimal


Figure ��� Bias of human velocity judgements for sine�grating plaids� as a function of
contrast ratio of the two component gratings
 �a� Data averaged from four subjects�
replotted from Stone et al
 ������
 Each curve is for a di�erent total contrast

Relative temporal frequency was varied to compensate for the bias introduced
by the relative contrast di�erence
 Inferred bias plotted on the vertical axes is
directly related to relative temporal frequency
 Inferred bias is the direction that
would be seen for that relative temporal frequency �according to the intersection
of constraints rule� if both gratings had the same contrast
 �b� Results from model
simulations
 The two parameters of the model were chosen to give the best �least�
squares� �t to the data
 For these parameter values the model behaves like human
observers
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Figure �� Distributed representations of velocity for rightward moving plaid stimuli
 �a�
and �b� Plaid stimuli made from pairs of gratings
 Both plaids moved rightward with the
same velocity
 �c� and �d� Distributed representations corresponding to stimuli in �a� and
�b�� respectively
 Each point corresponds to a di�erent velocity �center corresponds to
zero velocity�
 Brightness at each point is inversely proportional to R�v�� v�� in equation
���
 Locations of the peaks correspond to the correctly perceived velocities
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Figure 
� �a� Single moving grating
 The diagonal line indicates the locus of velocities
compatible with the motion of the grating
 �b� Plaid composed of two moving gratings

The lines give the possible motion of each grating alone
 Their intersection is the only
shared motion
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Figure �� Distributed representations of velocity for a vertical grating stimulus moving
to the right
 �a� Since the velocity is ambiguous� there is no peak in the distribution

�b� Responses are biased slightly by adding a small o�set to the diagonal elements ofM

This corresponds to a broad prior probability distribution centered at zero
 Including
the prior gives a broad peak in the distribution
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Figure �� Orientation in space�time �based on an illustration by Adelson and Bergen�
�����
 �a� A vertical bar translating to the right
 �b� The space�time cube of stimulus
intensities corresponding to motion of the vertical bar
 �c� An x�t slice through the
space�time cube
 Orientation in the x�t slice is the horizontal component of velocity

Motion is like orientation in space�time� and spatiotemporally oriented �lters can be
used to detect and measure it
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Figure �� Space�time slices through weighting functions of third derivative operators
 �a�
gxxx� the third spatial derivative of a Gaussian� is monophasic and space�time separable

�b� gxxt is biphasic and space�time separable
 �c� �gxxx�gxxt� is tilted in space�time �not
space�time separable�� and selective for leftward motion
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Figure �� Spatial slices �top row� and space�time slices �bottom row� through weighting
functions of linear operators representative of the �� operators used in the model
 Some
of these operators are Gaussian third derivatives� while others are constructed by sum�
ming third derivatives
 The operators resemble physiological measurements of simple
cell weighting functions
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Figure 	� �a� Spatial frequency tuning of a simple cell� measured with sine�grating stim�
uli drifting in the cell�s preferred orientation �data replotted from Hamilton et al
� �����

Each curve is for a di�erent stimulus temporal frequency� and each was shifted verti�
cally for ease of viewing
 Spatial frequency tuning is largely independent of temporal
frequency
 �b� Spatial frequency tuning for third derivative operator �gxxx� gxxt� is like�
wise independent of temporal frequency
 �c� Spatial frequency tuning for �rst derivative
operator �gx � gt� is much broader and varies systematically with temporal frequency
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Figure �� �a� Orientation�direction tuning of a simple cell� measured with sine�grating
stimuli of preferred spatial and temporal frequency �data replotted from Movshon et al
�
�����
 Direction of motion is represented by the angular coordinate and relative response
is plotted radially
 �b� Orientation�direction tuning for third derivative operator �gxxx�
gxxt� is similar
 �c� Orientation�direction tuning for �rst derivative operator �gx � gt� is
much broader
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Figure �� �a� Direction tuning of a simple cell� measured with sine�grating plaid stimuli
�data replotted from Movshon et al
� �����
 Direction of motion of the plaid pattern
is represented by the angular coordinate and relative response is plotted radially
 �b�
Plaid direction tuning for third derivative operator �gxxx � gxxt� is similar
 �c� Plaid
direction tuning for �rst derivative operator �gx�gt� is so broad that it does not respond
independently to the two component gratings
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Figure ��� Response versus contrast as the spatial frequency� 	� of the stimulus is varied

�a� Data replotted from Albrecht and Hamilton ����
�
 �b� Model simulation
 For both
model cells and real cells� the contrast�response curve shifts mostly downward in the
log�log plot if the spatial frequency of the test grating is non�optimal
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Figure ��� Bias of human velocity judgements for sine�grating plaids� as a function of
contrast ratio of the two component gratings
 �a� Data averaged from four subjects�
replotted from Stone et al
 ������
 Each curve is for a di�erent total contrast
 Relative
temporal frequency was varied to compensate for the bias introduced by the relative
contrast di�erence
 Inferred bias plotted on the vertical axes is directly related to relative
temporal frequency
 Inferred bias is the direction that would be seen for that relative
temporal frequency �according to the intersection of constraints rule� if both gratings
had the same contrast
 �b� Results from model simulations
 The two parameters of the
model were chosen to give the best �least�squares� �t to the data
 For these parameter
values the model behaves like human observers
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