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Most models of sensory processing in the brain have a feedforward
architecture in which each stage comprises simple linear filtering
operations and nonlinearities. Models of this form have been used
to explain a wide range of neurophysiological and psychophysical
data, and many recent successes in artificial intelligence (with deep
convolutional neural nets) are based on this architecture. However,
neocortex is not a feedforward architecture. This paper proposes a
first step toward an alternative computational framework in which
neural activity in each brain area depends on a combination of
feedforward drive (bottom-up from the previous processing stage),
feedback drive (top-down context from the next stage), and prior
drive (expectation). The relative contributions of feedforward drive,
feedback drive, and prior drive are controlled by a handful of state
parameters, which I hypothesize correspond to neuromodulators
and oscillatory activity. In some states, neural responses are
dominated by the feedforward drive and the theory is identical to
a conventional feedforward model, thereby preserving all of the
desirable features of those models. In other states, the theory is a
generative model that constructs a sensory representation from an
abstract representation, like memory recall. In still other states, the
theory combines prior expectation with sensory input, explores
different possible perceptual interpretations of ambiguous sensory
inputs, and predicts forward in time. The theory, therefore, offers
an empirically testable framework for understanding how the
cortex accomplishes inference, exploration, and prediction.
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Perception is an unconscious inference (1). Sensory stimuli are
inherently ambiguous so there are multiple (often infinite) pos-

sible interpretations of a sensory stimulus (Fig. 1). People usually
report a single interpretation, based on priors and expectations that
have been learned through development and/or instantiated through
evolution. For example, the image in Fig. 1A is unrecognizable if you
have never seen it before. However, it is readily identifiable once you
have been told that it is an image of a Dalmatian sniffing the ground
near the base of a tree. Perception has been hypothesized, conse-
quently, to be akin to Bayesian inference, which combines sensory
input (the likelihood of a perceptual interpretation given the noisy
and uncertain sensory input) with a prior or expectation (2–5).
Our brains explore alternative possible interpretations of a

sensory stimulus, in an attempt to find an interpretation that best
explains the sensory stimulus. This process of exploration hap-
pens unconsciously but can be revealed by multistable sensory
stimuli (e.g., Fig. 1B), for which one’s percept changes over time.
Other examples of bistable or multistable perceptual phenomena
include binocular rivalry, motion-induced blindness, the Necker
cube, and Rubin’s face/vase figure (6). Models of perceptual
multistability posit that variability of neural activity contributes to
the process of exploring different possible interpretations (e.g.,
refs. 7–9), and empirical results support the idea that perception
is a form of probabilistic sampling from a statistical distribution of
possible percepts (9, 10). This noise-driven process of exploration
is presumably always taking place. We experience a stable percept
most of the time because there is a single interpretation that is
best (a global minimum) with respect to the sensory input and the
prior. However, in some cases, there are two or more interpre-
tations that are roughly equally good (local minima) for bistable
or multistable perceptual phenomena (9, 11, 12).

Prediction, along with inference and exploration, may be a
third general principle of cortical function. Information process-
ing in the brain is dynamic. Visual perception, for example, occurs
in both space and time. Visual signals from the environment enter
our eyes as a continuous stream of information, which the brain
must process in an ongoing, dynamic way. How we perceive each
stimulus depends on preceding stimuli and impacts our processing
of subsequent stimuli. Most computational models of vision are,
however, static; they deal with stimuli that are isolated in time or at
best with instantaneous changes in a stimulus (e.g., motion velocity).
Dynamic and predictive processing is needed to control behavior in
sync with or in advance of changes in the environment. Without
prediction, behavioral responses to environmental events will always
be too late because of the lag or latency in sensory and motor
processing. Prediction is a key component of theories of motor
control and in explanations of how an organism discounts sensory
input caused by its own behavior (e.g., refs. 13–15). Prediction has
also been hypothesized to be essential in sensory and perceptual
processing (16–18). However, there is a paucity of theories for how
the brain performs perceptual predictions over time (19–23), noting
that many of the so-called “predictive coding theories” of sensory
and perceptual processing do not predict forward in time and are
not in line with physiological and psychological phenomena (Dis-
cussion). Moreover, prediction might be critical for yet a fourth
general principle of cortical function: learning (Discussion).
The neocortex accomplishes these functions (inference, ex-

ploration, prediction) using a modular design with modular cir-
cuits and modular computations. Anatomical evidence suggests
the existence of canonical microcircuits that are replicated across
cortical areas (24, 25). It has been hypothesized, consequently,
that the brain relies on a set of canonical neural computations,
repeating them across brain regions and modalities to apply
similar operations of the same form, hierarchically (e.g., refs. 26
and 27). Most models of sensory processing in the brain, and
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many artificial neural nets (called deep convolutional neural nets),
have a feedforward architecture in which each stage comprises a
bank of linear filters followed by an output nonlinearity (Fig. 2 A
and B). These hierarchical, feedforward processing models have
served us well. Models of this form have been used to explain a
wide range of neurophysiological and psychophysical data, and
many recent successes in artificial intelligence are based on this
architecture. However, neocortex is not a feedforward architec-
ture. There is compelling evidence for a number of distinct,
interconnected cortical areas (e.g., 30 or so in visual cortex), but
for every feedforward connection there is a corresponding feed-
back connection, and there is little or no consensus about the
function(s) of these feedback connections (28).
Perceptual phenomena also suggest a role for feedback in

cortical processing. For example, memory contributes to what we
perceive. Take another look at the Dalmatian image (Fig. 1A);
then close your eyes and try to visualize the image. This form of
memory recall (called visual imagery or mental imagery) gener-
ates patterns of activity in visual cortex that are similar to sensory
stimulation (e.g., ref. 29). One way to conceptualize visual im-
agery is to think of it as an extreme case of inference that relies
entirely on a prior/expectation with no weight given to the
sensory input.
This paper represents an attempt toward developing a unified

theory of cortical function, an empirically testable computational
framework for guiding both neuroscience research and the design
of machine-learning algorithms with artificial neural networks. It is
a conceptual theory that characterizes computations and algo-
rithms, not the underlying circuit, cellular, molecular, and bio-
physical mechanisms (Discussion). According to the theory, neural
activity in each brain area depends on feedforward drive (bottom-
up from a previous stage in the processing hierarchy), feedback
drive (top-down context from a subsequent processing stage), and
prior drive (expectation). The relative contributions of feedforward
drive, feedback drive, and prior drive are controlled by a handful of
state parameters. The theory makes explicit how information is
processed continuously through time to perform inference, explo-
ration, and prediction. Although I focus on sensation and percep-
tion (specifically vision), I hypothesize that the same computational
framework applies throughout neocortex.
The computational framework presented here, of course, in-

cludes components previously proposed in computational/theo-
retical neuroscience, image processing, computer vision, statistics,
and machine learning with artificial neural networks (SI Appen-
dix). I was particularly influenced by an underappreciated signal-
processing paper by José Marroquin et al. (30).

Results
In a typical feedforward model of visual processing, the un-
derlying selectivity of each neuron is hypothesized to depend on
a weighted sum of its inputs, followed by an output nonlinearity
(Fig. 2 A and B). The weights (which can be positive or negative)

differ across neurons conferring preferences for different stim-
ulus features. For neurons in primary visual cortex (V1), for
example, the choice of weights determines the neuron’s selec-
tivity for orientation, spatial frequency, binocular disparity (by
including inputs from both eyes), etc. Taken together, neurons
that have the same weights, but shifted to different spatial lo-
cations, are called a “channel” (also called a “feature map” in the
neural net literature). The responses of all of the neurons in a
channel are computed as a convolution over space (i.e., weighted
sums at each spatial position) with spatial arrays of inputs from
channels in the previous stage in the processing hierarchy, fol-
lowed by the output nonlinearity. The examples in this paper,
only for the sake of simplicity, used quadratic output nonlinear-
ities, but a computation called “the normalization model” has
been found to be a better model (both theoretically and empiri-
cally) of the output nonlinearity (refs. 31 and 32; SI Appendix).
Neurons in each successive stage of visual processing have been
proposed to perform the same computations. According to this
idea, each layer 2 neuron computes a weighted sum of the re-
sponses of a subpopulation of layer 1 neurons, and then the re-
sponse of each layer 2 neuron is a nonlinear function of the
weighted sum. (I am using the term “layer” to refer to subsequent
stages of processing, following the terminology used in the neural
network literature, not intended to map onto the layered ana-
tomical structure of the cortex within a brain area.)
Here, I take a different approach from the feedforward pro-

cessing model, and instead propose a recurrent network (Fig. 2 C
and D). Similar to the feedforward network, there is again a
hierarchy of processing stages, each comprising a number of
channels. Also similar to the feedforward network, all neurons in
a channel perform the same computation, with shifted copies of
the same weights, and an output nonlinearity. However, in ad-
dition, the network includes a feedback connection for every

Fig. 1. Perceptual inference. (A) Prior expectation. Reprinted with permis-
sion from ref. 84. (B) Perceptual multistability. Reprinted with permission
from ref. 85.
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Fig. 2. Neural net architecture and computation. (A) Feedforward archi-
tecture. Each box represents a channel, comprising a large number of neu-
rons (small circles). All neurons in a channel perform the same computation,
with shifted copies of the same weights. (B) Neural computation module in
the feedforward network. Each neuron computes a weighted sum of its
inputs, followed by a squaring output nonlinearity. (C) Recurrent architec-
ture. (D) Neural computation module in the recurrent network. Feedforward
weights (same as B) drive the neuron’s response to be the same as A, but this
feedforward drive competes with prior drive and feedback drive. Dashed
line, the prior can be computed recursively over time.
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feedforward connection (Fig. 2C, two-sided arrows, and Fig. 2D).
Each neuron also has another input that I call a prior, which can
be either prespecified or computed recursively (Fig. 2D). The
response of each neuron is updated over time by summing
contributions from the three inputs: feedforward drive, feedback
drive, and prior drive (Fig. 2D). Each neuron also provides two
outputs: feedforward drive to the next layer, and feedback drive
to the previous layer. Each neuron performs this computation
locally, based on its inputs at each instant in time. However, the
responses of the full population of neurons (across all channels
and all layers) converge to minimize a global optimization cri-
terion, which I call an energy function. First, I define the energy
function. Then, I derive (simply by taking derivatives with the
chain rule) how each neuron’s responses are updated over time.
The starting point is the hypothesis that neural responses

minimize an energy function that represents a compromise be-
tween the feedforward drive and prior drive (see Table 1 for a
summary of notation):

E=
XL
i=1

αðiÞ
"
λðiÞ
X
j

�
f ðiÞj

�2
+
�
1− λðiÞ

�X
j

�
pðiÞj
�2#

, [1]

f ðiÞj = yðiÞj − zðiÞj   ðfeedforward  driveÞ,

pðiÞj = yðiÞj − ŷðiÞj   ðprior  driveÞ,

zðiÞj =
�
vðiÞj
�2
  ðquadratic  output  nonlinearityÞ,

vðiÞj =
X
k

wði−1Þ
jk yði−1Þk   ðweighted  sumÞ.

The variables (y, v, z, and ŷ) are each functions of time; I have
omitted time in this equation to simplify the notation, but I deal
with time and dynamics below.
The values of y are the responses (proportional to firing rates)

of the neurons in each layer of the network, where y(0) (layer 0)
comprises the inputs to the multilayer hierarchy. The superscript
(i) specifies the layer in the hierarchy. For example, layer 1 might
correspond to neurons in the lateral geniculate nucleus (LGN) of
the thalamus, which receives inputs from the retina (noting that
there is no feedback to the retina), and layer 2 might correspond
to neurons in V1 that receive direct inputs from the LGN, etc.
The first term of E drives the neural responses to explain the

input from the previous layer; f is called the feedforward drive
(Eq. 1, second line). With only this term, the neural responses

would be the same as those in a purely feedforward model. The
values of v are weighted sums of the responses from the previous
layer, and w are the weights in those weighted sums (Eq. 1, fifth
line). The weights are presumed to be the same for all neurons in
a channel, but shifted to different spatial locations (i.e., the
values of v can be computed with convolution over space). The
values of z determine the feedforward drive, after the quadratic
output nonlinearity (Eq. 1, fourth line).
The second term of E drives the neural responses to match a

prior; p is called the prior drive (Eq. 1, third line). With only this
term, the neural responses would be driven to be the same as the
values of ŷ. The values of ŷ might, for example, be drawn from
memory and propagated via the feedback drive to a sensory rep-
resentation (as detailed below), and/or used to predict forward in
time (also detailed below). I show that the values of ŷ can be
interpreted as an implicit representation of a prior probability
distribution (see Bayesian Inference: Cue Combination and SI Ap-
pendix), so I use the term “prior” when referring to ŷ. For some of
the examples, however, it is more appropriate to think of ŷ as target
values for the responses. For other examples, the values of ŷ can be
interpreted as predictions for the responses. (I see it as a feature
that the various components of the theory can be interpreted in
different ways to connect with different aspects of the literature.)
The α and λ (0 < λ < 1) are state parameters, which I hy-

pothesize change over time under control of other brain systems
(Discussion and SI Appendix). The values of α determine the
relative contribution of each layer to the overall energy, and
the values of λ determine the trade-off between the two terms in
the energy function at each layer. Changing the values of α and λ,
as demonstrated below, changes the state of the neural network.
With only the first term (i.e., λ = 1), for example, the neural re-
sponses are determined by the feedforward drive, and the network
behaves exactly like a conventional feedforward network. With
only the second term (i.e., λ = 0), the neural responses follow the
prior and completely ignore the sensory inputs.
For simplicity, Eq. 1 denotes a network with only one channel

in each layer, but it can easily be extended to have multiple
channels per layer (SI Appendix). It is a global optimization
criterion; the summation is over all neurons in all channels and
all layers, and a summation over time can also be included (see
Prediction and SI Appendix).
The neural responses are modeled as dynamical processes that

minimize the energy E over time. Taking derivatives of Eq. 1
(using the chain rule):

τ
dyðiÞj
dt

=−
dE

dyðiÞj
=−2αðiÞλðiÞf ðiÞj + 4αði+1Þλði+1ÞbðiÞj − 2αðiÞ

�
1− λðiÞ

�
pðiÞj ,

[2]

bðiÞj =
X
k

h
yði+1Þk − zði+1Þk

i
vði+1Þk wðiÞ

kj   ðfeedback  driveÞ.

According to this equation, neural responses are updated over time
because of a combination of feedforward drive f, feedback drive b,
and prior drive p. The first term f is the same feedforward drive as
above, and the third term p is the same prior drive as above. The
middle term b, the feedback drive, is new. The feedback drive
drops out when taking the derivative of Eq. 1 because the response
of each neuron appears twice in that equation: (i) the derivative of
[yj

(i) − zj
(i)]2 gives the feedforward drive; (ii) the derivative of [yk

(i+1) −
zk
(i+1)]2 gives the feedback drive because zk

(i+1) depends on yj
(i) (SI

Appendix). The prior drive contributes to minimizing the second
term of E in Eq. 1. The feedforward drive and the feedback drive
both contribute to minimizing the first term of E in Eq. 1. The
combined effect of the feedforward drive and the feedback drive is
that if the response of a neuron is larger than the value provided
by the feedforward processing of its inputs, then its response gets
tamped down and its inputs get cranked up; or vice versa if

Table 1. Notation for Eqs. 1 and 2

Symbol Description

yðiÞj ðtÞ Responses over time of the jth neuron in layer ðiÞ
yð0Þj ðtÞ Inputs (layer 0)

ŷðiÞj ðtÞ Prior expectation (target values) for the responses of the
jth neuron in layer ðiÞ

wði−1Þ
jk Weights from neuron k in layer ðiÞ − 1 to neuron j in

layer ðiÞ
vðiÞj ðtÞ Weighted sum of the responses from the previous layer

zðiÞj ðtÞ Weighted sum followed by quadratic output nonlinearity

f ðiÞj ðtÞ Feedforward drive for the jth neuron in layer ðiÞ
pðiÞj ðtÞ Prior drive for the jth neuron in layerðiÞ
bðiÞj ðtÞ Feedback drive for the jth neuron in layer ðiÞ. See Eq. 2
αðtÞ, λðtÞ State parameters
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the response of a neuron is smaller than the feedforward value.
Specifically, the feedback to layer (i) depends on the mismatch
between the responses in the next layer (i + 1) and the feedfor-
ward drive from layer (i) to layer (i + 1); this mismatch is then
transformed back to layer (i) through the transpose of the weight
matrix (SI Appendix). The value of τ is a time constant that I
interpret as a combination of the time constant of a neuron’s cell
membrane and the time constant of synaptic integration.

Inference. Depending on the state parameters (the values of α
and λ at each layer), the responses are dominated by sensory
input, prior expectation, or a combination of the two.
As a simple example, a three-layer network was implemented

that computed a cascade of exclusive-or (XOR) operations (Fig.
3A). The response of the layer 3 neuron was 1 if the inputs at layer
0 consisted of a single 1 with three 0s or a single 0 with three 1s. The
feedforward drive of each neuron was equal to the square of the
difference between its inputs: (0 − 0)2 = 0, (0 − 1)2 = 1, (1 − 0)2 = 1,
(1 − 1)2 = 0. The weights (−1, 1) were the same for each neuron.
The network behaved like a feedforward model for some

values of the state parameters (Fig. 3B). Responses of the four
neurons in layer 1 rapidly converged to values matching the input
(Fig. 3B, bottom panel). Responses of the two neurons in layer 2
and the neuron in layer 3 each converged more slowly to values
determined by the feedforward drive (Fig. 3B, top two panels).
Because of the choice of state parameters, the energy was domi-
nated by the feedforward drive (Eq. 1, first term) in layer 1, whereas
the prior (Eq. 1, second term) was ignored in all three layers.
The network behaved like a simple example of memory recall or

visual imagery for other values of the state parameters (Fig. 3C).
The state parameters were set to values so that the energy function
(Eq. 1) was dominated by the layer 3 prior. Consequently, the re-
sponse of the layer 3 neuron converged to a value determined by its
prior (Fig. 3C, top panel). The responses of the neurons in layers 2
and 1 converged more slowly to values that were consistent with
the layer 3 prior (Fig. 3C, bottom two panels). Hence, the value of
the prior for the layer 3 neuron propagated back to generate or
reconstruct a representation in layer 1. This reconstructed repre-
sentation in layer 1 corresponded to a sensory input that would
have evoked, in a feedforward network, the same layer 3 response.
The reconstruction emerged over time; the rise in the neural re-
sponses were delayed by ∼100 ms in layer 2 relative to layer 3, and
in layer 1 relative to layer 2, even though the time constant was
short (τ = 5 ms). Rerunning the simulation yielded different re-
sults, depending on the initial conditions (i.e., different initial val-
ues for the responses for each of the neurons). However, in all
cases, the responses of the layer 1 neurons converged to values that

were consistent with the layer 3 prior (i.e., a single 1 with three 0s
or a single 0 with three 1s). The layer 3 prior was ambiguous; it did
not reconstruct a specific memory but rather a class of memories
because there were multiple local minima in the energy function:
any input consisting of a single 1 with three 0s or a single 0 with
three 1s was consistent with setting the layer 3 prior to 1.
When presented with an ambiguous sensory input, the network

was biased by a prior, analogous to the Dalmatian image (Fig. 1A).
For example, when the input was specified to be (0.5, 0, 0, 0), and
the prior for the layer 3 neuron was set to 1, then the global
minimum energy state corresponded to responses of the layer 1
neurons of approximately (1, 0, 0, 0). Alternatively, when the prior
for the layer 3 neuron was set to 0, then the responses of the layer
1 neurons converged to (0, 0, 0, 0). The sensory input was the
same and the state parameters were the same, but the network
converged to a different solution, depending on the layer 3 prior.

Exploration. The network explored different possible perceptual
interpretations (exhibiting bistability, analogous to Fig. 1B) when
the input and prior were inconsistent with one another (Fig. 4).
The input was specified to be (1, 0, 1, 0) and the prior for the
layer 3 neuron was set to 1, such that the inputs were in-
compatible with the layer 3 prior. Bistability emerged by adding
noise to the neural responses. The layer 1 responses remained
close to the inputs (Fig. 4, bottom panel) and the response of the
layer 3 neuron remained close to its prior (Fig. 4, top panel).
However, the responses of the layer 2 neurons changed over time,
alternating between (1, 0) and (0, 1), which corresponded to two
local minima in the energy function. The noise was statistically
independent across neurons and over time, but nonstationary. In
particular, the time course of the SD had a 1/f amplitude spectrum
(Discussion and SI Appendix), but similar results were obtained
when the SD modulated periodically (e.g., at 10 Hz) instead of
having a 1/f amplitude spectrum, or when the noise SD was a sum
of periodic and 1/f components.

Bayesian Inference: Cue Combination. These principles, inference
based on prior expectation (often formalized as Bayesian in-
ference) and exploration of alternative possible interpretations
(hypothesized to be driven by neural response variability), apply
not only to perception but also to motor control, motor learning,
and cognition (e.g., refs. 33–38). Consequently, there is consider-
able interest in how neural populations can represent uncertainty
and priors, and perform probabilistic inference and probabilistic
learning (2–4, 10, 39–44).
The two terms of Eq. 1 are analogous to Bayesian inference,

with the first term representing a negative log likelihood and the
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3, respectively. (C) Driven by memory. Colors correspond to A, Right. Input: y(0) = (0,0,0,0). Prior: ŷ = 1 for the layer 3 neuron and ŷ = 0 for all other neurons in
the network. State: λ = (1, 1, 0.1) and α = (0.001, 0.1, 1). Time constant: τ = 5 ms. See SI Appendix for details.
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second term representing a prior probability. Following pre-
vious work on probabilistic population codes (4, 21, 40), the
idea is that the neural responses encode an implicit represen-
tation of the posterior. Indeed, the values of ŷ can be inter-
preted as an implicit representation of a prior probability
distribution, and the values of y can be interpreted as an im-
plicit representation of the posterior (SI Appendix). The qua-
dratic function in the first term of Eq. 1 corresponds to a
normal distribution for the noise in the feedforward drive and
the quadratic in the second term determines the prior proba-
bility distribution. Different cost functions (other than qua-
dratics) would correspond to different statistical models of the
noise and prior (e.g., refs. 45 and 46). I cannot claim that the
theory is, in general, Bayesian, but there are special cases that
approximate Bayesian inference.
To make explicit the link to Bayesian inference, I use cue

combination as an example. In a cue combination task, an
observer is presented with two or more sources of information
(cues) about a perceptual variable. For example, early empiri-
cal work on cue combination used two depth cues (e.g., stereo
and motion parallax) (47). One of the cues is typically more
reliable than the other, and the reliability of both cues may vary
from one trial to the next of the experiment (e.g., by varying the
contrast or visibility of one or both cues). Both cues may be
consistent with the same interpretation or they may be in
conflict, such that each cue supports a slightly different in-
terpretation. Observers in such an experiment are instructed to
indicate their percept (e.g., depth estimate). A series of studies
have reported that percepts depend on a combination of the
two cues, the reliability of both cues, and a prior. Cue combi-
nation tasks have, consequently, been formalized as Bayesian
estimation (47), and some empirical results suggest that cue
combination is approximately Bayes-optimal (e.g., refs. 5, 48,
and 49). The broader literature on psychophysics and percep-
tual decision-making can be encompassed by this same for-
malism, with only one cue instead of two.
I implemented a network that combines information from two

sensory cues with a prior to simulate a cue combination experi-
ment; the network was designed to approximate optimal
Bayesian cue combination. The network consisted of a layer of
output neurons and two sets of input neurons (Fig. 5A). Each of
the input neurons was tuned for depth, responding most strongly
to a preferred depth value (Fig. 5B). Both sets of input neurons
had the same tuning curves but responded to each of two

different cues (e.g., stereo and motion parallax). The stimulus
strength of each of the two cues scaled the gain of the input
neuron’s responses, and the input neuron’s responses were pre-
sumed to be noisy (additive, independent, normally distributed
noise). The feedforward drive for each output neuron was a
weighted sum of the two input neurons with the corresponding
tuning curve (SI Appendix), so the output neurons had the same
tuning curves as the input neurons. A target value ŷ was specified
for the response of each output neuron. These target values
could be learned, for example, as the mean response of each
output neuron, averaged across a series of practice/training tri-
als. These target values for the responses corresponded to a prior
probability distribution over the stimulus depth values; each
neuron responded selectively to a preferred stimulus depth so a
large target value for a particular neuron meant that the corre-
sponding stimulus depth was more likely. Consequently, the
vector of ŷ values can be transformed to a function that is pro-
portional to a prior probability distribution (Fig. 5C; SI Appen-
dix). I also defined a readout rule (SI Appendix) that transformed
the vector of responses of the output neurons to a depth estimate
(Fig. 5D, approximately equal to the mean of the posterior) and
an uncertainty (Fig. 5E, approximately equal to the SD of the
posterior).
Depth estimates and uncertainties computed with this readout

from the network were strongly correlated with optimal Bayesian
estimates and uncertainties (estimates: r = 0.94; uncertainties:
r = 0.98). The network was a particularly good approximation to
Bayesian inference in two regimes of stimulus strengths (see SI
Appendix for derivation). (i) When the stimulus strength of one
or both cues was large, depth estimates and uncertainties
depended on the relative reliabilities of the two cues (Fig. 5D,
Top, Right, and Top Right; Fig. 5E, Bottom, Right, and Bottom
Right). (ii) When the stimulus strengths of both cues were small,
depth estimates and uncertainties were dominated by the prior
(Fig. 5D, Bottom Left; Fig. 5E, Top Left). This network illustrates
how the general framework I have laid out can be used to solve
fairly complex probabilistic inference near optimally, but it re-
mains to be seen whether this particular model of multisensory
integration can account for the experimental data to the same
extent as other theories such as the linear probabilistic pop-
ulation code (4, 49).
I am not suggesting that the prior probability distribution

(plotted in Fig. 5C) and readout (plotted in Fig. 5 D and E) are
explicitly computed and represented in the brain. Rather, the
vector of target values ŷ (that implicitly encodes a prior) in one
channel/layer interacts with the inputs to evoke a vector of
neural responses y (that implicitly encodes a posterior). Neural
responses in one channel/layer interact (through feedforward
and feedback drive) with neural responses in other channels/
layers (that implicitly encode their corresponding posteriors), to
yield neural responses in all channels and layers that correspond
to a globally optimal inference.

Prediction. Prediction requires a model. The idea here is to rely
on the generative model embedded in the hierarchical neural
network, coupled with the intuition that the relevant timescales
are different at each level of the hierarchy (50). The sensory
inputs at the bottom of the hierarchy change rapidly but the
more abstract representations at successively higher levels
change more slowly over time. A simple example is a network
in which the responses in one layer are sinusoidal and the
feedforward drive to the next layer computes the sum of
squares of a pair of neurons that respond with temporal phases
offset by 90° (e.g., sine- and cosine-phase). The sinusoids
modulate rapidly over time, but the sum of squares is constant
over time. The responses of each neuron in the network are
computed and predicted recursively over time, for example,
with recurrent excitation and inhibition within each module of
each channel (Fig. 2D, dashed line), and the values of ŷ can be
interpreted as predictions for the responses. Slow changes at
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higher layers constrain, via the feedback drive, predictions at
lower layers.
The energy function for a one-layer prediction network is

expressed as follows (see Table 2 for a summary of notation):

E=
X
t

λðtÞ
" X

m

yð1Þm1
ðtÞ
!
− yð0ÞðtÞ

#2

+
X
t

ð1− λðtÞÞ
"X

m

�
yð1Þm1

ðtÞ− ŷð1Þm1
ðtÞ
�2

+
�
yð1Þm2

ðtÞ− ŷð1Þm2
ðtÞ
�2#

,

[3]

ŷð1Þm1
ðtÞ= yð1Þm1 ðt−ΔtÞ  wð1Þ

m1 − yð1Þm2 ðt−ΔtÞ  wð1Þ
m2

ŷð1Þm2
ðtÞ= yð1Þm1 ðt−ΔtÞ  wð1Þ

m2 + yð1Þm2 ðt−ΔtÞ  wð1Þ
m1

  ðpredicted  responsesÞ,

wð1Þ
m1 = cos

�
2πωð1Þ

m Δt
�

wð1Þ
m2 = sin

�
2πωð1Þ

m Δt
�   ðtemporal  weightsÞ.

The form of this optimization criterion is borrowed from signal
processing (30). The values of ym1 and ym2 are the responses of a
population of neurons that share the same input y(0). The neu-
rons are arranged in pairs (subscripts 1 and 2 with the same value
for subscript m). As above, the neural responses are computed
dynamically to minimize this energy function over time (SI Ap-
pendix). The values of ŷm1 and ŷm2 are the corresponding predic-
tions of the responses from the previous time step (Δt is a
discrete time step). I set the priors by hand in the examples
above (Figs. 3 and 4), but here they are instead computed re-
cursively. Specifically, they are computed (Eq. 3, second and
third lines) as weighted sums of the responses from the previous
time step with temporal weights wm1 and wm2 (a pair of numbers
for each m). The temporal weights confer a 90° phase shift (sine
and cosine; Eq. 3, fourth and fifth lines) between the responses
of the two neurons in the pair. Different pairs of neurons

(indexed by subscript m) have different dynamics (different tem-
poral frequencies), controlled by the value of ωm.
A one-layer network was constructed to follow an input for past

time, but to predict for future time (Fig. 6, see SI Appendix for
details). The input was a periodic time series, a sum of sinusoids,
until t = 0 and then nonexistent for t > 0 (Fig. 6A, top panel). The
network was constructed with five pairs of neurons, each pair
corresponding to a different temporal frequency (Fig. 6B, blue and
green curves). The output of the network (Fig. 6A, bottom panel)
was computed by summing the responses of these 10 neurons
across the five temporal frequencies (i.e., the blue curve in the
bottom panel of Fig. 6A is the sum of the blue curves in Fig. 6B,
and likewise for the green curves). The output (Fig. 6A, bottom
panel, blue curve) followed the input (Fig. 6A, top panel) for past
time because the state parameter λ was set to a relatively large
value (λ = 0.1 for t ≤ 0). The network predicted forward in time
(Fig. 6A, bottom panel), based on the current and past responses,
because λ was set to a relatively small value (λ = 0.01 for t > 0).
For a fixed value of λ, each pair of neurons acts like a shift-

invariant linear system (i.e., a recursive linear filter). The pre-
dicted responses can be computed recursively, but they can also be
expressed as a sum of basis functions that I call the “predictive
basis functions.” The predictive basis functions (damped oscilla-
tors of various temporal frequencies) are the impulse response
functions of these shift-invariant linear systems, each corre-
sponding to a pair of neurons (indexed bym). Given the responses
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Table 2. Notation for Eq. 3

Symbol Description

yð1Þm ðtÞ Responses over time of the mth pair of neurons, where m
specifies to the predictive frequency

yð0ÞðtÞ Input over time

ŷð1Þm ðtÞ Predicted responses for the mth pair of neurons

wð1Þ
m Temporal weights (a pair of numbers that depend on ωm)

for the mth pair of neurons
ωð1Þ
m Predictive frequency (a constant) for the mth pair of neurons

λðtÞ State parameter
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of a pair of neurons at only one instant in time, the predicted
responses over time are proportional to the predictive basis
functions, scaled by the responses at that instant in time. Given
the responses over time up to a current instant in time, the pre-
dicted responses can be expressed as a sum of scaled copies of the
predictive basis functions. For example, when ωm = 0, the pre-
dictive basis function is an exponential decay, the response ym is a
low-pass filtered (blurred over time) copy of the input y(0), and the
value of the state parameter λ determines the amount of blurring.
A change in state (λ = 0.1 versus λ = 0.01) corresponded to a

change in neural response dynamics (Fig. 6 C and D). Different
values of λ corresponded to linear filters with different temporal
impulse response functions. During the first part of the simula-
tion (λ = 0.1 for t ≤ 0), the temporal impulse response function
was relatively brief (Fig. 6C) and the temporal frequency band-
width was correspondingly broad. During the second part of the
simulation (λ = 0.01 for t > 0), however, the temporal impulse
response function was extended in time (Fig. 6D) and the tem-
poral frequency bandwidth was relatively narrow.
As an example of multilayer prediction, a network was imple-

mented that predicted periodic visual motion (Fig. 7). The energy
function for this multilayer network can be expressed by combining
Eqs. 1 and 3 (SI Appendix). The visual stimulus was a sinusoidal
grating pattern that moved periodically rightward and leftward. A
simplified model of retinal processing consisted of a temporal filter
at each spatial location (Fig. 7A). The output of this temporal filter
at each spatial location served as the input to the network (Fig. 7C).
Layer 1 of the network was a simplified model of the LGN, layer 2
was a simplified model of direction-selective V1 simple cells (Fig.
7B), and layer 3 was a simplified model of direction-selective V1
complex cells. There were two channels in layer 3, responding
preferentially to leftward and rightward motion. The layer 3 re-
sponses modulated over time with the periodic motion (Fig. 7E),
and they predicted that the modulation would continue. This
modulation of the layer 3 responses fed back through layer 2 to
layer 1 and constrained the predicted responses in layer 1 (Fig. 7D).

Discussion
This paper outlines a first step toward an empirically testable
computational framework for cortical function, in which neural
responses depend on a combination of feedforward drive (bot-
tom-up input from the previous processing stage), feedback drive
(top-down context from the next stage), and prior drive (expec-
tation). Information processing is continuous and dynamic, and
it predicts forward in time (or combines sensory information with
different latencies). Noise serves to explore different possible
interpretations (a form of stochastic optimization). Special cases
of the theory approximate Bayesian inference/estimation in
which the neural responses encode an implicit representation of
a posterior probability distribution.
The theory is related to previous research in computational neu-

roscience and artificial intelligence. In some states, neural responses
are dominated by the feedforward drive and the theory is identical to
conventional feedforward models, thereby preserving all of the de-
sirable features of those models. Specifically, with λ = 1 and with
appropriate choices of weights, the theory is identical to convolu-
tional neural nets used in artificial intelligence systems for object
recognition (e.g., refs. 51 and 52), and to conventional hierarchical
models of visual perception (e.g., refs. 27 and 53). In other states, the
theory is a generative model (e.g., refs. 54–56) that constructs a
sensory representation (e.g., in layer 1 of the example networks in
this paper) from an abstract representation (e.g., in layer 3) via
feedback. In still other states, the computational framework com-
bines prior expectation with sensory input, and it explores different
possible perceptual interpretations of ambiguous sensory inputs, akin
to models based on Bayesian inference (2–5, 47–49). The noise-
driven process of exploration was motivated by stochastic optimiza-
tion algorithms (57) and is similar to models of sensory neuroscience
that draw samples from an underlying probability distribution over
possible percepts (9, 10, 39, 43). This sampling idea has been pro-
posed as an alternative to probabilistic population codes (4) for

representing uncertainty in neural systems. However, I see these two
ideas as complementary, not mutually exclusive. Neural responses
evolve dynamically over time in my networks, in part because of
noise-driven exploration, while implicitly encoding a posterior
probability distribution. I hypothesize that this noise-driven pro-
cess of exploration is the essence of creativity.

Prediction Versus Predictive Coding. Predictive coding theories of
sensory and perceptual processing have been developed to “ex-
plain away” the sensory input (e.g., refs. 19, 20, and 58–61).
These theories posit two functionally distinct subpopulations of
neurons, one representing predictions and the other representing
prediction errors. Prediction errors are propagated forward to the
next layer in the hierarchy and predictions are transmitted via
feedback to the previous layer. The idea is to account for the in-
coming sensory signal by means of a matching top-down prediction,
so that less prediction error propagates up the hierarchy. However,
most of these models do not posit how the brain predicts over time
(i.e., they do not extrapolate forward in time—see below).
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functions with different temporal frequencies (ωm). Blue and green curves in
each panel, responses of pairs of neurons with the same ωm but with temporal
phases offset by 90°. Red curve in each panel, square root of the sum of the
squares of the blue and green curves. (C) Impulse response functions. State: λ =
0.1. Predictive basis function temporal frequency: ωm = 4 Hz. Blue, green, and
red curves, same convention as in B. (D) Impulse response functions for same
pair of neurons as in C but different state: λ = 0.01. Time step: Δt = 10 ms for
all four panels. See SI Appendix for details.
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The feedforward and feedback drive in the current theory are
analogous to those in the predictive coding models, but the
variables are flipped. The representation is propagated forward
and the errors are propagated backward. This is more in line with
neurophysiological and psychophysical phenomena than pre-
dictive coding models. First, neurons exhibit sustained activity to a
predictable visual stimulus (e.g., ref. 62). According to predictive
coding theories, the forward-propagating responses correspond to
the prediction error, which should rapidly decay to zero for a
predictable stimulus. Neural activity typically decreases over time
due to adaptation, but the responses do not go to zero, that is, they
are not “explained away.” Second, imagining a familiar image
evokes a sensory representation in visual cortex that is recon-
structed from memory (e.g., ref. 29), not explained away.
Moreover, the conceptual approach in predictive coding theo-

ries is fundamentally different from the current theory. Predictive
coding theories start with a generative model that describes how
characteristics of the environment produce sensory inputs. Per-
ception is presumed to perform the inverse mapping, from sensory
inputs to characteristics of the environment. The current theory is
built the other way around (“synthesis-by-analysis”). I start with a
feedforward cascade of signal processing operations, following the
success of both feedforward models of sensory neuroscience and
feedforward artificial neural nets. The corresponding generative
model is the inverse of this feedforward processing model, which
can be computed by gradient descent with respect to the input (55,
63). The energy function in the current theory combines a feed-
forward processing model and the corresponding generative
model, so that it can run bottom-up (feedforward signal process-
ing), top-down (generative), or a combination of the two.
There is a paucity of theories for how the brain performs

perceptual predictions over time and/or combines sensory in-
formation with different latencies in the past (19–23). Most of
the so-called predictive coding models (cited above) do not posit
how the brain predicts over time. The predictive coding models
that do so (19, 20, 22), as discussed above, are inconsistent with
empirical phenomena. Other theories that perform predictions
over time are neurally inspired implementations of a Kalman
filter (21) or a Markov chain (23).
The current theory posits a different process for how the brain

might predict over time. It relies on recursive computation similar
to a Kalman filter, that is, the predictive basis functions serve the
same role as the dynamical system model in a Kalman filter. Also
like a Kalman filter, the neural responses in the current theory
implicitly represent both estimates and uncertainties over time.
However, unlike a Kalman filter, this computational framework
comprises processing at multiple temporal scales, with different
predictive frequencies at each level of the hierarchy. Multiple

temporal scales of processing, across brain areas, have been pro-
posed theoretically (22, 50, 64) and observed empirically (e.g., refs.
65–67). I hypothesize that this hierarchy of timescales is determined
by the temporal weights (that specify the temporal frequencies of
the predictive basis functions); neurons with temporal weights
corresponding to lower temporal frequencies accumulate in-
formation over a longer time period in the past and are capable of
predicting forward in time over a correspondingly longer timescale.
There is some controversy about whether sensory systems per-

form prediction versus what has been called “postdiction” in which
sensory information acquired at different latencies (all in the past)
is used to construct a percept of the past (68). However, there is
no distinction between the two in the current theory; both involve
extrapolating over time. An intriguing hypothesis is that sensory
awareness is the brain’s prediction of the present (e.g., ref. 16).

Learning. Most artificial neural nets rely on supervised learning. In
computer vision, for example, an image is presented to a neural net,
which attempts to categorize the image as one of a fixed set of
possibilities. The network produces an output (e.g., at the top of the
hierarchy in a deep convolutional neural net), which is compared
with a desired output. The desired output is specified a priori (e.g.,
by hand-labeling the identity of an object in an image). The dif-
ference between the output and desired output is used to adjust the
weights via “backpropagation” (gradient descent on the weights in
every layer with respect to the error in the output). This requires a
large library of images, each of which is prelabeled with a category.
The example networks presented in this paper were hand-tuned

(ad hoc), but they could instead be learned using an unsupervised
learning algorithm that extracts regularities in the inputs without
labels. The neural responses are modeled as dynamical processes
that compute a weighted sum of feedforward drive, feedback drive,
and prior drive (Eq. 2). The prior drive, in turn, depends on a
weighted sum of previous responses over time (Eq. 3). These spatial
and temporal weights can be learned based on prediction errors for
a time-varying input (e.g., video). Each neuron in the network
produces a prediction for what its response will be later in time, and
the weights are adjusted to minimize the difference between these
predicted responses and the actual responses that occur later in
time. This is similar to what has been called “target propagation”
(as opposed to the more familiar backpropagation) in the neural net
literature (69–71). Periods of inference, exploration, and prediction,
during which the neural responses evolve dynamically (e.g., via
gradient descent on the responses as in Eq. 2) alternate (by
changing the state of the network) with periods of learning during
which the weights are updated (via gradient descent on the weights).
Alternation between inference and learning, and learning based on
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different timescales at each level of the hierarchy, are each remi-
niscent of previous unsupervised learning algorithms (50, 56).
A challenge for backpropagation-based learning is that it is

nonlocal, requiring the weights in one channel/layer to be
updated based on errors in other channels/layers. Nonlocality is
considered by many to be biologically implausible, although
there are some proposals for how to implement backpropagation
with only local, biologically plausible weight updates (72–74).
The idea here is to circumvent this problem entirely by updating
each neuron’s (spatial and temporal) weights locally, based only
on that neuron’s prediction errors.
The priors can also be learned (SI Appendix).

Brain States, Neuromodulators, and Oscillatory Activity. The values
of the state parameters (α and λ) might be controlled by acetyl-
choline (ACh), given the evidence that ACh plays a role in mod-
ulating the trade-off between bottom-up sensory input versus top-
down signals related to expectancy and uncertainty (SI Appendix).
In addition, there is considerable evidence that attention modu-
lates the gain of neural responses, suggesting that α might be
controlled also by attention (SI Appendix). Neuromodulators might
also control changes in state to enable learning (SI Appendix).
According to the theory, exploration depends on neural response
variability, which might be controlled (at least in part) by nor-
adrenaline, and/or by oscillations in brain activity (SI Appendix).

Empirical Relevance. There are a number of variations of the
computational framework, depending on the network architec-
ture, output nonlinearity, and optimization algorithm (SI Appen-
dix). Some of the variants or some of the components of the
computational framework might be completely wrong, whereas
others are less wrong; that is, falsifying just one variant or one
component would not render the entire computational framework
worthless. The simulation examples presented in this paper were
designed to illustrate the principles of the theory, not to model the
responses of any particular neurons or neural systems. It remains
to be seen whether these principles can be applied to fit neuro-
physiological and/or behavioral data, and/or applied in computer
vision or artificial intelligence systems. In the meantime, there are
some general principles of the theory that are empirically relevant
and/or that motivate experiments. Some examples are as follows:

i) According to the theory, prediction is performed recursively
(Eq. 3; Fig. 2D, dashed line) with pairs of neurons that have
identical response properties except that they respond with
different temporal phases (e.g., pairs of neurons with tem-
poral phases offset by 90°, although any two or more phases
would suffice). There is evidence that adjacent pairs of sim-
ple cells in V1 have receptive fields with 90° or 180° shifts in
spatial phase (e.g., ref. 75), but temporal-phase relationships
between nearby neurons have not been reported.

ii) The theory posits neurons with similar preferences for sen-
sory stimuli, but with different dynamics, which together
make up a basis set for predicting forward in time.

iii) Changing the state (the value of λ) corresponds to a change
in neural response dynamics (Fig. 6 C and D). Such changes
in state are hypothesized to be controlled by fluctuations in
ACh (SI Appendix).

iv) Alternations in perceptual state (e.g., for bistable perceptual
phenomena) depend on neural response reliability. Changes
in neural response reliability are hypothesized to be driven
by fluctuations in noradrenaline and by oscillations in brain
activity (SI Appendix).

v) Functional connectivity between pairs of neurons is hypothe-
sized to depend on brain state. When in a bottom-up sensory

processing state, the feedback connections will appear to be weak.
When in a top-down processing state, the feedback connections
will be strong but the feedforward connections will appear weak.
Functional connectivity is also hypothesized to depend on con-
text. Take, for example, my simple XOR-like inference network
(Fig. 3), and imagine an experiment to perturb the neural re-
sponses by injecting current in either the first of the layer 1
neurons (Fig. 3A, blue circle) or the first of the layer 2 neurons
(Fig. 3A, purple circle), with state parameters that enable a com-
bination of bottom-up and top-down processing.With input y(0)=
(0.1, 0, 0, 0) and prior ŷ = 0 for all neurons in the network,
positive perturbations of either the layer 1 neuron or the layer
2 neuron causes the other neuron to respond more. If the input is
instead y(0) = (0.1, 1, 0, 0), then positive perturbations of either
the layer 1 neuron or the layer 2 neuron causes the other neuron
to respond less. Additionally, if the input is y(0) = (1, 1, 0, 0), then
shutting down the layer 2 neuron causes a different neuron in
layer 1 (Fig. 3A, green circle) to respond more. Given how com-
plicated this is for such a simple network, I worry about how to
interpret the results of optogenetic experiments in the absence of
predictions from specific computational models.

Computational Theory. The current theory is intended, following the
terminology of DavidMarr (76), to characterize cortical function at a
computational level of abstraction (what the brain might be opti-
mizing, e.g., Eqs. 1 and 3), and at an algorithmic level of abstraction
(signal-processing computations to perform the optimization, e.g.,
Eq. 2), not in terms of the underlying circuit, cellular, molecular, and
biophysical mechanisms. There are a number of variations of the
optimization criterion, depending on the architecture of the network
and choices for the nonlinearities. For each choice of optimization
criterion, there are also a number of possible optimization algo-
rithms (for which Eq. 2 is only one example). For any given choice of
network architecture, optimization criterion, and optimization algo-
rithm, there are a variety of mechanisms that might implement the
computations embodied in the theory.
For example, I developed the normalization model 25 y ago to

explain stimulus-evoked responses of V1 neurons (31). The model
has since been applied to explain physiological measurements of
neural activity in a wide variety of neural systems, and behavioral/
perceptual analogs of those physiological phenomena (32) (SI
Appendix). However, only recently has there been progress in
elucidating the underlying mechanisms, which have been found to
be different in different neural systems (SI Appendix).
Computational theory is an intermediate level of abstraction

between the underlying mechanisms, on the one hand, and physi-
ology and behavior, on the other (77). The field of neuroscience
might benefit from the recognition, in other fields of science, that
reductionism is inherently limited, and that there are fundamental
organizing principles at intermediate levels (e.g., ref. 78). Compu-
tation might be such a critical intermediate level for characterizing
brain function. Consequently, it may be extremely useful to identify
abnormal computations in individuals with particular psychiatric
and neurodevelopmental disorders. For example, deficits in nor-
malization (79), deficits in prediction (80), dysfunctional Bayesian
inference (81), and uncontrolled neural response variability (82, 83)
have each been hypothesized to underlie autism.
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The theoretical framework presented in this paper, of 
course, includes components previously proposed in 
computational/theoretical neuroscience, image processing, 
computer vision, statistics, and machine learning with arti-
ficial  neural  networks. Because of space limitations, a 
number of influential papers were not cited in the main text 
(1-27).

Variants and extensions
There are a number of variations of the computational 

framework, depending on the network architecture, output 
nonlinearity, and optimization algorithm.

The neural responses were modeled as dynamical 
processes that minimize an energy function over time, via 
gradient descent. But other optimization algorithms might 
converge more rapidly while providing a better characteri-
zation of empirical measurements of neural dynamics. 

The architecture (number of layers, number of chan-
nels per layer, interconnectivity between channels in adja-
cent layers) and spatial  weights determine the selectivity of 
the neurons. I used an architecture and spatial  weights 
that computed motion (Fig. 7 of the main text), but different 
choices would extract different features (or statistics) of the 
input. There need not be a strict hierarchy so that, for ex-
ample, there can be feedforward connections from V1 to 
V2 to V4 and also a parallel feedforward connection di-
rectly from V1 to V4. 

The temporal  weights determine the predictive basis 
functions. I used temporal  weights that conferred a set of 
predictive basis functions that are damped oscillators of 
various temporal frequencies, but different temporal 
weights might be used instead, corresponding to different 
predictive basis functions. An obvious variation is to re-
place the pair of temporal weights (wm in Eq. 3 of the main 
text) with a matrix of weights so that the responses of each 
neuron are predicted over time by a weighted sum of a 
large number other neurons, including neighboring neu-
rons in the same channel (e.g., that respond to stimuli at 
nearby spatial locations), and neurons from different chan-
nels in the same layer (e.g., that respond preferentially to 
different stimulus features). This is similar to classic  recur-
rent network models of working memory that maintain a 
memory representation with a self-sustaining pattern of 
persistent activity (28-32), and also to some models of 
perceptual organization, segmentation, and grouping (33-
36). 

The convolutions can be replaced with an equivalent 
computation that encompasses the physiological diversity 
across individual neurons. The convolution weights that 
determine the selectivity of each neuron in each channel 
should be thought of as a basis set, with the first basis 
function equal to the first channel’s weights, etc. For some 
basis sets and for some output nonlinearities (e.g., squar-
ing), any invertible linear transform of the basis set can be 
substituted (37-39). A different invertible linear transform 

can be applied at each location, thereby allowing the 
weights to be different from one location to the next (and 
explaining the diversity of tuning properties of neurons), 
without changing the nature of the representation.

In the current implementation, the same neurons per-
form both inference and prediction, but an alternative im-
plementation of the same principles would be to have two 
separate subpopulations of neurons. The first subpopula-
tion would be responsible for inference (minimizing both 
terms in Eq. 3 of the main text), while the second subpopu-
lation would be continuously predicting forward in time, 
based on the responses of the first subpopulation (mini-
mizing only the second term in Eq. 3 of the main text). 
These two subpopulations of neurons might be in the 
same cortical circuit or the prediction subpopulation of 
neurons might be in a different brain area.

Normalization and other output nonlinearities
The examples in this paper, only for the sake of sim-

plicity, used quadratic  output nonlinearities, but a computa-
tion called “the normalization model” has been found to be 
a better model (both theoretically and empirically) of the 
output nonlinearity (40). I developed the normalization 
model 25 years ago to explain stimulus-evoked responses 
of individual neurons in V1 (41, 42). The model has since 
been applied to explain physiological  measurements of 
neural  activity in a wide variety of neural systems (43-60), 
and behavioral/ perceptual analogs of those physiological 
phenomena (e.g., 53, 54, 59, 61-63). The defining charac-
teristic  of normalization is that the feedforward drive under-
lying the response of each neuron is raised to a power 
(e.g., squaring) and divided by a factor that includes a sum 
of activity of a pool  of neurons, analogous to normalizing 
the length of a vector (see below, Eq. S3). Squaring can 
be computed with a pair of neurons that have complemen-
tary weights (flipped in sign), each of which is half-squared 
(halfwave rectified and squared) and then summed (41). 
The half-squaring can be approximated by rectification 
with a high threshold (64, 65).

It has been known since the normalization model was 
first introduced that normalization can be implemented in a 
recurrent neural circuit with biophysically-plausible mecha-
nisms (40, 42, 55, 66-68), but only recently has there been 
progress in elucidating the cellular and biophysical 
mechanisms underlying normalization. Normalization is 
implemented by GABA-mediated presynaptic  inhibition in 
the olfactory system of the fruit fly (48, 69). Normalization 
in mammalian cortex, however, does not rely on GABA 
inhibition (70), but rather is caused by a decrease in exci-
tation (71). That is, the mechanisms underlying normaliza-
tion are different in different neural systems.

Sigmoids, rectified linear units, and max pooling are 
alternative output nonlinearities, common/popular in com-
putational neuroscience and machine learning, that are 
each related to normalization. The normalization model, 
because of the division, confers a saturating (sigmoidal) 
response as a function of the amplitude of the inputs. A 
rectified linear unit computes a linear sum of its inputs and 
subtracts a constant bias, followed by halfwave rectifica-
tion. The bias acts like a high threshold, that approximates 
a power function with different values of the bias corre-
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sponding to different powers (64, 65). Max pooling (also 
called softmax) transmits the most active response among 
a set of inputs (72). Max pooling can be approximated by 
normalization (73).

Learning the prior
The priors can be learned. For a prior that constitutes 

a permanent feature of the environment, an elegant solu-
tion is to adjust the convolution weights (i.e., “warp” the 
tuning curves) to match the statistics of the environment 
(74). The current theory handles the priors in a comple-
mentary way. Some priors, rather than being a permanent 
feature of the environment, are instead context-specific 
(e.g., matched to a particular task). The cue combination 
network (Fig. 5 of the main text) provides an example. 
What I have in mind is that this cue combination network is 
embedded in a larger hierarchical  network. The target val-
ues for the responses ŷ are learned as the mean re-
sponses of the neurons, averaged across a series of 
practice/training trials in which the cues are consistent with 
one another (no cue conflict), and both cues are reliable 
(i.e., with large stimulus strengths). These learned target 
responses propagate up the hierarchy, transformed to an 
abstract representation, and stored in memory. Just before 
each trial  of the task, this abstract representation is re-
called from memory at the top of the hierarchy, and the 
state of the network is set to behave like a generative 
model so the remembered prior is propagated via the 
feedback drive to a sensory representation, i.e., to recon-
struct the target response values. The state is then 
switched so that this sensory representation of the priors is 
combined with incoming sensory information to perform 
inference.

Brain states, neuromodulators, and oscillatory activity
The values of the state parameters (α and λ) deter-

mine whether neural responses are driven bottom-up, top-
down, or a combination of the two. These parameters also 
control  whether the neurons are primarily processing sen-
sory inputs that occurred in the past versus predicting the 
future. There is evidence that acetylcholine (ACh) plays a 
particular role in modulating the trade-off between bottom-
up sensory input versus top-down signals related to expec-
tancy and uncertainty (e.g., 75). It has also been hypothe-
sized that ACh signals when bottom-up sensory inputs are 
known to be reliable (76, 77). Consequently, it is reason-
able to hypothesize that α and/or λ might be controlled (at 
least in part) by ACh. Although ACh is released broadly 
throughout the cortex, its effect can be regionally specific 
(78), possibly offering a mechanism for how the values of 
the state parameters can differ across the hierarchy of 
brain areas. 

In addition, there is considerable evidence that atten-
tion modulates the gain of neural responses (51), suggest-
ing that α might be controlled also by attention, perhaps 
through the feedback drive (see paragraph above about 
learning the prior) or through a different set of feedback 
connections that modulate the gain of the convolutions v.

Neuromodulators might also control changes in state 
to enable learning. During inference, the neural responses 
are computed dynamically with fixed weights. During learn-

ing, the weights are adjusted to minimize the difference 
between the predicted and the actual neural responses. 
Neuromodulators might indicate when it is appropriate to 
adjust the weights (e.g., moments in time corresponding to 
prediction errors). Dopamine, for example, has been iden-
tified as signaling reward prediction-error (79). 

According to the theory, exploration depends on neural 
response variability, which might be controlled (at least in 
part) by noradrenaline (NA). Specifically, I added non-
stationary noise to the simulated neural responses to im-
plement a kind of stochastic optimization. I speculate that 
the time course of spontaneous NA fluctuations might con-
tribute to the time-varying standard deviation of this non-
stationary noise process. Subthreshold fluctuations in NA 
over time (as assessed by measuring pupil dilation) affect 
neural  response variability (80). Neural response variability 
exhibits an inverted U-shaped curve as a function of mem-
brane potential depolarization such that responses are 
most reliable for an intermediate level of depolarization 
and less reliable when the neural  membrane potential is 
either too close or too far from spike threshold. Neural 
membrane-potential  depolarization and pupil size both de-
pend on NA. For example, NA fluctuations might exhibit a 
1/f amplitude spectrum (81). Such a noise process can be 
computed by integrating white noise over time (analogous 
to the position of a particle undergoing Brownian motion); 
doing so with a leaky integrator is biologically plausible 
given the ubiquity of neural integrators (31, 32). It has 
been hypothesized that NA signals when something unex-
pected has occurred (76, 77), which would, according to 
the present theory, transiently increase the noise variance 
to explore alternative interpretations. NA has also been 
linked to alternations (i.e., exploration) during bistable per-
ception (82), an observation that might be explained by the 
current theory if perception is stable when the neural re-
sponse variability is low and prone to alternations when 
response variability is high.

This non-stationary noise process might also contrib-
ute to variability over time in behavioral performance. 
Measurements of behavioral performance as a function of 
arousal  exhibit an inverted U-shaped function, which is 
hypothesized to be caused by the relationship between NA 
and neural response variability (80, 83-85). It has been 
reported, for example, that residual reaction time (after 
subtracting the mean reaction time for any given experi-
mental  condition) exhibits a 1/f power spectrum for a vari-
ety of tasks (86). Behavioral measures of timing and tap-
ping also exhibit 1/f power spectra (87, 88).

Neural response variability might also be controlled (in 
part) by oscillations in brain activity, pseudo-periodic fluc-
tuations in neural  membrane potential, correlated across 
large populations of neurons. Such brain oscillations are 
readily observed with EEG, a well-known example of 
which is so-called alpha activity (~10 Hz). Subthreshold 
fluctuations in neural membrane potential affect neural 
response variability, as summarized above (80). I presume 
that such fluctuations have an impact on the reliability of 
stimulus-evoked activity with little or no impact on the 
mean responses (i.e., that the fluctuations are small  in any 
given neuron but that they are evident in EEG recordings 
which measures the correlated component of the mem-
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brane potential fluctuations across a large population of 
neurons). So I hypothesize that oscillations in brain activity 
might contribute to stochastic  optimization for exploring 
alternative perceptual and/or cognitive interpretations. The 
oscillation phase corresponding to minimal response vari-
ability would correspond to the more stable percepts and 
the phase corresponding to maximum response variability 
would correspond to less stable percepts. These periodic 
fluctuations in response variability (in service of optimiza-
tion) might, therefore, explain the empirical evidence for 
perceptual rhythms, i.e., that perception and perceptual 
performance fluctuate periodically and depend on the fre-
quency and phase of oscillatory activity (89).

Methods and derivations
Feedforward convolutional neural net

Deep convolutional neural  nets have an architecture 
that is based on a common model of sensory processing in 
the visual system, comprising a feedforward (pipeline 
processing) hierarchy of stages each comprising a bank of 
linear filters following by an output nonlinearity (Figs. 2A,B 
of the main text). This hierarchy of computations can be 
expressed as follows:

yjn
(i ) = ρz vjn

(i )( )  [S1]

vjn
(i ) = wjknq

(i−1)ykq
(i−1)

k
∑

q=1

N ( i−1)

∑
.

The values of y are the responses (proportional  to firing 
rates) of the neurons in each layer, v are the outputs of the 
linear weighted sums, w are weight matrices, and ρz is the 
output nonlinearity. The superscript (i) specifies the layer in 
the hierarchy; y(0) are the inputs to the multi-layered hierar-
chy. The subscripts n and q specify each of the channels in 
a layer, where N(i) is the number of channels in layer (i). 
The subscripts j and k specify the different neurons in a 
channel. The values of wjknq specify a matrix of weights 
connecting the kth neuron in channel q of layer (i-1) to the 
jth neuron of channel  n of layer (i). For all neurons in a 
channel, the weight matrices are assumed to be spatially 
shifted copies of one another (i.e., performing a spatial 
convolution, optionally with spatial subsampling). I have 
included the subscripts n and q in wjkqn only to clarify that 
the weights are different for different channels.

The examples in this paper use either linear outputs or 
quadratic output nonlinearities:

ρz v( ) = v  [S2]

ρz v( ) = 1
2
v2

.

Normalization is a more sophisticated model of the non-
linearity (40). The defining characteristic of normalization is 
that the response of each neuron is divided by a factor that 
includes a sum of activity of a pool of neurons: 

ρZ vjn
(i )( ) =

vjn
(i )( )2

βkqn
(i ) vkq

(i )( )2 + σ (i )( )2
k
∑

q
∑

. [S3]
The summation in the denominator is a weighted sum (i.e., 
local average) over neurons in the same layer with weights 
β. For each neuron j in channel n, these weights βkq are 
assumed to be spatially shifted copies of one another (i.e., 
performing a spatial  convolution). I have included the sub-
script n in βkqn only to clarify that the weights βkq are differ-
ent for different channels. The constant σ determines the 
contrast gain (the contrast of the visual stimulus that 
evokes half the maximal response). 

Theory of Cortical Function
I hypothesize that neural  responses minimize an en-

ergy function (or optimization criterion) across all  neurons 
in all  channels and layers (and a summation over time can 
also be included, see below):

E = α (i )λ (i )ρl y jn
(i ) − z jn

(i )( )
j
∑

n
∑

i=1

L

∑
 [S4]

 

+ α (i ) 1−λ (i )( )ρp yjn
(i ) − ŷ jn

(i )( )
j
∑

n
∑

i=1

L

∑

z jn
(i ) = ρz vjn

(i )( )

vjn
(i ) = wjknq

(i−1)ykq
(i−1)

k
∑

q=1

N ( i−1)

∑
.

This is a generalization of Eq. 1 of the main text with multi-
ple channels in each layer and a flexible choice for the 
output nonlinearities and cost functions. The values of y 
are again the neural responses (proportional to firing 
rates). The values of v are again the outputs of the linear 
weighted sums from the previous layer. The values of z are 
now the outputs after the nonlinearity (unlike the more 
common formulation above in which y are the outputs after 
the nonlinearity). The function ρz is again the output non-
linearity (Eq. S2). The values of ŷ in the second term rep-
resent a prior (or expectation) for the responses. These 
variables (y, x, v, z, and ŷ) are each functions of time be-
cause the inputs change over time with the sensory input. 
The functions ρl and ρp are cost functions, which are quad-
ratic for the examples in this paper:

ρl (u) =
1
2
u2

     
ρp (u) =

1
2
u2

, [S5]
although other cost functions could be readily substituted. 
The values of α and λ  (0 <  λ < 1) are state parameters that 
determine the tradeoffs between the two terms in the en-
ergy function at each layer.

The neural responses are modeled as dynamical 
processes that minimize this energy function over time 
(dropping the channel subscript n to simplify notation):
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τ
dyj

(i )

dt
= −

dE
dyj

(i )

. [S6]
The derivative of the energy function with respect to each 
neuron’s response (using quadratic  output nonlinearities 
and quadratic cost functions) is:

  [S7]

dE
dyj

(i ) =α
(i )λ (i ) yj

(i ) − z j
(i )( )+α (i ) 1−λ (i )( ) yj(i ) − !yj(i )( )+ dE

dzk
(i+1)

dzk
(i+1)

dyj
(i )

k
∑

.

Combining the previous two equations yields the following 
dynamical  system in which each neuron’s response is up-
dated over time:

τ
dyj

(i )

dt
= −α (i )λ (i ) f j

(i ) +α (i+1)λ (i+1)bj
(i ) −α (i ) 1− λ (i )( ) pj(i )

f j
(i ) = yj

(i ) − z j
(i )

 [S8]
bj
(i ) = yk

(i+1) − zk
(i+1)⎡⎣ ⎤⎦vk

(i+1)wkj
(i )

k
∑

pj
(i ) = yj

(i ) − ŷ j
(i )

.

This is the same as Eq. 2 of the main text except that I 
have included factors of 1/2 in the quadratic output non-
linearity and the quadratic  cost function. As noted in the 
main body of the paper, the first term in this expression is 
the feedforward drive f; with only this term the neural re-
sponses would be the same as the feedforward model  out-
lined above (i.e., y = z). The second term is the feedback 
drive b; this term drives the responses according to the 
mismatch between the responses at the next layer, i+1, 
and the feedforward drive from the ith layer. The third term 
is the prior drive p; with only this term the neural responses 
would be driven to the value of the prior (i.e., y = ŷ). The 
value of τ is a time constant.

Feedback connections
As noted in the main body of the paper, the feedback 

signals are selective for features that are represented at 
the earlier layer due to the transpose of the weight matrix. 
A simplified two-layer example illustrates:

E = 1
2

yj
(2) − z j

(2)( )2
j
∑

 [S9]

z j
(2) = 1

2
wjkyk

(1)

k
∑⎛⎝⎜

⎞
⎠⎟

2

= 1
2
vj
(2)( )2

vj
(2) = wjkyk

(1)

k
∑

dE
dyk

(1) =
dE
dzj

(2)

dzj
(2)

dyk
(1)

j
∑ = − yj

(2) − z j
(2)( )wjkvj

(2)

j
∑

.

In the form of a matrix tableau:

  [S10]


vj
(2)



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=



wjk



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


yk
(1)



⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟


dE
dyk

(1)



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= −


wkj



⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



yj
(2) − z j

(2)( )vj(2)



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.

The feedforward drive depends on vj(2), which is computed 
as a weighted sum of the layer 1 responses yk(1) with 
weights wjk. The gradients of the energy function dE/dyk(1), 
which determine the feedback drives, are computed as a 
weighted sum of the mismatch between the responses and 
the feedforward drive (yj(2)-zj(2)) vj(2) using the transpose of 
the weight matrix wkj.

Inference (Fig. 3)
For each of the simulation results in Fig. 3 of the main 

text, the input, the prior ŷ, and the network state (deter-
mined by the values of λ and α) were all held constant over 
time. The responses of the neurons were initialized to 
small, random values (0 < y < 0.1) at time t = 0. The re-
sponses were computed with Eq. 2 of the main text (time 
constant: τ = 5 ms; time step: Δt = 1 ms), and the values 
were clipped (0 < y < 1) after each iteration.

Exploration (Fig. 4)
The responses were again computed with Eq. 2 of the 

main text (time constant: τ = 5 ms; time step: Δt = 10 ms), 
the values were again clipped (0 < y < 1), and noise was 
added to each neuron’s response at each time step. The 
noise was statistically independent across neurons and 
over time, but non-stationary. All neurons had the same 
noise standard deviation at each moment in time, but the 
noise standard deviation varied over time. Specifically, the 
time course of the standard deviation had a 1/f  amplitude 
spectrum for frequencies greater than ~1 Hz. The noise 
process was computed by taking Gaussian white noise 
and filtering it with a leaky integrator (i.e., a first-order dif-
ferential equation or exponential  low pass filter) with time 
constant = 100 ms. The noise added to each neuron at 
each time point was drawn (independently for each neuron 
and each time point) from a normal  distribution with the 
corresponding standard deviation.

One-layer time-series prediction (Fig. 6)
The one-layer time-series prediction network (Fig. 6 of 

the main text) optimized the following energy function:
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E = 1
2

λ(t ) Re ym
(1) (t )( )

m
∑⎛⎝⎜

⎞
⎠⎟
− y(0) (t )

⎡

⎣
⎢

⎤

⎦
⎥

2

t
∑

 [S11]

 
+ 1
2

1− λ(t )( ) ym
(1) (t )− ŷm

(1) (t )
2

m
∑⎡
⎣⎢

⎤
⎦⎥t

∑
ŷm

(1) (t ) = ym
(1) (t − Δt ) wm

(1)

wm
(1) Δt( ) = ei2πωm

(1)Δt
.

This is a different way of writing Eq. 3 of the main text us-
ing the notational convenience of complex numbers and 
complex exponentials (instead of sines and cosines). It is a 
global optimization criterion; the summation is over all  neu-
rons and over time. The values of ym are the complex-
valued responses of a subpopulation of neurons that share 
the same input y(0), the values of ωm specify the frequen-
cies of the predictive basis functions, wm are temporal 
weights (a pair of numbers for a each ωm), and Δt is a dis-
crete time step. The complex values can be represented 
by the responses of a pair of neurons (Eq. 3 of the main 
text), but the complex-exponential notation is convenient. 
The state parameter λ can change over time.

The derivative of E with respect to ym(t), can be used to 
find a local minimum of E by gradient descent:

Δym
(1) (t ) = −r ∂E

∂ym
(1) (t )

= −r fm
(1) (t )+ pm

(1) (t )⎡⎣ ⎤⎦
, [S12]

where fm is the feedforward drive (note that there is no 
feedback drive in this one-layer example), pm is the prior 
drive, r specifies a step size, and ym(t) is updated simulta-
neously for all time points t. I used Eq. S12 to implement a 
batch algorithm, to compute the global minimum for all 
neurons and all time samples (Fig. 6 of the main text). This 
batch algorithm updated all of the neural  responses at all 
time samples repeatedly until it converged. Other optimiza-
tion algorithms could be used instead; For example, I have 
implemented an incremental approximation (see below).

The expressions for fm and pm depend on whether 
there is an input (for t ≤ 0) or not (for t > 0), and whether or 
not t is an endpoint (e.g., for a finite duration simulation 
and/or with an incremental algorithm for which t = 0 is al-
ways an endpoint because the input for the next time step 
is in the future). The feedforward drive is: 

fm
(1) (t ) = λ Re ym

(1) (t )
m
∑
⎛

⎝
⎜

⎞

⎠
⎟− y(0) t( )

⎡

⎣
⎢

⎤

⎦
⎥

, [S13]
when there is an input and 0 otherwise. The prior drive is:

pm
(1) (t ) = 1−λ(t )( ) 2ym(1) (t )− ym(1) (t − Δt )wm

(1) (Δt )− ym
(1) (t + Δt )wm

(1) (−Δt )( )
pm
(1) (t ) = 1−λ(t )( ) ym(1) (t )− ym(1) (t + Δt )wm

(1) (−Δt )( )  [S14]
pm
(1) (t ) = 1−λ(t )( ) ym(1) (t )− ym(1) (t − Δt )wm

(1) (Δt )( ) ,
when t is not an endpoint, when t is the first time sample, 
and when t is the last time sample, respectively.

For the simulation results (Fig. 6 of the main text), the 
input was a sum of two sinusoids (2 Hz, amplitude 1; 8 Hz, 
amplitude 1/2) for past time (t ≤ 0) and nonexistent for fu-
ture time (t > 0). I.e., the first term of E in Eq. S11 was set 
to 0 (ignoring the input entirely) for t > 0. This could be im-
plemented with two separate subpopulations of neurons, 
one of which minimizes both terms in Eq. S11 and is re-
sponsive to the input, while the second subpopulation 
minimizes only the second term in Eq. S11 and is continu-
ously predicting forward in time (see Variants and exten-
sions). Regardless, this is different from setting the input to 
0 and minimizing both terms of E. If the input was set to 0 
for t > 0 (rather than ignoring it entirely) then the responses 
decayed over time; the value of λ determined rate at which 
the responses decayed (see below).

Unlike the examples in Figs. 3 and 4 of the main text, 
the responses were not clipped. The negative values for 
the responses can be accommodated with positive firing 
rates by replacing each quadrature pair with 4 neurons, 
each with halfwave-rectified responses and 4 different 
temporal phases offset by 90°.
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Fig. S1. One-layer time-series prediction with incremental algorithm. Compare with Fig. 6A of the main text. A. Input 
is a sum of two sinusoids for past time (t ≤ 0) and nonexistent for future time (t > 0). B,C. Input is 0 for t > 0. Top row, input. 
Bottom row, output. Blue curves in the bottom row, sum of the responses of the neurons representing the real parts of ym. 
Green curves, sum of neural responses representing the imaginary parts of ym. A,B. State: λ = 0.1 for t ≤ 0 and λ = 0.01 for 
t > 0 (same as Fig. 6 of the main text). C. State: λ = 0.1 for t ≤ 0 and λ = 0.001 for t > 0.
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An incremental (causal) algorithm was also imple-
mented (Fig. S1), analogous that in Eq. S8. The prior drive 
for the incremental  algorithm used the 3rd line of Eq. S14, 
so that the change in responses depended on only the 
present input and the present and past responses. In prac-
tice, fewer than 10 iterations were needed for each time 
step of the incremental algorithm. The results depended 
on whether the input was nonexistent for t > 0 (Fig. S1A) or 
0 for t > 0 (Figs. S1B,C). For nonexistent input, the first 
term of E in Eq. S11 was set to 0 (ignoring the input en-
tirely) for t > 0. If the input was set to 0 for t > 0 (rather than 
ignoring it entirely) then both terms of E were minimized, 
and the responses decayed over time; the value of λ de-
termined rate at which the responses decayed (Figs. 
S1B,C).

Multi-layer prediction of periodic motion (Fig. 7)
The multi-layer prediction network optimized the fol-

lowing energy function:

E = 1
2

α (i ) (t )λ (i ) (t ) Re ynm
(i ) (x, t )( )

m
∑⎛⎝⎜

⎞
⎠⎟
− zn

(i ) (x, t )
⎡

⎣
⎢

⎤

⎦
⎥

2

t
∑

n
∑

i=1

L

∑

 
+ 1
2

α (i ) (t ) 1− λ (i ) (t )( ) ynm
(i ) (x, t )− ŷnm

(i ) (x, t )( )2
m
∑⎡
⎣⎢

⎤
⎦⎥t

∑
n
∑

i=1

L

∑
ŷnm

(i ) (x, t ) = ynm
(i ) (x, t − Δt ) wm

(i )
 [S15]

wm
(i ) Δt( ) = ei2πωm

( i )Δt
.

Here, I dropped the subscript j and instead use x to denote 
the different neurons in each channel in terms of the spa-
tial  locations of their receptive fields. The rest of the nota-
tion is defined above (Eqs. S4, S11). It is again a global 
optimization criterion; the summation is over all neurons in 
all channels and all layers, and over time.

To denote the specific multi-layer motion-prediction 
network (Fig. 7 of the main text), it is helpful to break it 
down and write each layer separately. The total energy 
was the sum of the energies in each layer:

E = E (1) + E (2) + E (3)
. [S16]

Layer 1 had one channel:

E (1) =
1
2

α (1)λ (1) Re ym
(1)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− y(0)

⎡

⎣
⎢

⎤

⎦
⎥

2

t
∑

 [S17]

  
+
1
2

α (1) 1−λ (1)( ) ym(1) − ŷm(1)( )2
m
∑

t
∑

.

The values of y(0)(x,t) are the output of a simplified model  of 
retinal processing consisting of a temporal filter at each 
spatial  location (see below for details). The responses y 
are functions of both space and time, and the state pa-
rameters α and λ  also change over time, but I have 
dropped x and t from this equation (and in most of those 
that follow) to simplify the notation. 

Layer 2 had four channels:

E (2) =
1
2

α (2)λ (2) Re ynm
(2)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− z j

(2)
⎡

⎣
⎢

⎤

⎦
⎥

2

n
∑

t
∑

 [S18]

    
+
1
2

α (2) 1−λ (2)( ) ynm(2) − ŷnm(2)( )2
m
∑

n
∑

t
∑

zn
(2) (x, t ) =

1
2
vn
(2) (x, t )( )2

vn
(2) (x, t ) = wn1

(1) (ξ − x) Re ym
(1) (x, t )( )

m
∑

⎡

⎣
⎢

⎤

⎦
⎥

ξ

∑

         
+ wn2

(1) (ξ − x) Im ym
(1) (x, t )( )

m
∑

⎡

⎣
⎢

⎤

⎦
⎥

ξ

∑
,

The last line expresses vn as a sum of convolutions, where 
n indexes the 4 channels, and wn1 and wn2 are the spatial 
weights of the convolution kernels (Fig. 7C of the main 
text; Eq. S23). The derivatives, used for gradient descent, 
are:

dE (2)

dzn
(2) = −α

(2)λ (2) ynm
(2)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− zn

(2)
⎡

⎣
⎢

⎤

⎦
⎥

n
∑

 [S19]
dzn

(2) (x, t )

dym
(1) (x, t )

= vn
(2) (x, t )

dvn
(2) (x, t )

dym
(1) (x, t )

           
= vn

(2) (x, t ) wn1
(1) (x)+ iwn2

(1) (x)⎡⎣ ⎤⎦ .

Layer 3 had two channels:

E (3) =
1
2

α (3)λ (3) Re ynm
(3)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− zn

(3)
⎡

⎣
⎢

⎤

⎦
⎥

2

n
∑

t
∑

 [S20]

   
+
1
2

α (3) 1−λ (3)( ) ynm(3) − ŷnm(3)( )2
m
∑

n
∑

t
∑

z1
(3) = Re y1m

(2)( )
m
∑ + Re y2m

(2)( )
m
∑

z2
(3) = Re y3m

(2)( )
m
∑ + Re y4m

(2)( )
m
∑

dE (3)

dzn
(3) = −α

(3)λ (3) ynm
(3)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− zn

(3)
⎡

⎣
⎢

⎤

⎦
⎥

n
∑

 
dz1

(3)

dy1m
(2) = 1

   

dz1
(3)

dy2m
(2) = 1

   

dz2
(3)

dy3m
(2) = 1

   

dz2
(3)

dy4m
(2) = 1

,

and the other derivatives of zj(3) with respect to ykm(2) are 
zero.

The simulation results in Fig. 7 of the main text were 
computed as follows. The input was a sum of two contrast-
modulated sinusoids for past time (t ≤ 0): 
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s x,t( ) = c t( )sin 2πωxx −2πωtt( )  [S21]

      
+ 1− c t( )⎡⎣ ⎤⎦sin 2πωxx+2πωtt( )

c(t) = 1
2
1+ cos 2πωmt( )⎡⎣ ⎤⎦

,

where ωm = 1 Hz was the modulation frequency, ωx = 8 
cycle/deg was the spatial  frequency, and ωt = 8 Hz was the 
grating temporal frequency, so that the speed of motion 
was 1 deg/sec. The stimulus was sampled spatially with 
120 samples per degree of visual angle (approximately 
equal to the sampling of cone photoreceptors in the fovea 
of the primate retina) and with 1 ms temporal sampling.

The input was nonexistent for future time (t > 0). As for 
the simulation in Fig. S1, the responses decayed to 0 over 
time if the input was set to 0 for t > 0 (rather than ignoring it 
entirely), and the value of λ determined rate at which the 
responses decayed.

A simplified model of retinal processing was computed 
as a cascade of exponential low-pass filters (Fig. 7A of the 
main text):

y(0) (x, t ) = f3(x, t )− f5 (x, t )  [S22]

τ f
df1(x, t )
dt

= − f1(x, t )+ s(x, t )

τ f
dfn+1(x, t )

dt
= − fn+1(x, t )+ fn (x, t )

,

where y(0) was the retinal output (i.e., the input to the multi-
layer motion-prediction network) at each spatial sample x, 
and τf = 12 ms was the time constant of each of the low-
pass filters. 

Layer 1. The layer 1 weights were the identity matrix 
and the output was linear, so that the layer 1 responses 
were driven to copy the retinal  input. Layer 1 comprised a 
pair of neurons corresponding to each spatial location, all 
with the same temporal frequency tuning that matched that 
of the sinusoidal grating (ωm = 8 Hz). One neuron in each 
pair represented the real part of the complex-valued re-
sponses and the other neuron in each pair represented the 
imaginary part. For each such pair of neurons, the time-
courses of the responses were offset by a 90° phase shift.

Layer 2. The layer 2 weights were constructed from 
even- and odd-phase spatial  Gabor functions (Fig. 7B of 
the main text). Each of these 2 spatial  weighting functions 
was convolved with the responses of each of the two spa-
tial  arrays of layer 1 responses to yield 4 space-time sepa-
rable combinations. Direction-selective responses were 
computed as sums and differences of these space-time 
separable responses (90), resulting in 4 direction-selective 
channels, two of which were a quadrature pair that pre-
ferred leftward motion, and two of which were a quadrature 
pair that preferred rightward motion. The layer 2 output 
nonlinearity was squaring. Each of the 4 direction-selective 
channels was combined with 2 predictive basis functions: 
0 Hz and 16 Hz (i.e., twice the temporal frequency in layer 
1 because the output nonlinearity was quadratic). 

The Gabor functions used for the spatial weights in 
layer 2 (Fig. 7B of the main text) were:

ws (x)= exp x2 /σ 2( )sin 2πωxx( )
 [S23]

wc(x)= exp x2 /σ 2( )cos 2πωxx( )

w11
(1)(x)=ws (x)

w21
(1)(x)=wc(x)

w31
(1)(x)= −ws (x)

w41
(1)(x)=wc(x)    

w12
(1)(x)=wc(x)

w22
(1)(x)= −ws (x)

w32
(1)(x)=wc(x)

w42
(1)(x)=ws (x) ,

where ωx = 8 cycle/deg was the preferred spatial frequency 
and σ = 1/16 degrees of visual  angle determined the extent 
of the spatial weights.

Layer 3. There were two channels in layer 3. The feed-
forward drive for the first channel summed the quadrature 
pair of leftward-selective layer 2 responses, and summed 
across space. Likewise, the feedforward drive for the sec-
ond channel summed the quadrature pair of rightward-
selective layer 2 responses, and summed across space. 
The layer 3 output was again linear. Layer 3 had two pre-
dictive basis functions: 0 Hz and 1 Hz (i.e., matching the 
frequency of periodic motion in the stimulus).

The feedforward processing in this network, with no 
feedback and no prior (i.e., with λ=1), computed leftward 
and rightward “motion energy” (41, 90). It is called “motion 
energy” because it depends on the local (in space, time, 
orientation, spatial frequency, and temporal  frequency) 
spectral  energy of the stimulus. But the term “motion en-
ergy” has nothing to do with the energy function that is be-
ing minimized (Eq. S15). Layer 1 comprised a pair of neu-
rons at each spatial location, with the same temporal fre-
quency tuning. One of the neurons in each pair responded 
with a copy of the input (provided by the simplified 
temporal-filtering model of retinal  processing). The other 
neuron responded with a phase-shifted copy of the input. 
The phase shift emerged because of the quadrature-phase 
(sine and cosine) temporal weights. As an aside, this 
solves a problem for models of visual motion perception, 
which rely on having pairs of neurons that respond with 
temporal  phases offset by 90° (90). The feedforward drive 
in layer 2 depended on odd- and even-phase spatial 
weights, and a quadrature pair of temporal filters (the real 
and imaginary parts of the layer 1 responses), combined 
according to Eq. S18. This yielded four direction-selective 
channels: a quadrature pair selective for rightward motion 
and a quadrature pair selective for leftward motion (90). 
The feedforward drive in layer 3 computed motion energy, 
a sum of the squared responses of each quadrature pair.

The neural responses corresponding to the global 
minimum of E were computed for all neurons and all time 
steps (time step: Δt = 10 ms), using the “batch” algorithm 
(see above). There was a second local  minimum for which 
the network predicted that the periodic  motion would dissi-
pate, with a clear local maximum separating the two local 
minima.
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Bayesian cue combination (Fig. 5)
The energy function for the cue-combination network 

was:

E y(1)( ) = 12αλ yn
(1) − zn

(1)( )2
n
∑ +

1
2
α 1−λ( ) yn

(1)

ĝ
− ŷn

(1)⎛

⎝
⎜

⎞

⎠
⎟

2

n
∑

ĝ = yn
(1)

n
∑

 [S24]
zn
(1) =w1yn1

(0) +w2yn2
(0)

w1 =
σ 2
2

2 σ 1
2 +σ 2

2( )

w2 =
σ 1
2

2 σ 1
2 +σ 2

2( )
,

where to yn1(0) and to yn2(0) are the responses of two sets of 
input neurons and yn(1) are the responses of the output 
neurons (Fig. 5A of the main text). Each of the input neu-
rons was tuned for depth, responding most strongly to a 
preferred depth value (Fig. 5B of the main text). Conse-
quently, each input neuron was from a different channel, 
indexed by n. (A channel by the nomenclature I’ve adopted 
is a spatial array of neurons with identical  stimulus selec-
tivity, whereas each of the input neurons in this network 
responded preferentially to different depths at the same 
spatial  location.) Both sets of input neurons had the same 
tuning curves, but responded to each of two different cues 
(e.g., stereo and motion parallax). The output neurons had 
the same tuning curves as the input neurons because the 
feedforward drive depended on a weighted sum of the re-
sponses of input neurons with identical  tuning curves, with 
weights w1 and w2 (Eq. S24, 3rd line).

Each tuning curve, denoted ψn(s), where s is stimulus 
depth, was one cycle of a raised cosine, and the spacing, 
amplitudes, and widths of the raised cosines were chosen 
so that the tuning curves summed to 1:

ψn s( )∝ cos
2π s− sn( )

ν

⎡

⎣
⎢

⎤

⎦
⎥+1

 [S25]

 
for −π <

2π s− sn( )
ν

< π

 

ψn s( )
j
∑ =1

,

The value of ν determined the width of the tuning curves, 
and the values of sn determined the preferred depths (the 
peaks of the tuning curves). The preferred depths were 
evenly spaced and the widths were selected to be even 
multiples of the spacing. The spacing and width also de-
termined the amount of overlap, overlap = spacing / 2ν; the 
overlap was 4 for the simulation results in Fig. 5 of the 
main text.

The responses of the input neurons depended on the 
strengths of the two cues (g1 and g2), and the responses of 
the input neurons were presumed to be noisy (additive, 
independent, normally-distributed):

yn1
(0) ∼ N g1ψn s( ),σ 1

2( )  [S26]
yn2
(0) ∼ N g2ψn s( ),σ 2

2( ) ,

where σ1 and σ2 are the standard deviations of the noise. If 
σ1 = σ2 then the two cues were equally reliable; otherwise 
not.

The responses of the output neurons were modeled as 
dynamical  processes (Eq. S6) that minimized this energy 
function (Eq. S24) over time, subject to yn(1) ≥ 0. 

The prior for the response of the nth output neuron was 
defined in terms of the tuning curves. The two example 
priors shown in Fig. 5C of the main text corresponded to 
ŷn(1) = ψn(0) and ŷn(1) = ψn(-0.5) + ψn(0.5). Each of these pri-
ors for the responses of the output neurons conferred a 
prior over stimuli:

p0 s( )∝ exp −
1
2σ 0

2 ψn (s)− ŷn
(1)( )2

n
∑

⎡

⎣
⎢

⎤

⎦
⎥
, [S27]

where σ0 specified the reliability of the prior.

The readout was defined as: 

h s | y(1)( ) = exp − hn s | yn
(1)( )

n
∑

⎡

⎣
⎢

⎤

⎦
⎥

 [S28]

hn s | yn
(1)( ) = 12αλ yn

(1) − ĝψ n (s)( )2

             
+ 1
2
α 1− λ( ) yn

(1)

ĝ
−ψ n (s)

⎛
⎝⎜

⎞
⎠⎟

2

.

The readout h transformed the vector of responses of the 
output neurons to a continuous function of s that was ap-
proximately proportional to the Bayes-optimal  posterior (as 
derived below). A variant of the readout computed a depth 
estimate and an uncertainty:

ŝ =
skh sk | y

(1)( )
k
∑

h sk | y
(1)( )

k
∑

 [S29]

σ ŝ
2 =

s j − ŝ( )2 h sk | y
(1)( )

k
∑

h sk | y
(1)( )

k
∑

,

where the depth estimate (or percept) ŝ was approximately 
equal to the mean of the posterior, and the uncertainty σŝ 
was approximately equal  to the standard deviation of the 
posterior. The value of k indexes a finite number of sam-
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ples of s. Both variants of the readout (Eqs. S28 and S29) 
depended only the responses of the output neurons yn(1), 
the tuning curves ψn(s), and the values of the state pa-
rameters λ and α. The Bayes-optimal posterior, on the 
other hand, depends on the responses of the input neu-
rons yn1(0) and  yn2(0), the noise standard deviations σ1 and 
σ2, the prior over stimuli p0(s), and the reliability of the prior 
σ0.

Next I show that the readout is approximately propor-
tional  to the Bayes-optimal  posterior, if the values of the 
state parameters are chosen correctly. There are two limit-
ing cases corresponding to: 1) when the stimulus strengths 
of both cues are small, and 2) when the stimulus strengths 
of one or both cues are large. To begin, we need expres-
sions for the probability distribution of zn, and for the values 
of the state parameters.

The values of zn were normally distributed because 
they were computed as weighted sums of normally-
distributed random variables (Eq. S24, 3rd line):

zn
(1) ∼ N gψn s( ),σ 2( )   [S30]
g = w1g1 +w2g2  (see Eq. S24)

σ 2 = w1
2σ 1

2 +w2
2σ 2

2 = σ 1
2σ 2

2

σ 1
2 +σ 2

2
. (see Eq. S24)

The state parameters were chosen based on the reli-
abilities of each of the two cues and the reliability of the 
prior:

α = r0 + r1 + r2  [S31]

λ = r1 + r2
r0 + r1 + r2

r0 =
1
σ 0

2    r1 =
1
σ 1

2    r2 =
1
σ 2
2

.

where r1 and r2 are the reliabilities of each of the two cues, 
and r0 is the reliability of the prior. For these values of the 
state parameters:

αλ = 1
σ 2

 [S32]

α 1− λ( ) = 1
σ 0
2

.

It is helpful to rewrite the readout:

h s | y(1)( ) = exp − 12αλ yn
(1) − ĝψn (s)( )2

n
∑ −

1
2
α 1−λ( ) yn

(1)

ĝ
−ψn (s)

⎛

⎝
⎜

⎞

⎠
⎟

2

n
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

        
= exp − 1

2
α λĝ2 +1−λ( ) yn

(1)

ĝ
−ψn (s)

⎛

⎝
⎜

⎞

⎠
⎟

2

j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ [S33]

Case 1: When the stimulus strengths of both cues are 
small, the readout is approximately proportional to the prior 
over s. If both cues are weak:

ĝ2 ≪ 1− λ( )  [S34]

λĝ2 +1− λ( ) = 1− λ( ) λ ĝ2

1− λ
+1⎛

⎝⎜
⎞
⎠⎟
≈ 1− λ( )

.

In addition, when both stimulus strengths are weak, then 
the second term of E (Eq. S24) dominates and the re-
sponses converge to values that are proportional  to the 
priors, i.e., 

yn
(1)

ĝ
≈ ŷn

(1)

. [S35]
Consequently, the readout (Eq. S33) can be approximated:

    [S36]

h s | y(1)( ) ≈ exp − 12α 1−λ( ) yn
(1)

ĝ
−ψn (s)

⎛

⎝
⎜

⎞

⎠
⎟

2

n
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (see Eqs. S33 and S34)

           
≈ exp − 1

2σ 0
2 ŷn

(1) −ψn (s)( )2
n
∑

⎡

⎣
⎢

⎤

⎦
⎥

  (see Eqs. S32 and S35)

           ∝ p0 (s) , (see Eq. S27)

where p0(s) is the prior over s.

Case 2: When the stimulus strengths of one or both 
cues are large, the readout is approximately proportional 
to the likelihood. If one or both cues are strong:

ĝ2 ≫ 1−λ( )  [S37]

λĝ2 +1− λ( ) = ĝ2 λ + 1− λ
ĝ2

⎛
⎝⎜

⎞
⎠⎟
≈ λĝ2( )

.

In addition, when one or both cues are strong, then the 
first term of E (Eq. S24) dominates and the responses 
converge to minimize the feedforward drive, i.e.,

yn
(1) ≈ zn

(1)
, [S38]

And when one or both cues are strong, then ĝ ≈ g:

ĝ = yn
(1)

n
∑ ≈ zn

(1)

n
∑

  [S39]

 
= w1 yn1

(0) +w2 yn2
(0)

n
∑

n
∑

⎛

⎝
⎜

⎞

⎠
⎟

 (see Eq. S24)

 
≈ w1g1 ψn s( )+w2g2 ψn s( )

n
∑

n
∑

⎛

⎝
⎜

⎞

⎠
⎟

  (see Eq. S26)
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 = w1g1 +w2g2( ) = g  (see Eqs. S25 and S30)

Consequently, the readout (Eq. S33) can be approximated:
   [S40]

h s | y(1)( ) ≈ exp − 1
2
α λĝ2( ) yj

(1)

ĝ
−ψ j (s)

⎛

⎝⎜
⎞

⎠⎟

2

j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (see Eqs. S33 and S37)

           

=exp − 1
2
αλ yj

(1) − ĝψ j (s)( )2
j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

           

≈ exp − 1
2σ 2 z j

(1) − gψ j (s)( )2
j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (see Eqs. S32, S38, S39)

           
∝ p z(1) | s( )  (see Eq. S30)

Finally, when one or both cues are strong, then 
p(z(1) | s) is approximately proportional to the likelihood 
p(y1(0),y2(0) | s). The negative log likelihoods are:

  [S41]

− log p y1
(0),y2

(0) | s( )⎡
⎣

⎤
⎦=

yn1
(0) − g1ψn (s)( )2

2σ 1
2 +

yn2
(0) − g2ψn (s)( )2

2σ 2
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥n

∑ − log(c0 )

− log p z(1) | s( )⎡
⎣

⎤
⎦=

zn
(1) − gψn (s)( )2

2σ 2
n
∑ − log(c1)

,

where c0 and c1 are proportionality constants. It suffices to 
show that each of the terms in the summations are ap-
proximately equal to one another:

  [S42]
zn
(1) − gψn (s)( )2

2σ 2 =
σ 1
2 +σ 2

2

2σ 1
2σ 2

2 w1yn1
(0) +w2yn2

(0) −w1g1ψn (s)−w2g2ψn (s)( )2

 
=
yn1
(0) − g1ψn (s)( )2

2σ 1
2 +

yn2
(0) − g2ψn (s)( )2

2σ 2
2 +

yn1
(0) − g1ψn (s)( ) yn2(0) − g2ψn (s)( )

σ 1σ 2

 
≈

yn1
(0) − g1ψn (s)( )2

2σ 1
2 +

yn2
(0) − g2ψn (s)( )2

2σ 2
2

.

The last step relies on an approximation that the cross-
term can be ignored. This approximation is reasonable 
when the stimulus strengths of one or both cues are large, 
specifically when either: g1/σ1 ≫ g2/σ2, or g2/σ2 ≫ g1/σ1, or 
both g1/σ1 ≫ 1, and g2/σ2 ≫ 1.
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