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Orientation Decoding Depends on Maps, Not Columns

Jeremy Freeman,1 Gijs Joost Brouwer,1,2 David J. Heeger,1,2 and Elisha P. Merriam1,2

1Center for Neural Science and 2Department of Psychology, New York University, New York, New York 10003

The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar
architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of
orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1.
This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in
decoding stimulus orientation from fMRI measurements, challenging the widely held assumption that decoding results reflect sampling
of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measure-
ments has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding
reflects or exploits columnar organization.

Introduction
The orientations of visual features are represented in an orderly
pinwheel-like progression within each hypercolumn (!1 " 1 mm
in monkey and !2 " 2 mm in human) of primary visual cortex
(V1) (Hubel and Wiesel, 1963; Blasdel and Salama, 1986; Grin-
vald et al., 1986; Das and Gilbert, 1997; Maldonado et al., 1997;
Ohki et al., 2006; Adams et al., 2007). Less is known, however,
about representations of orientation at a coarse spatial scale.

Several studies have shown that it is possible to assess orien-
tation selectivity in human V1 using functional magnetic reso-
nance imaging (fMRI). fMRI pools cortical activity over several
millimeters, so the underlying orientation-selective neural re-
sponses might cancel out, resulting in fMRI responses that are
not orientation selective. Rather, it has been demonstrated, using
multivariate statistical analyses (e.g., using a classifier to decode
stimulus orientation from the spatial pattern of activity across
many fMRI voxels), that individual fMRI voxels exhibit small but
reliable orientation preferences (Haynes and Rees, 2005; Kami-
tani and Tong, 2005; Kay et al., 2008). The source of these orien-
tation preferences, however, remains controversial.

A leading conjecture is that the orientation preferences in
fMRI measurements arise from random spatial irregularities in
the fine-scale columnar architecture (Boynton, 2005; Haynes and
Rees, 2005; Kamitani and Tong, 2005; Op de Beeck et al., 2008).
According to this account, multivariate statistical analyses, which
are exceptionally sensitive, exploit these small biases to reveal
orientation-specific signals, thereby providing a window into
subvoxel columnar structure. It has been difficult to confirm or

reject this conjecture (Mannion et al., 2009; Gardner, 2010; Ka-
mitani and Sawahata, 2010; Kriegeskorte et al., 2010; Op de
Beeck, 2010; Shmuel et al., 2010; Swisher et al., 2010).

An alternative possibility is that decoding accuracy, at least for
orientation in V1, reflects a coarse-scale organization, such as a
global preference for cardinal orientations (Furmanski and En-
gel, 2000; Serences et al., 2009) or for radial orientations (i.e.,
orientations that point toward the fovea) (Sasaki et al., 2006;
Mannion et al., 2010).

Motivated by the multivariate statistical analysis of orienta-
tion selectivity in human V1, a wealth of fMRI studies have used
similar methods to probe selectivity for various stimulus features
and cognitive processes throughout the brain (e.g., Haynes and
Rees, 2006; Norman et al., 2006; Op de Beeck et al., 2008). Re-
solving the source of the orientation preferences in fMRI mea-
surements from V1 would help guide the interpretation of the
rapidly growing number of results based on multivariate statisti-
cal analyses in other brain areas.

We used fMRI to investigate the coarse-scale organization of
orientation in human V1 and found a topographic map of radial
orientations, confirming and extending previous reports of a ra-
dial bias (Sasaki et al., 2006; Mannion et al., 2010). The orienta-
tion map was tightly colocalized with the angular-position
component of the retinotopic map in V1 (Engel et al., 1994;
Sereno et al., 1995; DeYoe et al., 1996). This coarse-scale map of
orientation was both necessary and sufficient for orientation de-
coding. Hence, our results do not support the conjecture that orien-
tation decoding, at conventional spatial sampling resolutions (!2 "
2 " 2 mm voxels), reflects the fine-scale columnar architecture.
Rather, the coarse-scale orientation map provides a parsimonious,
but sobering, explanation for fMRI classification results: orientation
decoding in V1 is not an example of how fMRI might probe repre-
sentations at fine (i.e., subvoxel) spatial scales.

Materials and Methods
Subjects. Data were acquired from four healthy subjects with normal or
corrected-to-normal vision (three males; age range, 24 –34 years). Three

Received Sept. 30, 2010; revised Feb. 10, 2011; accepted Feb. 11, 2011.
Author contributions: J.F., G.J.B., D.J.H., and E.P.M. designed research; J.F., G.J.B., and E.P.M. performed research;

J.F., G.J.B., and E.P.M. analyzed data; J.F., D.J.H., and E.P.M. wrote the paper.
This work was supported by National Institutes of Health Grants R01-EY016752 (D.J.H.) and R01-NS047493 (E.M.

and D.J.H.) and by a National Science Foundation Graduate Student Fellowship (J.F.). We thank Michael Landy, Clay
Reid, Christopher Genovese, E. J. Chichilnisky, and Yan Karklin for helpful suggestions.

Correspondence should be addressed to either Jeremy Freeman or Elisha P. Merriam, New York University, 6
Washington Place, New York, NY 10003. E-mail: freeman@cns.nyu.edu or eli@cns.nyu.edu.

DOI:10.1523/JNEUROSCI.5160-10.2011
Copyright © 2011 the authors 0270-6474/11/314792-13$15.00/0

4792 • The Journal of Neuroscience, March 30, 2011 • 31(13):4792– 4804



subjects were authors (S1–S3). Experiments were conducted with the
written consent of each subject and in accordance with the safety guide-
lines for fMRI research, as approved by the University Committee on
Activities Involving Human Subjects at New York University. Each
subject participated in at least three scanning sessions: one session to
obtain a set of high-resolution anatomical volumes, one session for
standard retinotopic mapping (single-wedge, angular-position, and
expanding-ring eccentricity), and one double-wedge, angular-
position retinotopic mapping session for comparison with orienta-
tion maps. Three subjects (S1–S3) participated in the main
orientation mapping experiment with annular stimulus. Three sub-
jects (S1–S3) participated in the blurred-edge orientation mapping
control experiment. Three subjects (S1, S2, and S4) participated in the
full-field sinusoidal orientation mapping control experiment. Two
subjects (S1 and S3) participated in the square-wave orientation map-
ping control experiment. Two subjects (S1 and S3) participated in a
second double-wedge, angular-position retinotopic mapping session.
One subject (S1) participated in a repeat of the main orientation
mapping experiment with annular stimuli. One subject (S2) partici-
pated in an event-related orientation mapping experiment.

Stimuli. Stimuli were generated using Matlab (MathWorks) and MGL
(available at http://justingardner.net/mgl) on a Macintosh computer.
Stimuli were displayed via an LCD projector onto a back-projection
screen in the bore of the magnet. Subjects were supine and viewed the
projected stimuli through an angled mirror (maximum eccentricity of
12° of visual angle).

Orientation mapping experiments. The stimulus was a large, oriented
sinusoidal grating (spatial frequency, 0.5 cycles per degree) presented
within a 5° peripheral annulus (inner radius, 4.5°; outer radius, 9.5°).
Both the inner and outer edges of the annulus were blurred with a 1°
raised cosine transition (centered on the inner and outer edges) from 100
to 0% contrast. The spatial phase of the grating was randomized every
250 ms from a predefined set of 16 phases uniformly distributed between
0 and 2". Regions outside the annulus were a uniform gray, equal to the
mean luminance of the gratings (526 cd/m 2). The orientation of the
grating cycled through 16 evenly spaced angles between 0° and 180° (1.5
s per orientation). The stimulus completed 10.5 cycles in each run. Each
cycle was 24 s long. Subjects completed 14 –18 runs in each scanning
session. The stimuli cycled clockwise in half of the runs and counter-
clockwise in the other half.

Orientation mapping control experiments. The first control experi-
ment tested whether the orientation map was due to a potential con-
found related to the visible edge of the stimulus. The stimulus
consisted of the same annular oriented sinusoidal grating as in the
main experiment except that the stimulus edge was blurred over a
much larger area so that there was no visible edge. Both edges were
blurred with a raised cosine transition region (from 100 to 0% con-
trast). The transition region was 5° for the inner edge (extending from
2° to 7° eccentricity) and 5° for the outer edge (extending from 7° to
12°), such that the stimulus was 0% contrast at 2°, 100% contrast at 7°,
and 0% contrast at the outermost edge of the screen (12° eccentricity).
The grating thus achieved 100% contrast only at a single eccentricity
(7°), and the region of blurring (5°) was more than two times the
spatial period of the sinusoid (2°).

The second control experiment tested whether the map varied as a
function of eccentricity by using a stimulus that included the central
part of the visual field (9° annulus; inner radius, 0.5°; outer radius,
9.5°). The stimulus was otherwise identical to that in the main exper-
iment. The third control experiment tested whether the map gener-
alized to the stimulus parameters used in other fMRI studies
(Kamitani and Tong, 2005; Swisher et al., 2010). The stimulus was a
square-wave grating (rather than sinusoidal) with a higher spatial
frequency of 1.4 cycles per degree [matched to the stimulus used by
Kamitani and Tong (2005)]. This stimulus also included the cen-
tral part of the visual field (9° annulus; inner radius, 0.5°; outer
radius, 9.5°).

In a fourth control experiment, we measured orientation responses
using an event-related protocol. The stimulus was a contrast-reversing

oriented sinusoidal grating (spatial frequency, 1 cycle per degree; tempo-
ral frequency, 1.33 cycles per degree), presented within a 7.5° annulus
(inner radius, 0.5°; outer radius, 8°). Stimuli were presented at six differ-
ent orientations (0°, 30°, 60°, 90°, 120°, and 150°) in randomized order.
Each stimulus presentation was 1.5 s in duration, interleaved with
interstimulus intervals that ranged from 3 to 6 s, in steps of 1.5 s. All
six orientations were presented eight times in each run, along with
eight blank trials. Standard methods were used to estimate the hemo-
dynamic impulse response function and to estimate a response am-
plitude to each orientation, separately for each voxel [see Brouwer
and Heeger (2009) for a description of a similar analysis]. To estimate
the preferred orientation of each voxel, we created six unit vectors
with angles equally distributed between 0 and 2". These six vectors
were multiplied by the six response amplitudes to each presented
orientation and were averaged to a single vector. The direction of the
resulting vector represented the preferred orientation in radians (be-
tween 0 and 2"). Multiplying by 180/2" converted the preferred
orientation to degrees (between 0° and 180°).

Angular-position mapping experiments. For angular-position map-
ping, the stimulus was a black-and-white, high-contrast radial check-
erboard pattern presented within a pair of wedges on opposite sides of
fixation. Each wedge occupied 45° of angular position, and the wedges
were restricted to a 5° peripheral annulus (inner radius, 4.5°; outer
radius, 9.5°). No blurring was applied to the edges of the wedges. We
used two wedges to equate the phase range of the orientation and
angular-position maps; in both cases, one full cycle covered 180° of
the stimulus variable (angular position or orientation). The angular
position of the wedges rotated through 16 evenly spaced angular po-
sitions between 0° and 180° (1.5 s per angular position). Each radial
strip of the checkerboard pattern within the wedge moved randomly
inward or outward on each stimulus frame at a speed of 2°/s, giving
rise to vivid motion boundaries between adjacent strips. Regions out-
side the wedges were a uniform gray, equal to the mean luminance of
the checkerboard patterns within the wedges. As in the orientation
mapping experiments, the stimulus completed 10.5 cycles in each
run, each cycle was 24 s long, subjects completed 14 –18 runs in each
session, and the stimuli cycled clockwise in half of the runs and coun-
terclockwise in the other half.

Task. Observers performed a demanding two-back detection task con-
tinuously throughout each run to maintain a consistent behavioral state,
encourage stable fixation, and divert attention from the peripheral stim-
ulus. A continuous sequence of digits (0 to 9) was displayed at fixation,
changing every 400 ms. The observer’s task was to indicate, by means of
a button press, whether the current digit matched the digit from two
steps earlier.

MRI acquisition. MRI data were acquired on a Siemens 3T Allegra
head-only scanner using a head coil (NM-011; Nova Medical) for
transmitting and an eight-channel phased array surface coil (Nova
Medical) for receiving. Functional scans were acquired with gradient
recalled echo-planar imaging to measure blood oxygen level-
dependent changes in image intensity (Ogawa et al., 1990). Func-
tional imaging was conducted with 24 slices oriented perpendicular to
the calcarine sulcus and positioned with the most posterior slice at the
occipital pole (1500 ms repetition time; 30 ms echo time; 72° flip
angle; 2 " 2 " 2 mm voxel size; 104 " 80 voxel grid). A T1-weighted
magnetization-prepared rapid gradient echo anatomical volume
(MPRAGE) was acquired in each scanning session with the same slice
prescriptions as the functional images (1530 ms repetition time; 3.8
ms echo time; 8° flip angle; 1 " 1 " 2.5 mm voxel size; 256 " 160
voxel grid). A high-resolution anatomical volume, acquired in a sep-
arate session, was the average of three MPRAGE scans that were
aligned to one another and averaged (2500 ms repetition time; 3.93
ms echo time; 8° flip angle; 1 " 1 " 1 mm voxel size; 256 " 256 voxel
grid). This high-resolution anatomical scan was used both for regis-
tration across scanning sessions and for gray matter segmentation and
cortical flattening.

Eye tracking. In one orientation mapping session, we measured gaze
positions during the fMRI experiment. The eye tracker (EyeLink
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1000, SR Research) infrared camera was placed in the bore, recording
the pupil centroid and corneal reflection. Raw gaze positions were
calibrated and converted to degrees of visual angle (Stampe, 1993).
Preprocessing involved only blink removal: all samples during and
shortly (100 ms) preceding and following blinks were excluded from
analysis. Eye position data were divided into segments corresponding
to each stimulus orientation. Within each of these segments, average
gaze position was computed over each period of stable fixation (de-
fined as periods in which gaze velocity was #22°/s and gaze drift was
#1°). The angular positions of averaged gaze positions were rotated
so that their range matched the range of stimulus orientations. Fi-
nally, circular correlation, Equation 5, was used to evaluate whether
gaze position angular position varied as a function of stimulus orien-
tation (supplemental Fig. 1, available at www.jneurosci.org as supple-
mental material).

Defining retinotopic regions of interest. Each subject participated in
a standard retinotopic mapping experiment, explained in great detail
previously (Larsson and Heeger, 2006; Gardner et al., 2008). Standard
traveling wave methods were used to identify meridian representa-
tions corresponding to the borders between retinotopically organized
visual areas V1 and V2. For each subject, we defined an annular
subregion of area V1, including voxels responding preferentially to
stimuli between 5° and 10°. These regions of interest (ROIs) were
defined with data that were statistically independent of those from the
main experiment (i.e., measured in a separate scanning session). The
annular V1 ROI was used in the correlation analyses shown in Figure
3A and in the classification analyses shown in Figure 5. We also de-
fined a rectangular ROI to examine the effect of filtering on classifi-
cation (see below, Spatial filtering). This ROI was the minimum
rectangular volume that included the entire annular V1 ROI. Because
the cortical surface is folded, this volume necessarily included addi-
tional voxels in the fovea and far periphery of V1, along with voxels
from other visual areas (e.g., V2) and other tissue types (e.g., white
matter). This rectangular ROI was used only for the classification
analysis shown in Figure 6.

Preprocessing. The anatomical volume acquired in each scanning
session was aligned to the high-resolution anatomical volume of the
same subject’s brain, using a robust image registration algorithm
(Nestares and Heeger, 2000). Data from the first half cycle (eight
frames) of each functional run were discarded to minimize the effect
of transient magnetic saturation and allow the hemodynamic re-
sponse to reach steady state. Head movement within and across scans
was compensated for using standard procedures (Nestares and
Heeger, 2000). The time series from each voxel was divided by its
mean to convert from arbitrary intensity units to percentage modu-
lation and was high-pass filtered (cutoff, 0.01 Hz) to remove low-
frequency noise and drift (Smith et al., 1999). Data acquired with
different stimulus rotation directions (clockwise or counterclock-
wise) were combined to estimate the response phase, independent
of the lag caused by the hemodynamic delay. Time series data from
each scan were shifted back in time by three frames. The time series
for the counterclockwise runs were then time reversed. Averaging
clockwise and time-reversed counterclockwise runs cancelled the re-
sidual hemodynamic lag (Engel et al., 1997; Kalatsky and Stryker,
2003).

Maps of orientation and angular-position preference. The average
time series of each voxel was fit with a sinusoid with period matched
to the period of stimulus rotations (24 s). The phase of the best-fitting
sinusoid indicated the angular-position (or orientation) preference of
the voxel. The responses of most voxels were very well fit by a sinu-
soidal model, and there was no evidence for systematic deviation from
a sinusoid (e.g., multiple peaks in the responses) for either angular
position or orientation. If there was any such nonsinusoidal compo-
nent in the responses for some voxels, the phase value would not on its
own sufficiently capture that voxel’s orientation/angular-position
preference in the maps; the classification analysis (see below, Classi-
fication) considered the full time series of responses to each stimulus,
not just the phase.

We visualized orientation (and angular-position) preference on
computationally flattened representations of each subject’s occipital
lobe. The signal-to-noise ratio of the responses was quantified as the
coherence between the time series and the best-fitting sinusoid, sep-
arately for each voxel (Engel et al., 1997). For each subject, the orien-
tation maps were thresholded by displaying only voxels exceeding a
coherence of 0.3. The coherence threshold for the angular-position
maps was higher to reflect the fivefold larger signal amplitude (Fig.
3B). Coherence is the ratio of the Fourier power (squared amplitude)
at the signal frequency ( S) to the sum of power across all frequencies,
including both the signal frequency and nonsignal, [i.e., noise fre-
quencies ( N)]:

S

S # N
$ x, (1)

where x represents the coherence threshold. If the signal increases by a
factor of m and the noise remains constant, the threshold should be
increased correspondingly so that the probability of exceeding the
threshold is unchanged. To do so, we used Equation 1 to derive a new
coherence threshold, y, that accounted for a signal amplitude that was
larger by a factor of m. First, rewrite Equation 1 so that signal amplitude
appears alone on one side:

S $ ! x

1 % x" N. (2)

If the signal amplitude is scaled by a factor of m but the noise is
unchanged, we seek a new threshold, y, such that the probability of the
signal exceeding the threshold remains the same. Without making any
assumptions about the distribution of S, the following equality holds:

P!S $ ! x

1 % x" N" & P!mS $ ! y

1 % y" N" , (3)

if the new threshold, y, is as follows:

y &
mx

1 # x$m % 1%
. (4)

In our case, the threshold for orientation preference was 0.3 and the
signal amplitude for angular position was five times higher than for
orientation, so we used a threshold of 0.68 for the angular-position maps,
computed using Equation 4 with x & 0.3 and m & 5.

Map similarity. Circular correlation was used to characterize the sim-
ilarity between orientation and angular-position maps (Jammalamadaka
and Sengupta, 2001). For each voxel, phase values from orientation (o)
and angular-position ( p) mapping were modeled as being equal up to a
phase shift:

p & o # '' modulo 2". (5)

The circular correlation coefficient, rc, is as follows:

rc &
R$o % p% % R$o # p%

2#$j&1
n

sin2$oj % ô%$j&1
n

sin2$pj % p̂%
, (6)

where j indexes voxels, n is the number of voxels, (^) indicates the circu-
lar mean of all phase values for the corresponding measurement (either
orientation or angular position), and R(o ( p) gives the concentration of
the angular difference (or sum):

R$o ( p% & % $
j&1

n

ei$oj(pj%%, (7)

where & & is the magnitude of a complex number. When two angular
variables are related by Equation 5, their difference will be tightly con-
centrated around '', so R(o ) p) will be close to n and R(o * p) will be
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close to 0. If the relationship is of opposite sign, the reverse will be
true. Thus, the relative magnitude of the two terms in the numerator
of Equation 6 determines the degree of correlation (positive or nega-
tive), and the denominator serves to normalize the coefficient. The
value of rc ranges from )1 to 1, and the closer it is to 1, the greater the
extent to which Equation 5 explains the relationship between o and p
(Jammalamadaka and Sengupta, 2001). From here on, we refer to
circular correlation simply as “correlation.” For all experiments, cor-
relations were computed using Equation 6 on a subset of voxels from
an independently defined annular region of interest within V1 (see
above, Defining retinotopic regions of interest). The phase values
computed from the time series data for the two measurements (ori-
entation and angular position) spanned the range 0 to 2". These
values were used to compute correlation in Equation 5, but in Figure
3, these values were scaled to match the actual stimulus orientations
(and angular positions) tested, which ranged from 0 to " (or 0 to
180°). A randomization test was used to assess the statistical signifi-
cance of the correlations. Orientation and angular-position phase
values were shuffled (i.e., randomly reassigned to different voxels) to
simulate the null hypothesis that the two maps are unrelated, and
correlations were recomputed. The process was repeated 10,000 times
to obtain a null distribution of correlation values. A p value was then
computed as the proportion of samples in the null distribution that
were less than the observed value.

An additional analysis was used to characterize the phase shift between
the two maps. Specifically, the best-fitting value of the parameter '' in
the model from Equation 5 was found by minimizing the following:

$
j&1

n

$cos$pj% % cos$oj % ''%%2 # (sin$pj% % sin$oj % ''%)2, (8)

where j indexes voxels and n is the total number of voxels. This
corresponds to the norm of the difference between two complex num-
bers and is analogous to least squares but for circular variables. Dif-
ferentiating Equation 8 and setting it equal to 0 yields the following
estimate of '':

''
ˆ & tan)1!$j&1

n
sin$oj % pj%$j&1

n
cos$oj % pj%

". (9)

Phase shift was computed using Equation 9 on the same independently
defined subset of voxels from the annular region of interest within V1
used in the correlation analysis.

A final analysis was used to characterize the correspondence be-
tween orientation and angular-position preference on a voxel-by-
voxel basis. This analysis assessed how well the angular-position map
explained the response time courses of individual voxels in the main
orientation experiment. For each voxel, we randomly divided the
orientation runs into “fitting” and “testing” halves. The fitting data
were used to compute the amplitude and phase of the best-fitting
sinusoid. We then computed the correlation between that sinusoid
and the averaged time series from the testing half. This correlation
value indicated the reliability of orientation preference across halves
of the data within a session. In the second stage of the analysis, we
used the fitting data to estimate only the best-fitting amplitude of a
sinusoid having phase equal to that voxel’s phase in the independently
measured angular-position experiment. We then computed the cor-
relation between this sinusoid and the time series from the test data.
This correlation value indicated how well the angular-position pref-
erence predicted the responses in the main orientation mapping ex-
periment. We report the median correlation across voxels for the two
versions of the analysis. To ensure that these correlations were not
artifacts of the fitting, we repeated the fitting procedure using a ran-
dom phase for each voxel to construct a null distribution. Correla-
tions for both orientation and angular-position preference well
exceeded the 95th percentile of this null distribution.

Classification. In multivariate classification analysis of fMRI data, each
condition is represented by a set of points in a multidimensional space,

where each point corresponds to a repeated measurement and where the
dimensionality is equal to the number of voxels. Accurate decoding is
possible when the responses corresponding to different conditions form
distinct clusters within this high-dimensional space. We took the average
of all 10 cycles in each run as providing measurements of the responses to
each of the 16 orientations (or angular positions). Thus, the 16 time
points of the cycle-averaged run were the “categories” to be classified.
Before averaging, the counterclockwise runs were reversed and time
shifted to match the clockwise runs (as described above in Preprocess-
ing). The cycle-averaged time courses were stacked across runs, forming
an m " n matrix, with m being the number of voxels in the V1 region of
interest and n being the number of repeated measurements in the session
(n ranged from 224 to 288: 1 cycle-averaged time course per run " 16
orientations " between 14 and 18 runs per session).

Decoding was performed with a maximum likelihood classifier,
using the Matlab function “classify” with the option “diagLinear.”
The maximum likelihood classifier optimally separated responses to
each of the 16 orientations (or angular positions) if the response
variability in each voxel was normally distributed and statistically
independent across voxels. Because the number of voxels, m, was
large relative to the number of repeated measurements, n, the com-
puted covariance matrix would have been a poor estimate of the true
covariance. This would have made the performance of the classifier
unstable, as it relied on inversion of this covariance matrix. We there-
fore ignored covariances between voxels and modeled the responses
as being statistically independent across voxels. Although noise in
nearby voxels was likely correlated, the independence assumption was
conservative; including accurate estimates of the covariances, if avail-
able, would have improved the decoding accuracies.

Decoding accuracy was computed using split-halves cross-
validation. The m " n data matrix was randomly partitioned along
the n dimension (repeated measurements) into training and testing
sets, each containing an equal number of runs. Data in the training
and testing sets were drawn from different runs in the same session
and were thus statistically independent. The training set was used to
estimate the parameters (multivariate means and variances) of the
maximum-likelihood classifier. The testing set was then used for de-
coding. Decoding accuracy was determined as the proportion of the
16 test examples that the classifier was able to correctly assign to one
of the 16 orientations (or angular positions). Recall that the 16 dif-
ferent test examples corresponded to the 16 time points of the cycle-
averaged run, each of which yielded a particular pattern of voxel
responses. The data were repartitioned into testing and training
halves, and decoding accuracy was recalculated. The median of many
repeated cross-validations provided a stable estimate of decoding ac-
curacy. A nonparametric permutation test was used to determine the
significance of decoding accuracy. Specifically, we constructed a dis-
tribution of accuracies expected under the null hypothesis that there
is no relationship between the presented orientation and the corre-
sponding time point of the cycle-averaged run. To generate this null
distribution, each cycle-averaged run in the training and testing
data was phase-randomized and accuracy was recalculated. Phase-
randomizing preserved the temporal autocorrelation (and power
spectrum) of the responses, but still randomized the relationship
between time points and orientations. Repeating this randomization
10,000 times yielded a distribution of accuracies expected under the
null hypothesis. Accuracies computed using the unrandomized train-
ing data were then considered statistically significant when decoding
accuracy was higher than the 95th percentile of the null distri-
bution ( p # 0.05, one-tailed permutation test). We used unaveraged
(Fig. 5A) and unfiltered (Fig. 6 A, B) data to compute the null
distributions.

Sufficiency: angular-position-based averaging. This analysis deter-
mined whether the coarse-scale topographic map of orientation was
sufficient for orientation decoding. Statistically independent angular-
position measurements were used to assign each voxel to one of a
fixed set of bins, each corresponding to a different range (bin width)
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of angular positions. We then averaged the time series from the ori-
entation experiment of all voxels within each bin to yield a small
number of “supervoxels” and repeated orientation classification. This
procedure was performed for bins of different widths (ranging from
0.26° to 60°). For comparison, we also did the same amount of aver-
aging while assigning voxels to bins randomly rather than based on
the angular-position map.

Necessity: angular-position removal. This analysis determined
whether the coarse-scale topographic map was necessary for orienta-
tion decoding. The angular-position map was “removed” from the
orientation mapping data as follows. First, for each voxel, we com-
puted the phase of the sinusoid that best fit the time series, averaged
across all runs of the angular-position mapping experiment. These
phase values were used to project the corresponding sinusoids out of
the time series measured during orientation mapping. Specifically, let
y be the time series measured during orientation mapping and let x be
a sinusoid with frequency equal to the stimulus frequency during
orientation mapping and phase equal to the best-fitting phase from
the angular-position mapping experiment. We computed a residual
time series, r, as follows:

r! & y! %
y! ! x!
x! ! x!

x! . (10)

Removal by projection ensured that the residual time series, r, was or-
thogonal to the removed component, x. Finally, classification analysis
was performed on the residual time series (as described above in
Classification).

A confidence interval was determined for the residual decoding
accuracy after map removal, according to the hypothesis that the
residual decoding depended only on imperfections (e.g., due to mea-
surement noise and registration across experiments) in our ability to
completely remove the map. Two subjects repeated the double-
wedge, angular-position mapping experiment. For these subjects, the
first angular-position mapping experiment was used to remove the
map from the second angular-position mapping experiment. Classi-
fication analysis was performed on data from the second angular-
position mapping experiment before and after removing the map.
The classification of angular position was identical to the classifica-
tion of orientation, except that the 16 time points corresponded to
different angular positions rather than different orientations. Signal-
to-noise ratio was much higher for angular-position than for orien-
tation measurements. Gaussian noise was added to the second
angular-position dataset (from which the map was removed) so that
baseline decoding accuracy (before map removal) was the same as for
orientation mapping. Specifically, noise was added to the cycle-
averaged time series of each run, the amplitude of which was slightly
different for each of the two subjects (SD of 6 for one subject, 6.5 for
the other). Resampling was used to obtain a confidence interval for
decoding accuracy. On each resampling, a new sample of noise was
added to the data, and runs were randomly repartitioned into training
and testing halves. Repeating this 10,000 times yielded a distribution
of decoding accuracy. The median and 16th and 84th percentiles of
this distribution are reported (Fig. 5B, gray horizontal lines) (percen-
tiles were averaged across the two subjects). Orientation decoding
accuracy (after map removal) fell within this confidence interval. The
noise amplitude was set to match baseline decoding accuracy between
the two data sets before map removal, but our conclusions depend on
the fact that the decoding accuracies were indistinguishable after map
removal.

The projection analysis could degrade decoding accuracy even if the
phase to be removed was randomly chosen. This could occur if, by
chance for some voxels, the phase to be removed matched the voxel’s
orientation preference. An additional test was performed to ensure that
the degradation in classification was specifically due to removing the map.
Specifically, the orientation and angular-position phase values were shuffled
(i.e., randomly reassigned to different voxels) to project out sinusoids with

random phase. Pairings were reshuffled 10,000 times to yield a distribution
of decoding accuracies, and the median is reported (Fig. 5B, random com-
ponent removed).

Spatial filtering. fMRI time series data were spatially filtered using a
volumetric filtering procedure. The procedure was similar to the ap-
proach used in related studies (Op de Beeck, 2010; Swisher et al., 2010).
After motion correction, each frame of the time series was filtered sepa-
rably in each of its three dimensions. A one-dimensional filter was
constructed by multiplying the inverse Fourier transform of an ideal
low-pass filter by a Hamming window in the spatial domain. In the
Fourier domain, this filter that has a nearly flat passband followed by a
transition region (centered on the specified frequency cutoff) and a stop-
band with minimal ripple. The filter achieves better frequency isolation
than a Gaussian filter while minimizing artifacts due to ringing. For
consistency with previous reports (Swisher et al., 2010), we report the size
of each low-pass filter as the full-width at half-maximum (in the spatial
domain) of a Gaussian that achieves half power at the same frequency
cutoff (in the Fourier domain). Filtering was performed on a fixed rect-
angular region of interest that was cropped from the full volume to avoid
artifacts associated with extracting the data from ROIs after filtering
(Kamitani and Sawahata, 2010). Filtering was performed in the spatial
domain, separably along each dimension, using reflective boundary
handing. For each filter size, low-pass filtering was performed by filtering
the data with the corresponding filter, and high-pass filtering was per-
formed by subtracting the results of low-pass filtering from the unfiltered
data. Many different versions of the analysis (e.g., sharp-cutoff “ideal”
filter, nonrectangular region of interest) yielded a qualitatively similar
result: classification monotonically decreased with low-pass filtering and
increased with high-pass filtering, for both orientation and angular po-
sition. Like Swisher et al. (2010), we also found qualitatively similar
results when performing filtering on the surface (instead of in the
volume).

The response amplitudes in the angular-position mapping sessions
were five times larger than the response amplitudes in the orientation
mapping sessions (Fig. 3 B, C). The higher signal-to-noise ratio in the
angular-position measurements resulted in near-perfect decoding accu-
racy with any kind of spatial filtering, which we interpreted as a ceiling
effect. To avoid the ceiling effect, only a single cycle of angular-position
data was included in the analysis, rather than the average of all 10 cycles.
In each iteration of the cross-validation procedure, a single cycle of the
angular-position data was randomly selected for each run. This approx-
imately compensated for the difference in the signal-to-noise ratio be-
tween the two datasets and avoided a ceiling effect without directly
modifying the time series data.

Two different procedures were adopted to reduce the signal-to-noise of
angular-position measurements. In the projection analysis (see above, Ne-
cessity: angular-position removal), the goal was to precisely equate baseline
classification accuracy, and this was best accomplished by adding noise to the
time series. In the spatial filtering analysis, we simply wanted to avoid a
ceiling effect; thus, we used the simplest procedure that modified the data the
least (i.e., using only a single cycle of the time series per run).

Results
Topographic map of orientation in human V1
We studied the representation of orientation using periodic,
phase-encoded stimuli similar to those used in studies of retino-
topic organization. In typical retinotopic mapping studies, a
high-contrast visual stimulus moves periodically through the vi-
sual field (e.g., to measure the angular-position component of the
retinotopic map, the stimulus rotates around the fixation point),
creating a traveling wave of activity in cortex (Engel et al., 1994;
Sereno et al., 1995; DeYoe et al., 1996). Following similar reason-
ing, to “map” orientation, we used a large oriented sinusoidal
grating (0.5 cycles per degree), the orientation of which cycled
through 16 evenly spaced angles between 0° and 180°, 1.5 s per
orientation (Fig. 1A). The grating filled a peripheral annulus with
a smoothed edge (inner radius, 4.5°; outer radius, 9.5°). The spa-
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tial phase of the grating was randomized every 250 ms. Subjects
performed a demanding rapid serial visual presentation two-
back task at fixation to control the locus of attention and divert it
from the peripheral stimulus. The responses of each voxel were fit
to a sinusoid with the period of the stimulus as is typically done
with retinotopic mapping data. The phase of the best-fitting sinu-

soid indicated the preferred orientation of
the voxel. The coherence between the best-
fitting sinusoid and the measured response
time courses provided a measure of the
signal-to-noise ratio of the responses. Ori-
entation preferences were visualized on a
flattened representation of visual cortex
(Figs. 1, 2; see also Fig. 4).

Orientation preferences exhibited a
smooth progression across V1. For each
location within V1, the responses exhib-
ited a preference for radial orientations,
matching the angular-position compo-
nent of the retinotopic map (Figs. 1, 2).
The angular-position component of the
retinotopic map was measured in the
same subjects using standard methods
(Engel et al., 1997; Larsson and Heeger,
2006; Wandell et al., 2007). Stimuli were
high-contrast flickering checkerboard
patterns presented within two collinear
wedges shown within the same annulus
used for the oriented gratings (Fig. 1B).
We used two wedges (instead of one,
which is more typical for retinotopic
mapping) to equate the phase-range of the
maps; in both cases, one full cycle covered
180° of the stimulus variable (angular po-
sition or orientation). The angular-
position and orientation maps were
qualitatively similar (Figs. 1, 2). We use
the term “orientation map” to refer to the
fact that orientation responses are topo-
graphically organized in a radial bias, in
register with the angular-position map.
The similarity between the orientation
map and the angular-position map was
quantified by correlating the orientation
preference and angular-position prefer-
ence of each voxel (Fig. 3A) (most voxels
fall on or near the line of equality). Corre-
lation between the maps (rc, circular cor-
relation) was highly statistically
significant (Fig. 3A) (rc & 0.52, p #
0.0001; randomization test, combining
data across n & 3 subjects). Correlations
were also significant, and of similar mag-
nitude, within each individual subject (S1:
rc & 0.53, p # 0.0001; S2: rc & 0.40, p #
0.0001; S3: rc & 0.65, p # 0.0001; random-
ization test). Voxels for which the maps
differed substantially (farther from the
line of equality in Fig. 3A) appeared to
cover a wide range of retinotopic locations
and tended to have low coherence values.
Computing correlations only using high-
coherence voxels (those exceeding the

50th percentile) yielded an even higher correlation (rc & 0.78;
n & 3), but we prefer to report correlations without thresholding
to avoid any potential statistical bias (Kriegeskorte et al., 2009;
Vul et al., 2009). Circular correlations are invariant to phase off-
sets, so we also computed the best-fitting phase shift ('') be-
tween orientation and angular-position preference. The phase

Figure 1. Orientation and angular-position topographic maps for a single subject shown on a flattened representation of the
occipital lobe. A, Responses to phase-encoded oriented gratings (shown in inset). The stimulus cycled through 16 steps of orien-
tation, ranging from 0° to 180° every 24 s. The map is thresholded at a coherence of 0.3. B, Responses to double-wedge retinotopy
stimulus (shown in inset). The stimulus cycled through 16 steps of angular position, ranging from 0° to 180° every 24 s. The map is
thresholded at a coherence of 0.68 to account for differences in signal-to-noise ratio between the two experiments (see Materials
and Methods). Color indicates phase of best-fitting sinusoid; white lines indicate the V1/V2 boundaries.
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shifts were near 0° and deviations from 0°
were not systematic across subjects (S1: ''

& 2°; S2: '' & )8°; S3: '' & 9°), indicat-
ing that the two maps were in register
with one another. An additional visualiza-
tion was used to summarize the structure
of the map (Fig. 3C), which shows a strong
and consistent bias toward radial orienta-
tions across all angular positions within the
peripheral annulus (Fig. 3C). As a comple-
mentary assessment of the degree to which
the radial bias explained the orientation
preferences, we computed, for each voxel,
the correlation between the orientation re-
sponses and two different sinusoids: one
with phase estimated from orientation
mapping and the other with phase esti-
mated from angular-position mapping. The
median value of this correlation across
voxels was 0.31 ( 0.035 (for orientation)
and 0.33 ( 0.037 (for angular position)
(mean ( SE, n & 3 subjects), confirming
that a substantial fraction of the orienta-
tion responses is explained by angular
position.

The orientation map cannot be ex-
plained by eye movements. One potential
eye-movement-related confound could
occur if subjects made involuntary eye
movements that were correlated with the
orientation of the stimulus. This pattern
would shift the retinotopic position of the stimulus in the direc-
tion of the eye movements. For example, moving the eyes upward
for a vertical grating would shift the stimulus down, but not to the
left or right. Shifts in the retinotopic position of the stimulus would
co-occur with changes in orientation, which could produce a map
that appeared to show a radial bias. To test this possibility, we mea-
sured gaze position for a single subject during orientation mapping
(supplemental Fig. 1, available at www.jneurosci.org as supplemen-
tal material). Nearly all fixations (99%) fell within 1.5° of the center
of the screen, indicating the retinotopic position of the stimulus was
nearly constant for the duration of the experiment. Furthermore,
there was no evidence of correlation between fixation location
and stimulus orientation (rc & )0.027, p & 0.1220).

The orientation map was robust to a variety of stimulus ma-
nipulations. First, we wondered whether the map was driven by
responses to the inner and outer edges of the annulus. We re-
peated the experiment using an annular grating with a much
blurrier edge. The spatial extent of blurring (5°) was more than
two times the period of the sinusoidal grating (2°). We observed a
qualitatively similar map (Fig. 4A), with significant correlations
between angular-position and orientation maps (Fig. 4A) (rc &
0.36, p # 0.0001, '' & 0°; n & 3). Correlation magnitude was
lower than in the main experiment, but so was the signal-to-noise
ratio, likely due to lower overall stimulus contrast. Second, the
experiment was repeated with a sinusoidal grating that included
the central part of the visual field (outer radius, 9.5°; inner radius,
0.5°), to determine whether the map remained for larger stimuli
and whether the map might vary as a function of eccentricity. In
the periphery, the map obtained using this stimulus was qualita-
tively similar (Fig. 4B) and correlated with the angular-position
map (Fig. 4B) (rc & 0.54, p # 0.0001; '' & 0°; n & 3, computed
within a peripheral ROI) (see Materials and Methods). Qualita-

tively, we did not observe as clear a map near the fovea. Finally, we
measured responses to higher-spatial-frequency (1.4 cycles per de-
gree) phase-randomized, square-wave-oriented gratings matched to
that used in other studies (Kamitani and Tong, 2005; Swisher et al.,
2010) and obtained similar results in the periphery (Fig. 4C) (rc &
0.28, p # 0.0001; '' & )4°; n & 2). The correlation magnitudes for
the square-wave gratings were lower than for other stimuli, possibly
because the high-spatial-frequency components of the square waves
were poorly matched to peripheral receptive fields. For the square-
wave stimulus, which included the central visual field, the map was
again not evident near the fovea.

The response amplitudes were five times smaller during ori-
entation than angular-position mapping (Fig. 3B). We suspect
that we were able to uncover a robust orientation map despite this
smaller signal amplitude because we used a phase-encoded stim-
ulus protocol that is optimal for topographic mapping. For com-
parison, we measured orientation preferences in one of our
subjects using an event-related protocol with similar stimuli (see
Materials and Methods). The correlation between angular-
position map and the orientation map measured with the event-
related protocol was significant (S2: rc & 0.20, p # 0.0001),
demonstrating that the orientation map is robust to the different
stimulus protocols. As expected, the structure of the orientation map
was qualitatively less clear in the event-related experiment, confirm-
ing the relative advantage of the phase-encoded protocol.

The coarse-scale orientation map is sufficient and necessary
for orientation decoding
The observed coarse-scale orientation map was sufficient for
multivariate decoding of orientation. If the map is sufficient
for decoding of orientation, then it should be possible to
group voxels with similar angular-position preferences and

Figure 2. Orientation and angular-position maps for two additional subjects. A, Orientation maps for subjects 2 and 3. B,
Angular-position maps for subjects 2 and 3. The same conventions are used as in Figure 1.
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average their responses (within each group) and still decode
orientation based on these averaged signals. To test this pre-
diction, the angular-position measurements were used to as-
sign each voxel to one of a fixed set of angular-position bins,
each corresponding to a different range of angular positions,
specified by the width of each bin (in degrees). The time series
of all voxels within each bin were averaged to yield a small
number of “supervoxels,” and orientation decoding was per-
formed on these averaged supervoxel responses. Specifically,
we treated the 16 steps of orientation as 16 different stimulus
categories and estimated the responses to each of the 16 cate-
gories. We then split the data in half to train and test a linear
classifier. The classifier used the multivariate pattern of super-
voxel responses in the training data to predict the stimulus
orientation from the test data (see Materials and Methods).
For comparison, we did the same amount of averaging while

assigning voxels to random phase bins
that were not based on the angular-
position map. For both random and
angular-position-based averaging, the
number of the angular-position bins was
varied. For a large number of bins, there
was very little averaging, so decoding ac-
curacy was high for both random and
angular-position-based averaging. As the
number of bins decreased, decoding accu-
racy for random averaging degraded to
chance (Fig. 5A); however, for angular-
position averaging, decoding accuracy re-
mained well above chance, even when
using a very small number of angular-
position bins, each averaging over a wide
range of angular positions (Fig. 5A). Thus
classification accuracy remained high de-
spite substantial averaging, so long as the
averaging was based on the structure of
the coarse-scale map.

A complementary analysis was per-
formed to determine whether the coarse-
scale orientation map was necessary for
orientation decoding. Orientation decoding
may rely on multiple factors at multiple spa-
tial scales. First, decoding may depend on
the systematic relationship between orienta-
tion preference and the angular-position
map. Indeed, the sufficiency analysis
showed that this relationship alone was ca-
pable of supporting accurate decoding.
However, the responses of each voxel may
additionally depend on other factors unre-
lated to the coarse-scale map (e.g., voxel-to-
voxel variability in orientation preference
arising from irregular sampling of col-
umns). We hypothesize that the coarse-
scale (radial bias) map is necessary for
decoding, which implies a negligible contri-
bution from the other factors. To test this
hypothesis, for each voxel, the angular-
position data were used to remove the map-
based component of the orientation data.
Specifically, for each voxel in the orientation
mapping experiment, we removed (by re-
gression, i.e., linear projection) a sinusoid

having phase equal to the angular-position preference of that voxel.
Thus, any signal component at the stimulus frequency with the
angular-position phase was completely removed from the orienta-
tion data. A classification analysis was performed before and after
angular-position removal.

Even if the map was necessary for decoding, this angular-
position removal procedure was unlikely to reduce decoding
accuracy to chance. Any mismatch in the maps between the
two experiments (e.g., due to measurement noise) would have
prevented complete removal of the map-based component
from one experiment based on data from other. Small mis-
matches in the map likely occurred because estimates of pref-
erence (for angular position or orientation) in both
experiments were corrupted by noise and by imperfect coreg-
istration across the two experiments (which were on different
days). A confidence interval was determined for the residual
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Figure 3. Orientation map matches angular-position map. A, Circular correlation between orientation and angular-position
maps. Preferred orientation is plotted against preferred angular position. Each dot corresponds to a voxel from an annular region
of interest in V1 defined using data from an independent eccentricity mapping experiment. Data were combined across subjects
(n & 3). Dot color indicates coherence from the orientation mapping experiment. B, Response amplitude (percentage change in
image intensity), averaged across voxels and across subjects (n &3), as a function of temporal frequency for angular-position (top)
and orientation mapping (bottom). Red dot indicates stimulus frequency. C, Line vector plot showing radial bias of orientation
preference in the visual field. Each line corresponds to a voxel. The center of each line is the voxel’s retinotopic position (angular
position and eccentricity), and the angle of each line indicates the voxel’s orientation preference. Line color and size indicate
coherence from the orientation mapping experiment. Data were combined across n & 3 subjects.
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decoding accuracy after angular-
position removal, according to the hypoth-
esis that any residual decoding depended
only on these imperfections in our ability to
completely remove the angular-position
map. Specifically, two subjects participated
in an additional session of angular-position
mapping, and a similar procedure was used
to remove the angular-position map mea-
sured in the first session from that measured
in the second session (see Materials and
Methods). When removing angular posi-
tion from angular position, any residual de-
coding accuracy after map removal reflected
only imprecision in matching phase esti-
mates across the two experiments.

The coarse-scale orientation map was
necessary for orientation decoding. Base-
line decoding accuracy for orientation be-
fore map removal was 54% (average of
n & 3 observers) (Fig. 5B). Removing the
angular-position map from the orienta-
tion data degraded decoding by more
than a factor of 2, down to 20%. Orienta-
tion decoding accuracy after map removal
was within the confidence interval for the
expected degradation in decoding accuracy
(Fig. 5B) (see Materials and Methods). An
additional test was performed to ensure that
the degradation in decoding was due to re-
moving the map, rather than a mere conse-
quence of the projection procedure. Voxel
pairings were shuffled to project out sinu-
soids with random phase, and residual de-
coding accuracy remained high (43%). The
projection procedure removed only the
smooth, single-peaked component of each
voxel’s responses (because it removed a si-
nusoid). If there was a reliable nonsinusoi-
dal (e.g., multipeaked) component of the
responses, not predicted by angular-position preference, it would
have remained after the projection. Thus, the necessity of the coarse-
scale map implies that any such components of the responses were
negligible.

Previous studies have used spatial filtering to determine the
scale of orientation information in fMRI data (Op de Beeck,
2010; Swisher et al., 2010). In particular, Swisher et al. (2010)
found that orientation decoding degraded with low-pass filtering
(i.e., smoothing) and concluded that orientation decoding re-
flects irregular spatial arrangements of orientation columns and
their supporting vasculature. In a complementary analysis, they
showed that high-pass filtering, which removes low-spatial-
frequency information, still allowed for decoding well above
chance, and concluded that decoding does not require a coarse-
scale signal like a radial bias. The logic that links both results to
the source of information— either columns or a radial bias—
crucially assumes that signals arising from a radial bias are exclu-
sively in low spatial frequencies, such that high-pass filtering
removes them and low-pass filtering leaves only them. This rea-
soning predicts that the decoding of a topographically organized
variable with no hypothesized contribution from columnar irreg-
ularities, such as angular-position retinotopy, should not degrade
with low-pass filtering or remain after high-pass filtering.

We measured decoding accuracy with different degrees of spa-
tial filtering (both low-pass and high-pass), for orientation, and also
for angular position. Decoding accuracy for orientation increased
slightly with a small amount of low-pass filtering (presumably be-
cause local averaging increased the signal-to-noise ratio of the mea-
surements), but decoding accuracy decreased as the low-pass filter
attenuated a broader range of frequencies (Fig. 6A), replicating pre-
vious reports (Swisher et al., 2010). Decoding was well above chance
after high-pass filtering (Fig. 6A), also replicating previous reports
(Swisher et al., 2010). However, we found nearly identical results for
decoding angular position (Fig. 6B). Of course, decoding angular
position (i.e., retinotopic location) does not depend on the sampling
of spatial irregularities in the fine-scale columnar architecture. Ob-
taining such similar results for orientation and angular position sug-
gests that the spatial filtering analysis does not distinguish well
between biases derived from maps or columns.

Rather, both sets of results are consistent with the fact that
when responses are organized in large-scale maps (orientation or
angular-position), there are signals at multiple spatial frequen-
cies that carry information about the stimulus, even without any
contribution from the columnar architecture. The orientation
(or angular-position) map is approximately a triangle wave (a
ramp within V1 with reversals at the V1/V2 boundary) and hence

Figure 4. Orientation maps are robust to a variety of stimulus manipulations. Conventions and threshold are the same as in
Figures 1 A and 2 A. A, Orientation maps using a sinusoidal grating with a much blurrier edge. B, Orientation maps using a
sinusoidal grating that included the central visual field. C, Orientation maps using a high-frequency square-wave grating that also
included the center of the visual field.
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is broadband, containing both low and high spatial frequencies.
The details and irregularities of its projection onto the cortex add
additional high-frequency components that carry information.
Analyses, like ours, that either explicitly average the data in accor-
dance with the map (“sufficiency”) or remove the map (“neces-

sity”) enable a more precise link between the radial bias and
classification. Conceptually, the angular-position-based averag-
ing analysis described above (“sufficiency”) is a form of low-pass
filtering, because data from multiple voxels are combined into a
single signal. However, unlike spatial low-pass filtering, angular-
position-based averaging was constrained by the angular-
position map and did not necessarily combine signals locally or
uniformly in space (whether performed on the surface or in the
volume). Our results for spatial filtering of orientation responses
agree with previous work, but our results for spatial filtering of
angular-position responses compel a different interpretation; the
effect of filtering on orientation decoding is consistent with the
conjecture that orientation decoding is primarily dependent on a
coarse-scale map that follows the same topographic organization
as the angular-position map.

Discussion
We observed a coarse-scale topographic map of orientation pref-
erence in human V1. The map was tightly colocalized with the
well known angular-position component of the retinotopic map.
The orientation map was robust to a variety of stimulus param-
eters and was not due to either attention or eye movements. Our
mapping results are consistent with fMRI studies in both human
and macaque (Sasaki et al., 2006; Mannion et al., 2010) and elec-
trophysiological recordings in cat V1 (Leventhal, 1983; Schall et
al., 1986). Most population-level physiological measurements in
primary visual cortex (e.g., those using calcium imaging) have
not been at a spatial scale sufficient to measure this coarse-scale
radial orientation bias.

The map of radial orientation bias in human V1 may be partly
inherited from the properties of the early visual system. Dendritic
fields of peripheral retinal ganglion cells are elongated toward the
fovea in macaque (Schall et al., 1986) and human (Rodieck et al.,
1985). There are radial biases in the orientation preference of cat
retinal ganglion cells, especially in the periphery (Levick and Thi-
bos, 1980, 1982), and radial orientation biases have been identified
in the lateral geniculate nucleus (LGN) of both cat (Shou et al.,
1986) and macaque (Smith et al., 1990). However, the exact con-
tribution of these early radial biases to the organization of orien-
tation tuning in V1 depends on the mechanisms by which
orientation tuning in V1 is constructed (Schall et al., 1986; Ringach,
2007). The topographic map of radial orientation bias in human
V1 may thus depend on a variety of factors, including the struc-
ture and organization of feedforward inputs from LGN to V1 and
intracortical connectivity within V1.

In both macaque and cat, the radial bias (in either the retina,
LGN, or V1) has been reported as predominantly in the periph-
ery, which is consistent with our finding in humans that the radial
orientation map was especially pronounced in the periphery (Fig.
4). However, our failure to observe a robust radial orientation
map closer to the fovea may only reflect a methodological limita-
tion. Signal-to-noise ratio is typically lower closer to the fovea, and
even retinotopic mapping with fMRI is difficult in this part of visual
cortex (Schira et al., 2009). Thus, we do not claim that there is no
map near the fovea, only that we failed to observe one. In some
hemispheres, there was a weak tendency at mid-eccentricities for
vertical and near-vertical orientations to dominate. This may be
linked to the well known “oblique effect,” in which observers are
better able to detect and discriminate cardinal orientations. Psycho-
physical measurements show that contrast sensitivity and orienta-
tion discrimination for gratings exhibit cardinal biases in the central
part of the visual field and radial biases in the periphery (Berkley et
al., 1975; Rovamo et al., 1982; Westheimer, 2003), consistent with
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Figure 5. Orientation map necessary and sufficient for classification. A, Sufficiency. Gray
symbols, The angular-position measurements were used to assign each voxel to one of a fixed
number of angular-position bins, each corresponding to a different range of angular positions
(“angular-position bin width”). Time series of all voxels within each bin were averaged, and
classification was performed on the resulting averaged time series. Black symbols, Voxels were
assigned to bins randomly, not based on the angular-position map. Error bars indicate SEM
across subjects (n & 3). Thick and thin gray lines, The median and fifth percentile of a one-sided
null distribution (randomization test) (see Materials and Methods). B, Necessity. Removing the
coarse-scale map degraded classification of orientation. Left bar, Baseline orientation decoding
accuracy without removing any component from the map. Middle bar, Decoding accuracy after
projecting out, from each voxel’s response, a sinusoid having phase equal to the angular posi-
tion preference of that voxel as measured in the angular-position mapping experiment. Right
bar, Decoding accuracy after removing a sinusoid with random phase. Error bars indicate SEM
across subjects (n & 3). Gray horizontal lines, The median (thick line) and 68% confidence
interval (thin lines) of a null distribution for the residual decoding accuracy expected after map
removal if decoding was driven entirely by the map. Specifically, this distribution was computed
by removing the angular-position phases from a separate angular-position mapping experi-
ment before measuring decoding accuracy for angular position (see Materials and Methods).
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the peripheral radial bias in our measurements. These biases in the
representation of orientation, neural and psychophysical, foveal and
peripheral, may reflect an efficient representation of image statistics
(Ganguli and Simoncelli, 2011), which show a cardinal bias at image
locations that are likely to be fixated and radial biases in the periphery
(Rothkopf et al., 2009).

Several previous studies have reported orientation biases us-
ing both fMRI and electrophysiology, with ostensibly conflicting
results (Mansfield, 1974; Wilson and Sherman, 1976; De Valois et
al., 1982; Furmanski and Engel, 2000; Li et al., 2003; Sasaki et al.,
2006; Mannion et al., 2010; Swisher et al., 2010). Some studies
found predominantly cardinal biases (related to the oblique ef-
fect), whereas others found radial biases instead of, or in addition
to, the cardinal biases. In these studies, however, responses were
typically averaged over an entire visual area or the portion of a
visual area corresponding to an entire quadrant of the visual field

(fMRI) or were localized exclusively to one sector of the visual
field (electrophysiology). The discrepancies between these results
could, therefore, be reconciled if the orientation biases depended
systematically on eccentricity.

The radially oriented component of the retinotopic mapping
stimulus that we used may have contributed to the measurements
of the angular-position maps. The checkerboard stimulus com-
bined radial motion, radial orientations, and high contrast. How-
ever, we have measured angular-position maps in these same
subjects using a population receptive field method with moving
horizontal and vertical bars showing natural image stimuli that
were not radially orientated (Dumoulin and Wandell, 2008).
These methods yielded nearly identical angular-position maps,
confirming that the angular-position maps were not driven by
the radial orientations of the checkerboard stimulus.

Our results provide a parsimonious explanation for the accu-
racy of orientation decoding from fMRI measurements. Voxels
show a small but reliable bias for radial orientations organized in
a topographic map, and multivariate methods exploit these biases
to decode orientation. Previous studies have used spatial filtering
to argue that above-chance decoding arises from sampling of the
underlying irregular columnar architecture, rather than from
coarse-scale biases (Swisher et al., 2010; but see Op de Beeck,
2010). We found, however, that the effects of spatial filtering on
decoding were similar for orientation and angular-position reti-
notopy, the latter clearly not reflecting the columnar architecture,
demonstrating that spatial filtering does not distinguish well be-
tween maps and columns. Our analyses showed that averaging
the responses based on the angular-position map did not prevent
accurate orientation decoding, proving that the coarse-scale ori-
entation map was sufficient for decoding. Also decoding accuracy
was degraded by removing the angular-position map from the
responses to different orientations, proving that the coarse-scale
orientation map was necessary for orientation decoding.

This explanation helps elucidate the surprising fact that ori-
entation decoding can be performed across experiments per-
formed on different days (Kamitani and Tong, 2005; Gardner,
2010). This finding alone makes the columnar hypothesis un-
likely but leaves open the question of why decoding works. Our
results provide a mechanistic explanation: Responses based on a
topographic map would be nearly consistent across different ses-
sions, but small biases due to sampling spatial irregularities in the
fine-scale columnar architecture would not. In fact, one of our
subjects repeated the orientation mapping experiment in a sec-
ond scanning session, and orientation preference was highly con-
sistent across sessions (rc & 0.69, p # 0.0001; '' & )3°).

Several studies of orientation decoding in humans success-
fully classified orientation, but did not report maps like those
reported here (Haynes and Rees, 2005; Kamitani and Tong, 2005;
Serences et al., 2009). This may seem surprising given therobustness
of our maps, but the discrepancy likely reflects the substantial
differences in experimental protocol. The periodic stimulation
protocol that we adopted for orientation mapping was based on
an approach that has been optimized for topographic mapping
(Kalatsky and Stryker, 2003; Wandell et al., 2007). Specifically,
the power in the response time course is concentrated at a single
temporal frequency, selected to obtain a reasonable trade-off be-
tween the signal attenuation at high frequencies due to the slug-
gishness of the hemodynamics (Boynton et al., 1996) and the
noise and drift that dominate fMRI signals at low frequencies
(Smith et al., 1999). These aspects of the periodic design increase
signal-to-noise ratio compared with event-related designs; we
found weaker, but statistically significant, evidence for the
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Figure 6. Decoding accuracy for both orientation and angular position decreases with low-
pass filtering (i.e., spatial smoothing) and increases with high-pass filtering. A, Decoding accu-
racy for orientation using unfiltered data (None) and for several different spatial filtering kernel
sizes (see Materials and Methods). Black symbols, Decoding low-pass filtered data. Gray sym-
bols, Decoding high-pass filtered data. Error bars indicate SEM across subjects (n & 3). Thick
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ization test) (see Materials and Methods). B, Decoding accuracy for angular position. Conven-
tions are the same as in A.
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radial orientation map using an event-related experiment. The
studies cited above were able to classify orientation, but per-
haps they failed to see a map because the signal-to-noise ratio
required to observe a clear topographic map is higher than that
required for accurate decoding. Multivariate classification
methods are extraordinarily sensitive (Kriegeskorte et al.,
2006) and could exploit radial biases even in data where the
map itself is not clear.

The presence of an orientation map, and its necessity and
sufficiency for orientation decoding, casts doubt on the con-
jecture that fMRI classification techniques, when applied to
orientation-specific responses in V1, primarily reflect differential
signals that arise from sampling spatial irregularities in the fine-
scale columnar architecture. Clearly, the mere finding of above-
chance decoding of fMRI signals in any given brain region does
not indicate the existence of fine-scale columnar architecture for
neurons representing the corresponding stimulus, task, or cogni-
tive state. However, orientation decoding in V1 has become a well
established example of how fMRI, at conventional spatial sam-
pling resolutions (!2 " 2 " 2 mm voxels), can ostensibly exploit
irregular columnar structure and probe subvoxel representa-
tions. This columnar conjecture appears to be false in one case
where it was thought to be true. Thus, we caution the extension of
this widely held conjecture to other sensory and cognitive repre-
sentations in other brain areas. At the same time, the finding of a
coarse-scale orientation map exemplifies how fMRI is well suited
to reveal topographic structure in the human brain, particularly
when using experimental protocols optimized for the temporal
frequency response of the fMRI signal.

Numerous studies that have applied classification and other
multivariate methods to fMRI data have reached conclusions that
do not depend on whether or not differential signals arise from
columnar scale architecture. In general, multivariate methods are
statistically more sensitive than univariate methods (Krieges-
korte et al., 2006). In fMRI studies, that increased sensitivity is
most advantageous when differential signals are robust but pres-
ent in a small subset of voxels or not robust but distributed across
many voxels. Furthermore, multivariate methods, especially those
based on encoding and decoding models, can be used to investi-
gate whether neural representations generalize across stimulus
conditions and cognitive states (Kamitani and Tong, 2005, 2006;
Dinstein et al., 2008; Kay et al., 2008; Brouwer and Heeger, 2009;
Harrison and Tong, 2009; Kay and Gallant, 2009). For example,
the initial report of orientation decoding (Kamitani and Tong,
2005) showed that a classifier trained while subjects viewed single
oriented gratings could be used to predict the orientation that
subjects attended to while viewing two superimposed gratings,
thus demonstrating that feature-based attention can bias neural
responses toward those of the attended orientation. This partic-
ular conclusion does not depend on the source of the underlying
orientation preference exploited by the classifier. Examples like
this show that multivariate methods can be used to draw infer-
ences about neural representation, without relying on the as-
sumption that decoding accuracy reflects or exploits a fine-scale
(e.g., subvoxel or columnar) functional architecture.
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