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The normalization model has been applied to explain neural activity
in diverse neural systems including primary visual cortex (V1). The
model’s defining characteristic is that the response of each neuron is
divided by a factor that includes a weighted sum of activity of a pool
of neurons. Despite the success of the normalization model, there
are three unresolved issues. 1) Experimental evidence supports the
hypothesis that normalization in V1 operates via recurrent amplifi-
cation, i.e., amplifying weak inputs more than strong inputs. It is
unknown how normalization arises from recurrent amplification. 2)
Experiments have demonstrated that normalization is weighted such
that each weight specifies how one neuron contributes to another’s
normalization pool. It is unknown how weighted normalization
arises from a recurrent circuit. 3) Neural activity in V1 exhibits com-
plex dynamics, including gamma oscillations, linked to normalization.
It is unknown how these dynamics emerge from normalization.
Here, a family of recurrent circuit models is reported, each of which
comprises coupled neural integrators to implement normalization via
recurrent amplification with arbitrary normalization weights, some
of which can recapitulate key experimental observations of the dy-
namics of neural activity in V1.

computational neuroscience | recurrent neural network | V1 |
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The normalization model was initially developed to explain
stimulus-evoked responses of neurons in primary visual cor-

tex (V1) (1–7) but has since been applied to explain neural ac-
tivity and behavior in diverse cognitive processes and neural
systems (see SI Appendix for references). The defining charac-
teristic of normalization is that the response of each neuron is
divided by a weighted sum of the activity of a pool of neurons
(Fig. 1A). In V1, this normalization pool includes neurons se-
lective for different visual stimulus features and spatial positions
(i.e., receptive-field locations).
The normalization model mimics many well-documented

physiological phenomena in V1 (Fig. 1 B and C) and their per-
ceptual analogs (see SI Appendix for references). 1) Responses
saturate (level off) when increasing the contrast of a preferred
orientation test stimulus (e.g., a grating restricted to a neuron’s
receptive field [RF]) (Fig. 1B, blue curve). 2) Responses to a
nonpreferred orientation are smaller than responses to the
preferred orientation by a constant scale factor, saturating at the
same contrast, not the same firing rate, for preferred and non-
preferred stimuli (Fig. 1B, orange vs. blue curves). 3) Responses
to two or more stimuli presented together are much less than the
linear sum of the individual responses: cross-orientation sup-
pression when a mask stimulus (e.g., a grating of fixed contrast)
that is orthogonal to the preferred orientation is superimposed
with a preferred-orientation test stimulus (Fig. 1C, yellow vs.
blue curves); and surround suppression when a mask stimulus is
added in the region surrounding a neuron’s RF. Different stimuli
suppress responses by different amounts (see SI Appendix for
references), suggesting that normalization is “tuned.” The nor-
malization weights specify the contribution of one neuron to
another’s normalization pool, determining the tuning.

Normalization has been shown to serve a number of functions
in a variety of neural systems including automatic gain control
(needed because of limited dynamic range), simplifying readout,
conferring invariance with respect to one or more stimulus di-
mensions (e.g., contrast, odorant concentration), switching between
averaging vs. winner-take-all, contributing to decorrelation and
statistical independence of neural responses, stabilizing delay-period
activity, and facilitating learning (see SI Appendix for references).
Neural activity in V1 exhibits complex dynamics linked to nor-

malization. The rate of response increase following stimulus onset
is typically faster than the decrease following stimulus offset (8).
The rate of response increase is also stimulus dependent: faster for
high-contrast stimuli and for stimuli in the center of the RF (8).
The timing of response suppression depends on its strength (9).
Temporal-frequency tuning depends on stimulus contrast, and
simple-cell response phase depends on contrast (6, 10–13).
Complex dynamics are evident also in the combined activity (e.g.,
as measured with local field potentials [LFPs]) of populations of
neurons. LFPs exhibit gamma oscillations (∼30 to 80 Hz) that
have been linked to normalization (14–16). Oscillation amplitude
and frequency depend systematically on stimulus contrast, size,
and spatial pattern (14, 15, 17–30).
The circuit mechanisms underlying normalization are not well

understood. Experimental evidence supports the hypothesis that
normalization operates via recurrent amplification, i.e., amplifying
weak inputs more than strong inputs (31–34). The recurrent am-
plification hypothesis is also supported by anatomy: cortical cir-
cuits are dominated by recurrent connections (35–40). We have
known since we first introduced the normalization model that it
can be implemented in a recurrent circuit (4, 5). Since then,
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several hypotheses for the circuit mechanisms underlying nor-
malization have been proposed, including shunting inhibition,
synaptic depression, and inhibition-stabilized networks (6, 13,
41–46). See also refs. 47–49 for precursors to these circuit models.
However, these models do not rely on recurrent amplification to
achieve normalization and/or they do not exhibit complex dy-
namics (including gamma oscillations) linked to normalization
(Discussion). Furthermore, these previous models only approxi-
mate weighted normalization; this has practical consequences for
making experimentally testable predictions and for fitting data
(Discussion).
Here, we introduce and characterize a family of dynamical

systems that implement normalization with recurrent amplifica-
tion. When the input drive is constant over time, each of the re-
current circuits in this family exhibits output responses that follow
the normalization equation exactly, with arbitrary (nonnegative)
normalization weights. Each model in this family is expressed as a
coupled system of neural integrators, composed of two classes of
neurons: principal cells and modulator cells. The key idea is that
the amount of recurrent amplification in the principal cells de-
pends inversely on the responses of the modulator cells. When the
input is weak, the modulator cells have small responses and there
is a large amount of recurrent amplification. When the input is
strong, the modulator cell responses are large, which shuts down
the recurrent amplification. The various models in this family of
dynamical systems imply different circuits, some of which reca-
pitulate the complex dynamics of V1 activity, including gamma
oscillations. Although we focus on V1, this family of models is
applicable to many neural systems (Discussion).
A preliminary version was posted on a preprint server (50).

MATLAB code is available at hdl.handle.net/2451/61045 (51).

Results
Recurrent Normalization. Following our previous work (52, 53),
responses of a population of V1 neurons are modeled as dy-
namical processes that evolve over time in a recurrent circuit
(Fig. 2). The output firing rates of the principal cells depend on
the sum of two terms: 1) input gain (Fig. 2, orange) multiplied by
input drive (Fig. 2, blue), and 2) recurrent gain (Fig. 2, purple)
multiplied by recurrent drive (Fig. 2, green). The input drive is a
weighted sum of the responses of the population of input neu-
rons, and the input gain is specified by a constant. These input
neurons are presumed to be in the lateral geniculate nucleus
(LGN) of the thalamus, which, in turn, receive their inputs from
neurons in the retina. The recurrent drive is a weighted sum of
principal cell responses, and the recurrent gain depends on the
modulator cell responses (“modulator” refers to a multiplicative

computation, not to neuromodulators). Modulator cell responses
depend on the principal cell responses (Fig. 2, purple).
There are two nested recurrent loops that oppose each other.

1) Recurrent drive: The recurrent drive is a weighted sum of the
principal cell responses, and the principal cell responses depend
on the recurrent drive (Fig. 2, green). 2) Recurrent gain: The
recurrent gain depends inversely on the modulator cell re-
sponses, and the modulator cell responses depend on a sum of
principal cell responses (Fig. 2, purple). The recurrent drive is
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multiplied by the recurrent gain so that the modulators control
the amount of recurrent amplification. Increasing the principal
cell responses causes the modulator cells to increase their re-
sponses, which causes the amount of recurrent amplification to
decrease. Therefore, as the activity of the principal cells increase,
the first recurrent loop increases the amount of recurrent am-
plification, while the second loop decreases the amount of re-
current amplification. These two recurrent loops oppose each
other such that the activity of the circuit may achieve a fixed
point at which the neural activity is normalized. The responses at
this fixed point typically exhibit one of two kinds of dynamics. If
the modulator cells are sluggish, then the principal cells can
exhibit an initial transient overshoot before achieving the fixed
point. If instead the modulator cells have a short time constant
and a delay, then the fixed point may be unstable and the re-
sponses may exhibit oscillations.
This circuit agrees with experimental results suggesting that nor-

malization operates via recurrent amplification (31–34). The recurrent
drive involves both excitation and inhibition (Fig. 2, green solid and
dashed lines, respectively). The modulator cells control the amount of
recurrent amplification (Fig. 2, purple line with circle head). Both
excitatory and inhibitory recurrent signals are amplified by an amount
that is controlled by the modulator cells (Fig. 2, purple).
The remainder of this subsection walks through the equations

of the dynamical system corresponding to the circuit model in
Fig. 2 (see SI Appendix for additional details). We then dem-
onstrate that this model mimics experimental observations of the
dynamics of neural activity. We present the model as a compu-
tational theory for the computations performed by neural circuits
in V1 (but see Table 1 and Discussion for possible mechanisms).
Principal cell responses are as follows (see SI appendix of ref.

53 for a primer on neural integrators and Table 1 for mathe-
matical symbols):

τv
dvj
dt

= −vj + ( b0
1 + b0

)zj + ( 1
1 + aj

)ŷj, [1]

yj = vj⌊ ⌋2, [2]

z = Wzxx, [3]

ŷ = Wŷy
̅̅̅
y

√
. [4]

Vector y = (y1 , y2 ,. . ., yj,. . ., yN) represents the firing rate re-
sponses of the principal cells, where the subscript j indexes
different neurons in the population, with different RF centers,
orientation preferences, and spatial and temporal phases. The
underlying membrane potentials of the principal cells are rep-
resented by vector v. Membrane potential of the jth principal
cell vj depends on a sum of two terms (Eq. 1): 1) input gain
multiplied by input drive zj and 2) recurrent gain multiplied
by recurrent drive ŷj. The input drive zj is a weighted sum of
LGN inputs (Eq. 3 and Fig. 2, blue; see SI Appendix for de-
tails). The rows of the weight matrix Wzx determine the spatial
RFs of the simple cells (SI Appendix, Fig. S1 B–D and see SI
Appendix for details). The recurrent drive ŷj is a weighted sum
(with recurrent weights Wŷy) of the square root of the princi-
pal cell responses yj (Eq. 4 and Fig. 2, green; see SI Appendix
for details). The input drive and the recurrent drive are each
multiplied by a gain factor. The input gain is specified by
a constant b0. The recurrent gain depends on the responses
of the modulator cells aj, as detailed below. Half-squaring
(half-wave rectification and squaring) in Eq. 2 is an expansive
nonlinearity that approximates the transformation from the
membrane potential of the principal cells to their firing rates.
The square root in Eq. 4 is a compressive nonlinearity that
approximates a transformation from firing rates to synaptic
currents.

Table 1. Mathematical notation

Symbol Description Possible mechanism

x = (x1, x2,. . ., xi,. . ., xM) Inputs Firing rates of LGN cells
y = (y1, y2,. . ., yj,. . ., yN) Principal cell responses Firing rates of pyramidal cells
v = (v1, v2,. . ., vj,. . ., vN) Principal cell membrane potential

(deviation from rest)
Input drive and recurrent drive computed in separate

compartments of dendritic tree
z = (z1, z2,. . ., zj,. . ., zN) Input drive Dendritic computation, sum of synaptic currents
ŷ = (ŷ1, ŷ2,. . ., ŷj,. . ., ŷN) Recurrent drive Dendritic computation, sum of synaptic currents
Wzx Input weight matrix (NxM): each row corresponds

to the spatial RF of one principal cell
Excitatory and inhibitory (i.e., positive and negative) synaptic

weights
Wŷy Recurrent weight matrix: each row determines

the recurrent drive for one principal cell
Excitatory and inhibitory (i.e., positive and negative) synaptic

weights
a = (a1, a2,. . ., aj,. . ., aN) Modulator cell responses and recurrent gain Firing rates of inhibitory neurons (proportional to membrane

depolarization), each of which determines conductance of
the dendritic compartment of a principal cell receiving that
cell’s recurrent drive

u = (u1, u2,. . ., uj,. . ., uN) Responses of second population of modulator cells Firing rates of a type of excitatory neurons (proportional to
membrane depolarization, above a spontaneous firing rate)

W and wjk ≥ 0 Normalization weight matrix W comprising
normalization weights wjk

Excitatory synaptic weights

τv, τa, τu Intrinsic time constants of each of the
corresponding cell classes

Membrane capacitance and conductance

b0 > 0 Input gain (constant) Conductance of the dendritic compartment of the principal
cells receiving that cell’s input drive

σ > 0 Contrast gain (constant) Spontaneous firing rates of u modulator cells

Boldface lowercase letters denote vectors, and boldface uppercase letters denote matrices. The variables (y, v, ŷ, x, z, a, u) are each functions of time, e.g.,
y(t), but we drop the explicit dependence on t to simplify the notation.
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Modulator cell responses are as follows:

τa
daj
dt

= −aj +
̅̅̅̅
uj

√ +aj
̅̅̅̅
uj

√
, [5]

τu
duj

dt
= −uj +∑

k

wjk ykuk + ( σb0
1 + b0

)2. [6]

All variables in Eqs. 5 and 6 are constrained to be ≥0. Vectors a
and u represent responses of the two types of modulator cells
(firing rates proportional to membrane depolarization,
i.e., without squaring unlike Eq. 2). The need for both classes
of modulator cells is explained below (Variants of the Model).
Modulator cell responses uj represent a normalization pool,
computed from the normalization weights wjk and the principal
cell responses yj (Eq. 6 and Fig. 2, purple). Responses of the
other population of modulator cells aj are multiplied by the re-
current drive ŷj (Eq. 1), thereby determining the recurrent gain
and recurrent amplification. Responses aj depend on responses
uj (Eq. 5), so that the recurrent amplification depends on the
normalization pool.
When the input drive is constant over time, the model has a

fixed point such that the neural activity is normalized:

y = z⌊ ⌋2
σ2 +Wz2

, [7]

where the numerator is half-squared, and the quotient means
element-by-element division. Indeed, the exact form of Eqs.
1–6 was designed so that it would achieve this fixed point. To
derive Eq. 7, set the derivatives in Eqs. 1, 5, and 6 equal to 0 and
simplify (SI Appendix). The values of wjk in Eq. 6 are the nor-
malization weights, i.e., the elements of W in Eq. 7. Variants of
Eq. 7 (with various exponents) have been fit to a wide range of
experimental data (see SI Appendix for references).
Simulated neural responses in the following figures are

intended to exhibit qualitative aspects of neurophysiological
phenomena, i.e., the models have not (yet) been optimized to
replicate published data by tuning or fitting the model parame-
ters (SI Appendix). We simulated responses to drifting sinusoidal
gratings (or pairs of gratings) with various orientations, temporal
frequencies, and contrasts. Responses to transient drifting grat-
ings are more sustained than the responses to transient station-
ary gratings (54, 55). Unless otherwise stated, model parameters
were as follows: b0 = 0.2, σ = 0.1, τv = 1 ms, τa= 2 ms, and τu=1
ms. The normalization pool included all orientations (evenly
weighted) at the center of a neuron’s RF, and included only
orientations near the preferred orientation at spatial locations
surrounding the RF. Euler’s forward method was used to com-
pute Eqs. 1, 5, and 6 with time step Δt = 0.1 ms.

Recurrent Amplification, Effective Time Constant, Onset Transients,
and Oscillations. The recurrent circuit model (expressed by Eqs.
1–6 and depicted in Fig. 2) mimics many features of the dynamics
of V1 activity. We focus on response dynamics because the mean
firing rates are given by Eqs. 7 and 8, which are already known to
fit a wide range of experimental data (Fig. 1) (see SI Appendix for
references).
Simulated responses to grating stimuli with various contrasts

replicated experimental observations (Fig. 3). Response ampli-
tudes of simulated V1 simple and complex cells were exactly
equal to Eq. 8, saturating at high contrasts (Fig. 3 A and E–G).
The responses of the modulator cells increased monotonically
with contrast but did not saturate (Fig. 3B). Responses were
amplified by 100× when contrast was low but by only ∼1× when
contrast was high (Fig. 3C). The effective time constant was
correspondingly long for low contrasts but short for high

contrasts (Fig. 3D). Consequently, high-contrast stimuli evoked
rapid increases in activity, whereas low-contrast stimuli evoked
much slower and more gradual increases in activity before
achieving steady state (Fig. 3E). The rate at which activity de-
creased following stimulus offset was different from the rate at
which activity increased after lifting off from zero following
stimulus onset (Fig. 3E). These results are similar to a variety of
electrophysiological measurements (13, 28, 54–61).
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We can derive expressions for the effective gain and the ef-
fective time constant of the responses to generate experimentally
testable predictions and for fitting data. The effective gain and
effective time constant both decrease with increasing stimulus
strength. Weak stimuli are strongly amplified (large effective
gain) via the recurrent circuit, which takes a period of time (long
effective time constant). Strong stimuli are weakly amplified
(small effective gain), which happens more quickly (short ef-
fective time constant). The effective gain of each neuron in the
circuit (the ratio of each element of y to each element of z2)
depends on the input drive and the normalization weights: Wz2.
The effective time constant depends on the effective gain (SI
Appendix), so it too depends on Wz2. For stimuli composed of
drifting sinusoidal gratings or pairs of gratings:

r∝
c2t

σ2 + c2t + βc2m
, [8]

g = 1
σ2 + c2t + βc2m

, [9]

τ = τv(1 + b0
b0

) ̅̅̅
g

√
, [10]

where r is the amplitude of a principal cell’s response (e.g., the
mean firing rate of a V1 complex cell), g is the effective gain of
that neuron’s responses, and τ is that neuron’s effective time
constant (see SI Appendix for derivations). The value of ct is
the contrast of a test grating (e.g., a preferred orientation grating
restricted to the RF). The value of cm is the contrast of a mask
grating that by itself does not evoke a response. The value of 0 <
β < 1 depends on the normalization weights. Eqs. 8–10 follow
from Eq. 7 because the input drive is a weighted sum of the
input, i.e., zj is proportional to contrast. From Eq. 8, it is evident
that responses saturate (level off) when the test contrast is large
(≫σ), cross-orientation suppression results when a mask grating
is superimposed that is orthogonal to the preferred orientation,
and surround suppression results when a mask grating is added
in the region surrounding the RF, all characteristics of visual
neurophysiology (Fig. 1). From Eqs. 9 and 10, the effective gain

is large when stimulus contrast is zero (g = 100 for ct = cm = 0,
b0 = 0.2, σ = 0.1, and τv = 1 ms), and the effective time constant
is long (τ = 60 ms for those parameters). However, the gain is
small (g ∼ 1) and the effective time constant is short (τ = 6 ms)
when contrast is high.
By changing one of the model parameters (specifically, the in-

trinsic time constant of the modulator cells τu), simulated re-
sponses to high-contrast stimuli exhibited either strong transients
following stimulus onset (Fig. 3E, τu = 10 ms) or stable, high-
frequency (∼40 to 50 Hz) oscillations (Fig. 3F, τu = 1 ms), syn-
chronized across neurons. Both of these phenomena—onset
transients (54, 55, 62) and stable oscillations (14, 15,
17–30)—have been widely reported in experimental observa-
tions. Note, however, that the experimental evidence for gamma
oscillations is based on LFP, electrocorticography, electroen-
cephalogram, and magnetoencephalography measurements,
each of which depend on the synchronized membrane potential
fluctuations across a large population of neurons (63, 64); we
would not expect oscillations to be evident in measurements of
single-unit spiking (SI Appendix, Fig. S2, and see SI Appendix,
text).
For some parameter regimes, the responses exhibited onset

transients (Fig. 3E) followed by stable oscillations (Fig. 3F), but
we have not systematically characterized the parameters that do
so. The temporal filter that was used to simulate the responses of
the LGN inputs (SI Appendix) attenuates the onset transients,
without which there would typically be an initial transient
overshoot.
In these simulations, the normalization weights were all equal,

so the response transients and/or oscillations were perfectly
synchronized across the population of neurons. Consequently,
despite the complex dynamics, response ratios of neurons with
different orientation preferences were maintained throughout
each stimulus presentation, resembling some experimental re-
sults (55), and enabling an accurate readout of stimulus orien-
tation at any time point. With unequal normalization weights,
response ratios evolved over time with nonstationary readout,
analogous to other experimental results (65). Furthermore, with
unequal normalization weights, response ratios also depended
on stimulus contrast so that the simulated neural responses did
not exhibit perfectly contrast-invariant tuning curves.

.1

R
el

at
iv

e
re

sp
on

se

1

.01

.1

1

.01

Contrast (%)
5 10 20 40 80

R
el

at
iv

e 
ph

as
e

R
es

ca
le

d
re

sp
on

se

.1

R
el

at
iv

e
re

sp
on

se

1

.01

.1

1

.01

R
es

ca
le

d
re

sp
on

se

10
20
40
80%

5

Contrast:

1 Hz
2

4
8

Temporal freq:
16

0

30

60

1 Hz
2

4
8

1 2 4 8 16 32
Temporal frequency (Hz)

1 2 4 8 16 32
Temporal frequency (Hz)

1 2 4 8 16 32
Temporal frequency (Hz)

1 2 4 8 16 32
Temporal frequency (Hz)

R
el

at
iv

e 
ph

as
e

Contrast (%)
5 10 20 40 80

-45

-15

15

B CA

D E F

Fig. 4. Temporal-frequency tuning and phase advance depend on contrast. (A–C) Low-pass temporal-frequency tuning (ω = 0 Hz). (A) Response amplitudes
for each of several stimulus temporal frequencies. Different shades of gray correspond to different stimulus contrasts: 5%, 10%, 20%, 40%, and 80%. (B)
Rescaled responses. The different curves (from A) are each rescaled to have the same maximum so that the shapes of the curves can be readily compared.
Responses to high contrasts (darker curves) are elevated compared to the responses to low contrasts (lighter curves). (C) Phase advance. Response phase for
each of several contrasts. Different colors correspond to different temporal frequencies: 1 2, 4, and 8 Hz. (D–F) Bandpass temporal-frequency tuning (ω =
8 Hz).

22498 | www.pnas.org/cgi/doi/10.1073/pnas.2005417117 Heeger and Zemlianova

D
ow

nl
oa

de
d 

at
 B

ob
st

 L
ib

ra
ry

, N
ew

 Y
or

k 
U

ni
ve

rs
ity

 o
n 

Se
pt

em
be

r 9
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005417117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005417117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005417117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005417117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005417117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005417117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2005417117


Disabling the recurrent amplification (i.e., simulating an ex-
periment in which cortical spiking is shut down) attenuated the
membrane potential response amplitudes by a factor of ∼10× at
high contrasts (Fig. 3H), while maintaining their orientation se-
lectivity, resembling experimental results (66–69).

Temporal-Frequency Tuning and Phase Advance Depend on Contrast.
Temporal-frequency tuning of both simple and complex cells
depends on stimulus contrast, and simple-cell response phase
depends on contrast (6, 10–13). It was previously proposed that
these phenomena can be explained by a recurrent normalization
model in which a neuron’s conductance (and consequently its
intrinsic time constant) depends on stimulus contrast (6, 13).
Here, we hypothesize instead that the effective time constant
depends on contrast because the amount of recurrent amplifi-
cation in the circuit decreases with increasing contrast (Eqs. 9
and 10).
Simulated temporal-frequency tuning depended systematically

on contrast, responding to a broader range of temporal fre-
quencies at high contrasts (Fig. 4). Fig. 4 A and B plot results for
a population of neurons with preferred temporal frequency ω =
0 Hz, i.e., the recurrent drive in the model acted like a low-pass
filter (SI Appendix). Increasing stimulus contrast increased the
responsivity of the simulated neurons for high temporal fre-
quencies. Fig. 4 D and E plot results for neurons with preferred
temporal frequency ω = 8 Hz, i.e., the recurrent drive in the
model acted like a bandpass filter, matching the preferred tem-
poral frequency of the simulated LGN inputs. In this case, in-
creasing stimulus contrast increased the responsivity of the
simulated neurons for both low and high temporal frequencies.
For low contrasts, temporal-frequency tuning was bandpass with
a relatively narrow bandwidth. Increasing stimulus contrast
transformed the temporal frequency tuning from bandpass to
low pass while nearly doubling the high temporal-frequency
cutoff. This behavior arises in the model because the effective
time constant depends on contrast: the effective gain decreases
with increasing contrast (Eq. 9), and the effective time constant
decreases with decreasing effective gain (Eq. 10). A shorter time
constant corresponds to a broader bandwidth, raising the high
temporal-frequency cutoff for a low-pass tuning curve, and
raising both the low and high cutoffs for a bandpass tuning curve.
Response phase also depended systematically on contrast

(Fig. 4 C and F). For simulated simple cells with low-pass
temporal-frequency tuning, response phases advanced with in-
creasing contrast, more so for higher temporal frequencies
(Fig. 4C). For simulations with bandpass temporal-frequency
tuning, response phases shifted in opposite directions for tem-
poral frequencies above and below the preferred temporal
frequency (Fig. 4F).
Results like those shown in Fig. 4 A–C have been observed

experimentally (6, 10–13): increasing phase advance and in-
creasing the high temporal-frequency cutoff with increasing
contrast. The model predicts that the effects shown in Fig. 4 D–F
may be evident for neurons with narrow temporal-frequency
tuning, e.g., perhaps direction-selective neurons in layer 4b.

Response Dynamics Depend on Stimulus Location. The dynamics of
V1 activity depends on whether a stimulus is placed in the center
or flanks of a neuron’s receptive field (8). Activity evoked by a
small grating patch extends over a cortical region of several
millimeters (depending on stimulus size, spatial frequency, and
eccentricity). Following stimulus onset, responses rise simulta-
neously over the entire active region, but reach their peak more
rapidly at the center. Furthermore, the rate of response increase
following stimulus onset is faster for higher contrasts. Following
stimulus offset, responses fall simultaneously at all locations, and
the rate of response decrease is the same for all locations and all
contrasts. It was previously proposed that these phenomena can

be explained by a recurrent normalization model in which a
neuron’s conductance (and consequently its intrinsic time con-
stant) depends on the spatial distribution of stimulus contrasts,
via the normalization weights (8). Here, we hypothesize instead
that the effective time constant (as opposed to the intrinsic time
constant) of each neuron depends on normalization weights.
Simulated responses recapitulated the experimentally mea-

sured spatiotemporal dynamics (Fig. 5). Responses lifted off si-
multaneously following stimulus onset but increased at a faster
rate for RF locations centered on the stimulus (Fig. 5, darker
colors) and for higher contrasts (Fig. 5, responses to second
stimulus presentation at t = 500 ms). Recurrent amplification
was weaker when the stimulus was presented closer to the center
of a neuron’s RF, and it was weaker for higher contrasts. Con-
sequently, the effective gain was smaller (Eq. 9) and the time
constant was shorter (Eq. 10) for these conditions. The effective
time constant following stimulus offset was ∼60 ms, regardless of
what the stimulus had been (Eqs. 9 and 10 with ct = cm = 0, b0 =
0.2, σ = 0.1, and τv = 1 ms).

Oscillations Depend on Stimulus Contrast and Size. Simulated re-
sponses exhibited high-frequency oscillations (Fig. 3F). For
grating stimuli, and in the absence of noise, these oscillations
were evident only at high (>50%) contrasts, and the oscillation
amplitudes (Fig. 6B) increased with stimulus size and contrast.
Oscillation frequencies also increased with contrast. Response
amplitudes, on the other hand, exhibited surround suppression
so they were nonmonotonic with stimulus size at high contrasts
(Fig. 6A, dark gray and black curves). The oscillations depended
indirectly on stimulus temporal frequency because the input
drive to each neuron depended on stimulus temporal frequency
with respect to the neurons’ preferred temporal frequency
(Fig. 4). That is, a lower contrast grating with a temporal fre-
quency at the peak of the tuning curve generated the same os-
cillations as a higher contrast with a temporal frequency on the
flank of the tuning curve, such that the two stimuli evoked the
same input drive amplitudes. However, the oscillations were
otherwise (beyond the dependence on input drive amplitudes)
independent of stimulus temporal frequency.
Oscillations were also evident for high-contrast plaid stimuli,

composed of a pair of orthogonal gratings, but the oscillations
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generated by plaids were smaller in amplitude and lower in
frequency than those generated by gratings of the same contrast.
Responses to plaids exhibited cross-orientation suppression; the
response evoked by a 50% contrast grating with a neuron’s
preferred orientation was suppressed by about a factor of 2 when
an orthogonal mask grating (also 50% contrast) was super-
imposed (Fig. 6A, dashed blue curve vs. third to darkest gray
curve). Oscillation amplitudes generated by 100% contrast plaids
were about midway between those generated by 50% and 100%
contrast gratings (Fig. 6B, dashed blue curve).
The oscillations depended on the strength of the normaliza-

tion pool: specifically, the product of the normalization weights
and the squared input drive Wz2. The normalization pool in-
creased with contrast because the input drive z was proportional
to contrast. The normalization pool increased with stimulus size
because it comprised a weighted sum (with nonnegative weights)
over space. The normalization pool was smaller for a 100%
contrast plaid than a 100% contrast grating. If the normalization
was untuned such that all of the normalization weights were 1,
then the normalization pool for a 100% contrast plaid composed
of two 50% contrast gratings (Wz2 = 0.52 + 0.52) would have
been equal to that for a 70.7% contrast grating (Wz2 = 0.7072).
The simulated oscillations differed for these two stimulus con-
ditions (Fig. 6B, dashed blue curve vs. second to darkest gray
curve) because the normalization pool included only orientations
near the preferred orientation at locations surrounding the RF.
All of these results are commensurate with experimental ob-

servations that oscillation amplitudes and frequencies depend
systematically on stimulus contrast, size, and spatial pattern (14,
15, 17–30), and that oscillations are linked to normalization
(14–16). Like the simulation results, oscillation amplitudes in V1

increase with stimulus contrast and size, oscillation frequencies
increase with stimulus contrast, and oscillation amplitudes are
smaller for plaids than for gratings (and even smaller for stimuli
composed of multiple components, also predicted by the model).
Using the current model configuration, simulated oscillation

frequencies increased with stimulus size, however, unlike ex-
perimental measurements that decrease with stimulus size (14,
15, 26). Previous models have tackled this problem by incorpo-
rating a mechanism that pools over large spatial regions and
provides excitatory feedback to the principal cells (26, 70). The
current family of models may, likewise, be extended by enhanc-
ing the recurrent drive with an additional weighted sum over a
larger region of the visual field (53). We have verified that doing
so may explain the observed decrease in oscillation frequency
with increasing stimulus size.

Phase Space Trajectories and Bifurcation Analysis. Oscillations
emerged for some parameter regimes of the model, not others,
and oscillations in the gamma frequency band corresponded to
restricted ranges of those parameter regimes. A bifurcation
analysis was performed to determine the ranges of parameter
values for which oscillations occur and to determine the
corresponding oscillation frequencies.
We analyzed a reduced version of the model in which each of

the variables was a scalar instead of a vector (SI Appendix, Eq.
S37), i.e., one neuron of each of the three types (y, a, and u)
instead of a population of neurons with different RF centers and
orientation preferences. We characterized the dynamics of the
model as a function of the input drive (z), the intrinsic time
constants (τv, τa, and τu), and the input gain (b0). In this reduced
model, the input was a step at time t = 0 and maintained a
constant value thereafter.
The model exhibited distinct behaviors with boundaries (state

transitions) between them (Fig. 7). When the input drive was
small, the fixed point was stable (i.e., an attractor) and simulated
responses (y) achieved steady state with no oscillations (Fig. 7A,
green point; Fig. 7B). When the input drive was large, the fixed
point was unstable with a stable limit cycle and responses
exhibited stable oscillations (Fig. 7A, orange point and dotted
gray curves; Fig. 7D). For a middle range of input drives, the
fixed point was a spiral attractor and responses exhibited oscil-
lations transiently before achieving steady state (Fig. 7A, yellow
point; Fig. 7C). The steady-state responses increased monoton-
ically with input drive until the bifurcation, at which point the
responses exhibited stable oscillations around the fixed point and
no longer achieved a steady state (Fig. 7A, intersection of solid
black, dashed black, and dotted gray curves).
The input drive that induced a bifurcation depended system-

atically on model parameters (Fig. 7E). Each panel of Fig. 7E
depicts a two-dimensional (2D) bifurcation diagram, i.e., a 2D
slice through the space of model parameters. Each panel indi-
cates the input drives for which bifurcations occurred (solid black
curves) for different values of τu, and the different panels cor-
respond to different values of τv and τa. Also indicated are the
oscillation frequencies (gray scale) when the model exhibited
stable oscillations or zero (white) otherwise.

Variants of the Model. The dynamical system expressed by Eqs.
1–6 is but one example from a family of circuit models of
normalization, each of which implements normalization via
recurrent amplification (see SI Appendix for several examples
of alternative models from this family). Some of these various
models exhibit qualitatively different dynamics such that mea-
surements of the dynamics of neural activity in V1 may be used
to distinguish between the alternatives. Each of the various
models in this family imply different circuits, such that they
may be distinguished experimentally using cell type-specific
indicators.
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For example, one of these variants can be ruled out as a
plausible model of V1 activity because it does not exhibit dy-
namics commensurate with V1 activity. This variant (SI Appen-
dix, Eq. S35) is a simpler circuit with only two types of neurons, a
principal cell and a single type of modulator cell instead of two.
The circuit has a stable fixed point such that the primary neurons
achieve steady-state responses given by the normalization
equation (Eqs. 7 and 8). We have been able to prove mathe-
matically, over a very broad range of parameter values, that the
fixed point is stable over the full range of input drives. That is,
there is no parameter regime in which the responses exhibit
stable oscillations (SI Appendix).

Discussion
We developed a family of circuit models of normalization. The
key idea is that normalization operates via recurrent amplifica-
tion, amplifying weak inputs more than strong inputs (31–34).
The modulator cells determine the recurrent gain, thereby con-
trolling the amount of recurrent amplification. Each of the
models in this family exhibits output responses with a fixed point
that follows the normalization equation (Eqs. 7 and 8) exactly,

for arbitrary (nonnegative) normalization weights. The normal-
ization equation is already known to fit a wide range of experi-
mental data (see SI Appendix for references).
These models mimic experimental observations of V1 dy-

namics linked to normalization: onset transients (Fig. 3E), the
contrast dependence of the rate of response increase following
stimulus onset and response decrease following stimulus offset
(Figs. 3 and 5), and the contrast dependence of temporal-
frequency tuning and phase advance (Fig. 4). Furthermore, for
some models in this family, the fixed point is unstable for large,
high-contrast grating stimuli, and responses exhibit oscillations
(Figs. 3F and 7). The oscillations emerge because of the recur-
rent circuitry, depending on the strength of the normalization
pool, thereby offering an explanation for the link between
gamma oscillations and normalization (14–16). Despite the
complex dynamics, ratios of the simulated responses across
neurons with different stimulus preferences may be maintained
throughout each stimulus presentation, enabling an accurate
readout of stimulus orientation (or other stimulus parameters) at
any time point following the onset of the responses.
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These models are examples of oscillatory recurrent gated
neural integrator circuits (ORGaNICs) (52, 53). ORGaNICs are
a generalization of and a biophysically plausible implementation
of long short-term memory units (LSTMs), a class of artificial
recurrent neural networks (71) that have been used in machine
learning applications (e.g., refs. 72–75). ORGaNICs may be used
to explain the complex dynamics of delay-period activity during a
working memory task, and how information is manipulated (as
well as maintained) during a delay period (53). When applied to
motor systems, these circuits convert spatial patterns of pre-
motor activity to temporal profiles of motor control activity:
Different spatial patterns of premotor activity evoke different
motor control dynamics (53). ORGaNICs are also capable of
prediction over time (52). The modulators in ORGaNICs per-
form multiple functions: normalization, controlling working-
memory maintenance and manipulation, controlling pattern
generators, gated integration/updating, time warping, reset,
controlling the effective time constant, controlling the relative
contributions of bottom-up vs. top-down connections, and
weighting sensory evidence (likelihood) and internal model
(prior) for inference and multisensory integration (52, 53, 76).
Here, we demonstrate that this same family of circuit models

can simulate the dynamics of neural activity in V1. Consequently,
this theoretical framework is applicable to diverse cognitive
processes and neural systems, and we can use V1 as a model
system for understanding neural computations and circuits in
many brain areas.

Gamma Oscillations. Narrow-band gamma oscillations have been
proposed to play a functional role in stimulus feature binding,
attention, and/or synchronizing neuronal activity to enhance
signal transmission and communication between brain areas (see
SI Appendix for references). These speculations have been met
with considerable skepticism (18, 21, 23, 26, 27, 77–81), in part
because oscillation amplitude depends strongly on stimulus
conditions (14, 15, 17–30), incommensurate with perception.
Gamma oscillations in the current family of models emerge

from the nonlinear dynamics of the recurrent circuit. Synchro-
nized spiking was not required to generate gamma oscillations.
Gamma oscillations were generated for a restricted subset of
stimulus conditions, depending on the strength of the normali-
zation pool. Consequently, oscillation amplitude was strongest
for large, high-contrast gratings, and weaker (or nonexistent) for
other spatial patterns and low contrasts, similar to experimental
results (14, 15, 17–30).
Long-wavelength stimuli have been found to generate partic-

ularly large-amplitude gamma oscillations (29, 82). It should be
straightforward to extend the current family of models to ac-
count for these results by including red-green and blue-yellow
color-opponent channels (83–85) in the LGN input, and by set-
ting the normalization weights to be large for the red-green
channel.
The current theoretical framework is most similar to

bifurcation-based models of gamma oscillations (86, 87), as op-
posed to the so-called pyramidal-interneuron gamma (PING)
and interneuron gamma (ING) mechanisms for producing
gamma oscillations (see SI Appendix for references and details).
Unlike any of the previous models of gamma oscillations, we
designed the current family of models to perform a function
(normalization), and gamma oscillations emerged as a by-
product.

Failures and Extensions. Stable oscillations were observed in the
simulation results for input drives (i.e., contrasts) above a
threshold level (above the bifurcation), but narrow-band gamma
power has been observed experimentally to change gradually
with continuous parametric variation in stimulus parameters (14,
18, 25, 26). All of the simulation results reported above were

performed in the absence of noise. With noise added to the input
drive, we observed activity in the gamma-frequency range, even
for weak inputs below the bifurcation (SI Appendix, Fig. S2 and
see SI Appendix). This suggests that gamma-band activity may be
induced by broadband noise in neural activity (70, 80); the noise
spectrum is shaped by recurrent normalization to exhibit a res-
onant peak in the gamma-frequency range.
The effective time constants of the principal cells in our sim-

ulations ranged from 6 to 60 ms, which is within a reasonable
range for in vivo cortical neurons, but the values of the intrinsic
time constants (1 to 2 ms) were ∼10 times shorter than experi-
mental measurements of intrinsic time constants (88, 89). In-
creasing the values of the time constant parameters would make
the responses sluggish and decrease the oscillation frequencies
(Fig. 7). This is a challenge for any model that relies heavily on
recurrent amplification because the recurrence takes time
(multiples of the time constant). See SI Appendix for details.
Attention is associated with both increases in the gain of vi-

sually evoked responses and increases in gamma oscillations (see
SI Appendix for references). The constant input gain parameter
b0 may be replaced by a variable vector b in Eq. 1 (while keeping
the constant b0 in Eq. 6), in combination with normalization, to
model the effects of attention on sensory responses. The ele-
ments of b determine the relative attentional gain for each
neuron in the circuit (i.e., with different RF centers and different
orientation preferences). Doing so would yield steady-state
output responses that are already known to fit experimental
measurements of response gain changes with attention (e.g., ref.
90). This would also affect the dynamics of the responses and
may be used to explain the ostensible link between attention and
gamma oscillations (15, 78).

Mechanisms. We have presented a computational theory for what
computations are performed by neural circuits in V1, not how
they are implemented. However, we can speculate about the
underlying mechanisms:

The circuit (Fig. 2) comprises an excitatory principal cell yj, an
inhibitory modulator cell aj, and another excitatory cell type uj
that makes local recurrent connections. Each type of neuron
performs a different dendritic computation (Eqs. 1, 5, and 6).

The circuit also includes inhibitory interneurons (Fig. 2, small
circles) to invert the sign of the responses, corresponding to
negative weights in the synaptic weight matrices Wzx and Wŷy.
These inhibitory neurons need not be one-to-one with their
excitatory inputs as drawn in the figure. Rather, each may
compute a weighted sum of their inputs to contribute the
terms in Eqs. 3 and 4 with negative weights.

The responses of the principal cells (Eq. 1) may be imple-
mented with a simplified biophysical (equivalent electrical cir-
cuit) model of a pyramidal cell (52, 53), in which the two terms
of Eq. 1 are computed in separate dendritic compartments.
The conductance of the first compartment determines the in-
put gain and the synaptic current in that compartment is the
input drive. The conductance and synaptic current in the sec-
ond compartment correspond, respectively, to the recurrent
gain and recurrent drive.

The input drive is computed with positive and negative synap-
tic weights, i.e., both feedforward excitation and feedforward
inhibition (Fig. 2, blue solid and dashed lines, respectively).

The recurrent drive also involves both excitation and inhibi-
tion (Fig. 2, green solid and dashed lines, respectively; SI Ap-
pendix, Eq. S7), presumably via lateral connections within V1.
These excitatory and inhibitory recurrent signals are both am-
plified by an amount that is controlled by the modulator cells,
consistent with the experimental observation that surround
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suppression involves a decrease in both recurrent excitatory
and recurrent inhibitory conductances (42).

Some principal cells may share the same modulators (e.g.,
principal cells with the same RF and orientation preference
but with different temporal phases; see SI Appendix for de-
tails), suggesting a much larger number of principal cells than
modulator cells.

The squaring nonlinearity (Eq. 2) may be approximated with a
high threshold in combination with neural noise (91–93).

The square roots in Eqs. 4 and 5 may be approximated by
synaptic depression, which acts as a compressive nonlinearity
because the probability of neurotransmitter release is lower at
higher firing rates. Alternatively, the square roots in Eqs. 4
and 5 may be replaced by adding another cell type in the cir-
cuit (SI Appendix, Eq. S39).

The modulator cells with firing rates aj may act via shunting
(52, 53), i.e., increasing conductance by a balanced increase in
excitation and inhibition without changing the total synaptic
current (6, 94).

The modulator cells may correspond to parvalbumin-expressing
(PV) (95, 96) and/or somatostatin-expressing (SOM) (97) inhib-
itory neurons. The modulator cells are expected to have large
RFs and broad orientation selectivity (reflecting properties of
the normalization pool), consistent with the response properties
of SOM and PV neurons, respectively. Furthermore, PV neu-
rons form a local recurrent circuit with excitatory cells, receiving
inputs from excitatory cells (98–100), and targeting nearby excit-
atory cells (101, 102). The modulator cell responses may de-
pend in part on loops through higher visual cortical areas
and/or thalamocortical loops (see SI Appendix for details and
references).

Modulator cell responses aj depend on a product of aj with the
square root of uj (Eq. 5). This product may be computed via
NMDA receptors with synaptic current approximately propor-
tional to the product of the presynaptic and postsynaptic firing
rates. It may instead be computed with a synaptic current from
uj and an intrinsic voltage-sensitive ion channel (89) such that
conductance is inversely proportional to membrane depolar-
ization aj (noting that firing rates aj are proportional to
membrane depolarization).

For the summation over wjk yk uk in Eq. 6, each term may be
computed in separate dendritic compartments.

Some of the effects of cross-orientation suppression may be
due to feedforward (not recurrent) mechanisms, and the sim-
ulations here incorrectly ignored the fact that some of the
normalization is inherited from the LGN inputs (see SI Ap-
pendix for details and references). Regardless, evidence sug-
gests that cortical circuits make an important contribution to
cross-orientation suppression (103), and there is consensus
that some of the effects of normalization (e.g., surround sup-
pression) are computed with cortical circuits.

Comparison with Previous Models. The current theoretical frame-
work is superior to both the original recurrent normalization
model and alternative recurrent models of normalization (4–6,
13, 41–46). First, none of the previous models converge exactly
to the normalization equation (Eqs. 7 and 8) for arbitrary nor-
malization weights. Although they may approximate weighted
normalization, the extent to which the previous recurrent models
fit the full range of experimental data is unknown. The current
family of recurrent circuit models has a mathematically tractable
solution that equals weighted normalization. This has practical
consequences, enabling us to derive closed-form expressions

(Eqs. 8–10; see also SI Appendix) for making experimentally
testable predictions and for fitting data. Second, the current
theoretical framework, unlike previous models, mimics the dy-
namics of V1 activity. Third, most of the previous models do not
rely on recurrent amplification to achieve normalization. Fourth,
the current theoretical framework is applicable to diverse cog-
nitive processes and neural systems, e.g., working memory and
motor control (52, 53), enabling us to use V1 as a model system
for understanding the neural computations and circuits in
many brain areas. Fifth, by virtue of being a generalization of
LSTMs, the current theoretical framework can solve relatively
sophisticated tasks.
The current family of models is most similar to the inhibition

stabilized network (ISN) (42) and the stabilized supralinear
network (SSN) (45), but there are also crucial differences. All of
these models include recurrent excitation that would be unstable
if inhibition was absent or held fixed. All of them also include
inhibitory stabilization, but the stabilizing inhibition in the cur-
rent model is modulatory (multiplicative), unlike ISN and SSN in
which inhibition is subtractive. Inhibitory stabilization, by itself,
does not explain the phenomena associated with normalization.
A linear recurrent model, which does not exhibit any of the
nonlinear effects associated with normalization, may be stabi-
lized by inhibition, i.e., it would be unstable if inhibition were
removed or held fixed (45, 104). Normalization phenomena arise
in the SSN model from a combination of amplification and in-
hibitory stabilization. SSN (45) and also earlier models (4–6, 13)
amplify weak inputs more than strong inputs due to a power law
relationship (e.g., half-squaring) between membrane depolar-
ization and firing rate (91–93, 105). Removing the power func-
tion from SSN yields a linear model that is qualitatively different,
in which responses increase in proportion to contrast (45). The
current family of models also includes half-squaring, but it is not
critical for normalization. Removing the squaring yields quali-
tatively similar phenomena; for example, the contrast-response
function would be proportional to c/(c + σ) rather than c2/(c2 +
σ2). Instead normalization in the current models relies on re-
current amplification via the product of recurrent gain and
recurrent drive.

Predictions. The real value of this family of recurrent circuit
models of normalization rests on whether it can push the field
forward by making quantitative and testable predictions, leading
to new experiments that may reveal novel phenomena. Some of
these predictions are as follows:

We predict that the effective time constant is contrast depen-
dent (Eqs. 9 and 10); high-contrast stimuli are integrated over
much briefer periods of time (by a factor of ∼10×) than low-
contrast stimuli. A functional advantage of doing so is to in-
crease the signal-to-noise ratio (SNR) of responses evoked by
a low-contrast stimulus. Low contrasts evoke weak input drives
with correspondingly low SNRs. Integrating these inputs over
a long period of time (i.e., with a low-pass filter or local aver-
age) increases the SNR of the neural representation. This hy-
pothesized difference in dynamics could be tested either
electrophysiologically or psychophysically.

We hypothesize a link between effective gain and effective
time constant: effective time constant should increase with
the square root of effective gain (Eq. 10). This is analogous
to the previous shunting inhibition model of normalization (6,
13), but the prediction of that model was that both the gain
and time constant change with intrinsic conductance, whereas
the effective gain and time constant in the current family of
models is a network effect, emerging from the recurrent am-
plification in the circuit. This hypothesized link may be tested
either electrophysiologically or psychophysically (106).
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The link between effective gain and effective time constant is
further constrained by the value of the input gain parameter b0
(Eq. 10). The input gain of neurons in layer 4C (the input
layer) may be estimated from intracellular measurements of
membrane potential fluctuations with and without disabling
cortical spikes (e.g., via optogenetics) as simulated in
Fig. 3 G and H. The input gain may also be manipulated with
attention (e.g., ref. 90).

We predict a link between the intrinsic time constants and
oscillation frequencies (Fig. 7E). In our simulations, oscilla-
tion frequency depended systematically on the values of the
intrinsic time constants (τv, τa, and τu), and the input gain (b0).
An experimental test of this prediction would involve manip-
ulating the intrinsic time constant (i.e., the conductance) of a

particular cell type in the circuit and/or manipulating the input
gain with attention.

The effects shown in Fig. 4 D–F (increasing responsivity of
both low and high temporal frequencies with increasing con-
trast, and shifting response phases in opposite directions for
temporal frequencies above and below the preferred temporal
frequency) may be evident for neurons with narrow temporal
frequency tuning, e.g., perhaps direction-selective neurons in
layer 4b.

Data Availability. There are no data underlying this work.
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Introduction (with additional references) 
The normalization model was initially developed to explain stimulus-evoked responses of neurons 

in primary visual cortex (V1) (1-7), but has since been applied to explain neural activity and behavior in 
diverse cognitive processes and neural systems (7-62). The model mimics many well-documented 
physiological phenomena in V1 including response saturation, cross-orientation suppression, and sur-
round suppression (9-11, 16, 17, 19, 22, 38, 63-66), and their perceptual analogues (67-71). Different 
stimuli suppress responses by different amounts, suggesting the normalization is “tuned” or 
“weighted” (9, 16, 17, 21, 72-75). Normalization has been shown to serve a number of functions in a 
variety of neural systems (7) including automatic gain control (needed because of limited dynamic 
range) (4, 8, 12), simplifying read-out (12, 76, 77), conferring invariance with respect to one or more 
stimulus dimensions (e.g., contrast, odorant concentration) (4, 8, 12, 37, 78), switching between aver-
aging vs. winner-take-all (27), contributing to decorrelation & statistical independence of neural re-
sponses (14, 36, 37, 79), stabilizing delay-period activity (62), and facilitating learning (80, 81). 

Extended Discussion (with additional references) 
Failures and extensions 

Stable oscillations were observed in the simulation results for input drives (i.e., contrasts) above a 
threshold level (above the bifurcation), but narrow-band gamma power has been observed experimen-
tally to change gradually with continuous parametric variation in stimulus parameters (82-85). Weaker 
inputs evoked transient oscillations (spiral attractor dynamics, Fig. 7) after stimulus onset in our model 
simulations, and such transient oscillations could be confounded with stable oscillations in some exper-
imental results (e.g., such transient oscillations may follow saccades). Furthermore, all the simulation 
results reported in the main text were performed in the absence of noise. With noise added to the input 
drive, we observed stochastic resonance in the gamma frequency range, even for weak inputs below 
the bifurcation (Fig. S2, see below). This suggests that gamma-band activity may be induced by broad-
band noise in neural activity (86, 87); the noise spectrum is shaped by recurrent normalization to exhibit 
a resonant peak in the gamma-frequency range.  

The effective time constants of the principal cells in our simulations ranged from 6 – 60 ms, which is 
within a reasonable range for in vivo cortical neurons, but the values of the intrinsic time constants 
(1-2 ms) were ~10x shorter than experimental measurements of intrinsic time constants (e.g., 88, 89). 
Increasing the values of the time constant parameters would make the responses sluggish. For exam-
ple, setting τv=10 ms (while holding the other parameters unchanged) would mean that the effective 
time constant (the integration time) for low contrast stimuli would be as long as 600 ms, which is unreal-
istic. Increasing the time constants would also decrease the oscillation frequencies (Fig. 7). For exam-
ple, setting τv=10 ms (while holding the other parameters unchanged) would generate ~15 Hz oscilla-
tions. This is a challenge for any model that relies heavily on recurrent amplification because the recur-
rence takes time (multiples of the time constant). It may help for some of the normalization to be feed-
forward and/or precortical (see Mechanisms), so that the cortical circuit need not responsible for all of 
the amplification. In addition, the model as currently implemented ignores the fact that conductance in-
creases with stimulus contrast (e.g., 89). Including this conductance increase may help by reducing the 
gain and shortening the time constant at high contrasts. Furthermore, increasing the intrinsic time con-
stant could be compensated for by increasing the value of the b0 parameter so as to leave the effective 
time constant unchanged (Eq. 10). Doing so, however, would partially undermine the result illustrated in 
Fig. 3h, that membrane potential response amplitudes are reduced by disabling the recurrent amplifica-
tion; this result would still be evident at low contrasts (because of the half-squaring nonlinearity) but not 
at high contrasts. Finally, another variant of this family of models might exhibit relatively faster recurrent 
amplification enabling the time constants to be longer. 

Attention is associated with both increases in the gain of visually-evoked responses (e.g., 26, 29, 
31) and increases in gamma oscillations (44, 90-100). The constant input gain parameter b0 may be 
replaced by a variable vector b in Eq. 1 (while keeping the constant b0 in Eq. 6), in combination with 
normalization, to model the effects of attention on sensory responses. The elements of b determine the 
relative attentional gain for each neuron in the circuit (i.e., with different RF centers and different orien-
tation preferences). Extending the model in this way would yield steady state output responses that are 
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already known to fit experimental measurements of response gain changes with attention (e.g., 31). 
This change to the model would also affect the dynamics of the responses and may be used to explain 
the ostensible link between attention and gamma oscillations (44, 99). 

Cross-orientation suppression is faster than surround suppression (22, 70). The current model may 
be extended to explain these results by incorporating an additional delay for contributions to the nor-
malization pool from surrounding spatial locations. We hypothesize that a single computational process 
can explain both forms of suppression; it may very well be that different circuits and/or cell types are 
involved but that both contribute to the same computation (albeit with different time constants or 
delays). 

The latency (delay) of response onset is stimulus dependent (101) and is generally longer than off-
set latency (102). The current family of models cannot, however, be falsified by measurements of re-
sponse latencies. Latency (delay) is different from the effective time constant (sluggishness). Latency 
may depend mostly on precortical processing and action potential conduction delays. For the simula-
tions reported here, we assumed a particular form for the precortical temporal filter and negligible con-
duction delays. But the precortical filter and conduction delays could be changed without sacrificing the 
core idea that normalization arises from recurrent amplification, as expressed by Eqs. 1-6. 
Gamma oscillations 

Narrow-band gamma oscillations have been proposed to play a functional role in stimulus feature 
binding (103-106), attention (90-92, 98), and/or synchronizing neuronal activity to enhance signal 
transmission and communication between brain areas (92, 96, 106-113). These speculations have 
been met with considerable skepticism (82, 85, 87, 99, 114-119), in part because oscillation amplitude 
depends strongly on stimulus conditions (44, 82-85, 115, 117, 119-127), incommensurate with the per-
ception of those stimulus conditions. 

The current theoretical framework is most similar to bifurcation-based models of gamma oscillations 
(128, 129), as opposed to the so-called pyramidal-interneuron gamma (PING) and interneuron gamma 
(ING) mechanisms for producing gamma oscillations (86, 87, 130-140). ING models generate oscilla-
tions with an interconnected network of inhibitory neurons (although some of these models rely on 
weak excitatory interconnections to synchronize the oscillations across multiple subpopulations of in-
hibitory neurons). In PING models, a volley of activity in the excitatory cells recruits a slightly delayed 
volley of activity in the inhibitory cells, which inhibits the excitatory cells for a gamma cycle, after which 
they recover. In both PING and ING models, oscillations are generated by neural circuits that behave 
as intrinsic oscillators. In bifurcation-based models (including ours), unlike PING and ING models, oscil-
lations emerge as drive to the excitatory population increases so that a steady state loses stability via 
Hopf bifurcation. The appearance of oscillations critically depends on the relative timescales of excita-
tion and inhibition. In both of the previous bifurcation-based models (128, 129), oscillation frequencies 
decrease with slower inhibition. In our models, decreasing the time constants of the modulatory cells 
likewise results in slower oscillations, but only up to a point. If the modulator cell time constants are ei-
ther too slow or too fast, then bifurcations and oscillations are eliminated altogether (Fig. 7e). Analo-
gous to PING models, we observed that the simulated oscillatory activity of modulator cells lagged 
(~90° phase) behind the activity of principal cells. Unlike any of the previous models of gamma oscilla-
tions, we designed the current family of models to perform a function (normalization), and gamma oscil-
lations emerged as a by-product. 
Mechanisms 

The modulator cell responses may depend in part on loops through higher visual cortical areas 
(141-144) and/or thalamocortical loops (145-155).  

Some of the effects of cross-orientation suppression may be due to feedforward (not recurrent) 
mechanisms, and the simulations here incorrectly ignored the fact that some of the normalization is in-
herited from the LGN inputs. Contrast saturation and rectification in LGN cells can largely account for 
the response suppression measured in cat primary visual cortex (156), and the responses of V1 neu-
rons are suppressed by high temporal frequency stimuli that do not drive cortical responses (157). 
Consequently, cross-orientation suppression has been attributed to either precortical mechanisms 
(156), synaptic depression at the thalamocortical synapse (158), or fast feedforward inhibition via local 
interneurons within V1 (157), whereas feedback from higher visual cortical areas has been implicated in 
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surround suppression (141-144). Nevertheless, few studies have addressed this question in macaque 
(22), and some evidence suggests that cortical circuits make an important contribution to cross-orienta-
tion suppression (52). Furthermore, thalamocortical loops (145-155) may contribute to the computation 
of the modulator cell responses, along with lateral connections within V1 and feedback connections 
from higher visual cortical areas. Regardless, there is consensus that some of the effects of normaliza-
tion are computed with cortical circuits. 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Detailed Methods 
Input drive: temporal prefilter 

Simulated simple-cell responses y depended on an input drive z, computed as a weighted sum of 
LGN inputs x (Eq. 1). LGN inputs were presumed to have two types of temporal impulse response func-
tions with quadrature phases (Fig. S1a), and each of the two temporal responses were paired with 
each of the various spatial receptive fields (RFs). 

The temporal prefilter was a recursive quadrature temporal filter, that itself was based on ORGaN-
ICs (62). For real-valued inputs: 

 (S1) 

where x0(t) is the input and x(t) is the filter output. The value of λ determines the effective time constant, 
and the value of ω determines the preferred temporal frequency. For complex-valued inputs: 

 (S2) 

The temporal filter was cascaded, analogous to cascading a standard exponential lowpass filter. 
The response of the nth filter in the cascade was: 

 (S3) 

for n=1 to N (i.e., xN corresponds to the LGN responses). The response of the first filter in the cascade 
was: 

 (S4) 

where x0(t) was the input stimulus. The parameter values for the prefilters were: N=2; λ=0.04; τx=1 ms; 
ω=8 Hz (i.e., matching the preferred temporal frequency of the simulated cortical neurons). 
Input drive: spatial RFs 

Simulated simple-cell responses depended on a weighted sum of the LGN inputs. The rows of the 
encoding matrix Wzx in Eq. 1 were the spatial RFs of the simple-cells (Figs. S1b,c,d); Wzx was an NxM 
matrix of weights where N is the number of simple-cells and M is the number of LGN inputs. The LGN 
inputs comprise pairs of ON- and OFF-center RFs (Fig. 2, center-surround weights), each halfwave 
rectified, and the input drive comprises differences between each such pair of LGN inputs (Fig. 2, solid 
and dashed blue lines), so that the input drive is a linear sum of the underlying (unrectified) LGN re-
sponses. 

Spatial filters were based on the steerable pyramid, a subband image transform that decomposes 
an image into orientation and spatial frequency (SF) channels (159). The steerable pyramid simulated 
the responses of a large number of linear RFs, each of which computed a weighted sum of the stimulus 
image; the weights determined the orientation and SF tuning. There were 12 orientation tuning curves 
(Fig. S1b). The RFs were defined so that they covered all orientations, SFs, and spatial locations even-
ly, i.e., the sum of the squares was exactly equal to one (Fig. S1b,c). For each SF and orientation, 
there were 4 spatial phases and 2 temporal prefilters. For each orientation and SF, there were RFs with 
four different phases, like odd- and even-phase Gabor filters along with their anti-phase complements. 

τ x
dx
dt

= −x + λ x0 + Im x( )( )+ 1− λ( ) x̂ ,

x̂ = wx ,
w = 1+ i2πτω  ,

τ x
dx
dt

= −x + λx0 + 1− λ( ) x̂ .

τ x
dxn
dt

= −xn + λxn−1 + 1− λ( ) x̂n  ,
x̂n = wxn  ,
w = 1+ i2πτ xω  ,

τ x
dx1

dt
= −x1 + λ x0 + Im x1( )( )+ 1− λ( ) x̂1  ,
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Each of these 4 spatial phases were combined with 
each of the two temporal prefilters, yielding simple-
cells with 4 temporal phases. The responses of 
these space-time separable linear filters provided 
the input drives to the population of simple-cells. 
The end result was that V1 simple-cell responses 
behaved like spatiotemporal linear filters with vari-
ous spatial RF locations, orientation preferences, 
and different temporal phases, that were half-
squared (halfwave rectified and squared) (160) and 
normalized. The responses of a second population 
of direction-selective simple-cells may be computed 
as a weighted sum of these space-time separable 
simple-cells (161). 

V1 complex-cell responses were simulated by 
summing the different temporal phases of the simple-cell responses. Because the response of each 
simple-cell was half-squared, the sum computed what has been called an “energy” response (160, 
161). The energy response depended on the local spectral energy within a spatial region of the stimu-
lus, for a particular orientation and SF. Because the simple-cell responses were normalized, the com-
plex-cells behaved like normalized, spatiotemporal energy filters. 

Because the full set of SF and orientation channels was expensive to compute, the simulation re-
sults were instead computed using a reduced set of RFs. For Figs. 3-4, we simulated a collection of 
neurons with 12 different orientation preferences, but all with the same SF preference and the same RF 
center. For Figs. 5-6, we simulated a collection of neurons with the same 12 orientation tuning curves, 
covering the horizontal meridian of the visual field from -60° to 60° eccentricity. 

The orientation tuning curves for the RFs in the steerable pyramid are each one cycle of a raised 
cosine: 

  (S5) 

where θ is stimulus orientation (in units of degrees), θ j is the preferred preferred orientation of the jth 
neuron, ψj is the tuning curve, and the proportionality constant was chosen such that the sum of the 
squares of the tuning curves was equal to 1. This corresponds to an orientation bandwidth of 22° (half 
width at half height), given that firing rate responses were half-squared (Eq. 2). 

ψ j θ( )∝ 1
2 cos π

60 θ −θ j( )( )+1( )  ,
for −π ≤ π

60 θ −θ j( ) ≤ π ,  and ψ j θ( ) = 0 otherwise,
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Figure S1. Temporal prefilters, receptive 
fields, and suppressive fields. a. Temporal pre-
filters. Blue and orange curves, recursive quad-
rature temporal filters. Black curve, amplitude 
(square-root of sum of squares) of the quadrature 
pair. b. Orientation tuning curves. Different colors 
correspond to different orientation preferences. 
Black curve, sum of squares of tuning curves. c. 
Receptive fields. Different colors correspond to 
different RF centers. Black curve, sum of squares 
of RFs. d. Receptive field size increases with ec-
centricity. e. Suppressive fields. Different curves 
correspond to different receptive fields. Each 
suppressive field (except those near ±60° eccen-
tricity at the edge of the field of view) is about 4x 
larger than the corresponding receptive field.
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Input drive: RF size 
The spatial RFs covered the visual field from -60° to 60° eccentricity, and tiled the visual field so 

that the sum of the squares of the RFs was equal to 1 (Fig. S1c). RF size increased with eccentricity 
(Figs. S1d), approximating measurements of V1 RF size and cortical magnification (162-166). Specifi-
cally, we warped visual space: 

 (S6) 

where 0 < ξ′ < 1 is the eccentricity in the visual field after warping and where 0 < ξ < 1 is the eccentricity 
before warping. Both ξ  and ξ′ are each unit-less quantities, expressed as a proportion of the field of 
view. To convert to eccentricity in units of degrees of visual angle, we multiplied by the field of view, 
e.g., 60 ξ was eccentricity in units of degrees of visual angle when the field of view was ±60° eccentrici-
ty.  

RFs size was uniform in the unwarped space, with raised cosine profiles (similar to Eq. S5) so as to 
cover all spatial locations evenly. RF sizes were warped along with the warping of visual space  
(Fig. S1c,d). 
Recurrent drive 

Simulated simple-cell responses y also depended on a recurrent drive ŷ, computed as a weighted 
sum of the square-root of the responses y. The recurrent weight matrix Wŷy was an NxN matrix. An ex-
ample of a simple-cell’s recurrent drive equals the difference between the square root of its own firing 
rate and the square root of the response of another simple-cell with a complementary RF, i.e., with op-
posite ON- and OFF- subregions (Fig. 2, solid and dashed green lines). This difference reconstructs 
the underlying (unrectified) membrane potential fluctuations ŷj = vj, such that the input drive zj is lowpass 
filtered by Eq. 1 to yield the membrane potential vj. The effective time constant of the lowpass filter de-
pends on the intrinsic time constant τv and the modulator responses aj.  

We used an alternative recurrent weight matrix that combined the responses of simple-cells with all 
4 temporal phases (anti-phase and quadrature phase). The recurrent drive acted as a bandpass filter 
on the input drive, with any desired preferred temporal frequency ω, and with a bandwidth that depends 
on the effective time constant of the circuit. Specifically: 

 (S7) 

The subscript φ in ŷj,φ is the temporal phase of the simple-cell responses. Simple-cells with 90° (quad-
rature phase) and 180° (anti-phase) phase relationships are adjacent to one another in V1 and the anti-
phase pairs exhibit strong mutual inhibition (167). 

The recurrent drive ŷj is a prediction over time of the principal cell responses (168, 169). Information 
processing in the brain is dynamic; dynamic and predictive processing is needed to control behavior in 
sync with or in advance of changes in the environment. Without prediction, behavioral responses to en-
vironmental events will always be too late because of the lag or latency in sensory and motor process-
ing. Prediction is a key component of theories of motor control and in explanations of how an organism 
discounts sensory input caused by its own behavior (e.g., 170, 171, 172). Prediction has also been hy-
pothesized to be essential in sensory and perceptual processing (e.g., 173, 174, 175). A further gener-
alization of Eq. S7 computes a weighted sum of neural responses with different preferred temporal fre-
quencies ω to better predict each neuron’s response over time.  

′ξ = λ ξ
3.5
+ 1− λ( )ξ  ,

ŷ j.0 = y j ,0 − y j ,180( )− 2πωτ v y j ,90 − y j ,270( )  ,
ŷ j.180 = y j ,180 − y j ,0( )− 2πωτ v y j ,270 − y j ,90( )  ,
ŷ j.90 = 2πωτ v y j ,0 − y j ,180( )+ y j ,90 − y j ,270( )  ,
ŷ j.270 = 2πωτ v y j ,180 − y j ,0( )+ y j ,270 − y j ,90( )  .
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Normalization weights 
The normalization pool included all orientations (evenly weighted) at the center of a neuron’s RF, 

and included only orientations near the preferred orientation at spatial locations surrounding the RF. 
The spatial size of the normalization pool was about 4x larger than the RF (Fig. S1e), except where it 
was limited in size near the edge of the field of view (near ±60° eccentricity). The normalization weight 
matrix W was scaled such that the effective gain was g=1 for a full-contrast, full-field grating with a neu-
ron’s preferred spatiotemporal frequency and orientation. 

8
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Derivations 
Notation conventions 

 

Fixed point 
To derive the fixed point (Eq. 7) of the dynamical system given by Eqs. 1-6: 

 (S8) 

Here, we have imposed three additional assumptions: 1) The constraint on uj may be interpreted to 
mean that this population of neurons has a small spontaneous firing rate, even when the membrane 
potential is hyperpolarized. 2) The recurrent drive equals the difference between the square root of its 
own firing rate and the square root of the response of another simple-cell with a complementary RF 
(i.e., with opposite ON- and OFF- subregions). 3) The normalization weights are identical for contribu-
tions to the normalization pool from complementary RFs. 

x2 :  element-by-element squaring

x :  element-by-element positive square root
x
y

:  element-by-element division

D(x): diagonal matrix with x  along diagonal
1: vector of 1's

y+ = x⎢⎣ ⎥⎦
2
= max(x,0)( )2

y− = −x⎢⎣ ⎥⎦
2
= max(−x,0)( )2

τ v
dv j
dt

= −v j +
b0

1+b0( ) z j + 1
1+a j( ) y j

+ − y j
−( )  ,

τ a
da j
dt

= −aj + uj + aj u j  ,

τ u
du j
dt

= −uj + wjk yk
+ + yk

−( )uk
k
∑ + σb0

1+b0( )2
 ,

y j
+ = v j⎢⎣ ⎥⎦

2
 and y j

− = −v j⎢⎣ ⎥⎦
2
 ,

i.e., v j = y j
+ − y j

−( )  and v j
2 = y j

+ + y j
−( )  ,

b0 > 0 is a constant,

σ > 0 is a constant,
wjk > 0 are the elements of the normalization weight matrix W,

the values of uj  are subject to the constraint that uj ≥
σb0
1+b0( )2

> 0 .
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Set the derivatives in Eq. S8 equal to 0 and simplify: 

 (S9) 

 (S10) 

 (S11) 

dv
dt

= 0 :

v j =
b0

1+b0( ) z j + 1
1+a j( ) y j

+ − y j
−( )  ,

v j =
b0

1+b0( ) z j + 1
1+a j( )v j  ,

a j
1+a j( )v j = b0

1+b0( ) z j  ,
a j

1+a j( )2

v j
2 = b0

1+b0( )2
z j

2  ,

D v2( ) a
1+a( )2

= b0
1+b0( )2

z2  .

du
dt

= 0 :

uj = wjk yk
+ + yk

−( )uk
k
∑ + σb0

1+b0( )2
 ,

uj = wjkvk
2

k
∑ uk +

σb0
1+b0( )2

 ,

u =WD v2( )u+ σb0
1+b0( )2

 ,

I −WD v2( )( )u = σb0
1+b0( )2

1 ,

u = σb0
1+b0( )2

I −WD v2( )( )−1
1 .

da
dt

= 0 :

aj = uj + aj u j  ,

aj = 1+ aj( ) uj  ,
a j

1+a j( )2

= uj  ,

a
1+a( )2

= u .

10
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Combine the last line of Eq. S10 with the last line of Eq. S11: 

 (S12) 

Substitute from the last line of Eq. S9 and simplify: 

 (S13) 

Effective gain 
To derive the an expression for the effective gain, we begin with the last line of Eq. S13. The effec-

tive gain is the ratio of each element of y to each element of z2: 

 (S14) 

Because the normalization weights W are all positive: 

 (S15) 

For a single sinusoidal grating Wz2 is proportional to the squared contrast c2. For sums of gratings, Wz2 
is proportional to a weighted sum of the squared contrasts (e.g., as expressed by Eq. 9 for a test grat-
ing of preferred orientation restricted to the RF and a mask grating that by itself does not evoke a re-
sponse). 

a
1+a( )2

= σb0
1+b0( )2

I −WD v2( )( )−1
1 ,

I −WD v2( )( ) a
1+a( )2

= σb0
1+b0( )2

1 ,

I −WD v2( )( ) a
1+a( )2

= σb0
1+b0( )2

D v2( )−1
v2  ,

D v2( ) I −WD v2( )( ) a
1+a( )2

= σb0
1+b0( )2

v2  ,

D v2( )− D v2( )WD v2( )⎡
⎣

⎤
⎦

a
1+a( )2

= σb0
1+b0( )2

v2  ,

I − D v2( )W( )D v2( ) a
1+a( )2

= σb0
1+b0( )2

v2  .

σb0
1+b0( )2

v2 = I − D v2( )W( ) b0
1+b0( )2

z2  ,

σ 2v2 = I − D v2( )W( )z2  ,

σ 2v2 = z2 − D v2( )Wz2  ,

σ 2v2 = z2 − D(Wz2 )v2  ,
σ 2v2 + D(Wz2 )v2 = z2  ,

σ 2I + D(Wz2 )( )v2 = z2  ,

D σ 2 +Wz2( )v2 = z2  ,

v2 = D σ 2 +Wz2( )( )−1
z2  ,

v2 = z2

σ 2 +Wz2  ,

y+ =
z⎢⎣ ⎥⎦

2

σ 2 +Wz2  and y− =
−z⎢⎣ ⎥⎦

2

σ 2 +Wz2  .

g = 1
σ 2 +Wz2  .

g < gmax  where gmax =
1
σ 2  .
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Effective time constant 
To derive an expression for effective time constant, we begin by rewriting the first line of Eq. S8: 

 (S16) 

Substitute from the last line of Eq. S11: 

 (S17) 

To express the effective time constant in terms of the effective gain, we first derive another expres-
sion for the effective gain by combining the fixed point from Eq. S9 with the last line of Eq. S11: 

 (S18) 

I.e., 

 (S19) 

Combine Eqs. S17 and S19: 

 (S20) 

τ v
dv j
dt

= −v j +
b0

1+b0( ) z j + 1
1+a j( )v j  ,

τ v
dv j
dt

= −
a j

1+a j( )v j + b0
1+b0( ) z j  ,

τ j
dv j
dt

= −v j +
b0

1+b0( ) 1+a j
a j( ) z j  ,

where τ j =
1+a j
a j( )τ v  .

τ =
τ v
u

y = 1+a
a( )2 b0

1+b0( )
2
z2  ,

g = 1+a
a( )2 b0

1+b0( )
2
 ,

g = 1
u( ) b0

1+b0( )
2
 .

1
u
= 1+b0

b0( ) g  .

τ = τ v
1+b0
b0( ) g

12
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Variants 
The circuit model expressed by Eqs. 1-6 is but one example of a family of dynamical systems mod-

els of normalization, each of which implements normalization via recurrent amplification. 
A simple variant of an ORGaNIC normalization circuit is expressed by the following coupled pair of 

neural integrators: 

 (S21) 

To derive the fixed point for this dynamical system, set the derivatives equal to 0 and simplify: 

 (S22) 

Substitute the first line of Eq. S22 into the second line of Eq. S22: 

 (S23) 

Substitute this back into the first line of Eq. S22: 

 (S24) 

There is, however, considerable empirical evidence that the firing rate responses of V1 neurons depend 
on the contrast energy of the stimulus, i.e., the square of the input drive (9, 160, 176). In addition, 
squaring offers theoretical advantages. First, responses depended on the local spectral energy (ignor-
ing phase) in a local spatiotemporal window of the stimulus (160, 161). Second, the summed responses 
across the population of neurons tile all orientations, SFs, and spatial locations evenly (159), i.e., the 
sum of the squares is exactly equal to one (Fig. S1b,c). 

Elaborating Eq. S21 with halfwave rectification and squaring yields another variant: 

 (S25) 

This variant has the same fixed point as Eqs. 1-6 (equivalently Eq. S8); the derivation of the fixed point 
for this system is very similar to that shown above for Eq. S8. This circuit exhibits different dynamics 

τ y
dy j
dt

= − y j + b0z j + 1− aj( ) y j  ,
τ a
da j
dt

= −aj + wjk ykak
k
∑ +σb0  .

dy j
dt

= 0 :  aj y j = b0z j  ,

daj
dt

= 0 :  aj = wjk ykak
k
∑ +σb0  .

aj = b0 wjk zk
k
∑ +σ⎛

⎝⎜
⎞
⎠⎟

 .

b0 wjk zk
k
∑ +σ⎛

⎝⎜
⎞
⎠⎟
y j = b0z j  ,

wjk zk
k
∑ +σ⎛

⎝⎜
⎞
⎠⎟
y j = z j  ,

y j =
z j

σ + wjk zk
k
∑  .

τ v
dv j
dt

= −v j + b0z j + 1− aj( ) y j
+ − y j

−( )  ,
τ a
da j
dt

= −aj + wjk ykak
k
∑ +σ 2b0

2  ,

y j = v j⎢⎣ ⎥⎦
2
 .
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from Eqs. 1-6 even though they both share the same fixed point (see below, Bifurcation Analysis). 
Another variant is: 

 (S26) 

where d > 0. In this variant, we replaced 1/(1+a) in Eq. 1 with 2a/(1+a), in which 0<a<1, with concomitant 
changes to the equation for a (Eq. 5). When the value of d = 1, the fixed point for this system is the 
same as that for Eqs. 1-6 (the derivation follows that shown above for Eqs. 1-6). The dynamics are 
also similar (the two systems are related by a simple change of variables). But when d < 1, the gain of 
this system is reduced. 

To derive the gain as a function of d, consider the reduced system in which each of the variables is 
a scalar instead of a vector (i.e., there’s only one neuron of each type instead of population of neurons 
with different RFs, SF preferences, and orientation preferences): 

 (S27) 

The fixed point for this system is derived, again, by setting the derivatives equal to zero: 

 (S28) 

τ v
dv j
dt

= −v j +
b0

1+b0( ) z j + 2a j
1+a j( ) y j

+ − y j
−( )  ,

τ a
da j
dt

= −aj − uj − aj u j + d  ,

τ u
du j
dt

= −uj + wjk ykuk
k
∑ + σb0

1+b0( )2
 ,

y j = v j⎢⎣ ⎥⎦
2
 ,

τ v
dv
dt

= −v + b0
1+b0( ) z + 2a

1+a( ) y  ,

τ a
da
dt

= −a − u − a u + d  ,

τ u
du
dt

= −u + yu + σb0
1+b0( )2

 ,

y = v2  ,
z ≥ 0 .

dv
dt

= 0 :

v = b0
1+b0( ) z + 2a

1+a( )v ,

1−a
1+a( )v = b0

1+b0( ) z  ,
1−a
1+a( )2

y = b0
1+b0( )2

z2  ,

y = 1+a
1−a( )2 b0

1+b0( )2
z2  .
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 (S29) 

 (S30) 

Combine the last line of Eq. S29 with the last line of Eq. S30: 

 (S31) 

Combine the last line of Eq. S28 with Eq. S31: 

 (S32) 

Simplify: 

 (S33) 

For d < 1, σ′ > σ and the effective gain is reduced. 
Some of the other variants are as follows. Each is written as a reduced system in which each of the 

variables is a scalar instead of a vector, although each can also be expressed as a full population with 

du
dt

= 0 :

u = yu + σb0
1+b0( )2

 ,

u 1− y( ) = σb0
1+b0( )2

 ,

u = σb0
1+b0( )2 1

1− y( )  .

da
dt

= 0 :

d − a( ) = u + a u  ,

d − a( ) = 1+ a( ) u  ,

u = d−a
1+a( )2

 .

1+a
d−a( )2

= 1+b0
σ b0( )

2
1− y( )  .

y = 1+a
1−a( )2 b0

1+b0( )2
z2  ,

y = d−a
1−a( )2 1+a

d−a( )2 b0
1+b0( )2

z2  ,

y = d−a
1−a( )2

1− y( ) 1+b0
σb0( )2 b0

1+b0( )2
z2  ,

σ 2 y = d−a
1−a( )2

1− y( ) z2  .

σ 2 y = d−a
1−a( )2

z2 − z2 y( )  ,
y σ 2 + d−a

1−a( )2
z2( ) = d−a

1−a( )2
z2  ,

y =
d−a
1−a( )2

z2

σ 2 + d−a
1−a( )2

z2
 ,

y = z2

ʹσ( )2
+ z2

 ,

where ʹσ( ) = 1−a
d−a( )σ  .
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arbitrary (non-negative normalization) weights. 

 (S34) 

 (S35) 

 (S36) 

 (S37) 

τ y
dy
dt
= −y+b0z+ 1− a( ) y ,

τ a
da
dt
= −a+ ya+σ b0  ,

z ≥ 0 .

τ v
dv
dt
= −v+b0z+ 1− a( ) y  ,

τ a
da
dt
= −a+ ya+σ 2b0

2  ,

y = v2  ,
z ≥ 0 .

τ v
dv
dt
= −v+b0z+ 1− a( ) y  ,

τ a
da
dt
= −a+ u  ,

τ u
du
dt
= −u+ yu+σ 2b0

2  ,

y = v2  ,
z ≥ 0 .

τ v
dv
dt

= −v + b0
1+b0( ) z + 1

1+a( ) y  ,

τ a
da
dt

= −a + u + a u  ,

τ u
du
dt

= −u + yu + σb0
1+b0( )2

 ,

y = v2  ,
z ≥ 0 .
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 (S38) 

 (S39) 

Eqs. S35-S39 have the same fixed point. The fixed point for Eq. S34 is similar, but without the squar-
ing. Eqs. S36-S39 exhibit the same or similar dynamics. Eqs. S34-S35 exhibit different dynamics (see 
below, Bifurcation Analysis). Eq. S34 is the reduced version of Eq. S21, Eq. S35 is the reduced version 
of Eq. S25, and Eq. S37 is the reduced version of Eqs. 1-6 (equivalently Eq. S8). Eq. S39 eliminates 
the square root in the expression for u; the square root of y may be eliminated analogously. 

τ v
dv
dt

= −v + 1
1+b0( ) z + 1

1+a( ) y  ,

τ a
da
dt

= −a + u + a u  ,

τ u
du
dt

= −u + yu + σ
1+b0( )2

 ,

y = v2  ,
z ≥ 0 .

τ v
dv
dt
= −v+ b0

1+b0( ) z+ 1
1+a( ) y  ,

τ a
da
dt
= −a+u1+u1a ,

τ u1

du1

dt
= −u1+

u2

u1

 such that u1 > 0 ,

τ u2

du2

dt
= −u2 + yu2 +

σ b0
1+b0( )

2
 ,

y = v2  ,
z ≥ 0 .
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Bifurcation Analysis 
The 2D bifurcation diagrams in Fig. 7e were computed as follows, based on the reduced model 

(Eq. S37). The fixed points of that system of equations are found by setting all of the derivatives (dv/dt, 
da/dt, and du/dt) equal zero: 

 (S40) 

There was a different fixed point for each value of the input drive z. The Jacobian of Eq. S37 was ana-
lyzed to determine if a fixed point is stable (an attractor; Fig. 7a, solid curve) or unstable (typically as-
sociated with a limit cycle; Fig. 7a, dashed curve). The Jacobian is a 3x3 matrix of partial derivatives of 
Eq. S37 evaluated at the fixed point: 

 (S41) 

To compute the Jacobian, the derivatives must be continuous, which is the case for our system of equa-
tions when a, v, and u > 0, which is the regime that we care about. Stability depends on the eigenvalues 
of this Jacobian matrix. If the real parts of all of the eigenvalues are negative, then the fixed point is 
stable. If at least one eigenvalue has a positive real part, then the fixed point is unstable because this 
means that there is at least one direction along which a trajectory will not return back to the fixed point. 
The intuition is like dropping a marble on a paraboloid. If the paraboloid is concave upward (like a bowl) 
then the marble will roll back to the fixed point at the bottom of the bowl. If it is concave downward (like 
an upside down bowl) or a hyperbolic paraboloid (a saddle), then there is at least one direction in which 
the marble will roll downward away from the fixed point.  

A Hopf bifurcation occurs when a spiraling fixed point changes from being stable to unstable (or 
vice versa), i.e., when the real part of a complex-conjugate pair of eigenvalues changes sign. The point 
at which the real part of the complex-valued eigenvalues is equal to zero is the Hopf bifurcation point. 
Requiring that the real part of the eigenvalues equal zero is equivalent to requiring a particular set of 
constraints on the determinant and trace of the Jacobian matrix (177), although we omit writing the ex-
act set of constraints here as they are cumbersome. We found the points that satisfy these constraints 
by solving a polynomial in our six parameters: z, σ, b0, !v, !a, and !u. Since we have a high dimensional 
parameter space, finding the roots of this polynomial is itself a hard problem. We therefore restricted 
our analysis to a subset of the parameter space by keeping σ and b0 fixed and characterizing 3D slices 
through the other parameters, either (z, !v, !a) or (z, !a, !u). The condition on the eigenvalues to change 
sign alone is not sufficient to guarantee the existence of a limit cycle, although one almost always does 
arise (178). We therefore checked that a limit cycle did indeed arise (for each fixed point) using 
AUTO-07p (Version 0.8), a bifurcation analysis software platform for ordinary differential equations 
(179). AUTO-07p can identify the Hopf Bifurcation points, compute the emergent oscillation period, and 
track changes in the period as a function of a parameter. For each point on the grid of values for z and 
!u, we determined a unique stable periodic solution (limit cycle) and computed its period. Doing so iden-
tified the onset of oscillations, i.e., the point of a Hopf bifurcation (Fig. 7e, solid curves circumscribing 
grayscale shaded regions), and computed the frequencies of the observed oscillations when a limit cy-
cle appeared (Fig. 7e, grayscale). 

There are parameter regimes in which the system exhibits bistability such that a limit cycle (stable 
periodic solution) coexists with a stable fixed point. This is unlike the behavior in Fig. 7 for which each 
parameter set corresponds to a unique attractor. An example of such bistable dynamics corresponds to 

v = z
σ 2+z2

 ,

a = u
1− u

 ,

u = b0
1+b0( )

2
σ 2 + z2( )  .

J =

−1+ u
τ a

0 1+a
2τ a u

−v
τ v 1+a( )2

−a
τ v 1+a( ) 0

0 2uv
τ u

v2−1
τ u

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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the parameter set given by b0=5, !a=2, and !u=1. For these parameter values, and for increasing values 
of the input drive z, we found a periodic solution (i.e., a limit cycle) extending past the point where the 
Hopf bifurcation occurs. This means that there are two stable attractors for the same value of the input 
drive: a stable fixed point and a stable limit cycle, i.e., convergence to both steady state and oscilla-
tions. The initial values of v, a, and u determine which of the two behaviors will be observed.  

We proved that the alternative 2-dimensional circuit, given by Eq. S35, does not exhibit oscillations. 
The fixed points of that system of equations correspond to where the derivatives (dv/dt and da/dt) are 
equal to zero: 

 (S42) 

These two equations are continuously differentiable, so we derived an expression for the eigenvalues 
of the Jacobian at the fixed point. The Jacobian is given by: 

 (S43) 

The eigenvalues are computed by solving the characteristic equation: 

 (S44) 

Solving for λ gives: 

 . (S45) 

For a hopf bifurcation, the real part of this complex-conjugate pair of eigenvalues must be zero with 
non-zero imaginary part. However, this would require:  

 . (S46) 

But, in fact, the expression in Eq. S46 (same as the first term in Eq. S45) is strictly less than zero be-
cause v<1, and !v, !a, a>0. So this system will never change its stability. To determine the type of stability 
that the system exhibits we just need to determine the sign of the real parts of the eigenvalues. The ex-
pression under the square root in Eq. S45 is smaller than the first term in Eq. S45, and we have al-
ready determined that the first term in Eq. S45 is less than zero. Consequently, the real parts of the ei-
genvalues are negative, the fixed point is stable, and all of the trajectories approach the fixed point as 
t→∞.  

An intuition for why two modulator cells are needed relies on the observation that the membrane 
equation acts as an exponential lowpass filter. A single exponential lowpass filter imposes a phase de-
lay. A cascade of two lowpass filters in sequence also imposes a time delay (the peak of the impulse 
response function is delayed). The circuit expressed by Eq. S36 is similar to that expressed by 
Eq. S35, but with two modulator cells instead of one. The extra modulator cell merely adds a second 
stage of lowpass filtering. The resulting cascade of two exponential lowpass filters imposes a time de-
lay that suffices for oscillations to emerge when the input drive is strong enough.  

v = z
σ 2+z2

 ,

a = b0
2 σ 2 + z2( )  .

J =
− a
τ v

−v
2τ v a

2va
τ a

v2−1
τ a

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

det J − λI( ) = − a
τ v

− λ( ) v2−1
τ a

− λ( )+ v2 a
τ aτ v

λ1,2 =
1
2

v2−1
τ a
− a

τ v( )± v2−1
τ a
− a

τ v( )
2
− 4 a

τ vτ a

⎛

⎝
⎜

⎞

⎠
⎟

v2−1
τ a
− a

τ v( ) = 0
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Stochastic resonance 
With noise added to the input, we observed stochastic resonance in the gamma frequency range 

even for weak inputs (below the bifurcation), and that the noise spectrum is shaped by recurrent nor-
malization to exhibit a resonant peak in the gamma-frequency range (Fig. S2). Specifically, we used the 
reduced system of Eq. S37 to simulate responses to noisy inputs. The input drive was a step function 
(constant over time after onset) with Gaussian noise added. The noisy input drive was lowpass filtered 
using Eq. S3 (with parameters N=1, λ=0.04, τx=1 ms, and ω=0 Hz) before being normalized by Eq. S37.  

With noise added, the phases of the oscillatory responses to each of a series of step inputs were 
synchronized to the onset of the input drive for a period of time following the onset. The response 
phases then drifted over time (Fig. S2a, different colors correspond to repeated simulations with differ-
ent noise samples). 

 The Fourier amplitude of the responses was computed by running the simulation for 100 sec, ignor-
ing the first 1 sec of the responses (to ignore the synchronized part), dividing the remaining response 
time series into 1 sec intervals, computing the Fourier transform of each 1 sec interval, and averaging 
them together. This process was repeated for several different input drive amplitudes.  

Simulated responses exhibited several properties that are qualitatively similar to experimental ob-
servations (Fig. S2b): 

1) Responses exhibited oscillations in the gamma frequency range (85, 180). The increased power 
in the gamma frequency range was evident even for small input drives (e.g., z=0.2), well below 
the bifurcation (z≈0.5; see Fig. 6). 

2) Response amplitudes decreased with increasing frequency because of the lowpass filtering im-
posed by both the prefilter and the normalization circuit (Eq. S37). Response amplitudes de-
creased roughly proportional to frequency for frequencies greater than 10 Hz (because of the 
exponential lowpass filter), whereas it has been found experimentally to decrease with the 
square of frequency (82, 181, 182). 

3) Response amplitudes decreased with increasing input drive at low frequencies (183). 
4) Response amplitudes increased with input drive for a broad range of high frequencies above 

30 Hz (82, 119). 
5) The oscillations were non-sinusoidal, sharp at the top and broad at the bottom of each cycle 

(Fig. S2a). This was also evident in the Fourier amplitude which exhibited harmonics (Fig. S2b), 
and in the asymmetric phase space trajectories (Fig 7d). Waveform shape may be an indicator 

20

Figure S2. Stochastic resonance. a. Response time series for noisy input drive (input drive ampli-
tude z=1). Different colors correspond to repeated simulations with different noise samples. The oscil-
latory responses were induced, not evoked. Specifically, the phases of the oscillatory responses were 
synchronized immediately after the onset of the input drive, but then drifted over time. b. Fourier am-
plitude of the responses for each of several input drive amplitudes. Different gray shades correspond 
to different input drive amplitudes. Increased power in the gamma frequency range is evident for input 
drives as small as z=0.1. 
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to distinguish underlying mechanisms and pathophysiology (184).  
6) For simulations using the full model (Eqs. 1-6), the oscillatory activity was correlated across 

neurons with different orientation preferences at overlapping RF locations (124, 126, 185). The 
noise added to each neuron’s input drive was statistically independent but, in spite of this, the 
phases of the oscillations tended to synchronize across the population of neurons. 

Note, however, we simulated the firing rates of individual principal cells, whereas the experimental 
evidence for gamma oscillations is based on local field potential (LFP), electrocorticography (ECoG), 
electroencephalogram (EEG), and magnetoencephalography (MEG) measurements, each of which de-
pend on the synchronized membrane potential fluctuations across a large population of neurons (182, 
186). We would not expect oscillations to be evident in measurements of single-unit spiking activity 
(e.g., in post-stimulus time histograms) because neural responses are noisy; the oscillation phases of 
the simulated responses drifted over time when noise was added to the input drive (Fig. S2a) so that 
spike times would be expected to be highly variable from one stimulus presentation to the next. 
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