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Working memory is an example of a cognitive and neural process
that is not static but evolves dynamically with changing sensory
inputs; another example is motor preparation and execution. We
introduce a theoretical framework for neural dynamics, based on
oscillatory recurrent gated neural integrator circuits (ORGaNICs),
and apply it to simulate key phenomena of working memory and
motor control. The model circuits simulate neural activity with
complex dynamics, including sequential activity and traveling
waves of activity, that manipulate (as well as maintain) informa-
tion during working memory. The same circuits convert spatial
patterns of premotor activity to temporal profiles of motor control
activity and manipulate (e.g., time warp) the dynamics. Derivative-
like recurrent connectivity, in particular, serves to manipulate and
update internal models, an essential feature of working memory
and motor execution. In addition, these circuits incorporate re-
current normalization, to ensure stability over time and robustness
with respect to perturbations of synaptic weights.

computational neuroscience | recurrent neural network | normalization |
working memory | motor control

Neuroscience research on working memory has largely fo-
cused on sustained delay-period activity (1–4). A large body

of experimental research has measured sustained activity in pre-
frontal cortex (PFC) and/or parietal cortex during delay periods of
memory-guided saccade tasks (5–9) and delayed-discrimination
and delayed match-to-sample tasks (10–13). Most of the models
of working memory, based on neural integrators (see SI Appendix,
Figs. S1–S3 for a primer on neural integrators), are aimed to ex-
plain sustained delay-period activity or to explain behavioral
phenomena associated with sustained activity (14, 15).
Working memory, however, involves much more than simply

holding a piece of information online. In cognitive psychology,
the idea of working memory includes manipulating online in-
formation dynamically in the context of new sensory input. For
example, understanding a complex utterance (with multiple phra-
ses) often involves disambiguating the syntax and/or semantics of
the beginning of the utterance based on information at the end of
the sentence. Doing so necessitates representing and manipulating
long-term dependencies, that is, maintaining a representation of
the ambiguous information, and then changing that representation
when the ambiguity is resolved. In addition, there are a variety of
experimental results that are difficult to reconcile with sustained
activity and neural integrator models. Some (if not the majority of)
neurons either exhibit sequential activity such that activity is
handed off from one neuron to the next during a delay period with
each individual neuron being active only transiently (16–21) or
they exhibit complex dynamics during delay periods (21–27).
Complex dynamics (including oscillations) are evident also in the
combined activity (e.g., as measured with local field potentials)
of populations of neurons (28, 29). We hypothesize that these
complex dynamics serve a purpose, to manipulate working
memory representations.
Models of perceptual decision making, like working memory

models, are also based on simple neural integrators. Specifically,
perceptual decision making has been proposed to involve

integration of noisy sensory information (30–34), a simple form
of manipulation, in which neurons literally sum sensory-evoked
activity over a period of time. However, a more general theo-
retical framework for representing and manipulating long-term
dependencies is lacking.
Motor preparation and execution, analogous to working memory,

involves maintaining a neural representation of a motor plan while
manipulating that representation to generate the desired movement
dynamics. Neural circuits and systems subserving motor preparation
and execution exhibit analogous sustained and sequential activity
phenomena (35–39), and there are analogous challenges reconciling
these phenomena with neural integrator models.
Long short-term memory units (LSTMs) are machine-learning

(ML) algorithms that represent and manipulate long-term de-
pendencies (40). LSTMs are a class of recurrent neural networks. A
number of variants of the basic LSTM architecture have been
developed and tested for ML applications including language
modeling, translation, and speech recognition (41–45). In these and
other tasks, the input stimuli contain information across multiple
timescales, but the ongoing presentation of stimuli makes it difficult
to correctly combine that information over time. This is analo-
gous to the problem of representing and manipulating long-term
dependencies mentioned above in working memory, decision
making, and motor control. An LSTM handles this problem by
updating its internal state over time with a pair of gates: The up-
date gate selects which part(s) of the current input to process, and
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the reset gate selectively deletes part(s) of the current output. The
gates are computed at each time step from the current inputs and
outputs. This enables LSTMs to maintain a representation of some
of the inputs, until needed, and then to manipulate that repre-
sentation based on inputs that come later in time.
Here, we introduce a theoretical framework for neural dy-

namics that is a generalization of and a biophysically plausible
implementation of LSTMs. We show that these circuits simulate
key phenomena of working memory, including both maintenance
and manipulation, and both sequential and sustained activity.
We also show that the exact same circuits (with the same synaptic
weights) simulate key phenomena of motor control. Preliminary
versions of this work, along with further details and mathematical
derivations, were posted on preprint servers (46, 47). MATLAB
code for recreating the simulation results is available at https://
archive.nyu.edu/handle/2451/60439 (48).

Results
ORGaNICs. We begin by describing the basic architecture of os-
cillatory recurrent gated neural integrator circuits (ORGaNICs).
The following subsections elaborate this basic architecture and
demonstrate that this architecture can subserve a variety of
functions including working memory and motor control.
An example ORGaNICs circuit is depicted in Fig. 1. The

neural responses of a population of neurons are modeled as
dynamical processes that evolve over time. The output responses
depend on an input drive (a weighted sum of the responses of a
population of input neurons) and a recurrent drive (a recurrent
weighted sum of their own responses). The time-varying output
responses are represented by a vector y = (y1 , y2 ,. . ., yj,. . ., yN),
where the subscript j indexes different neurons in the population
(boldface lowercase letters denote vectors and boldface upper-
case letters denote matrices.) The time-varying inputs are rep-
resented by another vector x = (x1 , x2 ,. . ., xj,. . ., xM). The output
responses are also modulated by 2 populations of time-varying

modulators, recurrent modulators a and input modulators b.
(We use the term “modulator” to mean a multiplicative com-
putation regardless of whether or not it is implemented with
neuromodulators.) The recurrent and input modulators are
analogous, respectively, to the reset and input gates in LSTMs.
The modulators depend on the inputs and outputs. So, there are
2 nested recurrent circuits: 1) recurrent drive: the output re-
sponses depend on the recurrent drive, which depends on a
weighted sum of their own responses, and 2) multiplicative
modulators: the output responses are modulated (multiplica-
tively) by the responses of 2 other populations of neurons (the
modulators), which also depend on the output responses.
Specifically, neural responses are modeled by the following

dynamical systems equation:

τy  
dyj
dt

=−yj +
b+j

1+ b+j
zj +

1
1+ a+j

ŷj, [1]

z=Wzxx,

=�WŷyZ,

r=Wryy,

a+j ≥ 0  and  b+j ≥ 0.

Eq. 1 can be implemented with a simplified biophysical (equiv-
alent electrical circuit) model of pyramidal cells (see SI Appendix
and ref. 46 for details). The variables (y, ŷ, x, z, a, b, and r) are
each functions of time, for example y(t), but we drop the explicit
dependence on t to simplify the notation. The responses y de-
pend on an input drive z, which is computed as a weighted sum of
inputs x. The encoding weight matrix (also called the embedding
matrix) Wzx is an N × M matrix of weights where N is the number
of neurons in the circuit and M is the number of inputs to the
circuit. The rows of Wzx are the response fields of the neurons.
The responses y also depend on a recurrent drive ŷ, which is
computed as a weighted sum of the responses y. The recurrent
weight matrix Wŷy is an N × N matrix. For the example circuit
depicted in Fig. 1, the recurrent weights have a center-surround
architecture in which the closest recurrent connections are ex-
citatory and the more distant ones are inhibitory, and the circuit
exhibits sustained activity (discussed below). For other choices of
the recurrent weight matrix, the circuit can exhibit stable, on-
going oscillations, sequential activity, or traveling waves of ac-
tivity (discussed below). The recurrent drive and input drive are
modulated, respectively, by 2 other populations of neurons: the
recurrent modulators a and the input modulators b. The super-
script + is a rectifying output nonlinearity. Half-wave rectifica-
tion is the simplest form of this rectifying nonlinearity, but other
output nonlinearities could be substituted, for example sigmoid,
exponentiation, half-squaring (49), normalization (50, 51), and
so on. The value of τy is the intrinsic time constant of the neu-
rons. Finally, the output responses are multiplied by a readout
matrix Wry, where r is the readout (not depicted in the figure).
The time-varying values of the modulators a and b determine

the state of the circuit by controlling the recurrent gain and ef-
fective time constant. During periods of time when both aj and bj
are large (e.g., aj = bj ! 1), the response time courses are
dominated by the input drive, so the responses exhibit a short
effective time constant. When both aj and bj are small (∼0), the
responses are dominated by the recurrent drive, so the responses
exhibit a long effective time constant. When aj is large and bj is
small, the recurrent drive is shut down (like the reset gate in an
LSTM). A leaky neural integrator corresponds to a special case
in which aj = bj is constant over time (see SI Appendix for a
primer on neural integrators).

A

B

Fig. 1. ORGaNICs architecture. (A) Diagram of connections in an example
ORGaNIC. Solid lines/curves are excitatory (positive weights) and dashed curves
are inhibitory (negative weights). Gray scale represents strength of connec-
tions (weight magnitude). Only a few of the input-drive connections and
recurrent-drive connections are shown to minimize clutter. (B) Oculomotor
delayed response task. Black cross-hair, fixation point. Black circle, eye position
at the beginning of a trial. Blue circles, possible target locations, each of which
evokes an input.
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The modulators are themselves dynamical systems that de-
pend on the inputs and outputs:

τa  
da
dt

=�−a�+�Waxx�+�f�ðyÞ, [2]

τb  
db
dt

=−b+Wbxx.

The values of τa and τb are the intrinsic time constant of the
modulator neurons. The recurrent modulator a depends on a
function of the output responses f(y), to incorporate recurrent
normalization (Robustness via Normalization and SI Appendix).
ORGaNICs (by analogy with LSTMs) use the modulators to en-
code a dynamically changing state. The modulators depend on the
current inputs and the current outputs, which in turn depend on
past inputs and outputs, so the state depends on the current inputs
and past context. The modulators can be controlled separately for
each neuron so that each neuron can have a different state (dif-
ferent values for aj and bj) at each instant in time. In the example
that follows, however, all of the neurons in the circuit shared the
same state, but that state changed over time.
ORGaNICs are inherently a nonlinear dynamical system be-

cause the input drive and the recurrent drive are each multiplied
by nonlinear functions of the modulators (Eq. 1) and because the
recurrent modulator depends nonlinearly on the output re-
sponses (Eq. 2). However, there are circumstances when these
equations can be analyzed as a linear system, specifically when the
modulators are constant over time, because the only remaining
nonlinearity is due to the normalization which simply acts to
rescale the responses.
There is considerable flexibility in the formulation of ORGaNICs,

with different variants corresponding to different hypothe-
sized neural circuits (SI Appendix). In one such variant, each of the
modulators can depend on both the inputs and the outputs, unlike
Eq. 2 in which only a depends on the output responses. In another
variant, the 2 modulators have analogous effects such that larger
values of a increase the gain of the recurrent drive, unlike Eq. 1 in
which larger values of a decrease the gain of the recurrent drive. In
yet another variant, the 2 modulators are coordinated to govern
balance between input drive and recurrent drive.
The following subsections describe some examples of ORGaNICs.

We begin with a simplified example of a sustained activity circuit,
then modify the recurrent weights to simulate sequential activity
and traveling waves, and then add multiple recurrent terms for
manipulation. Simulated neural responses shown in the figures are
intended to exhibit qualitative aspects of neurophysiological phe-
nomena, that is, the models have not (yet) been optimized to
replicate published data by tuning or fitting the model parameters.
The weights in the various weight matrices were prespecified
(not learned) for each of the simulations in this paper (although
ORGaNICs are compatible with modified versions of ML algo-
rithms; see SI Appendix).

Sustained Activity. We used ORGaNICs to simulate sustained
activity during a memory-guided saccade task (Fig. 2), using the
circuit depicted in Fig. 1A. In this task, a target is flashed briefly
while a subject is fixating the center of a screen (Fig. 1B). After a
delay period of several seconds, the fixation point disappears,
cueing the subject to make an eye movement to the remembered
location of the target.
The modulators in the simulation were constant during each

successive phase of the behavioral task. Many experimental
protocols in behavioral neuroscience comprise a sequence of
distinct phases (including the oculomotor delayed response task;
see below figures for more examples). The behavioral cues built
into the experimental protocol set the state of the modulators via
Wax and Wbx in Eq. 2, and the state changed from one phase to
the next. During each phase, the modulators were constant and
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Fig. 2. Sustained activity. (A) Encoding matrix (Wzx), each row of which cor-
responds to a neuron’s response field. Graph, response field corresponding to
the middle row of the matrix. (B) Recurrent weight matrix (Wŷy), each row of
which corresponds to the recurrent synaptic weights from other neurons in the
population. Graph, recurrent weights corresponding to the middle row of the
matrix. (C) Input stimulus and reconstructed stimulus. Blue, input stimulus (x)
corresponding to target location. Orange, reconstructed stimulus, computed
as a weighted sum of the reconstructed input drive (D). (D) Input drive and
reconstructed input drive. Blue, input drive (z) to each neuron as a function of
that neuron’s preferred target location. Orange, reconstructed input drive,
computed as a weighted sum of the readout (H). (E) Input drive (z) over time.
Each color corresponds to a different neuron. (F) Modulator responses. Top
row, a. Bottom row, b. (G) Output responses (y). Each color corresponds to a
different neuron. (H) Readout (r). Each color corresponds to a different com-
ponent of the readout.
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the circuit reduced to a linear dynamical system, making it
mathematically tractable.
Each neuron in the simulation responded selectively to target

location, each with a different preferred polar angle (i.e., saccade
direction) in the visual field (Figs. 1B and 2A), all with the same
preferred radial position (i.e., saccade amplitude). We ignored
saccade amplitude for this simulation, but it would be straight-
forward to replicate the circuit for each of several saccade am-
plitudes. The input drive z to each neuron, consequently,
depended on target location and the time course of the target
presentation (Fig. 2 D and E). The recurrent weights Wŷy were
chosen to have a center-surround architecture; each row of Wŷy
had a large positive value along the diagonal (self-excitation),
flanked by smaller positive values, and surrounded by small
negative values (Fig. 2B). All neurons in the circuit shared the
same pair of modulators (aj = a and bj = b), that is, all of the
neurons had the same state at any given point in time. The input
to the circuit comprised not only the target presentation but
also the time courses of 2 cues, one of which indicated the
beginning of the trial (at time 0 ms) and the other of which
indicated the end of the delay period (at time 3,500 ms). The
response time courses of the modulators followed the 2 cues
(Fig. 2F), by setting appropriate values in the weight matrices
Wax and Wbx.
This circuit was capable of maintaining a representation of

target location during the delay period with sustained activity (Fig.
2G). The responses followed the input drive initially (compare Fig.
2 E andG) because the value of the input modulator was set to b= 1
(via Wbx in Eq. 2) by the cue indicating the beginning of the trial.
The value of b then switched to be small (= 0, corresponding to a
long effective time constant) before the target was extinguished, so
the output responses exhibited sustained activity (Fig. 2G). Finally,
the value of the recurrent modulator was set to a ≈ 1 (via Wax in
Eq. 2) by the cue indicating the end of the trial, causing the output
responses to be extinguished.
The dynamics of the responses, during the delay period,

depended on the eigenvalues and eigenvectors of the recurrent
weight matrix Wŷy. In this particular example circuit, the re-
current weight matrix (Fig. 2B) was a symmetric 36 × 36 matrix
(n = 36 was the number of neurons in the circuit, that is, each of
y and z were 36-dimensional vectors). For this particular re-
current weight matrix, 19 of the eigenvalues were equal to 1, and
the others had values less than 1. There is, of course, nothing
special about these numbers; the circuit could include any
number of neurons with any number of eigenvalues equal to 1,
but providing these details makes it easier to visualize and un-
derstand. The critical issue is that the weight matrix was scaled so
that the largest eigenvalues were equal to 1. (It is of course
unrealistic for a biological circuit to have such precisely tuned
synaptic weights but we show below that the circuit is robust with
respect to the precise tuning because of the built-in normaliza-
tion). The corresponding eigenvectors defined an orthonormal
coordinate system (or basis) for the responses. The responses
during the delay period (when b = 0) were determined entirely
by the projection of the initial values (the responses at the very
beginning of the delay period) onto the eigenvectors. Eigenvec-
tors with corresponding eigenvalues equal to 1 were sustained
throughout the delay period. Those with eigenvalues less than 1
decayed to zero (smaller eigenvalues decayed more quickly).
Those with eigenvalues greater than 1 would have been unstable,
growing without bound (which is why the weight matrix was
scaled so that the largest eigenvalues = 1). This example circuit
had a representational dimensionality d = 19, because the re-
current weight matrix had 19 eigenvalues = 1. The neural activity
in this circuit was a 19-dimensional continuous attractor during
the delay period. It could, in principle, maintain the locations and
contrasts of up to 19 targets, or it could maintain a 19-dimensional
pattern of inputs.
The input drive and target location were reconstructed from

the responses, at any time during the delay period (Fig. 2 C and
D). To do so, the responses were first multiplied by a readout

matrix. The readout matrix Wry = Vt was a 19 × 36 matrix, where
the rows of Vt were computed from the eigenvectors of the re-
current weight matrix Wŷy. Specifically, V was an orthonormal
basis for the 19-dimensional subspace spanned by the eigenvec-
tors of Wŷy with corresponding eigenvalues = 1. The resulting
readout (Fig. 2H), at any time point, was then multiplied by a
decoding (or reconstruction) matrix (SI Appendix). The result
was a perfect reconstruction of the input drive (Fig. 2D, orange)
up to a scale factor (because of normalization), and an approx-
imate reconstruction of the input stimulus (Fig. 2C, orange) with
a peak at the target location. The reconstruction of the input
stimulus was imperfect because the response fields were broadly
tuned for polar angle. Regardless, we do not mean to imply that
the brain attempts to reconstruct the stimulus from the re-
sponses. The reconstruction merely demonstrates that the re-
sponses and readout implicitly represent the target location. The
encoding matrix Wzx was a 36 × 360 matrix (M = 360 was the
number of polar angle samples in the input stimulus). The re-
sponse fields (i.e., the rows of the encoding weight matrix Wzx)
were designed based on the same eigenvectors. Doing so guar-
anteed that the input drive was reconstructed perfectly from the
responses at any time during the delay period (Fig. 2D; see SI
Appendix for derivation).

Robustness via Normalization. The sustained activity circuit, as
described above, depended on precisely tuned synaptic weights.
The recurrent weight matrices were scaled so that the eigen-
values were no greater than 1. For a linear recurrent circuit with
eigenvalues greater than 1, the responses are unstable, growing
without bound during a delay period. This is a well-known
problem for recurrent neural networks (52–54).
ORGaNICs solve this problem by incorporating normaliza-

tion. The normalization model was initially developed to explain
stimulus-evoked responses of neurons in primary visual cortex
(V1) (50) but has since been applied to explain neural activity in
a wide variety of neural systems (51). The model’s defining
characteristic is that the response of each neuron is divided by a
factor that includes a weighted sum of activity of a pool of
neurons. The model predicts and explains many well-documented
physiological phenomena, as well as their behavioral and perceptual
analogs.
The simulated neural circuits used the recurrent modulator a

to provide normalization via feedback. The recurrent modulator
determined the amount of recurrent gain; it was a particular
nonlinear function of the responses: f(y) in Eq. 2 (see SI Ap-
pendix for details). For an input drive z that was constant for a
period of time, the output responses achieved a stable state in
which they were normalized (see SI Appendix for derivation):

jyjj2 =
!!zj
!!2

σ2 +
P!!zj

!!2
. [3]

The responses were proportional to the input drive when the
amplitude of the input drive was small (i.e., when the sum of the
squared input drives was $ σ2). The responses saturated (i.e.,
leveled off) when the amplitude of the input drive was large (! σ2).
The value of σ (the semisaturation constant) determined the input
drive amplitude that achieved half the maximum response. Despite
saturation, the relative responses were maintained (see SI Appendix
for derivation):

jyjj2
P

jyjj2
=

!!zj
!!2

P!!zj
!!2
. [4]

That is, the normalized responses represented a ratio between
the input drive to an individual neuron and the amplitude of the
input drive summed across all of the neurons. Consequently, the
responses of all neurons saturated together (at the same input
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drive amplitude) even though some neurons responded strongly
to the input whereas others did not.
Recurrent normalization made the circuit robust with respect

to imperfections in the recurrent weight matrix (Fig. 3). Without
normalization, responses depended critically on fine tuning. For
example, we used the sustained activity circuit (Figs. 1 and 2),
but with f(y) = 0 so that normalization was disabled, and we
scaled the recurrent weight matrix by a factor of 1.02. The re-
sponses were unstable, growing without bound (Fig. 3A). In-
cluding normalization automatically stabilized the activity of
the circuit (Fig. 3B). The increases in activity evoked by the
recurrent weight matrix (with largest eigenvalues = 1.02) were
countered by normalization such that the total activity in the
circuit was roughly constant over time (jjyjj2 ∼ 1). The ratios of
the responses were maintained (Eq. 4), enabling an accurate
readout, throughout the delay period. Analogous results were
obtained with the other example circuits described below, in-
cluding those that exhibited oscillatory and sequential dynam-
ics, because the normalization depends on the squared norm of
the responses, which was constant over time during the delay
period for each of these example circuits. The stability of the
normalized responses did not depend on fine-tuning any of the
other synaptic weights in the circuit; perturbing those synaptic
weights by random values within ±5% yielded virtually identical
simulated responses and the responses were stable even when
those synaptic weights were perturbed by random values
ranging from 0.5× to 2× (see SI Appendix for details). We have
also implemented a generalization of this recurrent normali-
zation circuit in which each neuron’s response can be normal-
ized by an arbitrary (nonnegative) weighted sum of the other
neurons in the circuit.
The normalized responses exhibited high-frequency oscilla-

tions following target onset that were synchronized across all of
the neurons in the circuit (Fig. 3B, dashed oval). There are 2
nested recurrent circuits in ORGaNICs: 1) the recurrent drive
and 2) the multiplicative modulators. The high-frequency oscil-
lations emerged because of the inherent delay in the second of
these recurrent circuits (i.e., because of the multiplicative modu-
lator underlying normalization). The oscillation frequency depen-
ded on the membrane time constants. For the time constants used
for Fig. 3, the responses exhibited oscillations in the gamma
frequency range. Different intrinsic time constants yielded
different oscillation frequencies. The oscillation frequency
would have depended also on axon length if we were to include
conduction delays.
The responses exhibited lower-frequency oscillations during

the delay period (Fig. 3B). These lower-frequency oscillations

emerged because of the recurrent drive in combination with
normalization; the recurrent weight matrix was scaled to have
eigenvalues greater than 1, which drove the responses to increase
over time, but this increase was countered by normalization.
These oscillations were synchronized so the ratios of the re-
sponses were maintained (Eq. 4), enabling an accurate readout,
despite the oscillations.

Sequential Activity. ORGaNICs can be used to generate delay-
period activity with complex dynamics, including sequential
activity and traveling waves of activity, in addition to sustained
activity, and the same theoretical framework was used to ana-
lyze them. The key idea is that the recurrent weight matrix can
have complex-valued eigenvectors and eigenvalues. One way
for this to happen is when the recurrent weights and output
responses are complex-valued (SI Appendix, Fig. S4). The complex-
number notation is just a notational convenience (SI Appendix).
Another way to generate complex dynamics is for the recurrent
weight matrix to be real-valued but asymmetric, such that the re-
sponses are real-valued but the eigenvectors are eigenvalues
are complex-valued.
One such example circuit was designed to generate sequen-

tial activity (Fig. 4). In this example circuit, there were again 36
neurons with the same response fields as in the preceding ex-
ample (Fig. 2A). The modulators were also the same as in the
preceding example, including recurrent normalization. The
recurrent weight matrix was real-valued but asymmetric (Fig. 4A).
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Fig. 3. Normalization. (A) Output responses (y), corresponding to the
sustained activity circuit depicted in Figs. 1 and 2, but with the recurrent
weight matrix scaled by a factor of 1.02. Each color corresponds to a dif-
ferent neuron. (Inset) Full range of responses on an expanded (240×) ordinate.
(B) Output responses with normalization. Dashed oval, high frequency,
coherent, synchronized oscillations following target onset.

0
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C

Fig. 4. Sequential activity. (A) Recurrent weight matrix (Wŷy). Graph, re-
current weights corresponding to the middle row of the matrix. (B) Out-
put responses (y). Each color corresponds to a different neuron. Successive
rows, responses of a few example neurons. (C ) Readout (r+). Each color
corresponds to a different component of the readout.
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Because of the asymmetry, the eigenvectors and eigenvalues of
the recurrent weight matrix were complex-valued, and the output
responses exhibited oscillatory dynamics (Fig. 4B). The recurrent
weight matrix was designed so that the recurrent connectivity
depended on the spatial derivative of the neural activity (55),
that is, the difference in activity between nearby neurons (SI
Appendix). Consequently, the activity was handed off from
one neuron to the next during the delay period, analogous to a
synfire chain (56–59), but with activity that continuously tiled
time (60).
Despite the complex dynamics, the readout was constant

over time (Fig. 4C). The readout matrix was again, as for the
preceding sustained activity circuit (Fig. 2), computed as a
unitary basis for the subspace spanned by the eigenvectors of
Wŷy with corresponding eigenvalues that had real parts = 1.
However, the readout was computed as r+ = jWry yj, that is, the
modulus (square root of the sum of squares of real and imag-
inary parts) of a weighted sum of the responses. Consequently,
this circuit was capable of maintaining some (but not all) in-
formation about the input during the delay period. Unlike the
preceding example, it was not possible to reconstruct the input
drive from the readout at arbitrary points in time during the
delay period. A linear reconstruction (like that used for the
preceding example) generated a copy of the input drive that
shifted over time like a traveling wave (SI Appendix, Fig. S5).
That is, the information maintained during the delay period
was sufficient for discriminating some inputs (e.g., 2 targets
with different contrasts or 2 pairs of targets with different
spacings) but incapable of discriminating between other inputs
(e.g., a single target of the same contrast presented at 2 different
locations).

Motor Preparation and Motor Control.ORGaNICs are also capable
of generating signals, like those needed to execute a complex
sequence of movements (e.g., speech, bird song, backside double
McTwist 1260 on a snowboard out of the halfpipe). Some actions
are ballistic (open loop), meaning that they are executed with no
sensory feedback during the movement. Others are closed loop,
meaning that the movements are adjusted on the fly based on
sensory feedback. ORGaNICs evoke patterns of activity over

time that may underlie the execution of both open- and closed-
loop movements.
An example of open-loop control (Fig. 5) was implemented

using the sequential activity circuit described above, but with a
different readout. The encoding matrix and the recurrent matrix
were identical to those in the sequential activity circuit. The
modulators were also the same as in the preceding examples,
including recurrent normalization. The readout was different,
simply summing the components, rΣ = Σ Re(Wry y). Different
spatial patterns of inputs led to different temporal dynamics of
the responses. When the input was chosen to drive a particular
eigenvector (i.e., because the input drive was orthogonal to the
other eigenvectors), then the readout during the period of motor
execution (same as the delay period in the preceding example
circuits) was a 1-Hz sinusoid (Fig. 5A). When the input was
chosen to drive another eigenvector, then the readout was an
8-Hz sinusoid (Fig. 5C). A linear sum of these inputs evoked a
readout that was proportional (because of normalization) to the
linear sum of the readouts (Fig. 5D).
How are these temporal profiles of activity generated? Each

eigenvector of the recurrent weight matrix is associated with a
basis function, a pattern of activity across the population of
neurons and over time. Each basis function is a complex expo-
nential (i.e., comprising sine and cosine), the frequency of which
is specified by the imaginary part of the corresponding eigen-
value:

ωi =
"
1,000
2πτy

#
ImðλiÞ. [5]

The value of λi is the imaginary part of the ith eigenvalue of the
recurrent weight matrix, and ωi is the corresponding oscillation
frequency (in hertz). The factor of 1,000 is needed because the
time constant τy is presumed to be specified in milliseconds but the
oscillation frequency is specified in hertz (cycles per second).
The responses exhibit an oscillating traveling wave (Fig. 5B); the
response of any individual neuron oscillates over time and the
entire pattern of activity across the population of neurons shifts
over time (Fig. 5B, orange – yellow – purple – green – cyan – red).
For inputs corresponding to different eigenvectors, the responses
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Fig. 5. Motor preparation and motor control. (A)
Input drive and readout corresponding to input
that drives only the 1-Hz component of the re-
current weight matrix. (A, Left) Input drive (z),
spatial pattern activity across the 36 neurons dur-
ing the premotor time period (250 to 500 ms). (A,
Right) Readout (rΣ) over time. Vertical dashed lines,
times corresponding to curves in B. (B) Responses
exhibit an oscillating traveling wave of activity.
Different colors correspond to different time
points, indicated in A. (C ) Input drive and readout
corresponding to the 8-Hz component of the re-
current weight matrix. Same format as A. (D)
Summing the inputs from A and C evokes the sum
of the responses. (E ) Input drive from A is shifted in
space, generating a readout that is shifted in time.
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oscillate at correspondingly different frequencies (Fig. 5C). The
frequencies of the various components corresponding to each of
the eigenvalues, for this particular recurrent weight matrix, in-
cluded a number of other frequencies in addition to the 1- and
8-Hz components shown in the figure. Motor control signals with
any arbitrary phase, for each of the frequency components, can be
generated by shifting the input drive (Fig. 5E). That way, all com-
binations of amplitudes, frequencies, and phases can be generated
just by changing the spatial pattern of premotor activity, with a
fixed, linear readout. This dovetails with experimental evidence
demonstrating that the function of motor preparation is to set
the initial conditions that generate the desired movement (61–63),
and that complex movements are based on a library of motor
primitives (64, 65).
The readout for open-loop control is, in general, a linear sum of

the responses rΣ. The readout matrix for short-term memory, in the
preceding sustained activity circuit (Fig. 2), comprised eigenvectors
of the recurrent weight matrix to ensure that the input was re-
covered during the delay period. However, recovering the input is
not the goal for open-loop control. Rather, a sum of the (co)sinu-
soidal basis functions was used to generate motor control signals
for ballistic (open-loop) movements.
ORGaNICs may also generate more complicated control sig-

nals. The basis functions are damped oscillators when the modu-
lators are greater than 0 but equal to one another (a = b) and
constant over time, and when the input is constant over time. If
the input is time-varying, then the responses depend on a linear
combination of the inputs and the basis functions, and the re-
sponses may be used for closed-loop control. If the modulators are
also time-varying, and different for each neuron, then the re-
sponses may exhibit a wide range of dynamics, with the capability
(by analogy with LSTMs) of solving relatively sophisticated tasks
(see Introduction for references).

Manipulation: Spatial Updating. A simulation of the double-step
saccade task illustrates how ORGaNICs can both maintain and
manipulate information over time (Fig. 6). In this task, 2 targets
are shown while a subject is fixating the center of a screen (Fig. 6 A,
Upper). A pair of eye movements are then made in sequence to
each of the 2 targets. Eye movements are represented in the brain
using retinotopic, that is, eye-centered, coordinates (Fig. 6 A,
Upper, red lines). Consequently, after making the first eye
movement, the plan for the second eye movement must be
updated (Fig. 6 A, Lower; the solid red line copied from the
upper panel no longer points to the second target). This is done
by combining a representation of the target location with a copy
of the neural signals that control the eye muscles (i.e., corollary
discharge) to update the planned eye movement (Fig. 6 A,
Lower, dashed red line).
The example circuit in Fig. 6 received 2 types of inputs: 1) the

target locations at the beginning of the trial (Fig. 6 C, Top, blue)
and 2) a corollary discharge of the impending eye movement.
The targets were assumed to be along the horizontal meridian of
the visual field. There were again 36 neurons, but unlike the
preceding examples each neuron responded selectively to a dif-
ferent eccentricity along the horizontal meridian of the visual
field (i.e., degrees of visual angle away from fixation), not dif-
ferent polar angles around fixation at a fixed eccentricity. The
encoding matrix Wzx was analogous to that in the preceding ex-
amples, but the neurons were selective for target eccentricity

A B

C

D

E

F

Fig. 6. Spatial updating. (A) Double-step saccade task. (A, Top) Targets pre-
sented. (A, Bottom) After eye movement to target 1. White dots, targets. Black
cross-hairs, eye position. Solid red lines, planned eye movements without
updating. Dashed red line, planned eye movement after updating. (B) Re-
current weight matrices. (Top) Recurrent weight matrix corresponding to
modulator a1 for maintaining a representation of the target locations. (Middle
and Bottom) Recurrent weight matrices corresponding to modulators a2 and a3
for updating the representation with leftward and rightward eye movements,
respectively. (C) Input stimulus and reconstructed stimulus. Blue, input stimulus
(x) corresponding to the 2 target positions. Orange, reconstructed stimulus,

computed as a weighted sum of the readout (F). (Top) Before eye movement
to target 1. (Bottom) After eye movement to target 1. (D) Modulator re-
sponses. (Top) a1. (Middle) a2 (blue) and a3 (orange). (Bottom) b. (E) Output
responses (y). (Top) Time course of activity, with different colors corre-
sponding to different neurons. (Bottom) Responses for each of several time
points (different colors correspond to different time points) while updating
the neural representation of the target locations. (F) Readout (r). Dashed
vertical lines in D–F correspond to the snapshots in A.
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instead of polar angle. Readout and reconstruction were the
same as for the sustained activity circuit (Fig. 2).
What distinguishes this example circuit from the preceding

examples is that there were 3 recurrent weight matrices (Fig. 6B),
the first for maintaining a representation of the target locations
(Fig. 6 B, Top), the second for changing the representation with
leftward eye movements (Fig. 6 B, Middle), and the third for
changing the representation with rightward eye movements (Fig.
6 B, Bottom). As in the preceding examples, the modulators were
the same for each neuron in the circuit. Consequently, we can
modify Eq. 1:

τy
dy
dt

=−y+
"

b+

1+ b+

#
z+

"
1

1+ a+1

#
ŷ1� +

"
a+2

1+ a+2

# "
a+3

1+ a+3

#

[6]

speech (68). A possible mechanism for time warping is to scale the
time constants of the neurons (69), all by the same factor, which
scales the oscillation frequencies by the inverse of that scale factor
(Eq. 5). A fixed value for the scale factor would handle linear time
rescaling in which the entire input (and/or output) signal is com-
pressed or dilated accordingly. A neural circuit might compute a
time-varying value for the scale factor, based on the inputs and/or
outputs, to handle time-varying time warping.
Here, we offer a different mechanism for time warping (also

time reversal), making use of the modulators. An example open-
loop motor control circuit was implemented that enabled time
warping and time reversal (Fig. 7). The encoding matrix and the
recurrent matrix were identical to those in the spatial updating
example (Fig. 6). The a1 and b modulators were also the same as
in the spatial updating example, but the time courses of the other
2 modulators a2 and a3 were different (Fig. 7A). The readout was
the same as that in the motor control circuit (Fig. 5), summing
across the components rΣ. The input was chosen to drive all of
the eigenvectors with randomly chosen amplitudes and phases.
Different values of the a2 and a3 modulators generated control
signals that were time-warped and/or time-reversed. Increasing
the modulator response from 1 to 5/3 caused the readout to
increase in tempo by 25% (compare Fig. 7 B and C); tempo was
proportional to a2/(1 + a2). A time-varying modulator generated
time-varying time warping. The circuit exhibited these phenom-
ena because the responses exhibited oscillating traveling waves
(Fig. 5B). The readout was a sum of these traveling waves, and
the speed of the traveling waves was controlled by the modula-
tors (SI Appendix). When a3 (instead of a2) was nonzero, the
readout was time reversed (compare Fig. 7 B and D) because the
traveling waves of activity moved in the opposite direction.
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Fig. 7. Time warping and time reversal. (A) Modulator responses. (B)
Readout for a2 = 1 and a3 = 0. (C) Time-warped readout for a2 = 5/3 and a3 = 0.
(D) Time-reversed readout for a2 = 0 and a3 = 1.

= �Wŷ k �yy,

where� the� subscript� k � indexes � over � the� 3� recurrent � weight� matri-
ces. � The � first� recurrent� weight� matrix� was � identical� to � that� in� the�
sustained� activity� circuit � (Fig.� 2B).� The � second � recurrent � weight�
matrix� was� a � discrete � approximation � to � the � derivative � of � the�
responses� (SI� Appendix),� and � third� was � the� negative � derivative �
matrix� (i.e.,� the� second� and � third� recurrent � matrices � differed�
from� one� another � by � a � factor � of � −1).� To� accommodate � 2� dimen-
sions� of� eye � movements,� the� input � drive � would � depend� on �
2-dimensional� response� fields� tiling� the� visual � field, � and � the� re-
current� drive � would� depend � on� 5� recurrent � weight� matrices, � one�
to � maintain � the� current� eye � position, � a � pair� for� the� horizontal�
component� of� movements,� and � another � pair� for� the� vertical� com-
ponent� (or� likewise� a � pair� for� the� polar � angle � component� of�
movements� and � another � pair � for� the� radial� component).
The � modulators � were � used� to � encode � and � update � a � represen-

tation � of� the� target� locations � (Fig.� 6D). � As� in� the� preceding � ex-
amples, the responses followed the input drive at the beginning
of � the� simulated � trial � because � the � input �modulator � was � set � to� b� =� 1�
(via Wbx � in Eq. 2) by the cue indicating the beginning of the trial.
The� value � of� b � then� switched � to � be � small� (= � 0)� before � the� targets�
were extinguished, so the output responses exhibited sustained
activity � that � represented � the� original � target � locations � (Fig. � 6 � C, �
Top, orange). The modulator a1� was responsible for recurrent
normalization, � as � in� the � preceding� example � circuits.� The � modu-
lator � a3� was � nonzero � for � a � period � of � time � beginning� just� prior � to�
the eye movement (Fig. 6 D,Middle, orange). The amplitude of a3�
and� duration � of � time � during � which � it � was � nonzero� determined � the �
magnitude� of� updating, � that� is,� corresponding � to� the � amplitude � of �
the � impending � saccade� (for � an � eye� movement � in� the � opposite � di-
rection, the amplitude of a2, instead of a3, would have been
nonzero). � Finally,� the � value � of � the� recurrent� modulator � was� set � to �
a1� ≈ 1 (via Wax� in Eq. 2) by the cue indicating the � end � of � the � trial,�
causing� the� output � responses� to� be � extinguished.
The � output� responses � exhibited� a � traveling� wave� of � activity�

across� the � topographic� map� of � target� locations � during � the� period �
of � time � when� the� neural� representation � of � the� targets � was �
updated� (Fig.� 6E). � The � readout � (Fig.� 6F)� encoded � the� 2� target�
locations, both before and after updating. The readout and
decoding� matrices � were � identical� to � those � in� the� sustained� ac-
tivity � circuit � (Fig.� 2). � Preceding � the� eye � movement, � the� original�
target � locations� were � reconstructed � from � the� readout � (Fig. � 6� C,�
Top,� orange� curve).� After � the� eye � movement,� the� updated� target �
locations � were� reconstructed � (Fig.� 6� C, � Bottom).

Manipulation:� Time � Warping � and� Time � Reversal. � A � challenge� for�
models � of� motor� control� is � to� generate� movements � at � different �
speeds,� for� example � playing� a� piece � of � piano � music,� generating�
speech� (66),� or� generating� birdsong� (67)� at� different � tempos. �
Likewise, � a� challenge� for� models� of � sensory� processing� is � that�
perception � must� be� tolerant � with � respect� to� compression� or � di-
lation� of� temporal � signals,� for� example � listening � to � fast� vs. � slow
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Discussion
We developed a theoretical framework for neural dynamics
called ORGaNICs and applied it to simulate key phenomena of
working memory and motor control. We demonstrated the fol-
lowing results. 1) Working memory: ORGaNICs can simulate
delay-period activity with complex dynamics, including sequential
activity and traveling waves of activity, to maintain and manipulate
information over time. Derivative-like recurrent connectivity, in
particular, generated traveling waves of activity. We propose that
these traveling waves play a role in circuit function to manipulate
and update internal models. 2) Motor control: The exact same
circuits (with the same synaptic weights) were used to generate
signals with complex motor dynamics, by converting spatial patterns
of premotor activity to temporal profiles of motor control activity.
Different spatial patterns of premotor activity evoked different
motor control dynamics. These circuits were controlled to manip-
ulate (e.g., time-warp) the motor dynamics. 3) Normalization: Re-
current normalization, via the recurrent modulator, ensured stability
over time and robustness with respect to perturbations of synaptic
weights. 4) Mechanism: ORGaNICs can be implemented with a
simplified biophysical (equivalent electrical circuit) model of pyra-
midal cells (see SI Appendix and ref. 46). There is considerable
flexibility in the formulation of ORGaNICs, with different variants
corresponding to different hypothesized neural circuits (SI Appen-
dix). We demonstrated all of the above results with 2 circuits; the
first circuit generated the simulation results in Figs. 2–5 and the
second one generated Figs. 6 and 7, noting that the first circuit is
equivalent to a special case of the second one.
Because they are generalizations of LSTMs, ORGaNICs can

solve tasks that are much more sophisticated than the typical
delayed-response tasks used in most cognitive psychology and
neuroscience experiments. Indeed, although this is not an ML
paper, we note that ORGaNICs may offer computational ad-
vantages compared to varieties of LSTMs that are commonly
used in ML applications (see SI Appendix and ref. 46).
This theoretical framework, of course, includes components

previously proposed in the computational/theoretical neuroscience
literature, and the ML literature, that have achieved some of the
same goals (70–87). However, with ORGaNICs we show that a
single unified circuit architecture captures key neurophysiological
phenomena associated with sensory, cognitive, and motor func-
tions, each of which has been modeled separately in the previously
published literature. Unlike linear recurrent neural networks, the
modulators in ORGaNICs introduce nonlinearities (analogous to
the gates in LSTMs) that can perform multiple functions including
handling long-term dependencies and providing robustness via
normalization (discussed below). Unlike most nonlinear recurrent
neural nets, ORGaNICs are mathematically tractable, making it
possible to derive concrete, quantitative predictions that can be fit
to experimental measurements. The theory is tractable when the
modulators are constant, that is, during each successive phase of a
behavioral task. In addition, the responses of the normalization
circuit follow the normalization equation (Eq. 3) exactly, so that
this circuit makes predictions that are identical to those of the
normalization model, thereby preserving all of the desirable fea-
tures of that model, which has been fit to hundreds of experimental
datasets. In classic work on neural fields (88–90), by contrast, di-
verse patterns of activity are accomplished by biasing a nonlinear
network to different operating points, each having a different so-
lution that can be approximated by local linearization. Here, we
start with a linear dynamical system that is fully tractable, charac-
terized by the eigenvalues and eigenvectors of the linear system,
but also limited to only those patterns of activity that can be
expressed as linear sums of the eigenvectors. We circumnavigate
this limitation with the modulators that shape solutions to dy-
namically change the eigenstructure of the linear system; for each
choice of values for the modulators, we have a different linear
system. Unlike black-box ML approaches, ORGaNICs provide
insight; for example, we understand exactly when and how it is
possible to reconstruct an input by reading out the responses
during the delay period of a working memory task and how to

generate motor control signals with complex dynamics (see SI
Appendix for derivations). ML algorithms are particularly useful for
computing solutions to optimization problems (e.g., model fitting
via gradient descent), and we plan to use ML implementations of
ORGaNICs to fit experimental data. ML approaches can also
provide inspiration for neuroscience theories (and vice versa), like
the links presented here between ORGaNICs and LSTMs. Left
open in the current paper is how the weights in the various weight
matrices emerge through development and/or learning. We engi-
neered the weights to demonstrate the computational capabilities
of this theoretical framework and to illustrate that the theory can
reproduce neurobiological phenomena (although ORGaNICs are
compatible with modified versions of ML algorithms; see SI Ap-
pendix). Some of the previously published literature (cited above)
focuses on learning. However, having the right circuit architecture
is a prerequisite for developing an accurate model of learning.
We propose that ORGaNICs can serve as a unifying theo-

retical framework for neural dynamics, a canonical computa-
tional motif based on recurrent amplification, gated integration,
reset, and controlling the effective time constant. Rethinking
cortical computation in these terms should have widespread
implications, some of which are elucidated in the paragraphs that
follow (see also SI Appendix).
Sustained delay-period activity and sequential activity are

opposite sides of the same coin. ORGaNICs, a straightforward
extension of leaky neural integrators and neural oscillators,
provide a unified theoretical framework for sustained activity
(Fig. 2), oscillatory activity (SI Appendix, Fig. S4), and sequential
activity (Fig. 4), just by changing the recurrent weight matrix.
Indeed, ORGaNICs can switch between these different behav-
iors. The spatial updating circuit, for example, exhibits sustained
activity during the delay periods and sequential activity co-
incident with the eye movement (Fig. 6). The modulators a2 and
a3 do the job of toggling between sustained and sequential. We
assert that complicated dynamics is the norm, to support ma-
nipulation as well as maintenance (e.g., Fig. 6).
ORGaNICs can be used to generate motor control signals,

with the very same circuits used to model working memory, just
by changing the readout. The circuits convert spatial patterns of
input (premotor) activity to temporal profiles of output (motor
control) activity. Different spatial patterns of premotor activity
evoke motor control outputs with different temporal response
dynamics (e.g., as in Figs. 5 and 7), and the modulators provide a
means for manipulating (time warping and time reversal) the
dynamics (Fig. 7).
ORGaNICs are applicable also to models of sensory integration

(e.g., integrating corollary discharge in Fig. 6) and sensory pro-
cessing (e.g., with normalization as in Fig. 3). ORGaNICs may be
stacked in layers such that the inputs to one ORGaNIC are the
outputs from one or more other ORGaNICs. Particular stacked
architectures encompass convolutional neural nets (i.e., deep nets)
as a special case: specifically, when the encoding/embedding
weight matrices are convolutional and when the modulators are
large (aj = bj ! 0) such that the output responses from each layer
are dominated by the input drive to that layer. Consequently,
working memory, motor control, sensory processing (including
prediction over time; see SI Appendix and ref. 46), and possibly
other cognitive functions (in addition to working memory, such as
cognitive control, for example controlling attention) may all share
a common canonical computational foundation.
Derivative-like recurrent connectivity (55) simulates sequen-

tial activity and traveling waves of activity (Figs. 4–7), and we
propose that these traveling waves play a particular role in circuit
function. Weight matrices with derivative-like weights are a main-
stay of feed-forward models of sensory processing (91, 92), but the
contribution of derivative-like weights in recurrent connectivity has
been underappreciated. Traveling waves are ubiquitous in cortical
activity, but their functional role has remained a mystery (93). We
used recurrent weight matrices based on derivatives (i.e., the dif-
ference in activity between nearby neurons) to evoke traveling waves
of activity that functioned to support manipulation. The traveling
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waves served to transform spatial patterns of premotor activity to
temporal patterns of motor control activity (Figs. 5 and 7) or to
update internal models (working memory representations) whether
or not there was an overt movement (Fig. 6).
Why do some neural circuits exhibit sustained activity while

others exhibit sequential activity, and what are the relative advan-
tages or disadvantages of each? Sustained activity circuits are useful
for short-term memory (i.e., maintenance), but not for other cog-
nitive functions that require manipulation and control. For
sustained-activity circuits, a simple linear readout of the re-
sponses can be used to reconstruct the input drive (and to ap-
proximately reconstruct the input stimulus), at any point in time
during a delay period (Fig. 2). In addition, sustained-activity
circuits are likely to be more robust than sequential-activity cir-
cuits, because all of the components share the same dynamics.
Sequential-activity circuits, on the other hand, offer much more
flexibility. The same circuit, with the same fixed recurrent weight
matrix and the same fixed encoding matrix, can support multiple
different functions just by changing the readout. For example,
the sequential-activity circuit (Fig. 4) and the motor-control
circuit (Fig. 5) were identical except for the readout. For the
sequential-activity circuit (Fig. 4), a (nonlinear) modulus read-
out generated an output that was constant over time (i.e.,
to support maintenance). For the motor-control circuit (Fig. 5), a
linear readout was used to generate control signals as sums of
(co)sinusoidal basis functions with various different frequencies
and phases. Likewise, the spatial-updating circuit (Fig. 6) and the
time-warping/time-reversal circuit (Fig. 7) were identical. This
circuit can be used to perform working memory (maintenance
and manipulation), and the same circuit (without changing the
encoding or recurrent weights) can be used to execute move-
ments with complex dynamics. One way to implement this, for
example, would be to have 2 different brain areas with stereotyp-
ical intrinsic circuitry (i.e., identical recurrent weights) that support
2 different functions with different readouts. Indeed, there is ex-
perimental evidence that different brain areas support different
functions with similar circuits, for example parietal areas un-
derlying working memory maintenance and PFC areas underlying
motor planning (94). Alternatively, the output from a single circuit
could innervate 2 different brain areas, one of which performs the
first readout and the other of which performs the second readout,
or a single brain area might switch between 2 different readouts
(e.g., using a gating mechanism analogous to the modulators in
ORGaNICs), corresponding to different behavioral states, without
changing the intrinsic connectivity within the circuit. This makes
biological sense. Rather than having to change everything (the
encoding matrix, the recurrent matrix, the modulators, and the
readout), you need only change one thing (the readout matrix) to
enable a wide variety of functions. This is not possible with re-
current weight matrices that exhibit sustained activity, simply be-
cause there is only a single mode of dynamics (constant over time).
The modulators perform multiple functions and can be imple-

mented with a variety of circuit, cellular, and synaptic mechanisms.
The time-varying values of the modulators determine the state of
the circuit by controlling the recurrent gain and effective time
constant of each neuron in the circuit. The multiple functions of
the modulators include normalization (Fig. 3), maintenance (Figs.
2–7), controlling pattern generators (Figs. 5 and 7), gated
integration/updating (Fig. 6), time warping and time reversal
(Fig. 7), reset (Figs. 2–7), controlling the effective time constant
(SI Appendix, Fig. S1), controlling the relative contributions of
bottom-up versus top-down connections (95), representing and
weighting the reliability of sensory evidence (likelihood) and in-
ternal model (prior, expectation) for inference, prediction over
time, and multisensory integration (95). ORGaNICs may have
multiple recurrent weight matrices, each multiplied by different
recurrent modulators, to perform combinations of these functions
(Eq. 6 and Figs. 6 and 7). Some of the modulator functions need
to be fast and selective (e.g., normalization), likely implemented in
local circuits. A variety of mechanisms have been hypothesized
for adjusting the gain of local circuits (96–98). Some modulator

functions might depend on thalamocortical loops (20, 99–101).
Other modulator functions are relatively nonselective and evolve
relatively slowly over time and may be implemented with
neuromodulators (102–105).
Recurrent normalization, as implemented with ORGaNICs

(Fig. 3), is consonant with the idea that normalization operates
via recurrent amplification, that is, that weak inputs are strongly
amplified but that strong inputs are only weakly amplified. Several
hypotheses for the recurrent circuits underlying normalization
have been proposed (50, 51, 96, 106–108), but most of them are
inconsistent with experimental observations suggesting that nor-
malization is implemented via recurrent amplification (109–114).
ORGaNICs offer a family of dynamical systems models of nor-
malization, each of which comprises coupled neural integrators
to implement normalization via recurrent amplification (SI Ap-
pendix). When the input drive is constant over time, the circuit
achieves an asymptotic stable state in which the output responses
follow the normalization equation exactly (Eq. 3).
There is a critical need for developing behavioral tasks that

animal models are capable of learning, and that involve both
maintaining and manipulating information over time. ORGaNICs
(and LSTMs) manage long-term dependencies between sensory
inputs at different times, using a combination of gated integration
and reset. Typical delayed-response tasks like the memory-guided
saccade task are appropriate for studying what psychologists call
“short-term memory,” but they are weak probes for studying
working memory (115–118), because those tasks do not involve
manipulation of information over time. Behavioral tasks that are
popular in studies of decision making involve integration of noisy
sensory information (30, 32) or integration of probabilistic cues
(119). Variants of these tasks (31, 34) might be used to test the
gated integration and reset functionality of ORGaNICs. The anti-
saccade task (120–123) and the double-step saccade task (124–126)
might also be used, with delay periods, to test the theory and to
characterize how cortical circuits manage long-term dependencies.
Finally, the theory motivates a variety of experiments, some

examples of which are as follows. First, the theory predicts that
the modulators change the effective time constant and recurrent
gain of a PFC neuron. Experimental evidence suggests that the
modulatory responses are computed in the thalamus (2, 20, 99).
Consequently, manipulating the responses of these thalamic neu-
rons (e.g., via optogenetics) should have a particular impact on both
the time constant and recurrent gain of cortical neurons. Second, the
specific biophysical implementation (SI Appendix, Fig. S6) predicts
that the soma and basal dendrites share input drive, but with op-
posite sign. This would, of course, have to be implemented with in-
hibitory interneurons. Third, the theory predicts that that neural
activity underlying motor control and working memory is normal-
ized. Normalization might be measured in motor cortex by com-
paring activity when making each of 2 simple movements vs. the
combination of those movements simultaneously, or by comparing
activity in one subpopulation of neurons with and without opto-
genetic stimulation of a separate subpopulation of neurons. Nor-
malization might be measured in working memory circuits by
comparing activity when maintaining one item versus multiple items
during a delay period (127–129). Fourth, following previous re-
search (130), a model based on ORGaNICs may be fit to be-
havioral and neurophysiological measurements of working
memory. Trial-to-trial variability of behavioral performance dur-
ing a working memory task has been shown to be linked with trial-
to-trial variability in delay-period activity. These data might be
fit by adding noise to the responses and/or synaptic weights,
leading to drift in activity ratios during a delay period. Fifth,
as noted above, variants of sensory integration tasks might be
used to test the gated integration and reset functionality of
ORGaNICs, and variants of the antisaccade and double-step
saccade tasks might also be used, with delay periods, to charac-
terize how cortical circuits manage long-term dependencies.
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i.e.,  

 , (S2) 

 . 

where τ is the intrinsic time-constant and τʹ is 
the effective time-constant. For this simple spe-
cial case, the neuron acts like a shift-invariant 
linear system, i.e., a recursive linear filter with 
an exponential impulse response function. If the 
input drive z is constant over time, then the re-
sponses y exhibit an exponential time course with steady state y = z, and time constant τʹ 
(Fig. S1). This special case reveals how λ, and consequently the modulators, a and b, deter-
mine the effective time-constant of the leaky integrator. 

The simple form in Eq. S1 is problematic because it allows negative firing rates (the value 
of y could be positive or negative depending on the input drive). To fix that, we use a comple-
mentary pair of neurons (analogous to ON and OFF cells, e.g., in the retina, LGN, or V1) that 
receive complementary copies of the input drive, z and -z, and for which the firing rates are a 
halfwave-rectified copy of the underlying membrane potential fluctuations (optionally with a 
scale factor to convert from mV to spikes/sec): 

 , (S3) 

 , 

where 

 . (S4)   

Here, v+ and v- are the membrane potential fluctuations (and also the recurrent drive) of the 
two neurons, z is the input drive, and y+ and y- are the output firing rates. 

A leaky neural integrator with multiple neurons comprises a circuit such that the output re-
sponses of each neuron depend on a recurrent weighted sum: 

ʹτ
dy
dt
= −y+ z
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τ y
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τ dv
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Figure S1. Leaky neural integrator (Eq. S1). a. 
Input drive (z) over time. b. Output responses (y) 
when the modulator (λ) is constant over time. Dif-
ferent colors correspond to different values of λ. c. 
Output responses (y) corresponding to time-varying 
modulator: λ = 1 for t < 1000 and λ = 0 for t > 1000.
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 , (S5) 

 , 

. 

We use boldface lowercase letters to represent 
vectors and boldface uppercase to denote ma-
trices. The variables (y, ŷ, z, x) are each functions of time. The time-varying output responses 
are represented by a vector y = (y1, y2,…, yj,…, yN) where the subscript j indexes different neu-
rons in the network. The time-varying input drive is represented by another vector z = (z1, z2,…, 
zj,…, zN). The input stimulus is a continuous function x(θ,t) where θ parameterizes the stimulus 
space (e.g., polar angle and/or eccentricity in the visual field). The input stimulus is sampled to 
be represented by another time-varying vector x = (x1, x2,…, xj,…, xM), where xj(t) = x(θj,t) and θj 
are the locations of the samples. The input drive zj to each neuron is a weighted sum of the in-
put x, and the weights are given by the encoding matrix weight matrix Wzx (second line of 
Eq. S5). The recurrent drive ŷj to each neuron is a weighted sum of the outputs, and the 
weights are given by the recurrent weight matrix Wŷy (third line of Eq. S5). We can use the 
same trick as above (Eqs. S3-S4) to ensure non-negative firing rates. 

A neural oscillator (Fig. S2) corresponds to a special case of a leaky neural integrator in 
which the responses and recurrent weights are complex-valued. Specifically: 

 , (S6) 

 , 

The input drive z, responses y, and recurrent drive ŷ are complex numbers, w is the complex-
valued recurrent weight, and ω is the oscillation frequency. The complex-number notation is 
just a notational convenience. The complex-valued responses may be represented by a pair of 
neurons, and the complex-valued weight may be represented by pairs of synaptic weights that 
are matched to one another in the two neurons: 

 , (S7) 

 . 

The values of y1 and y2 correspond, respectively, to the real and imaginary parts of the com-
plex-valued responses. Intuitively, the responses oscillate because the recurrent weight matrix 
is a rotation matrix in the limit when the rotation angle is small, i.e., cos(θ) = 1 and sin(θ) = θ 
when θ→0. If, at one instant in time, y = (1 0)t, then an instant later the responses will have 
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ŷ =wy = 1+ i2πωτ( ) Re y( )+ i Im y( )( )

τ
dy
dt

= −y+λz+ (1−λ)ŷ
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changed akin to rotating slightly around the unit 
circle. 

The dynamics of the responses depend on the recurrent weight matrix (Fig. S3). This is 
particularly important when λ = 0 (corresponding to the sustained delay-period activity in 
Fig. S1 or the period of stable oscillations in Fig. S2). If the weights are too small then the re-
sponses decay over time. If the weights are too large then the responses grow without bound. 
A simple is example is given by a circuit with 3 neurons and a diagonal recurrent weight matrix: 

 . (S8) 

Rewriting Eq. S5 for the special case of a diagonal weight matrix: 

 , (S9) 

, 

where the recurrent weights wj are the elements along the diagonal of the recurrent weight ma-
trix Wŷy. When λ = 0, this equation simplifies further: 

 . (S10) 

For wj = 1, the responses are constant over time (the derivative in Eq. S10 is 0). For wj > 1, the 
response grow over time. And for wj < 1, the response decay over time. 

In general, for an arbitrary recurrent weight matrix, the dynamics of the responses depend 
on the eigenvalues and eigenvectors of the recurrent weight matrix. When the eigenvectors 
and eigenvalues of the recurrent weight matrix are composed of complex values, the respons-
es exhibit oscillations. For example, the recurrent weight matrix in the neural oscillator example 
(Fig. S2) is an anti-symmetric, 2x2 matrix, with complex-valued eigenvalues and eigenvectors 
(Eq. S7). The real-parts of the eigenvalues determine stability. In this case, the real parts of the 
eigenvalues are equal to 1 (the weight matrix was in fact scaled so that the eigenvalues have 
real parts that were equal to 1). The corresponding eigenvectors define a coordinate system 
(or basis) for the responses. The responses during the period of stable oscillations (when λ = 0) 
are determined entirely by the projection of the initial values (the responses just before the in-
put was turned off) onto the eigenvectors. Eigenvectors with corresponding eigenvalues that 
have real parts equal to 1 are stable. Those with eigenvalues that have real parts less than 1 
decay to zero (smaller eigenvalues decay more quickly). Those with eigenvalues that have real 
parts greater than 1 grow without bound (which is why the weight matrix was scaled so that the 
largest eigenvalues = 1). The imaginary parts of the eigenvalues of the recurrent weight matrix 

Wyŷ =
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(in this example equal to 2πωτ) determine the oscillation frequencies (ω in this example). 

Detailed Methods and Mathematical Derivations 
Sustained activity (Fig. 2) 

The recurrent weight matrix Wŷy for this circuit was a 36x36 matrix, designed based on 
quadrature-mirror filter wavelets (1, 2). Quadrature-mirror filters are (approximately) mutually 
orthogonal when shifted or scaled by factors of 2. Consequently, the rows of Wŷy were shifted 
copies of one another (i.e., Wŷy was convolutional), the even (or odd) rows of Wŷy were (ap-
proximately) mutually orthogonal, and the eigenvectors of the recurrent weight matrix, with cor-
responding eigenvalues equal to 1, spanned a 19-dimensional subspace. The non-orthogonal 
components, with corresponding eigenvalues < 1, rapidly decayed to zero during the delay pe-
riod. 

The steady-state responses during the delay period depended on the dot products of the 
initial responses and the eigenvectors of the recurrent weight matrix Wŷy with corresponding 
eigenvalues equal to 1:  

p = Vt y0 , (S11) 

ys = V p , 
where ys is the vector of steady-state responses, y0 is the vector of initial values at the begin-
ning of the delay period, and V is a 36x19 matrix. The columns of V (the rows of Vt) are an or-
thonormal basis for those eigenvectors of the recurrent weight matrix Wŷy that have corre-
sponding eigenvalues equal to 1, and p is the projection of y0 on V.  

The encoding weight matrix Wzx was a 36x360 matrix (N=36 neurons and M=360 polar an-
gle samples, ignoring for now the stimulus components corresponding to the cues that indicat-
ed the beginning and end of each trial). The response fields (i.e., the rows of the encoding 
weight matrix Wzx) were each designed to be one cycle of a raised cosine: 

 , (S12) 

where θ is stimulus polar angle and φj is the preferred polar angle (i.e., the response field cen-
ter) of the jth neuron. The response field centers were evenly spaced. The value of the expo-
nent was chosen to be n = 18, so that the response fields of the 36 neurons spanned a 19-di-
mensional subspace of polar angles, i.e., the rank of Wzx was 19, equal to the dimensionality of 
the subspace spanned by V. These raised-cosine response fields have the desirable property 
that they are shiftable (3, 4), i.e., the response of a neuron with a response field of the same 
shape but shifted to any intermediate polar angle can be computed (exactly) as a weighted 
sum of the responses of a basis set of 18 of the 36 neurons. The response fields evenly tiled 
the polar angle component of the visual field (i.e., the sum of the squares of the rows of 
Wzx = 1): 

 . (S13) 

In addition, the encoding weight matrix Wzx was designed so as to project the input stimulus 
onto the same subspace as that spanned by V: 

ψ j θ( )∝ cos θ−ϕ j
2( )

n

ψ j
2 θ( )∑ =1

5
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 , (S14) 

 , 

where x0 was a vector (360x1) corresponding to the input stimulus. The matrix Wrx (19x360) 
was computed so that the rows of Wzx were the raised cosine functions described above, i.e., 
Wrx = Vt Wzx . 

The same matrix V was used to perform the readout. Consequently, the input stimulus 
could be reconstructed approximately from the steady-state responses (ignoring normalization 
which serves to rescale the responses and consequently the reconstruction): 

 , (S15) 

 , 

where the last step approximates x0 because V is an orthonormal matrix (i.e., VtV = I), and # 
denotes pseudo-inverse. The reconstruction matrix, the pseudo-inverse of Wrx, was computed 
with ridge regression: 

 , (S16) 

where k was a small constant to ensure that the reconstruction was stable with respect to per-
turbations in r. 

The input drive was reconstructed exactly (up to a scale factor because of the rescaling 
due to normalization) from the readout: 

 , (S17) 

where z0 is a vector (36x1) corresponding input drive during target presentation. 

The steady-state responses (and consequently the readout) were the same even when the 
encoding weights also included components that were orthogonal to V. Specifically, if the en-
coding weights were Wzx = (V+Vp)Wrx such that Vt Vp = 0: 

 . (S18)  

The behavioral cues built into the experimental protocol set the state of the modulators via Wax and 
Wbx, and the state changed from one phase to the next. In particular, we presumed that there were two 
input stimuli, in addition to the 360 possible target locations, that corresponded to the cues. The first of 
these stimuli was 1 from the beginning of each trial to just before target offset. The second of these 
stimuli was 1 for a brief period of time at the end of the trial. 

Oscillatory activity with complex-valued recurrent weights 

One way to generate delay-period activity with oscillatory dynamics is when the recurrent 
weights and output responses are complex-valued (Fig. S4). As noted above, the complex-
valued responses may be represented by pairs of neurons, and the complex-valued weights in 
the recurrent weight matrix may be represented by pairs of synaptic weights (with each pair of 
synaptic weights shared by each pair of neurons to perform complex-number multiplication). 

For the example circuit in Fig. S4, there were again 36 neurons with the same encoding 
matrix Wzx as in the preceding (sustained activity) example. The modulators were also the 

Wzx =VWrx

y0 =Wzxx0 =VWrxx0

r =Wryys = V
tys

x̂ =Wrx
#r =Wrx

#Wryys =Wrx
#Vtys =Wrx

#VtVp =Wrx
#VtVVty0 =Wrx

#VtVVtVWrxx0 ≈ x0

Wrx
# = Wrx

tWrx + kI( )−1Wrx
t

ẑ =Vr =VWryys =VV
tVVty0 =VV

tVVtVWrxx0 =VWrxx =Wzxx0 = z0

ys = VV
ty0 = VV

t V +Vp( )Wrxx0 = VV
tVWrxx0 = VWrxx0
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same as in the preceding example. The recur-
rent weights were complex-valued. The real 
part of the recurrent weight matrix Wŷy was the 
same as that in the sustained delay-period ex-
ample (Fig. 2b), such that 19 eigenvalues had 
real parts equal to 1, and the real parts of the 
other eigenvalues were less than 1. But the 
imaginary part of the recurrent weight matrix 
was different, with random values (between 0 
and 8πτy) for the imaginary parts of all 36 ei-
genvalues, corresponding to oscillation fre-
quencies between 0 and 4 Hz (although other frequencies or combinations of frequencies 
could be used instead). Consequently, the activity exhibited complex dynamics (sums of oscil-
lations) that resembled the phenomenology of delay-period activity (5-10). The circuit was a 
19-dimensional (complex-valued) continuous attractor during the delay period because the re-
current weight matrix was constructed to have 19 eigenvalues with real parts equal to 1. 

In spite of the complex response dynamics (Fig. S4c), the readout was again (as it was for 
the sustained activity circuit) constant over time during the delay period (Fig. S4d), the input 
drive was reconstructed exactly (up to a scale factor) from the responses at any time during 
the delay period (Fig. S4b), and target location was reconstructed approximately (Fig. S4a).  

The readout for this example circuit was more complicated than that for the circuit that ex-
hibited sustained delay-period activity. The readout depended not only on a weighted sum of 
the responses but also an estimate of the sign: 

 , (S19) 

 . 

where r± is the sign-corrected readout. The readout matrix Wry = Vt was a unitary basis for the 
eigenvectors of the recurrent weight matrix Wŷy with corresponding eigenvalues that had real 
parts equal to 1. The vector s consisted of ±1 values to correct the sign of the readout, and D(s) 
was a diagonal matrix such that each element of the vector s was multiplied by the correspond-
ing element of |Wry y|.  

r =Wryy

r± = D(s) r

7

Figure S4. Oscillatory activity. a. Input stimulus 
and reconstructed stimulus. Blue, input stimulus (x) 
corresponding to target location. Orange, recon-
structed stimulus, computed as a weighted sum of 
the reconstructed input drive (panel b). b. Input 
drive and reconstructed input drive. Blue, input 
drive (z) to each neuron as a function of that neu-
ron’s preferred target location. Orange, recon-
structed input drive, computed as a weighted sum 
of the readout (panel d) at a randomly chosen time 
point during the delay period. c. Output responses 
(y). Top row, real part of the responses. Bottom row, 
imaginary part of the responses. Each color corre-
sponds to a different neuron. d. Readout (r±). Each 
color corresponds to a different component of the 
readout.
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The values of s were computed from the responses y, sampled at two time points. First, the 
instantaneous frequency of each quadrature pair of neural responses was computed from the 
real- and imaginary-parts of the responses: 

 , (S20) 

 , 

where Δt = t2 - t1 was presumed be known, although the values of t1 and t2 (i.e., the times at 
which the responses were sampled) were presumed to be unknown. Second, the elapsed time 
of the delay period T and the corresponding response sign s were estimated by minimizing: 

 , (S21) 

 , 

 , 

where rj was the complex-valued response at time T, and ωj was the instantaneous frequency 
(Eq. S20). Specifically, we sampled a large number of values of T to determine an estimate for 
the elapsed time that minimized the first line of Eq. S21. Given that estimate of T, the response 
sign s was then computed using the last two lines of Eq. S21. There is a unique solution for s 
when at least two of the oscillation temporal periods have no common multiples. This calcula-
tion, as written, is not neurobiologically plausible, but we anticipate that a neural net can ap-
proximate the function that transforms from y to s, or from y to r±. 

After correcting the sign of the readout, the input drive and input stimulus were reconstruct-
ed using the same procedure as that described above for the sustained delay-period circuit 
(Eqs. S15-S17). 

Sequential activity (Figs. 4-5) 

The response fields were the same as in the preceding examples (Eqs. S12-S13). The re-
current weight matrix was real-valued but asymmetric. It was computed from a discrete ap-
proximation to the derivative of the responses (11). This was facilitated by using raised cosines 
for the response fields. The raised cosine response fields have the desirable property that they 
are shiftable (3, 4), i.e., the response of a neuron with a response field of the same shape but 
shifted to any preferred response field location can be computed (exactly) as a weighted sum 
of the responses of a basis set of any 18 of the 36 neurons. First, we computed an upsampling 
matrix that (exactly) interpolated the responses of the 36 neurons to an arbitrarily large number 
of responses with arbitrarily closely-spaced preferred locations. Second, we computed a 
downsampling matrix, as the pseudo-inverse of the upsampling matrix, that subsampled the 
responses to the response field locations of the 36 neurons in the network. Third, we also cre-
ated a Toeplitz matrix with a convolution kernel that approximated differentiation (12). Fourth, 
and finally, the recurrent weight matrix depended on the product of these 3 matrices: 

 , (S22) 

 , 

ω j =
φ j t2( )−φ j t1( )
2π Δt( )

φ j t( ) = tan−1
Im rj( )
Re rj( )( )

s jr̂j − rj
2

j
∑

r̂j = e
2π iTω j

s j = sgn Re
rj
r̂j( )( )

Wyŷ = I+D

D =D1D2D3

8
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where I was the identity matrix, D1 was the NxM downsampling matrix, D2 was the MxM de-
rivative matrix, D3 was the MxN upsampling/interpolation matrix, N was equal to the number of 
neurons (36), M was the (arbitrary) upsampling resolution (e.g., M=360). 

Unlike the preceding examples, it was not possible to reconstruct the input drive from the 
readout at arbitrary points in time during the delay period. A linear reconstruction (like that used 
for the preceding examples) generated shifted copies of the input drive, that shifted over time 
like a traveling wave (Fig. S5). Consequently, this circuit was capable of maintaining some (but 
not all) information about the input during the delay period. A possible alternative might be to 
design the readout to be constant over time, even when the responses exhibit oscillatory dy-
namics, by ensuring that the rows of the readout weight matrix are orthogonal to the oscillatory 
components of the recurrent weight matrix (13). This simple idea, based on standard textbook 
linear algebra, however, cannot be applied to obtain a constant readout from the sequential 
activity in our circuit because our recurrent weight matrix was full rank. 

Manipulation (Figs. 6-7) 

There were three recurrent weight matrices in this example circuit, the first for maintaining a 
representation of the target locations, the second for updating the representation with leftward 
eye movements, and the third for updating the representation with rightward eye movements. 
The first recurrent weight matrix was identical to that in the sustained activity circuit (i.e., shift-
ed copies of the quadrature-mirror filter kernel, see above). The second recurrent weight ma-
trix was a discrete approximation to the derivatives of the responses (D in the 2nd line of 
Eq. S22), and third was the negative derivative matrix (-1 times the matrix defined by Eq. S22). 

During the period of spatial updating illustrated in Fig. 6 (i.e., b = 0, and either a2 or a3 > 0), 
Eq. 6 can be rewritten: 

 . (S23) 

The value of s = ak / (ak + 1), for k equal to either 2 or 3, was the speed of the traveling wave of 
activity during updating. The variable φ was a continuous parameterization of response field 
location (eccentricity), and y(φ) was a continuous function for every possible response field lo-
cation, interpolated from the yj samples that represented the neural responses. The derivative 
dy/dφ, sampled at φ = φj, was the derivative of the neural responses sampled at the response 
field location of the jth neuron. The recurrent weight matrix D computed this derivative; multiply-
ing by this weight matrix was equivalent to interpolating the yj samples to a continuous func-
tion, computing the derivative of that function, and then resampling. The duration of spatial up-
dating (i.e., the period of time during which either a2 or a3 was non-zero) was proportional to the 
amplitude of the eye movement: 

 , (S24) 

where θ was the location of the target stimulus and T was the duration of updating. Conse-

τ y

dyj
dt

= −s dy
dϕ ϕ=ϕ j

θ = sT

9

Figure S5. Linear readout and reconstruction 
for the sequential activity circuit (Fig. 4). Blue 
curve, input drive (z). Other colors, linear readout 
and reconstruction at evenly spaced time points 
during the delay period. 
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quently, the neural responses over time were discrete samples of a continuous function: 

 , (S25) 

 , 

where y0 was the continuously interpolated neural activity at the point in time (i.e., t = 0) just 
prior to updating. 

Likewise, during the period of motor execution illustrated in Fig. 7 (i.e., b = 0, and either 
a2 or a3 > 0), the responses exhibited oscillating traveling waves. The value of s = ak / (ak + 1), 
for k equal to either 2 or 3, was the speed of the traveling waves. 

Recurrent normalization (Fig. 3) 

ORGaNIC normalization was implemented with a dynamical system comprised of coupled 
neural integrators: 

 , (S26) 

 , (S27) 

 , (S28) 

 such that . (S29) 

The norm of y is the sum of squares of the real and imaginary parts, summed across neurons: 

 . (S30) 

This system of equations is a special case of Eqs. 1-2, in which f(y) is defined in terms of u, 
where the value of of u is the response of yet another modulator neuron. The input modulator b 
depended only on the input, and in particular was set to 1 when a cue was presented indicat-
ing the beginning of the trial, i.e.,  when the cue was presented. The recurrent modula-
tor a determined the gain of the recurrent drive. The value of a depended on the output re-
sponses (Eqs. S28-S29). The value of a also depended on the input, i.e., , such that it 
was ~1 at the end of the trial. 

The stability of the normalized responses did not depend on fine tuning of the synaptic 
weights in the circuit. Including normalization automatically stabilized the activity of the circuit 
when the recurrent drive was scaled by a few percent (Fig. 3b). The stability of the normalized 
responses did not depend on fine tuning any of the other synaptic weights in the circuit (i.e., 
any of the other terms in Eqs. S27-S29). We performed simulations perturbing the synaptic 
weights represented by each of the terms in Eqs. S27-S29. Multiplying by random values with-
in ±5% yielded virtually identical simulated responses and the responses were stable even 
when those terms were multiplied by random values ranging from 0.5x to 2x. 

The sustained activity and oscillatory activity circuits can achieve a stable state in which the 

yj t( ) = y ϕ j ,t( )
y ϕ,t( ) = y0 ϕ − st( )

τ y

dyj
dt

= −yj + b+

1+b+( )z j + 1
1+a+( ) ŷ j

τ b
db
dt

= −b+wbx
t x

τ a
da
dt

= −a+ u + ua+wax
t x

τ u
du
dt

= −u+u y 2
+ σb+

1+b+( )2 u > σb+

1+b+( )2

y 2
= yj

2

j
∑ = Re yj( )2 + Im yj( )2⎡

⎣
⎤
⎦

j
∑

wbx
t x =1

wax
t x =1
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output responses are normalized: 

 . (S31) 

To derive this result, we restrict the analysis to when  (noting that  was non-zero 
only at the end of the trial after the delay period), and when a and b are both ≥ 0 (noting that 
this will generally be the case in the stable state), and we write the stable state for each of 
Eqs. S26, S28, and S29: 

 and  (S32) 

  

  (S33) 

  (S34) 

Combining the last line of Eq. S32 with the last line of Eq. S33: 

 . (S35) 

Combining Eq. S35 with the last line of Eq. S34: 

  (S36) 

Summing both sides: 

yj
2
=

z j
2

σ 2 + z j
2

∑

wax
t x = 0 wax

t x

d yj
dt

= 0 yj = ŷ j

yj = b
1+b( ) z j + 1

1+a( ) ŷ j
yj = b

1+b( ) z j + 1
1+a( ) yj

yj
2
= b

1+b( )2 z j
2
+ 1

1+a( )2 yj
2

a
1+a( )2 yj

2
= b

1+b( )2 z j
2

yj
2
= 1+a

a( )2 b
1+b( )2 z j

2

da
dt

= 0

a = u + ua

a = 1+a( ) u

u = a
1+a( )2

du
dt

= 0

u = u y 2
+ σb

1+b( )2

u 1− y 2( ) = σb
1+b( )2

yj
2
= 1

u( ) b
1+b( )2 z j

2

yj
2
= 1− y 2( ) 1+b

σb( )2 b
1+b( )2 z j

2

yj
2
= 1

σ( )2 1− y 2( ) z j 2
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 , (S37) 

and simplifying: 

  (S38) 

Comparing Eq. S37 with the last line of Eq. S38: 

 . (S39) 

Substituting Eq. S39 into the last line of Eq. S36 yields the desired result (Eq. S31). 

To show that the ratios of the responses equal the ratios of the input drives, we combine 
Eq. S31 with the last line of Eq. S38: 

 . (S40) 

For the sequential activity circuit, the stable state is different: 

 and  , (S41) 

i.e., 

 (S42) 

 , 

which yields: 

 . (S43) 

The circuit expressed by Eqs. S26-S29 is but one example of an ORGaNIC normalization 
model. There is, in fact, a family of similar dynamical systems models, each of which compris-
es coupled neural integrators to implement normalization via recurrent amplification. All of the 
models in this family can achieve the same stable state (Eq. S31), but the various different 
models in this family imply different circuits with different dynamics. For example, one such 
variant avoids the square-root operation in Eq. S28 by adding another type of neuron to the 
circuit: 

y 2
= 1
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σ 2 y 2
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+ z 2 y 2
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⎟
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=
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 , (S44) 

 , (S45) 

 , (S46) 

 such that  , (S47) 

 such that . (S48) 

It is straightforward to show that Eqs. S44-S48 have the same stable state as Eqs. S26-29; 
setting Eqs. S46 and S47 to zero and solving for u yields the last line of Eq. S33.  

In another variant, we replaced 1/(1+a+) in Eq. 1 with 2aʹ/(1+aʹ), in which 0<aʹ<1. In the origi-
nal formulation, the activity of the modulator a+ = 0 during a delay period and non-zero during 
reset. But in this alternative formulation, the modulator aʹ = 1 during a delay period and zero 
during reset: 

 , (S49) 

 , (S50) 

 , (S51) 

 such that . (S52) 

We have also developed and implemented a generalization of this recurrent normalization 
circuit in which each neuron’s response can be normalized by an arbitrary (non-negative) 
weighted sum of the other neurons in the circuit. 

Extended Discussion  
Biophysical implementation 

A possible starting point for a biophysical implementation of ORGaNICs is depicted in 
Fig. S6 (although we are open to the possibility of alternative mechanistic implementations). 
The key idea is that the two terms corresponding to the input drive and recurrent drive are 
computed in separate dendritic compartments of a cortical pyramidal cell, so that each com-
partment can be modulated independently. The model comprises 3 compartments for the 
soma, the apical dendrite, and the basal dendrite. Each compartment is an RC circuit with a 
variable-conductance resistor and a variable current source. The capacitors represent the 
electrical capacitance of the neural membrane. The two fixed-conductance resistors (Ra and 
Rb) represent the resistances between the compartments (i.e., along the dendritic shafts). The 
membrane potentials vs, va, and vb correspond to the soma, the apical dendrite, and the basal 

τ y

dyj
dt

= −yj + b+

1+b+( )z j + 1
1+a+( ) ŷ j

τ b
db
dt

= −b+wbx
t x

τ a
da
dt

= −a+ v+ va+wax
t x

τ v
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dt
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v > 0

τ u
du
dt

= −u+u y 2
+ σb+

1+b+( )2 u > σb+

1+b+( )2
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dendrite, respectively. Some of the synaptic 
inputs are modeled as conductance changes 
(gva, gvb, gvs) while others are approximated as 
currents (Is, Ia, Ib). To implement ORGaNICs 
with this pyramidal-cell model, we specified the 
synaptic inputs (Is, Ia, Ib, gva, gvb, and gvs) to 
each neuron in terms of its input drive (y), re-
current drive (ŷ), and modulators (a and b). We 
also presumed that the output firing rate of a 
neuron was well-approximated by halfwave 
rectification of the membrane potential, and 
that negative values (corresponding to hyper-
polarization of the membrane potential vs) were 
represented by a separate neuron that re-
ceived the complementary synaptic inputs 
(identical for gva and gvb, and opposite in sign for Is, Ia, and Ib), analogous to ON and OFF cells 
(e.g., in the retina, LGN, or V1). Then the steady-state value for the somatic membrane-poten-
tial (i.e., when the synaptic inputs are constant) is: 

 (S53) 

 . 

where g is the total synaptic conductance (for derivation and detailed description of implemen-
tation, see 14). 

This is identical to the steady-state response of ORGaNICs (compare Eq. S53 with Eq. 1) 
when the total somatic conductance is g=1. There are a variety of combinations of the various 
parameters for which the total somatic conductance is approximately equal to 1 (14). Two par-
ticular interesting special cases correspond to when the modulators are both on (i.e., equal to 
1, such the responses are dominated by the input drive), and when the modulators are both off 
(i.e., equal to 0, during a delay period). ORGaNICs with multiple recurrent drive terms (see be-
low) can be implemented with separate dendritic compartments, each corresponding to a re-
current weight matrix and recurrent modulator. 

This is, of course, a simplified model of pyramidal cells, but plausible nonetheless. First, it 
has been argued that shunting inhibition does not yield division (15); in vivo neurons are rarely 
at their resting potential because of spontaneous background activity so a shunting synapse 
(assumed to be a chloride channel) predominantly causes hyperpolarization rather than divi-
sion. However, exact division can be implemented with two synaptic conductances, one excita-
tory and one inhibitory, that increase (and decrease) in proportion (16). And there is experi-
mental evidence that cortical circuits are capable of divisive suppression (17, 18). Second, 
there is no leak conductance in the dendrites. We can think of gvs = 1 as the somatic leak con-
ductance, but the model (as expressed above) has no dendritic leak conductances. If we were 
to add dendritic leak conductances, then the responses would decay during a delay period 
even when the modulators =0. One could compensate for this decay by scaling the recurrent 
weight matrix to have eigenvalues larger than one. Third, the input drive and recurrent drive in 
the model are mediated by synaptic currents, not conductance changes. A large body of the 
computational neuroscience literature likewise approximates synaptic inputs by current 

gvs = b+

1+b+( ) z+ 1
1+a+( ) ŷ

g = gvs + a+

Ra 1+a
+( ) +

b+

Rb 1+b
+( )

14

Ra
C gva IaC gvs Is
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C gvb Ib
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Figure S6. Biophysical implementation. Electri-
cal-circuit model of a pyramidal cell with separate 
RC circuit compartments for the soma, the apical 
dendritic tree, and the basal dendritic tree. gva, gvb, 
shunting synapses represented by variable con-
ductance resistors. Ia, Ib, synaptic input represent-
ed by variable current sources. vs, somatic mem-
brane potential. va, vb, membrane potentials, re-
spectively, in apical and basal dendrites. Ra, Rb, 
fixed-conductance resistors between compart-
ments (i.e., along the dendritic shafts). C, mem-
brane capacitance.
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sources. A push-pull arrangement of synaptic inputs can act like a current source (16). Doing 
so necessitates a high level of spontaneous activity so that increases in excitation are met with 
equal decreases in inhibition, and vice versa. But spontaneous activity in most cortical areas, 
although non-zero, is generally low. Instead, synaptic inputs could approximate current 
sources when the membrane potential remains far from the (excitatory and inhibitory) synaptic 
reversal potentials. 

Variations and extensions 

There is considerable flexibility in the formulation of ORGaNICs, with different variants cor-
responding to different hypothesized neural circuits (e.g., by a change of variables that might 
necessitate a different cell type or by including an additional cell type that performs an inter-
mediate step in the computation). In fact, there is a family of dynamical systems models, each 
of which comprises coupled neural integrators, with similar functionality. 

As noted above, there is a family of dynamical systems models, each of which comprises 
coupled neural integrators to implement normalization via recurrent amplification. Each of the 
various different models in this family imply different circuits with different dynamics.  

A variant of ORGaNICs is capable of prediction over time (14, 19). Information processing 
in the brain is dynamic; dynamic and predictive processing is needed to control behavior in 
sync with or in advance of changes in the environment. Without prediction, behavioral re-
sponses to environmental events will always be too late because of the lag or latency in senso-
ry and motor processing. Prediction is a key component of theories of motor control and in ex-
planations of how an organism discounts sensory input caused by its own behavior (20-22). 
Prediction has also been hypothesized to be essential in sensory and perceptual processing 
(23-25), and in navigation and the planning of action sequences (26). 

ORGaNICs build on Heeger’s Theory of Cortical Function (TCF) (19) that offers a frame-
work for understanding how the brain accomplishes three key functions: (i) inference: percep-
tion is nonconvex optimization that combines sensory input with prior expectation; (ii) explo-
ration: inference relies on neural response variability to explore different possible interpreta-
tions; (iii) prediction: inference includes making predictions over a hierarchy of timescales. TCF 
has a single modulator for all of the neurons in each layer whereas ORGaNICs may have a 
separate pair of modulators, aj and bj, for each neuron yj. ORGaNICs also have a more general 
form for the recurrent weight matrix. But TCF includes a feedback drive across the layers of a 
stacked architecture, in addition to the input drive and recurrent drive. In some states (depend-
ing on the values of the modulators), neural responses are dominated by the feedforward drive 
and TCF is identical to a conventional feedforward model (e.g., deep net), thereby preserving 
all of the desirable features of those models. In other states, TCF is a generative model that 
constructs a sensory representation from an abstract representation, like memory recall. In still 
other states, TCF combines prior expectation with sensory input, explores different possible 
perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. A variant 
of ORGaNICs may be stacked (like TCF) to include feedback connections and the capability of 
a generative model, but with greater flexibility and computational power because of the general 
form for the recurrent weight matrix, and because there may be a separate pair of modulators 
for each output neuron. 

There are various formulations for how to compute the modulators. According to Eq. 2, the 
recurrent modulators are a nonlinear function of the responses (see above for details), but 
could instead be linear sums of the responses: Way y and Wby y. Other variants (particularly for 
complex-valued responses) compute linear sums of the modulus of the responses, Way |y|, or 
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linear sums of the various readouts: Way r, Way r+, Way r±. And likewise for the input modula-
tors. According to Eq. 1, there is a separate pair modulators aj and bj for each neuron, but this 
need not be the case. Subpopulations of neurons might share some modulators. For example, 
all 36 neurons shared a single pair of modulators in the various example circuits above. Anoth-
er option would be to have a number of basis modulators that are shared: 

 , (S54) 

where ak are the responses of the basis modulators, wjk are weights, and the number of basis 
modulators K is less then the number of neurons N. And likewise for the input modulators bj. 
This idea is commensurate with an analysis of experimental data demonstrating a small num-
ber of separate time-varying modulatory signals, shared across a population neurons (27). It 
also dovetails with the observation that some of the modulators are computed via thalamocor-
tical loops (28-31), because the number of neurons in a thalamic nucleus is much smaller than 
the number of neurons in the corresponding cortical area. In yet another variant, the two modu-
lators are coordinated to govern balance between input drive and recurrent drive, like λ in 
Eq. S5. 

Optionally, the encoding and readout weights may have components that are orthogonal to 
the eigenvectors of the recurrent weight matrix (see above for details), and non-zero sponta-
neous firing rates can be accommodated by adding offsets to each neuron’s input drive (14). 
For example, if there is a non-zero offset added to the recurrent drive, then the corresponding 
component of the responses will reflect the elapsed time interval since the beginning of a delay 
period. 

Left open is how to determine the weights in the various weight matrices: the encoding ma-
trix (Wzx), the recurrent weight matrix (Wŷy ), the readout matrix (Wry), and the modulator weight 
matrices (Wax, Wbx). Some of the weight matrices (e.g., the recurrent weights) might be pre-
specified, emerging during development, resulting in stereotypical connectivity within a local 
circuit. A supervised learning approach would estimate the weights via gradient descent (i.e., 
back propagation), given target values for the response time-courses (or the readout time-
courses). To use back propagation, the recurrent weight matrix needs to be rescaled after each 
gradient step so that to the eigenvalue with the largest real part is no greater than one. But the 
brain is unlikely to have access to such target values sampled over time. Another approach 
would be an unsupervised learning algorithm based on minimizing prediction error over time 
(19). 

The readouts were different for each of the example circuits. For the sustained activity cir-
cuits (Figs. 2 and 6), linear readouts reconstructed the input drive (and the target location). For 
the circuit exhibiting oscillatory dynamics (Fig. S4), a (sign-corrected) nonlinear readout was 
used to reconstruct. For the motor control circuits (Figs. 5 and 7), a different linear readout 
was used to convert spatial patterns of input (premotor) activity to temporal profiles of output 
(motor control) activity. We did not attempt to reconstruct the input stimulus from the readout, 
because recovering the input is not the goal for motor control. Likewise, we did not reconstruct 
the input from the sequential activity circuit (Fig. 4); The modulus readout enabled the output 
to be constant over time (i.e., supporting maintenance), but this readout was not capable of 
reconstructing the input drive. We do not, in general, mean to imply that the brain attempts to 
reconstruct an input stimulus from the responses. Reconstruction is useful for short-term 
memory, but not for other cognitive functions. Rather, we hypothesize that the brain relies on a 

aj = wjkak
k

K

∑

16



ORGaNICs supplementary material       September 1, 2019

set of canonical (nonlinear) neural computations, repeating them across brain regions so that 
each stage of computation transforms the information it receives (32-36). The readout is part of 
this nonlinear transformation from one stage of processing to the next. 

ORGaNICs can be combined with so-called “activity-silent” models of working memory (37-
40). Some electrophysiological studies have found that activity can be modest, or even entirely 
absent, during a working memory delay period (7, 38, 41). According to “activity-silent” models 
of working memory, information is maintained via short-term synaptic plasticity (STSP). This 
idea is complementary to, not mutually exclusive of persistent (sustained, sequential, or oscil-
lating) activity. Specifically, the third line of Eq. 1 can be modified to include STSP: 

 .  (S55) 

The value of gj is the synaptic gain of the jth neuron, presumed to depend on the recent history 
of that neuron’s firing rate (37, 42). 

Implications for neuroscience 

We propose that ORGaNICs can serve as a unifying theoretical framework for neural dy-
namics, a canonical computational motif based on recurrent amplification, gated integration, 
reset, and controlling the effective time constant. Rethinking cortical computation in these 
terms should have widespread implications, some of which are elucidated in the Discussion. 
Some additional implications are as follows. 

1) Sequential activity and internal models. ORGaNICs can be used to maintain and manip-
ulate information over time. One of our example circuits encoded a representation of a pair of 
targets and then updated the representation (of the remembered locations) coincident with an 
eye movement (Fig. 6). This process of updating the representation of a visual target has been 
called remapping (43-45). The responses during the update exhibited a traveling wave of activ-
ity (i.e., sequential activity), commensurate with measurements of neural activity during 
remapping (46). We can think of this as an internal model (also called a forward model) of the 
movement. Internal models are hypothesized to predict the result of a movement plan and to 
explain how an organism discounts sensory input caused by its own behavior (20-22, 47). Our 
simulation results are also reminiscent of an ostensibly different class of phenomena: internal-
ly-generated sequential activity in parietal cortex, prefrontal cortex, and hippocampus during 
navigation, motor planning, and episodic recall (26, 42, 48, 49). We hypothesize that these 
forms of sequential activity can be explained by the same gated integration computation that 
we used for spatial updating, i.e., updating an internal model. 

2) Dimensionality-reduction. Sensory, cognitive, and motor functions depend on the interac-
tions of many neurons. It has become increasingly popular to use dimensionality-reduction al-
gorithms to analyze measurements of neural activity recorded simultaneously in large numbers 
of neurons (50, 51). These data-analysis algorithms presume that the neural activity over time 
is confined to a low-dimensional manifold, much lower than the number of neurons recorded. 
The simplest of these algorithms use principal components analysis or factor analysis, thereby 
presuming that the neural activity is confined to a linear subspace. The simulated responses of 
ORGaNICs are indeed confined to a linear subspace at any moment in time, but the subspace 
changes over time with changes in state. The responses are in the subspace of the encoding 
matrix when the modulators are both large. The responses are in the subspace of the eigen-
vectors of the recurrent weight matrix (with corresponding eigenvalues that have real parts =1) 
when the input modulator b=0 and when Wax x = 0 for long enough such that the other compo-
nents decay. The responses can be in any of an infinite number of subspaces for intermediate 

ŷ =WŷyD(g)y
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values of the modulators and with non-zero inputs. 

3) Oscillations and brain state. We found that changes in state are associated with mea-
surable changes in response dynamics (Fig. 3b). Simulated responses exhibited high frequen-
cy oscillations following target onset, and lower frequency oscillations during the delay period, 
that were synchronized across all neurons in the circuit. The change in oscillation frequency 
corresponded to a change in state, induced by changing the modulator responses. This is 
commensurate with experimental observations that different brain states are associated with 
particular oscillation frequencies (52-61). The high-frequency oscillations emerged in our simu-
lations because of the multiplicative modulator underlying normalization; the oscillation fre-
quency depended on the membrane time constants, and would have depended also on axon 
length if we were to include conduction delays. The emergence of high-frequency oscillations 
dovetails with observations that gamma oscillations are linked to normalization (62-68). But 
this multiplicative (i.e., nonlinear) process is different from most previous models of gamma os-
cillations (65, 69-74), which fundamentally rely on linear recurrent neural oscillators (see above 
for a primer on neural oscillators).  

4) E:I balance. The neurons in each of the example circuits in this paper all had the same 
values for the time constants. That can be generalized, e.g., so that inhibitory neurons have a 
slower time constant (and consequently delayed responses) compared to excitatory neurons 
(14). If different neurons in the circuit have different time constants, then the value(s) of the 
time constant(s), in combination with the eigenvalues of the recurrent weight matrix, determine 
whether or not there is sustained activity or oscillations, whether the oscillations are stable or 
decay, and the frequencies of the oscillations. Consequently, the stability of ORGaNICs (and 
related neural integrator circuits) depends on a combination of the recurrent weight matrix and 
the relative values of the intrinsic time constants. A differential delay between excitatory and 
inhibitory neurons can compensate for an imbalance in the excitatory versus inhibitory synaptic 
weights, and vice versa. 

Implications for machine learning 

1) Go complex. Simple harmonic motion is everywhere. For many machine learning (ML) 
applications (e.g., speech processing, music processing, analyzing human movement), the dy-
namics of the input signals may be characterized with damped oscillators, in which the ampli-
tudes, frequencies and phases of the oscillators may change over time. The complex-valued 
weights and responses in ORGaNICs are well-suited for these kinds of signals. Likewise, we 
propose using damped-oscillator basis functions as a means for predicting forward in time (14, 
19). There has been relatively little focus on complex-valued recurrent neural networks 
(75-89), and even less on complex-valued LSTMs (90-94). 

2) Stability and vanishing gradients. To ensure stability and to avoid exploding gradients 
during learning, the recurrent weight matrix may be rescaled so that the eigenvalue with the 
largest real part is no larger than 1. This rescaling may be added as an extra step during learn-
ing after each gradient update. Doing so should help to avoid vanishing gradients by using 
halfwave rectification instead of a sigmoidal output nonlinearity (93).  

3) Normalization. Incorporating normalization can make the computation robust with re-
spect to imperfections in the recurrent weight matrix (Fig. 3). Normalization maintains the ra-
tios of the responses (Eq. 4), unlike sigmoids or other static output nonlinearities (also called 
transfer functions) that are typically used in ML systems. 

4) Multiple recurrent terms. The modulators in ORGaNICs, analogous to the input and reset 

18



ORGaNICs supplementary material       September 1, 2019

gates in LSTMs, perform multiple functions (see Discussion). ORGaNICs may have multiple 
recurrent weight matrices, each multiplied by different recurrent modulators, to perform combi-
nations of these functions (Eq. 6 and Figs. 6-7). This is unlike an LSTM that has only a single 
recurrent weight matrix and a single reset gate. 

5) Time warping. ORGaNICs offer a means for time warping (Fig. 7). Invariance with re-
spect to compression or dilation of temporal signals (e.g., fast vs. slow speech) is a challenge 
for many ML applications (95). ML systems typically attempt to circumvent this problem by 
learning models with every possible tempo. ORGaNICs might be applied to solve this problem 
much more efficiently, eliminating redundancy and increasing generalization, with less training. 

6) Neuromorphic implementation. Given the biophysical (equivalent electrical circuit) im-
plementation of ORGaNICs (Fig. S6), it may be possible to design and fabricate analog VLSI 
ORGaNICs chips. Analog circuitry may be more energy-efficient in comparison to representing 
and processing information digitally (96, 97). Such an analog electrical-circuit may be config-
ured to download various parameter settings (e.g., the weight matrices), computed separately 
offline. 
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