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Abstract

As an observer moves and explores the environment, the visual stimulation in his/her eye is constantly changing.
Somehow he/she is able to perceive the spatial layout of the scene, and to discern his/her movement through space.
Computational vision researchers have been trying to solve this problem for a number of years with only limited
success. It is a difficult problem to solve because the optical flow field is nonlinearly related to the 3D motion
and depth parameters.

Here, we show that the nonlinear equation describing the optical flow ficld can be split by an exact algebraic
manipulation to form three sets of equations. The first set relates the flow field to only the translational component
of 3D motion. Thus, depth and rotation need not be known or estimated prior to solving for translation. Once
the translation has been recovered, the second set of equations can be used to solve for rotation. Finally, depth
can be estimated with the third set of equations, given the recovered translation and rotation.

The algorithm applies to the general case of arbitrary motion with respect to an arbitrary scene. It is simple
to compute, and it is plausible biologically. The results reported in this article demonstrate the potential of our
new approach, and show that it performs favorably when compared with two other well-known algorithms.

1 Introduction

More than forty years ago, Gibson [1950, 1957] pointed
out that visual motion perception is essential for an
observer to explore and interact with his/her environ-
ment. Since that time, perception of motion has been
studied extensively by researchers in the fields of visual
psychophysics, visual neurophysiology, and computa-
tional vision. It is now well known that the visual system
has mechanisms that are specifically suited for analyz-
ing motion (for review, see Nakayama [1985]), and that
human observers are capable of recovering accurate
information about the world (e.g., three-dimensional
trajectory, relative distance, shape) from motion in
images (for example, Wallach and O’Connell [1953],
Johansson [1975], Warren and Hannon [1988, 1990]).

The first stage of motion perception is generally
believed to be the measurement of image motion. The
result of this first stage is called the optical flow field,
a collection of two-dimensional velocity vectors, one
for each small region of the visual field. The second
stage of motion perception is the interpretation of opti-
cal flow in terms of objects and surfaces in the three-
dimensional world. The optical flow field depends non-
linearly on the distance from the observer to each point
in the scene, on the translational velocity of the observer,
and on the rotational velocity of the observer (observer
rotation, throughout this article, means rotation about
the center of projection of the observer’s eye).

Figure 1 shows some example flow fields. Each vec-
tor represents the speed and direction of motion for each
local patch of visual field. Figure la is a flow field
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Fig. 1. Flow fields corresponding to: (a) observer translation, (b) observer rotation, (c) translation plus rotation. Each flow vector in (c) is
the vector sum of the two correpsonding flow vectors in (a) and (b).

resulting from observer translation above a planar sur-
face. Figure 1b is a flow field resulting from observer
rotation, and figure Ic is a flow field resulting from
simultaneous translation and rotation. Each flow vector
in figure lc is the vector sum of the two corresponding
flow vectors in figures la and Ib.

When an observer is translating, features in the image
move toward or away from a single point in the image,
called the focus of expansion (FOE). The FOE in figure
la is centered just above the horizon. When the observer
is rotating as well as translating, the singularity in the
flow field no longer corresponds to the translation



direction. The flow field in figure lc still contains infor-
mation about the observer’s translation, but that infor-
mation is confounded by the rotation.

Gibson [1950, 1957] hypothesized that there is suffi-
cient information in the flow field to recover a unique,
physically correct interpretation of the 3D motion and
scene structure. For pure translation (figure la), the
FOE gives the observer motion, and the vector lengths
give the scene structure. However, for translation plus
rotation (figure Ic), it is not immediately clear that one
could recover the 3D motion and scene structure.

This article presents a simple algorithm for recover-
ing 3D motion and depth from optical flow, for the case
of general motion (translation plus rotation) with respect
to an arbitrary scene. In a companion article [Jepson
& Heeger 1990], we prove that this algorithm gives
unique and robust solutions. Some of this work has been
reported previously [Jepson and Heeger 1989, 1990,
1991; Heeger and Jepson 1990a, 1990b, 1990c, 1991].

2 Literature Review

A large number of algorithms have been proposed for
computing 3D motion and depth from image sequences;
this article presents yet another. This new approach is
based on the bilinear nature of the equation relating
3D motion to image motion. Since the equation is bi-
linear we can split the problem apart, solving first for
translation, second for rotation, and third for depth.

This section provides a review of 3D motion algo-
rithms. It is not an exhaustive review since there have
been so many papers published on this topic over the
past decade. The algorithms discussed here are exam-
ples that are representative of the literature. More ex-
tensive reviews have been written by Barron [1984] and
by Aggarwal and Nandhakumar [1988].

2.1 Instantaneous Time vs. Discrete Time

Techniques for computing 3D motion from image se-
quences can be categorized either as discrete-time
methods or as instantaneous-time methods. Discrete-
time algorithms track a collection of isolated image
features over a series of views. Given enough views
of enough points, the solution for rigid structure is
overdetermined.

Instantaneous-time algorithms, like the one proposed
here, compute 3D motion and depth from optical flow.
The flow can be measured using correlation or block-
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matching (e.g., see Anandan [1989]), in which each
small patch of the image is compared with nearby
patches. Gradient-based algorithms are a second ap-
proach to measuring flow fields (e.g., Horn and Schunk
[1981], Lucas and Kanade [1981], Nagel [1987]). A third
approach using spatiotemporal filtering has also been
proposed (e.g., Watson and Ahumada [1985], Heeger
[1987, 1988], Grzywacz and Yuille [1990], Fleet and
Jepson [1990], Simoncelli et al. [1991]. Recently,
Adelsen and Bergen [1986]) and Simoncelli et al. [1991]
have placed the spatiotemporal filter models and the
gradient-based methods into a common framework.

Feature extraction and matching is an additional way
to measure the flow field (for reviews of feature track-
ing methods, see Barron [1984] or Aggarwal and
Nandhakumar [1988]. Feature tracking can thus be a
starting point for an instantaneous-time motion algo-
rithm as well as for a discrete-time algorithm. The dif-
ference between the two is the way in which the cor-
respondence is used for subsequent processing. A
discrete-time method uses the positions of the features,
and an instantaneous-time method uses the velocities.

The real difference between instantaneous- and
discrete-time methods is that the instantaneous ap-
proach is an approximation that is valid only for short
time steps. In Section 6 we show how the instantaneous
approximation breaks down when the motion from
frame to frame is too great.

2.2 Discrete-Time Algorithms

Early examples of discrete-time 3D motion algorithms
were proposed by Ullman [1979] and by Roach and
Aggarwal [1980].

A linear discrete-time approach was later developed
by several researchers [Longuet-Higgins 1981; Tsai and
Huang 1984; Faugeras et al. 1987; and Weng et al.
1989]. The first step in these linear discrete-time algo-
rithms is to compute a set of “‘essential”” parameters (the
E-matrix) from the locations of corresponding feature
points in two successive frames. Then, the 3D motion
parameters and depth are recovered from the E-matrix.
The E-matrix algorithms are quite simple to implement
and inexpensive to compute. However, the linear con-
straint they utilize is not the same as the constraint of
rigid-body motion. The consequence of using a weaker
constraint is that these algorithms are particularly sen-
sitive to input errors. In section 6, we compare the
performance of our new algorithm with the E-matrix
approach.



98 Heeger and Jepson

2.3 Instantaneous-Time Algorithms

Koenderink and Van Dorn [1975, 1976, 198l1] pioneered
the instantaneous-time approach. They proposed using
local deformations of the image (e.g., divergence, curl,
shear) to measure invariant properties of motion and
surface shape.

Making use of Koenderink and van Dorn’s analysis,
Longuet-Higgins and Prazdny [1980] and Waxman et
al. [Waxman & Ullman 1985; Waxman & Wohn 1985,
1988; Waxman et al. 1987] proposed methods that solve
for the motion of planar surfaces. A rigidly moving
planar surface is a special case that gives rise to a
second-order flow field; that is, the flow vectors vary
as a quadratic function of image position. The method
of Waxman et al. first subdivides the flow field into
local patches that are well approximated as second order
flow fields. The 3D structure and motion are then
recovered, in closed form, from the parameters of the
second order flow field. An advantage of these methods
is that the motion in each patch is computed indepen-
dently, so the methods can deal with multiple moving
objects. A problem with these methods is that they are
sensitive to errors in the flow-field measurements, par-
ticularly for small patches (see Waxman and Wohn
[1988] and Barron et al. [1990]).

2.4 Subdividing the Problem

Several researchers have proposed splitting the problem
apart, solving first for one set of motion parameters
(either the translation or the rotation), and then solving
for the other. Prazdny [1980] proposed solving first for
the rotational component of motion. He derived a sys-
tem of nonlinear equations that relates image velocity
to rotation, independent of translation. This nonlinear
system may be solved using iterative numerical tech-
niques. Prazdny noted that this iterative method is com-
putationally expensive and that it requires good initial
guesses. Prazdny also noted that this method should
not be applied across depth discontinuities, implicitly
assuming that the surfaces in the scene are smooth.

Longuet-Higgins and Prazdny [1980] and Reiger and
Lawton [1985] suggested solving first for translation,
independent of rotation. Their algorithms are based on
an observation that was first pointed out by Helmholtz
[Southall 1962]. If two 3D points have the same image
location but are at different depths, then the vector dif-
ference between the two flow vectors is oriented toward
the FOE. If two 3D points project to nearby image loca-

tions, then the vector difference is oriented approxi-
mately toward the FOE. Reiger and Lawton showed that
the approximation is valid when the depth difference
is large, and when the two image locations are close
to one another (i.e., at adjacent image locations that
straddle an occlusion boundary). The Reiger-Lawton
algorithm locates the FOE from local flow-vector dif-
ferences. The problem with their approach is that it is
particularly difficult to measure flow vectors near
occlusion boundaries.

The Reiger-Lawton algorithm is similar, in spirit, to
the approach presented in this article. We also subdivide
the problem, solving first for translation. The difference
is that our solution is not an approximation and we do
not require that the flow vectors be from adjacent image
locations. In section 6, we compare the performance
of our algorithm with the Reiger-Lawton algorithm.

Prazdny [1983] showed that the difference between
any two (not necessarily adjacent) flow vectors gives
a constraint on translation, independent of rotation.
Prazdny did not propose an algorithm that made use
of this constraint. This constraint was the starting point
for our current research.

Motivated by our research, Sundareswaran [1991]
recently proposed two algorithms. The first is an ap-
proximate method that solves for rotation independent
of translation, and the second is an exact method that
solves for translation independent of rotation.

2.5 Least-Squares Algorithms

Bruss and Horn [1983] (see also Horn [1986]) proposed
a global approach, that combines information through-
out the visual field, to choose the 3D motion that best
accounts (in a least-squares sense) for the measured
flow field. They developed three algorithms for three
different cases. The first solves for translation when
the rotation is zero. The second solves for rotation when
translation is zero. The third deals with the case of
general 3D motion. Bruss and Horn derived closed-
form solutions for the first two cases. For the general
case, they reduced the least-squares residual function
to one that involves only the unknown translation. They
proposed an iterative numerical (e.g., gradient-descent)
procedure to find the solution.

Adiv [1985] suggested an alternative algorithm for
minimizing the same least-squares residual function that
was originally used by Bruss and Horn [1983]. Like
Waxman et al. (references above), Adiv subdivides the



flow field and computes the motions independently for
cach patch. Adiv avoids using an iterative gradient de-
scent procedure by sampling the solution space of all
candidate translation directions. For each patch and for
each candidate translation, he computes a residual
value. The translation with the minimum residual value
is chosen as the estimate for that patch. Patches that
share the same solution are then grouped together since
they correspond to surfaces in the scene undergoing the
same 3D motion.

Maybank [1987] also considered the least-squares ap-
proach and derived some theoretical results and approx-
imations that are closely related to our work (see Jepson
& Heeger [1990]).

The algorithm described here minimizes the same
least-squares residual function used by Bruss and Horn
[1983], by Adiv [1985], and by Maybank [1987]. We also
reduce the residual function to one that involves only
the unknown translation. The important difference in
our approach is the way by which we eliminate the
unknown rotation and depth values. The resulting algo-
rithm is considerably more efficient since most of the
computation is done off line. We evaluate the residual
function simply as a linear summation of the input flow
vectors, weighted by a fixed set of precomputed coeffi-
cients. Like Adiv and Maybank, we avoid using an iter-
ative gradient-descent procedure by sampling the solu-
tion space of all candidate translation directions.

Other researchers have also proposed techniques that
pick solutions by minimizing a residual function over
the discretely sampled solution space. Prazdny [1981]
proposed a method that samples the space of all can-
didate rotations (a three-dimensional solution space).
Subtracting the correct rotational component from the
flow field gives vectors that all point toward or away
from the FOE. Prazdny’s residual function measures
the extent to which these vectors intersect.

Ballard and Kimball [1983] used a generalized Hough
transform to solve for the 3D motion parameters. The
solution space (the five-dimensional space of all can-
didate translations and rotations) is sampled, and each
input flow vector “votes” for all of the solutions with
which it is consistent. The values that receive the
greatest number of votes are taken to be solutions. An
advantage of this approach is that it is possible to repre-
sent multiple solutions as multiple peaks, corresponding
to differently moving objects. However, the method re-
quires that the depth already be known, and it requires
evaluating candidate solutions throughout the entire
five-dimensional solution space.
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2.6 Direct Methods

Horn et al. [Horn and Negahdaripour 1987; Horn and
Weldon 1988; Negahdaripour and Horn 1989] proposed
several “direct” methods for recovering the 3D motion
parameters. In these methods, 3D motion is computed
from the spatiotemporal gradients of image brightness,
rather than from feature positions or from flow vectors.
Horn et al. argue that these methods avoid the difficulty
of computing the flow field. Each of these “direct”
methods applies only for a special case, for example,
when there is no rotation.

In appendix B, we extend out algorithm to be a
“direct” method that works directly from the spatiotem-
poral gradients of image brightness and applies for the
general case of arbitrary 3D motion.

2.7 Incremental Methods

A number of authors have suggested sequential/incre-
mental methods for recovering 3D motion and/or struc-
ture that take advantage of information over extended
periods of time. The goal of these efforts is to reduce
the error by using more information. Ullman [1984]
proposed a discrete-time, feature-based, incremental
rigidity scheme. The incremental rigidity scheme has
the advantage that even though it prefers rigid interpre-
tations, it can recover the structure of nonrigid objects
that change shape slowly over time. Broida and
Chellappa [1986] and Faugeras et al. [1987] advocated
feature-based extended Kalman filtering routines. Heel
[1989b] proposed an instantaneous-time algorithm that
uses an extended Kalman filter. In this method, an ini-
tial guess of the depth map is used to estimate the 3D
motion parameters. Then the estimated motion param-
cters are used to update the depth estimates. The pro-
cedure goes back and forth like this until the depth
estimates converge. Heel [1989a, 1990] also proposed
a “direct” sequential method that computes 3D motion
directly from the spatiotemporal gradients of image
brightness.

It is straightforward to extend our approach to be a
sequential estimator that takes advantage of information
over extended periods of time. Unlike Heel, we do not
need depth estimates to update the motion-parameter
estimates. We can still take advantage of prior infor-
mation on depth if that prior information is available,
but we do not depend on it.
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2.8 Evaluating the Algorithms

In summary, there are several criteria that are impor-
tant when evaluating the various 3D motion algorithms.

Stability. The method must not be too sensitive to errors
in the image velocity measurements. Algorithms that
use only local measurements are particularly sensitive
to input errors. Methods that rely on approximations
are also error sensitive. Our method is comparatively
stable because it is exact, and because it is global (we
combine flow measurements over space and/or time).

Generality. A number of algorithms solve only a part
of the problem, or solve it only under restricted con-
ditions. Some algorithms are exact only for planar sur-
faces. Some methods can not deal with a scene in which
there are objects moving differently with respect to one
another. Some approaches solve for depth only if the
3D motion is already known. Other approaches solve
for the 3D motion parameters only if the depth is
already known. Other approaches solve for the transla-
tional component of motion only if the rotational com-
ponent is already known, or vice versa.

Our new approach handles the case of arbitrary
motion with respect to an arbitrary scene, and we are
currently extending it to deal with multiple motions.
Like Ballard and Kimball [1983], we could look for
multiple minima in the residual function. Or like Adiv
[1985] and Waxman and Wohn [1988], we could sub-
divide the image into local patches and compute the
3D motions independently for each patch. Any method
is likely to be error prone when given input from a very
limited field of view. Sequential processing over an ex-
tended period of time may compensate for instability
that results from using small patches.

Efficiency. Algorithms that make use of iterative
numerical techniques (e.g., gradient descent) in a high-
dimensional solution space are not practical since they
are prohibitively expensive in terms of compute time.
In addition, iterative methods for solving nonlinear
equations often require good initial guesses of the
unknowns. We advocate a highly parallel algorithm, in
which the individual processing elements need only
perform a handful of computations.

3 3D Motion and Optical Flow

We first review the physics and geometry of instantane-
ous rigid-body motion under perspective projection,
and derive an equation relating 3D motion to optical
flow. Although this equation has been derived previ-
ously by a number of authors (e.g., Longuet-Higgins
and Prazdny [1980], Bruss and Horn [1983], Waxman
and Ullman [1985]), we write it in a new form that
reveals its underlying simplicity.

Each point in a scene has an associated position vec-
tor, X = (X, Y, Z)', relative to a viewer-centered coor-
dinate frame as depicted in figure 2. Under perspective
projection this surface point projects to a point in the
image plane, (x, y)’

x = fX/Z
y = fYZ (D

where f is the ‘““focal length” of the projection.

Yi

/

z

Fig. 2. Viewer centered coordinate frame and perspective projection.

Every point of a rigid body shares the same six
motion parameters relative to the viewer-centered coor-
dinate frame. Due to the motion of the observer, the
relative motion of a surface point is

dx dy dz)'

Ny R, A — »
[dr’df’dt] WmEsED W
where T = (T}, T,, T,)' and @ = (2, Q,, Q)" denote,
respectively, the translation and rotation.

Image velocity, v(x, y), is defined as the derivatives,
with respect to time, of the x- and y-components of the



projection of a scene point. Taking derivatives of equa-
tion (1) with respect to time, and substituting from equa-
tion (2) gives

vix, y) = p(x, AR, T + Bx, y)Q 3)

where p(x, y) = VZ is inverse depth, and where

[ —f 0 «x
A, y) =
S i
lf —(fF+x4Hf) vy
B(x, y) =
L fEYf o el —x

The A(x, y) and B(x, y) matrixes depend only on the
image position and the focal length, not on any of the
unknowns.

Equation (3) describes the flow field as a function
of 3D motion and depth. An important observation
about equation (3) is that it is bilinear; v is a linear
function of T and { for fixed p, and it is a linear func-
tion of p and Q for fixed T.

Since both p(x, y) (the inverse depth) and T (the
translation) are unknowns and since they arc multiplied
together in equation (3), they can each be determined
only up to a scale factor; that is, we can solve for only
the direction of translation and the relative depth, not
for the absolute translation nor for the absolute depth.
For the rest of this article, T denotes a unit vector in
the translation direction (note that T now has only two
degrees of freedom), and p(x, y) denotes the relative
inverse depth (||T|/Z).

It is impossible to recover the 3D motion parameters,
given the image velocity at only a single image loca-
tion; there are six unknowns on the right-hand side of
equation (3) and only two measurements (the two com-
ponents of v) on the left-hand side. Image velocity
measurements at five image locations are necessary,
although not always sufficient, to solve the problem
[Prazdny 1983].

In the next section, we describe how our algorithm
uses a number of flow vectors to solve for 3D transla-
tion. For each of N sample points, a separate equation
can be written in the form of equation (3). These N
equations can also be collected together into one matrix
equation (reusing the symbols in equation (3) rather
than intreducing new notation):

v = A(T)p + B
= C(T)q “4)
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where v is now a 2N vector containing the image veloc-
ity at each of the N sample points, and p is now an N
vector containing the inverse depth at each sample
point. A(T) (a 2N-by-N matrix) is obtained by collect-
ing together into a single matrix A(x, y)T for each sam-
ple point. Each column of A(T) contains two nonzero
entries (the two elements of A(x, y)T):

Al 398 e 0
A(T) =

0 eai® A(IN., _\’N)T

Similarly, B (a 2N-by-3 matrix) is obtained by collect-
ing together into a single matrix the B(x, y) matrixes:

B(x,, y1)

B(xy, yn)

Finally, q (an N+3 vector) is obtained by collecting
together into one vector the unknown rotation and depth
values, and C(T) is obtained by placing the columns
of B along side the columns of A(T):

|
C(T) = | AT) B
|

4 Recovering the Direction of Translation

In this section, we present our method for recover-
ing 3D translation, T. The rotation and depth values
need not be known or estimated prior to solving for
translation.

The space of all candidate translation directions is
the unit sphere. We need only consider half of the
sphere since solutions on the front and back halves are
the same, as can be seen by multiplying both p(x, y)
and T by minus one, in equation (3).

We define a residual function, E(T), over the dis-
cretely sampled space of all candidate translation dircc-
tions. Each candidate translation is used, along with
flow field measurements, to compute a residual value
(or badness rating). The residual value indicates
whether or not the candidate translation is consistent
with the flow vectors. A residual value of zero for
a particular candidate translation indicates that the



102 Heeger and Jepson

candidate translation is a plausible interpretation of the
flow vectors.

Figure 3 is an illustration of the residual function.
Each point in figure 3 corresponds to a different transla-
tion direction, and the brightness at each point corre-
sponds to a residual value. The minimum in this resid-
ual function corresponds to the solution.

The residual values are computed in parallel for each
candidate translation, and in parallel for different
patches of the flow field. The resulting residual func-
tions are then summed, as illustrated in figure 4, giving
a global least-squares estimate for translation.

The solution space is small (the unit hemisphere is
a compact two-dimensional space), so the residual func-
tion can be evaluated using a practical amount of
memory and compute time.

4.1 The Residual Function
The residual function, E(T), is defined to yield a least-

squares estimate for translation, such that (in the ab-
sence of noise) £(Ty) is minimized for T, equal to the

T-space (flattened hemisphere)

A

Y

Fig. 3. The space of all candidate translation directions is made up
of the points on the unit hemisphere. The residual function, E(T),
is zero for the true direction of translation. The compact two-
dimensional solution space is parameterized by o and @, the angles
in spherical coordinates that specify each point on the unit hemisphere.

actual translation. Equation (4) relates the image veloci-
ties at N sample points (concatenated in v) to the prod-
uct of a matrix, C(T) (that depends on the unknown
3D translation), times a vector, g, (the unknown rota-
tion and depth values). The least-squares estimate for
translation minimizes the following expression over all
candidate translations, rotations, and depth values:

E(T, q) = [lv — C(T)ql]? (5)

We seek the choice of T that minimizes this expression
over all candidate T and q.

We show in appendix A that minimizing expression
(5) over all T and q is equivalent to minimizing the
following residual function over T alone:

ET) = |v'CH(D)? Q)

where C*(T) is the orthogonal complement to C(T),
that is easily computed [Strang 1980] from the elements
of C(T).

The matrices C(T) and C*(T) depend only on the
locations of the N sample points and on the candidate
T. These matrices do not depend on the flow-field
measurements. Therefore, the C*(T) matrices may be
precomputed and stored for each image patch, and for
each candidate translation.

As new flow-ficld measurements become available
from incoming images the residual values are computed
in two steps: (1) the linear summations given by
v/C*(T), and (2) the sum of the squares of the result-
ing numbers.

4.2 Uniqueness and Robusiness

In our companion article [Jepson and Heeger 1990] we
prove that our subspace method gives unique and robust
solutions. Here, we briefly summarize these theoretical
results on uniqueness and robustness.

First, it is important to know if there are incorrect
translational velocities that might also have a residual
of zero. When the inverse depth values (for a given
image patch) are sufficiently nonplanar, it can be shown
that under specific conditions, the zeroes of E(T) are
concentrated near the great circle that passes through
the correct translation direction (T = T,) and through
the direction that points toward the center of the patch
[Jepson and Heeger 1990] (see also Maybank [1987]).

The solution is disambiguated by summing residual
surfaces from different image patches. Two or more
patches, in significantly different visual directions, have



Subspace Methods for Recovering Rigid Motion I 103

/|

i@ A

e —

1!/ L

[y

7/
Sp

image velocity
data

.

Fig. 4. The direction of translation is recovered by subdividing the flow field into patches. A residual surface is computed for each patch

using flow ficld measurements at several sample points from within th

give a single solution.

zeroes concentrated near different great circles. They
have simultaneous zeroes only near the intersection of
the great circles, namely near T = To. In cases where
the depth is nearly planar, or where velocity values are
available only within a narrow visual angle, it may be
impossible to obtain a unique solution. These cases will
be the exception rather than the rule in natural scenes.

Second, it is important to know how finely we need
to sample the solution space of candidate translations.
In our companion article, we show that the entire
residual surface can be approximately reconstructed
from only a few samples (see also Maybank [1987]).

Third, we show in the companion article that the
Hessian of the residual surface is large at the point of
smallest residual, so this point will be stable with
respect to errors in the image velocity measurements.

5 Recovering Rotation and Depth

Once translation has been determined, one can solve
for rotation as well. We now proceed to eliminate the
depth, p(x, y), from equation (3), leaving us with a
linear constraint on rotation, . To this end, we define
d(x, y, T) to be a unit vector perpendicular to the trans-
lational component of the flow field,

d'(x,y,T)A(x, yT =0
ldGx, y, DI =1

1l

at patch. The residual surfaces from each patch are then summed to

Multiplying by d’(x, ¥, T) on both sides of equation
(3) eliminates the dependence on p(x, y):

d'tx, y, Tv(x, ) = d'(x, y, DB, »& ()

Equation (7) is a linear constraint on the rotation, @,
given the translation, T, and a velocity vector, V(x, ¥).
However, it is impossible to solve for the rotation given
just one velocity vector, since ! has three unknown com-
ponents and equation (7) provides only one constraint.

Several flow vectors may be utilized in concert to
solve for the rotation. If there is no error in the input
flow field then three flow vectors are sufficient. We
compute a least-squares estimate for rotation, using a
large number of flow vectors. For each flow vector, we
write an equation in the form of equation (7) (dropping
the arguments x, y, and T, for simplicity):

— t
d:v,— = d‘;B‘-ﬂ
where i now indexes over the flow vectors at different

sample points. The least-squares solution for {1 is ob-
tained by minimizing:

E@ =, ldBe — dv
i

The estimate is given by
-1

g =| > BddB, > Bid,dly ©)
i i



104 Heeger and Jepson

The first factor on the right-hand side of equation
(8) is a 3X3 matrix that does not depend on the input
flow field, but it does depend on the recovered transla-
tion. The second factor on the right-hand side of equa-
tion (8) is a linear sum of the input flow vectors. The
coefficients in this linear sum depend on the recovered
translation. As new flow-field measurements (and new
estimates of translation) become available from incom-
ing images, rotation is estimated as a linear combination
of the flow vectors. The recovered translation triggers
which set of weights to use in this linear combination.

An alternative way of formulating the least-squares
estimate for rotation is to start with equation (4), which
relates 3D motion and depth to flow at N sample points.
Solving this large system of linear equations for rotation
can be proved equivalent to the solution given by equa-
tion (8). The latter has the advantage of being a highly
parallel algorithm in which d(x, y, T) is computed inde-
pendently for each image location.

Finally, once the translation and rotation are both
known, equation (3) provides two linear constraints to
solve for the unknown depth at each image point. The
translation and rotation estimates are reasonably insen-
sitive to random errors in the flow-field measurements
(see results below) because we combine those inputs
over the entire field of view. The depth estimates, on
the other hand, are quite sensitive to input errors.

‘We can use information over an extended period of
time to improve the depth estimates. Bolles et al. [1987]
recovered depth, given the known camera motion, by
tracking features through the space-time volume of
image data. Matthies et al. [1989] used sequential esti-
mation (Kalman filtering) to recover depth from se-
quences of flow fields, given the known camera motion.
Taken together, their results demonstrate that it is prac-
tical to recover depth once the camera motion is known.

6 Results

We implemented the algorithms described in sections
4 and 5 on the connection machine. Due to the simple
nature of the computations it would be straightforward
to design parallel hardware capable of performing these
operations in real time. The limiting factor in building
such hardware is the memory requirement of storing
the C*(T) coefficients for each candidate T.

The current implementation assigns each processor
to a particular candidate translation, and to a particular
flow-field patch. The number of patches of the flow

field, the amount of overlap of the patches, the number
of flow-field samples in each patch, and the spacing
of the samples within each patch were chosen arbitrar-
ily. For the results presented below, unless otherwise
stated, we used nonoverlapping, five-point, dice-shaped
sample patterns. Proper sampling of the solution space
and proper sampling of the flow field are interesting
issues for further research.

Note that there are a wide variety of alternative imple-
mentations of our proposed approach. We could use
gradient descent (or some other minimization scheme)
rather than sampling the solution space. We could also
use multiple scales, sampling both the flow field and
the solution space at a variety of different resolutions.

6.1 Comparison with E-matrix

This section reports simulation results that compare the
performance of our 3D motion algorithm with the linear
discrete-time FE-matrix approach [Longuet-Higgins
1981; Tsai and Huang 1984; Weng et al. 1989]. Our im-
plementation of the E-matrix algorithm is exactly as
described by Weng et al.

The E-matrix approach is formulated as follows. Let
X = (X, ¥, Z)' be the position of a surface point
relative to the viewer-centered coordinate system de-
picted in figure 2, and let X' = (X', Y', Z') be the
position of that point some time later. The rigid motion
constraint relates the two positions:

X' =RX + T ©)

where R is a rotation matrix and T is a translation vec-
tor. The basic constraint of the E-matrix approach is

XYIT x RX)] =0

This constraint is easily derived by observing that the
vectors (RX), T, and X' all lie in the same plane. This
constraint is usually expressed as

(X'YEX = 0 (10)

where E (the matrix of “essential parameters™) is the
appropriate combination of R and T.

The two constraints written above, equations (9) and
(10), are not equivalent. A nonrigid configuration of
points can still satisfy the E-matrix constraint. For
example, consider a rigid configuration of points,
X, ..., X, that move to (X, ..., X,). Replace X
by any other point that lies in the plane normal to
[T x (RX,)]. There is no longer any rigid-body motion
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that transforms the points X; to the points X/, even
though the E-matrix constraint is still satisfied.

The E-matrix algorithms work by solving first for the
elements of the E-matrix, given the positions of image
features in two frames. Then the 3D translation is com-
puted from E. The advantage of the E-matrix algorithms
is that they are simple and inexpensive to compute,
since the E-matrix constraint is linear. However, the
consequence of using a weaker constraint is that these
algorithms are particularly sensitive to errors in the
input.

Figure 5 shows the comparison between our algo-
rithm and the E-matrix algorithm. A flow field was syn-
thesized from a random-depth map, given a particular
3D motion. Uniform noise of various amounts was
added to each component of cach velocity vector. The
field of view was chosen to be relatively large in these
simulations, since this improves the performance of the
E-matrix algorithm. Both algorithms were given exactly
the same input flow fields. The results from our algo-

90 1

60

—=e— E-matrix
—0— Jepson-Heeger

Error (degrees)

30 A

T

0.0 0.1 D.2
Noise

Fig. 5. Comparison of our algorithm with the E-matrix algorithm,
using noisy synthetic flow fields. Graph plots error in the estimate
of translation direction as a function of the noise level, averaged over
5 trials at each noise level. Noise level of 0.1 means that the width
of the uniform distribution was proportional to one-tenth of the average
speed (averaged over the entire flow field). It is clear that our algorithm
performs much better than the E-matrix algorithm. This result is not
surprising since the E-matrix constraint is weaker than the rigid-
motion constraint. Synthetic flow fields were generated using a
random-depth map. Depth varied randomly between 100 and 200 (in
units of pixels). Focal length was 9 (in units of pixels). Entire image
was 9x9, that subtended 53 degrees of visual angle. Transl ation was
in the X direction, T = (1, 0, 0), and speed was 1 (in units of pixels).
Rotation was about the ¥ axis at 0.6 degrees/frame.

rithm were obtained by subdividing the flow field into
nonoverlapping 3x3 patches, and summing the residual
surfaces from each patch.

For the E-matrix algorithm, relatively low noise
levels result in extremely large errors in the estimate
of translation direction. The absolute scale on the axes
of the graph in figure 5 is not critical. For a set noise
level we can reduce the error simply by using more in-
put flow vectors. It is the relative difference between
the performance of the two algorithms that is important.

6.2 Comparison with Reiger-Lawton

This section reports simulation results that compare the
performance of our 3D motion algorithm with the algo-
rithm of Reiger and Lawton [1985]. For each flow vec-
tor, the Reiger-Lawton algorithm computes the differ-
ence vectors with neighboring flow vectors. If the
neighborhood is small enough, the difference vectors
all point approximately toward the FOE. Our imple-
mentation of the Reiger-Lawton algorithm is described
in appendix C.

Figure 6 shows the comparison. Flow fields were
synthesized from a random-depth map, given various
translation directions. Uniform noise of various amounts
was added to each component of each velocity vector.
The results from our algorithm were obtained by sub-
dividing the flow fields into patches, as described above.
The patches also served as the neighborhoods for the
Reiger-Lawton algorithm. The size of the neighbor-
hoods was also varied. An attempt was made to provide
the Reiger-Lawton algorithm with a most favorable in-
put: there was significant depth variation from point
to point in the random-depth map, the rotational motion
was always zero, and the neighborhood sizes were quite
small.

Figure 6a shows the comparison for a fixed noise
level, while varying the direction of translation. For
the straight-ahead direction, both algorithms perform
equally well. For translation directions away from
straight ahead, our algorithm performs much better than
the Reiger-Lawton algorithm.

We are not certain why the Reiger-Lawton algorithm
performs worse for sideways motion. The procedure
that Reiger and Lawton [1985] originally described
computes the FOE from a set of difference vectors. That
procedure fails for sideways motion because the FOE
is at infinity. However, this is not a problem for our
implementation of the Reiger-Lawton algorithm; we
avoided this potential problem by solving for the trans-
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Fig. 6. Comparison of our algorithm with the Reiger-Lawton algorithm, using noisy synthetic flow ficlds. Graphs plot error in the estimate
of the translation direction as a function of: (a) the actual translation direction; (b) and (c) the noise level. Neighborhood size used for (c)
was about 3 times larger than that used for (b). Each data point is an average over 5 trials. Noise level of 0.1 means that the width of the
uniform distribution was proportional to one-tenth of the average speed (averaged over the entire flow field). Tt is clear that our algorithm
performs better than the Reiger-Lawton algorithm, especially for the larger neighborhood size. This result is not surprising since the Reiger-
Lawton algorithm is based on an approximation that is valid only when the neighborhood is small. Synthetic flow fields were generated using
a random-depth map. Depth varied randomly between 100 and 200 (in unit of pixels). Focal length was 50 (in units of pixels). Entire image
was 2828 pixels, that subtended 31 degrees of visual angle. The translation direction varied from straight ahead, T = (0, 0, 1), to sideways,
T = (1, 0, 0), and speed was | (in units of pixels). There was no rotation. Neighborhood size in (a) and (b) was 3x3 pixels; neighborhood
at the center of the image subtended 3.5 degrees of visual angle. Neighborhood size in (c) was 9X9 pixels; neighborhood at the center of
the image subtended 10 degrees of visual angle. Noise level in (a) fixed at 0.1. Translation direction in (b) and (c) fixed at T = (0.6, 0, 0.8).



lation direction, rather than solving for the FOE (see
appendix C). Even so, our implementation of the Reiger-
Lawton algorithm still performs worse than our new
algorithm. One likely explanation is the approximation
of treating all the velocity samples as if they came from
the same image position. It seems plausible that the
algorithm is more sensitive to input errors as the angle
increases between the translation direction and the
optical axis.

Figures 6b and 6c show the comparison for a fixed
translation direction while varying the noise level. The
neighborhood size used for 6c was 3 times larger than
that used for 6b. In 6b, both algorithms perform equally
well at low noise levels. As the noise level increases,
our algorithm performs somewhat better. When the
neighborhood size is increased in 6¢, our algorithm im-
proves noticeably whereas the Reiger-Lawton algorithm
gets much worse. This result is not surprising since the
Reiger-Lawton algorithm is based on an approximation
that is valid only when the neighborhood size is small.

Again, the absolute scales on the axes in these figures
is not critical. It is the relative difference between the
performance of the two algorithms that is important.

6.3 Zero Translation

One concern about 3D motion algorithms is that they
behave in a reasonable way when there is little or no
translational component in the flow field. This can hap-
pen for slow 3D translations, or it can happen when
the entire scene is very distant. In either case, the rota-
tional component of the flow field will be large com-
pared to the translational component.

Simulations using our algorithm on noiseless flow
fields show that when the translation is zero, the resid-
ual surface is everywhere nearly zero (there is no well-
defined minimum in the residual surface). For noisy
flow fields, there are typically several local minima in
the residual surface.

Simulations also show that the rotational velocity is
recovered robustly when the actual translation is zero.
We can use any choice of T as input when the actual
translation is very small. The choice of T has little
bearing on the estimate for £, even for relatively noisy
flow fields.

Once the rotational velocity has been recovered, it
is a simple matter to check whether or not there was
any translation. Test whether a pure rotation can ac-
count for the flow field, and if so, ignore the transla-
tion and depth estimates.
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6.4 Planar Surface

It is well known that a moving planar surface gives rise
to an ambiguous flow field [Hay 1966; Adiv 1989;
Longuet-Higgins 1984, 1988; Horn 1987, Maybank
1985; Waxman et al. 1987]. Two different planes with
different motions can each result in the same flow field.
The slopes of the two planes and the components of
motion parallel to the image plane play interchangeable
roles in the two solutions. If the slope of one plane is
denoted (m,, m,) and the translation is (T, Ty, T7),
then the structure and motion of the second plane is
given by

T, = —m.T, ml = —T,/T,
Ty =—mT, my = —T/T,
T, =T,

Il

Figure 7 shows residual surfaces for two different
planar surfaces. The two peaks in each residual surface
correspond to the two possible interpretations of the
flow field. The ambiguity is easily resolved since only
one of the solutions will give consistent interpretations
over time [Longuet-Higgins 1984; Waxman et al. 1987].

6.5 Instantaneous Approximation

In section 3 we derive the relationship between instan-
taneous 3D motion and optical flow. Image velocity is
defined in equation (3) as the derivatives, with respect
to time, of the x- and y-components of the projection
of a surface point.

For the discrete-time formulation, equation (9) gives
the relationship between a surface point’s position
before and after a motion, and equation (1) expresses
how the surface point projects onto the image. Image
displacement is the difference between the projected
positions of the surface point.

The instantaneous formulation is a valid approxima-
tion to the discrete-time formulation for short time
steps. The rotation rate must be small enough so that
the rotation matrix in equation (9) can be approximated
using rotational velocities:

1 -0, At QA
R = Q, At 1 -, Ar
—Q, At QA 1

where R is a rotation matrix, @ = (2,, @y, @,)' is rota-
tional velocity, and A is the length of the time step.
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(b)

Fig. 7 Residuals for moving planar surfaces. Brightness is propor-
tional to —log [E(T)]. The two peaks correspond to the two possi-
ble solutions. (a) Slope of the plane is (0, 1/2). (b) Slope of the plane
is (0, 2). In both cases the actual translation was (1, 0, 1) and there
was no rotation. Focal length was 50 (in units of pixels). Entire image
was 28%28 pixels, that subtended 31 degrees of visual angle.

Adiv [1985] points out that the instantaneous approx-
imation is justified when this and two additional con-
ditions are met. First, the component of translation

along the line of sight must be small relative to the
depths, that is,

T, At < Z

and second, the x- and y-components of rotation must
be small relative to the imaging geometry, that is,

vy |yQ, At| < f
vx |xQ, At] < f

where f is focal length and (x, y) is image position.

Figure 8 shows how our algorithm behaves when the
instantaneous approximation breaks down. Flow fields
were synthesized using the discrete-time formulation,
equations (9) and (1), given various translations and
rotations. Results are shown for translation in the X-Z
plane, and for rotation about the ¥axis. These results
are typical of results for a variety of translation direc-
tions, translation speeds, and rotation axes. The errors
introduced by the instantaneous approximation are quite
small if the rotation rate is less than 3 degrees per frame
(90 degrees per second at video rates); the error in
translation direction is less than 3 degrees and the error
in the rotation estimate is insignificant. At 6 degrees
per frame (180 degrees per second) the error in transla-
tion is still less than 6 degrees and the error in rotation
rate is less than 10%.

6.6 Realistic Scene

The simulations reported above were done with random
and planar depth maps. Figure 9 shows simulation
results using a more realistic scene. Figure 9a shows
a computer-graphics generated image. Flow fields were
computed from the actual, known depth map, given
particular translations and rotations. Figure 9b shows
a flow field corresponding to pure translatory motion.
Figure 9c shows a flow field corresponding to transla-
tion plus rotation. By comparing 9b and 9c it is evident
that the rotational component in 9c¢ is quite significant.
The flow fields were quantized to 8 bits of precision.
Depth and motion were computed from 9c, the transla-
tion plus rotation case. Figures 9d and 9e show, respec-
tively, the residual surface and the recovered depth map.
Translation direction was recovered to within a tenth
of a degree. The slight error is due to the quantization
of the flow field and quantization of the solution space.
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6.7 Realistic Image Sequence

All of the above results were computed from synthetic
flow fields. Figure 10 shows a result computed from
an image sequence. Figure 10a is a frame from a com-
puter graphics generated image sequence of a flight
through Yosemite valley.
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Fig. & Error introduced by the instantaneous approximation. Flow
fields synthesized using the discrete-time formulation and estimates
recovered using our instantaneous-time algorithm. Results are shown
for 3 different translation directions. Speed of translation was either
10 (in units of pixels) or zero (for the no-translation case). (a) Error
in the estimate of translation direction as a function of the actual rota-
tion rate. (b) Error in the estimate of rotation rate as a function of
the actual rotation rate. Errors introduced by the instantaneous-time
approximation are quite small if the rotation rate is less than 3 degrees
per frame (90 degrees per second at video rates). Synthetic flow fields
were generated using a random-depth map. Depth from point to point
varied randomly from 100 to 200 (in units of pixels). Focal length
was 50 (in unils of pixels). Entire image was 2828 pixels, that sub-
tended 31 degrees of visual angle.

A sequence of flow fields were measured from the
image sequence using the spatiotemporal filtering
algorithm described by Simoncelli et al. [1991]. Figure
10b shows the correct flow field computed from the
known motion and depth values. Figure 10c shows an
example of one of the measured flow fields, and figure
10d shows both 10b and 10c superimposed. Errors near
the edges are due to edge effects of the spatiotemporal
convolutions.

The measured flow fields were used as input to com-
pute a sequence of residual surfaces. Since the motion
was constant over the entire 15-frame sequence the
residual surfaces were summed to give a single residual
surface, shown in figure 10e. The actual translation
direction was T = (0, 0.17, 0.98), and the actual speed
of motion was 34 .8 (in units of pixels). The recovered
translation direction was (0,06, 0.18, 0.98), in error by
3.5 degrees.

Similar results were obtained averaging only a few
(e.g., three consecutive) residual surfaces at a time. If
the 3.5-degree error were due to random errors in the
flow measurements, then using more flow fields would
help. The 3.5-degree error is, therefore, due to a sys-
tematic bias in the flow field measurements.

The recovered translation was then used to estimate
rotation. The actual rotation axis was (0.14, 0.98, 0.17),
and the actual rotation rate was 095 degrees/frame. The
estimates of rotation from different frames were all
about the same (less than 10% variation from one frame
to the next). The average estimated rotation axis was
(—0.29, 0.85, —0.43), and the average estimated rota-
tion rate was .15 degrees/frame.

Depth values were estimated using the recovered
translation and rotation. Figure 10f shows the relative
percentage error in the depth estimates. Large errors
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along the boundaries are due to edge effects of measur-
ing the flow fields. Large errors in the background arise
because small errors in the flow measurements can
result in large depth errors near the heading direction.

The recovered depth maps were then used to rerender
the scene from novel viewpoints. Examples are shown
in figures 10g and 10h. The basic structures of the scene
(e.g., the valley, the cliff face on the left) are easily
visible. The depth errors are evident along the boun-
daries and in the background (the peak in the back-
ground of 10g should not be there).

Since the rotational component of the flow field is
quite small in this case, it is difficult to evaluate the
significance of the rotation errors. By way of compari-
son, we computed depth using the correct flow field,
the correct translation, and a rotation of zero. Using
zero rotation yields significant errors in the depth
values. Indeed, negative depth values were obtained for
many of the distant points. Our recovered translation
and rotation gave far better depth maps.

7 Summary

We propose a simple method for recovering 3D motion
and depth from optical flow fields. Our approach is to
subdivide the problem, solving first for translation, in-
dependent of depth and rotation.

Translation is recovered by evaluating a residual func-
tion over the discretely sampled space of all candidate
translation directions, The residual function is used to
assess how well each candidate translation accounts for
the flow field. A residual value of zero for a particular
candidate translation indicates that the flow field is
consistent with that translation. The minimum of the
residual function corresponds to the least-squares
estimate of translation.

The residual function is evaluated as a linear sum-
mation of the input flow vectors, weighted by a fixed
set of precomputed coefficients. Optical flow can be
expressed as the product of a matrix that depends on
the unknown translation, times a vector of the unknown
rotation and inverse depth values. The coefficients for
evaluating the residual function are a basis for the or-
thogonal complement of this matrix.

It is interesting to note that the color constancy prob-
lem can be solved in an analogous manner. Maloney
and Wandell [1986] and Wandell [1987] explain that im-
age color can be expressed as the product of matrix that
depends on the spectral composition of the light source,
times a vector that depends on the spectral reflectances
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of the surfaces. Maloney and Wandell solve for the light-
ing by finding the orthogonal complement to this matrix.

Unlike many previously proposed algorithms, our ap-
proach to motion analysis applies to the general case
of arbitrary motion with respect to an arbitrary scene.
There is no assumption of smooth or planar surfaces
(see figure 9). Our results demonstrate that our algo-
rithm is stable with respect to random errors in the flow
field measurements. It performs favorably when com-
pared with two other well-known algorithms (figures
5 and 6). Our method is simple to compute and it is
highly parallel, not requiring iteration and not requiring
an initial guess. One potential drawback to our approach
is that it relies on the instantaneous-time approximation.
However, we find that the errors introduced by this ap-
proximation are quite small (figure 8) if the rotation
is less than 3 degrees per frame (90 degrees per sec-
ond at video rates).

Our algorithm is certainly simple enough (a linear
summation followed by squaring/rectification followed
by a summation) to be implemented in visual cortex.
A single cell could compute the residual value for a
given candidate translation, and for a given patch of
the visual field. That cell would be specifically suited
for assessing a particular 3D translation. A whole bat-
tery of such cells, operating in parallel, would encode
the perceived direction of motion as the minimum in
the distribution of their responses.

While it is known that cells in several cortical areas
(e.g., areas MT and MST) of the primate brain are
selective for 2D image velocity, physiologists have not
yet tested whether these cells are selective for 3D
motion. Cells in area MT are known to have velocity-
selective receptive fields with a center-surround spatial
organization. The cells prefer motion in one direction
in the center, and motion in the opposite direction in
the surround. We have shown [Jepson and Heeger 1990]
that an analogous center-surround organization is a
natural consequence of our analysis.

In our companion article [Jepson and Heeger 1990]
we prove a number of mathematical results on the
uniqueness and robustness of our approach.

We are currently working on several extensions to the
work presented here including “direct”” methods like that
outlined in appendix B, a sequential method for updating
3D motion and depth estimates over time, and exten-
sions for dealing with scenes in which there are multiple
motions. We have also recently developed a new sub-
space method that solves for translation in closed form
(without sampling the solution space), thereby requiring
much less computation [Jepson and Heeger 1991].
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® (h)

Fig. 10. (a) Frame from computer-graphics generated image sequence flying through Yosemite valley, simulating a camera with 40 degree
ficld of view. (b) Flow ficld computed from actual known motion and depth values. (c) Flow field measured from the image sequence using
method developed by Simoncelli et al. [1991]. (d) Correct flow superimposed on recavered flow. (¢} Residual surface computed from recovered
flow. Brightness is proportional to —log [E(T)]. Peak location corresponds to the estimate of translation direction, in error by 3.5 degrees.
(f) Relative percent error in the depth estimates, brightness is proportional to error. (g) and (h) Rerender scene from novel viewpoints using
recovered depth map. Basic scene structure is recovered correctly. Errors along the boundaries due to edge effects of measuring the flow fields.
Errors in the background arise because small errors in the Mlow measurements can result in large depth errors, near the heading direction.
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Appendix A: Least-Squares Estimate

The least-squares estimate for translation minimizes the
following expression over all candidate translations,
rotations, and depth values:

E(T, ) = |lv — C(Dyql?

Using the QR-decomposition [Strang 1980], the matrix
C(T) can be written as the product,

C(T) = C(MU(T)

of an orthonormal matrix C(T), times an upper-
triangular matrix, U(T). Also, let

q = U(T)q

The matrix U(T) is invertible as long as C(T) is full-
rank. We prove in the companion article [Jepson and
Heeger 1990] that C(T) is guaranteed to be full-rank
for almost all choices of sample points and almost any
T. In particular, an arrangement of five sample points
like that shown on dice is satisfactory.

Given that C(T) is full-rank, we rewrite the above
expression as

ET, @ = |lv — C(Mall

We seck to minimize this expression over all T and
q. First we minimize over q by taking the derivative
with respect to g, setting it equal to zero, and solving
for q to give

§T) = C(Tyv
For a fixed choice of T, the least-squares expression,

E(T, q) is minimized by setting @ = q(T). Substituting
q(T) for q gives the residual function in terms of T alone:

v — CMCHTV|2
l@ — CChvl

E()

where I is the identity matrix.

Recalling that C is orthonormal, (I — (-](_3') is a pro-
jection onto the null space of C’. Therefore, the above
expression reduces to:

ET) = [lvCH (DI

where C* is an orthonormal basis for the nullspace
of C'.

The matrix, C(T), divides v-space into two sub-
spaces. The subspace that is spanned by the columns
of C(T) is called the range of C(T). The leftover or-
thogonal subspace is called the orthogonal complement
of C(T). C* is a basis for this orthogonal comple-
ment. It is straightforward, using techniques of numeri-
cal linear algebra [Strang 1980], to choose a C*
matrix given C(T). The residual function is defined in
terms of this orthogonal complement.

Appendix B: Direct Method

In this appendix, we extend our algorithm to be a
“direct” method that works directly from the spatiotem-
poral gradients of image intensity. First we review a
simple algorithm for measuring the flow field from the
spatiotemporal gradients of image intensity. Then we
show how to compose the two steps of visual motion
analysis.

Following Lucas and Kanade [1981], a least-squares
estimate for image velocity minimizes

E®) =2, Ux + v y + ) — I'x, D)
Xy
where I(x, ) and I'(x, y) are consecutive frames from
the image sequence, and v(x, y) = (v, v,) is the image
velocity at (x, ). The summation is taken over a local
image patch, for example, in a Gaussian weighted win-
dow. Under the approximation that the image intensity
surface is locally planar, the minimum is given by

G(x, y) = Gylx, »V(x, y) (11)

Rl
G,(x, y) = [E”ﬂ
¥
b E {rlx E I.l'I_\'
GJ’_\F{x‘ ."} - |:E I_\'I_\- E 1‘!1}

where,



I,, 1,, and I, are the spatial and temporal derivatives
of image brightness, and the summations are local aver-
ages of the gradient products. The velocity estimate is
then given by

Wx, ) = Ggllx, MG, )

assuming that G,(x, y) is invertible. The case of
G, (x, y) not invertible corresponds to the aperture
problem; there are not enough constraints to solve for
both unknowns. So long as G,,(x, y) is not singular,
equation (11) gives an estimate for image velocity. For
each of N sample points, a separate equation can be
written in the form of equation (11). The equations can
also be collected together into one matrix equation
(reusing the symbols in equation (11} rather than intro-
ducing new notation);

G, = G.t_v" (12)
where,
b I!".l'(xls }‘])s V_\'(xl! _",l)r A v.l'{xN: yN)’ vy(xi\"s yN}]‘
[ G,(x,, »1)
G, =
L Gilxns yw)
[ G, 31 - 0
G,ry =
18 0 e G_ry(x.'\-’: yn)

Equation (12) relates the spatiotemporal intensity gradi-
ents and the flow field. Equation (4) relates the flow
field and the 3D motion parameters, Composing the
two equations gives

G, = GJ.'_\‘C(T)q

Following the presentation in appendix A, we define
a new residual function:

E(T) = [[[G4'G,I'C(D)I?

The estimate of translation is the choice of T that mini-
mizes this residual function. As above, we assume that
G, (x, y) is invertible.

The advantage of this “direct” method is that it avoids
the difficulty of computing the flow field. Variants of
this “direct” method could be derived by starting with
different flow algorithms. Some flow algorithms are
based on a relationship between image velocity and the

Subspace Methods for Recovering Rigid Motion I 115

first and second spatial and temporal derivatives of
image intensity. Other flow algorithms are based on a
relationship between velocity and the frequency re-
sponse of motion-selective spatiotemporal filters. In any
case, the given relationship can be composed with equa-
tion (4) to yield a “direct” method.

Appendix C: Reiger-Lawton Implementation

This appendix briefly describes our implementation of
the Reiger-Lawton [1985] algorithm.

First, the flow field is subdivided into M nonover-
lapping patches, each containing N flow-vector samples.
For each patch we take the flow vector v(x;, y;) at the
center of the patch and compute difference vectors with
other flow vectors v(x;, y;) in that patch. Let the dif-
ference vectors be denoted by

s, 1) = vix, y) — vl 3)

Next we determine an average difference vector
for the entire patch by fitting a line through (x;, y;) that
minimizes the sum of squared perpendicular distances
to the set of difference vectors. To do this we first com-
pute the unit vector e; that minimizes

[IL;e; |l
where
IiD l_i':'O
X }'
A
L = . )
o

The solution is the eigenvector corresponding to the
smallest eigenvalue of L{L; [Strang 1980]. The average
vector |; for the patch is perpendicular to unit vector
€;.

Next, we combine the average difference vectors
from different patches to solve for the heading direc-
tion. Let s; = (x;, ¥;, f) be the sample positions at the
center of each patch (fis focal length). For each patch
T is constrained to lie in the plane that contains both
s;and ;. That is, T is perpendicular to s; X 1;. Collect-
ing these constraints over all the image patches, we
compute the unit vector T that minimizes

QT

where
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Sy X 1y
s X1

(=
I

SMX]M

The solution is the eigenvector corresponding to the
smallest eigenvalue of Q'Q.

An alternative to this last calculation would be to
locate the FOE as the point where the difference vectors
intersect. However, it is not always possible to find an
intersection point for the FOE. When the observer is
looking straight ahead and moving directly to the side,
for example, the FOE is at infinity. The above compu-
tation, by contrast, is well defined even when the FOE
is at infinity.
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