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Executed and Observed Movements Have Different
Distributed Representations in Human aIPS
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How similar are the representations of executed and observed hand movements in the human brain? We used functional magnetic
resonance imaging (fMRI) and multivariate pattern classification analysis to compare spatial distributions of cortical activity in response
to several observed and executed movements. Subjects played the rock–paper–scissors game against a videotaped opponent, freely
choosing their movement on each trial and observing the opponent’s hand movement after a short delay. The identities of executed
movements were correctly classified from fMRI responses in several areas of motor cortex, observed movements were classified from
responses in visual cortex, and both observed and executed movements were classified from responses in either left or right anterior
intraparietal sulcus (aIPS). We interpret above chance classification as evidence for reproducible, distributed patterns of cortical activity
that were unique for execution and/or observation of each movement. Responses in aIPS enabled accurate classification of movement
identity within each modality (visual or motor), but did not enable accurate classification across modalities (i.e., decoding observed
movements from a classifier trained on executed movements and vice versa). These results support theories regarding the central role of
aIPS in the perception and execution of movements. However, the spatial pattern of activity for a particular observed movement was
distinctly different from that for the same movement when executed, suggesting that observed and executed movements are mostly
represented by distinctly different subpopulations of neurons in aIPS.
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Introduction
The anterior intraparietal sulcus (aIPS) is often described as an
intermediate sensory-motor area of the brain that integrates vi-
sual and motor neural processes. It is thought to contain many
types of multimodal neurons including mirror neurons, which
are visuomotor neurons that respond both when executing a par-
ticular movement and when observing someone else performing
the same movement (Gallese et al., 1996). These neurons have
been proposed to play a central role in perception of observed
movements, because different subsets of mirror neurons respond
selectively to particular movements so as to form a unique neural
representation for each movement (Rizzolatti and Craighero,
2004). Direct evidence for the existence of movement-selective
mirror neurons in IPS has been shown only in macaque monkeys
(Fogassi et al., 1998, 2005). A few fMRI studies in humans, how-
ever, have tested whether human cortical areas exhibit
movement-selective responses; a critical feature of neural popu-
lations involved in the perception of movement. These studies
gauged movement-selectivity by assessing fMRI adaptation (rep-

etition suppression) during repeated observation (Shmuelof and
Zohary, 2005; Hamilton and Grafton, 2006; Dinstein et al., 2007;
Chong et al., 2008) and execution of movements (Dinstein et al.,
2007; Chong et al., 2008). It is not known from these studies
whether executed and observed movements give rise to distrib-
uted movement-specific patterns of activity in human aIPS, let
alone whether these patterns are similar across execution and
observation of the same movement, as may be expected for re-
sponses dominated by mirror neuron activity.

Here, we used multivariate pattern classification to assess
whether aIPS and several other cortical areas responded with
reproducible movement-selective response patterns during ob-
servation and/or execution of particular hand movements. fMRI
is incapable of measuring the response selectivity of single neu-
rons, because each fMRI voxel reflects the pooled responses of
many neurons, which may have different selectivities. Nonethe-
less, assuming that there are neurons selective for particular ob-
served and executed movements, it may be possible to associate
each movement with a unique spatial pattern of fMRI responses.
The distribution of movement-selective neurons within each
fMRI voxel may be uneven such that the neural activity within
particular voxels would be consistently larger (biased) for one
movement compared with the others. This would generate dis-
tinct spatial patterns of fMRI responses associated with different
movements, enabling decoding of movement identity from the
distributed pattern of responses across voxels. This approach has
been used successfully to characterize cortical activity selective
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for object categories (Haxby et al., 2001; Williams et al., 2007),
grating orientations (Kamitani and Tong, 2004, 2005; Haynes
and Rees, 2005), and visual motion directions (Kamitani and
Tong, 2006) in different visual cortical areas. This approach,
however, has not been used in the motor and somatosensory
domains, nor has it been used to assess response selectivity for
particular movements whether observed or executed.

To apply this approach to movement-selectivity, subjects in
our experiments played the rock–paper–scissors (RPS) game,
freely choosing which game movement to execute on each trial
and, after a short delay, observing the movement of a videotaped
opponent. Following Kamitani and Tong (2005), we performed a
multivariate pattern classification analysis in aIPS and several
motor and/or visual cortical areas that responded strongly during
movement execution and/or observation. Validating the classifi-
cation approach for motor as well as sensory responses, the iden-
tities of executed movements were correctly classified from fMRI
responses in several areas of motor cortex and observed move-
ments were classified from responses in visual cortex. Both ob-
served and executed movements were classified from responses
in left and right aIPS, highlighting this area’s role in the percep-
tion and execution of movement. In aIPS, movement-specific
response patterns that enabled accurate within modality decod-
ing did not enable accurate decoding across modalities (i.e., de-
coding observed movement identity from a classifier trained on
responses to executed movements and vice versa). This dissocia-
tion between the representations of observed and executed
movements suggests that observed and executed movements are
represented by subpopulations of neurons that are distributed
differently in aIPS.

Materials and Methods
Subjects. Five healthy subjects (2 males) between the ages of 25 and 33
participated in two scanning sessions, which included a high-resolution
anatomical scan and 10 runs of the RPS experiment. All subjects had
normal or corrected-to-normal vision, provided written informed con-
sent, and were paid for their participation in the study. The Tel-Aviv
Sourasky Medical Center in Israel and the University Committee on
Activities Involving Human Subjects at New York University approved
the experimental procedures.

Visual stimuli and motor response. Stimuli were presented via an LCD
projector and custom optics onto a rear-projection screen in the bore of
the MRI scanner. Subjects were supine and viewed the projected stimuli
through an angled mirror, which also prevented them from seeing their
own hands. Subjects executed hand movements above their pelvis where
they rested their hand between movements. These movements were vid-
eotaped using a video camera installed in the MRI room.

RPS experiment. The RPS experiment was based on the popular game
rock–paper–scissors (http://en.wikipedia.org/wiki/Rock,_Paper,_Scissors).
Subjects played the game against a videotaped opponent whose arm and
hand were visible in the frame. Movement execution and observation alter-
nated such that subjects executed one of the three movements and then
observed the opponent’s movement several seconds later (Fig. 1). During
movement execution trials subjects were prompted with the word “GO”
(presented for 1.5 s) to execute their freely chosen movement. Subjects were
asked to raise their hand 10–15 cm, perform their movement, and return to
relaxation by the time the “GO” disappeared from the screen. Observation
trials consisted of the virtual opponent’s response, presented in a 1.5 s video
clip. Execution and observation trials were each followed by a blank intertrial
interval of 3–6 s. Using randomized intertrial intervals enabled us to separate
fMRI responses of movement observation and movement execution. Each
experimental run/game included 36 execution trials and 36 observation tri-
als, which lasted an average of 6 s each. We generated a different sequence of
opponent movements for each of the games by randomly ordering video
clips of the three movements. Subjects played a total of 10 games in two
separate scanning sessions and were videotaped throughout the experiment

to extract their movement choices. Subjects were told in advance that they
would receive extra monetary compensation if they won more trials than
they lost over each scanning session.

Because subjects freely chose their movement on every trial, the overall
number of rocks, papers, and scissors movements across the 10 games
varied from subject to subject (rock ! 118 " 4.6, paper ! 113 " 2.7,
scissors ! 129 " 4.9, mean and SD across the 5 subjects).

MRI acquisition. Functional and anatomical images of the brain were
acquired with a Siemens 3T Trio MRI scanner equipped with a birdcage
head coil used for RF transmit and receive. Blood oxygenation level-
dependent (BOLD) contrast was obtained using a T2* sensitive echo
planar imaging (EPI) pulse sequence: repetition time (TR) ! 1500 ms,
echo time (TE) ! 30 ms, flip angle ! 75°, 24 slices, 3 # 3 # 3 mm voxels,
field of view (FOV) ! 192 mm. High-resolution anatomical volumes
were acquired with a T1 weighted 3D-MPRAGE pulse sequence (1 # 1 #
1 mm).

Preprocessing, segmentation, and flattening. fMRI data were processed
using standard tools available in the Brain Voyager software package (R.
Goebel, Brain Innovation, Masstricht, The Netherlands). The first two
images of each functional scan were discarded. Functional scans were
then subjected to 3D motion correction, which involved resampling with
trilinear interpolation, and temporal high-pass filtering with a cutoff
frequency of six cycles per scan. Functional images were aligned with the
high-resolution anatomical volume using trilinear interpolation. Ana-
tomical and functional images were transformed to the Talairach coor-
dinate system (Talairach and Tournoux, 1988), again using trilinear in-
terpolation. This involved defining eight anatomical landmarks in each
of the subjects, which included the anterior, posterior, dorsal, ventral,
right, and left borders of the brain as well as the anterior and posterior
commissures. The relative locations of these landmarks were aligned to
fit the Talairach template. Other than the trilinear interpolation during
these transformations, no additional spatial smoothing was performed.
The cortical surface was reconstructed from high-resolution anatomical
images, separately for each subject. The procedure included segmenting
the gray and white matter, inflating the gray matter, cutting along several
medial locations including the calcarine sulcus, unfolding the cortical

Figure 1. Experimental design. Subjects were prompted by a visual stimulus (the word
“Go”) to execute their game movement within a 1.5 s window. Execution was followed by 3– 6
s of rest/blank after which subjects observed the opponent’s movement. After another interval
of 3– 6 s, subjects were again prompted to execute a movement. Each game/run consisted of
36 execution and 36 observation trials with a total length of 7.5 min. Each subject participated
in two scanning session performed on separate days and played five games in each session.
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surface, and flattening. Inflated and flattened cortical maps were used to
visualize cortical responses during the games (Fig. 2) and to identify
regions of interest (ROIs).

ROI definition. Statistical parameter mapping (SPM) analysis (Friston
et al., 1994) was used to identify brain areas that were active during
movement execution and/or observation. In short, we constructed a gen-
eral linear model (GLM) for the underlying neural responses to executed
and observed movement trials. The regression matrix contained a row
for each time point in the experiment where neural activity was modeled
as either “on” ! 1 or “off” ! 0. The matrix also contained two columns,
one for observed movement trials and the other for executed movement
trials. The expected neural activity model (each column of the matrix)
was convolved with a canonical hemodynamic response function (HRF)
to create a model of the expected fMRI responses (Boynton et al., 1996).
We used linear regression to estimate response amplitudes (! values) for
each voxel in each of the two conditions, solving an equation of the form
y ! Ax, where the vector y was the measured time course during one
scan, the vector x contained the estimated response amplitudes, and A
was the regression matrix described above. Data were combined across
subjects for visualization purposes (Fig. 2) using a random-effects anal-
ysis; response amplitudes were computed separately for each subject and
then a paired t test (4 degrees of freedom) was used to determine signif-
icant voxel-by-voxel response differences across subjects (Friston et al.,
1999).

Six ROIs were selected, for each subject individually, by overlaying the

statistical parameter map from each subject on
their high-resolution anatomical scan and
choosing all active voxels within a radius of 15
mm around particular anatomical landmarks.
A false discovery rate (FDR) of 0.01 was used to
threshold the statistical parameter maps. FDR is
a method of correcting for multiple compari-
sons by controlling for the expected proportion
of false positives among suprathreshold voxels
(Genovese et al., 2002) rather than for the rate
of false positives among all voxels as done by the
stricter Bonferroni method.

Visual cortex (Vis) was defined by selecting
voxels around the right occipital pole that re-
sponded more during movement observation
than rest. Primary motor and somatosensory
cortex (Mot) was defined by selecting voxels
around the left “hand knob” landmark in the
central sulcus that responded more during
movement execution than rest. The cingulate
motor area (CMA) was defined by selecting
voxels bilaterally around the middle of the cin-
gulate sulcus (adjacent to the medial end of the
central sulcus) that responded more during
movement execution than rest. Left and right
aIPS were defined by selecting voxels around
the middle of the anterior arm of the IPS that
responded more during both movement execu-
tion and observation than rest (using a con-
junction analysis of observation $ rest and ex-
ecution $ rest). Ventral premotor cortex
(vPM) was defined by selecting voxels in the left
hemisphere around the junction of the inferior
frontal sulcus and precentral sulcus that re-
sponded more during both movement execu-
tion and observation than rest (same as aIPS).
See Table 1 for details about ROI coordinates
and sizes.

HRF estimation. A deconvolution analysis
was used to estimate a subject-specific hemody-
namic response function (HRF) for each ROI,
separately for observation trials and execution
trials. Responses were averaged across all voxels
in each ROI. A GLM was then used to estimate
the HRFs. The GLM matrix contained 26 col-

umns: 13 columns to estimate the observation HRF and another 13 col-
umns to estimate the execution HRF. The HRFs were estimated across all
movement trials regardless of movement identity so as not to bias the
shape or amplitude of the HRF to one movement type. These subject-
specific HRFs were used for the multivariate pattern classification anal-
ysis (as described next), although similar results were obtained using a
canonical HRF (Boynton et al., 1996) instead of the subject-specific
HRFs (compare Fig. 3 and supplemental Fig. 4, available at www.jneuro-
sci.org as supplemental material).

Multivariate pattern classification analysis. fMRI response amplitudes
were estimated, using linear regression, separately for each voxel in each
ROI, and separately for each observation and execution trial. This regres-
sion matrix contained a row for each time point and a separate column
for each execution trial and each observation trial (a total of 36 # 2 ! 72
columns per game). Each column, therefore, had only a single time point
of expected neural activity, which was modeled as “on” ! 1, whereas all
other time points were modeled as “off” ! 0. Each column was con-
volved with the appropriate subject-specific HRF (or, as noted above, by
the canonical HRF for the results reported in supplemental Fig. 4, avail-
able at www.jneurosci.org as supplemental material).

Following Kamitani and Tong (2005), the spatial patterns of fMRI
responses were used to calculate three binary discrimination functions,
one for each pair of movements (rock–paper, rock–scissors, and paper–
scissors). The distributed response pattern of each movement trial can be

Figure 2. ROIs. Orange, Cortical areas that exhibited larger responses during movement execution trials than rest. Blue,
Cortical areas that exhibited larger responses during movement observation trials than rest. Results calculated across all subjects
are displayed on inflated (top) and flattened (bottom) hemispheres of one subject. We defined several ROIs for each of the subjects
individually: bilateral cingulate motor area (CMA), left ventral premotor cortex (vPM), left primary motor and somatosensory
cortex (Mot), left and right anterior intraparietal sulcus (aIPS), and visual cortex (Vis). The general location of the ROIs is outlined
in white ellipses (the actual ROIs were defined individually for each subject).

Table 1. Mean ROI location and size across subjects

Talairach coordinates

ROI name x y z ROI size

Mot %36 (1.5) %26 (3.9) 51 (2.4) 678 (152)
Vis 21 (2.3) %89 (2.3) 2 (0.6) 613 (78)
Left aIPS %32 (4) %53 (4.4) 45 (2.5) 496 (152)
Right aIPS 30 (1.6) %52 (3.2) 48 (3.6) 484 (106)
vPM %46 (3.8) %5 (3.8) 36 (3.2) 507 (74)
CMA %1 (2) %14 (4.3) 50 (1) 840 (200)

Talairach coordinates (mean x, y, and z center of mass) are listed for each ROI along with the SD in parentheses. Mean ROI sizes (number of functional voxels)
are listed along with SD in parentheses.
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described mathematically as a vector containing the response amplitudes
of all the voxels in an ROI. The response to each movement trial was,
therefore, a data point in a multidimensional space where the dimension-
ality was the number of voxels in the ROI. The discrimination function
was a hyperplane in this space that best separated the data points of the
two groups. We used a linear discriminant, similar to Fisher linear dis-
criminant (FLD) analysis, to compute the hyperplane which optimally
separated the responses if the response variability in each voxel (across
trials) was normally distributed, and statistically independent across vox-
els. We note that with more voxels than trials, inversion of the full co-
variance matrix necessary for FLD would be unstable because the covari-
ance matrix would be underdetermined. We therefore disregarded
covariances between voxels by setting all off-diagonal elements in the
covariance matrix to 0. We then calculated the output of the classifier
using the vector orthogonal to the discrimination hyperplane with the
following equation:

g(x)!w0&!
i!1

n

xiwi ,

where i indexes over voxels, xi is a vector of fMRI response amplitudes, wi

is a vector of the computed weights that is orthogonal to the discrimina-
tion hyperplane, and w0 is a scalar such that g(x) ' 0 for trials from one
movement category and g(x) $ 0 for trials from the other movement
category.

We used “leave one out” validation to test the accuracy of the classifi-
cation. We calculated (or “trained”) the three binary classifiers while
leaving out one of the exemplars and tested whether the left out exemplar
was accurately assigned to the proper movement category (“decoding”).
Before calculating the classification functions we averaged groups of 8
trials from the same movement category to improve the signal-to-noise

ratio of the spatial patterns of responses. This decreased the number of
exemplars we had for each movement type, but also decreased the
amount of noise inherent in each exemplar. The training and decoding
process was repeated for each of the available exemplars and the whole
process was also repeated 100 times while averaging the movements in
different randomly selected groups of 8 trials. An exemplar was classified
as a particular movement if it successfully passed two binary discrimina-
tions (e.g., a rock exemplar was correctly assigned to the rock category
only if it passed both the rock–paper and the rock–scissors discrimina-
tion functions). Exemplars that were misclassified by either or both of the
two relevant discrimination functions were considered errors. This
yielded an accuracy of 33% when testing the classifier on randomly gen-
erated numbers (supplemental Fig. 5, available at www.jneurosci.org as
supplemental material). Accuracy was computed separately for each sub-
ject and then averaged across subjects.

To assess statistical significance of decoding accuracy, we performed
two statistical tests. First we used a t test (4 degrees of freedom) in each of
the ROIs to test whether decoding accuracy of each trial type was signif-
icantly higher than chance. This t test had the advantage of treating
intersubject differences as a random factor. The t test, however, assumed
that the chance distribution of decoding accuracies was normally distrib-
uted, which may not be the case. We, therefore, also performed a ran-
domization test that was identical to the classification analysis described
above except that we randomly shuffled the identities of the observed/
executed movements before training the classifier. We ran this analysis
300 times for each subject separately, reshuffling the identity of the
movements each time. This yielded a distribution of 1500 decoding ac-
curacies expected by chance in each of the ROIs, with a mean of (0.33
and 5th through 95th percentiles of (0.2 to (0.46 when collapsed across
subjects (supplemental Fig. 1, available at www.jneurosci.org as supple-
mental material). To assess statistical significance, we tested whether
decoding accuracy was above the 95th percentile.

We obtained almost identical results using a 3-way maximum likeli-
hood classifier. The Matlab (Mathworks) “classify” function with the
“diaglinear” option estimated the response variances and then classified
the left out exemplar. This analysis, like that described above, assumed
that each voxel’s responses were normally distributed and that voxels
were statistically independent from one another. A “leave one out” pro-
cedure was again used for the classification, we again averaged groups of
8 trials from the same movement category to improve the signal-to-noise
ratio of the response patterns, and we performed both a randomization
statistical test and a t test to determine if the classifier performance was
significantly above chance.

To determine whether decoding accuracy was affected by transform-
ing to Talairach space, we reanalyzed data from two of the subjects in
aIPS ROIs that were defined in the coordinates of the original EPI slices.
The resulting decoding accuracies were almost identical to those calcu-
lated in Talairach space. Hence, the spatial blurring inherent in the Ta-
lairach transformation had negligible effects on the results (although the
data were still resampled with trilinear interpolation by the motion com-
pensation procedure).

Pattern correlation analysis. In a complementary analysis, we also as-
sessed the similarity of spatial response patterns across different move-
ment types using correlation (following Haxby et al., 2001). We followed
the same steps described for the classification analysis to estimate fMRI
response amplitudes in each voxel of each ROI, but here we averaged
across all trials of the same category from each game/scan, generating a
total of 10 exemplars for each movement category (e.g., 10 executed
scissors patterns) for each subject. We also computed the average re-
sponse pattern across all movement types in each game for execution and
observation trials separately, generating 10 execution and 10 observation
averages. The average game responses were projected out of each cate-
gory exemplar (e.g., the projection of the executed scissors exemplar onto
the execution mean was subtracted from the exemplar). This step en-
sured that there was no correlation between each exemplar and the aver-
age of all three, Finally, we computed correlation coefficients among
exemplars of the same category (e.g., executed rocks) and exemplars of
different categories (e.g., executed rocks and executed papers), averaging
the category specific correlations computed from all game pairs.

Figure 3. Classifier decoding accuracy. Light gray, Decoding accuracy for executed move-
ments. Dark gray, Decoding accuracy for observed movements. Error bars, SEM across subjects.
Asterisks, Statistical significance assessed with one-tailed t tests across subjects (*p ' 0.05;
**p ' 0.005). Solid lines, Chance classification accuracy level (0.33). Dashed lines, Fifth and
ninety-fifth percentiles for chance classification, estimated with randomization tests separately
for each ROI (see Materials and Methods and supplemental Fig. 1, available at www.jneuro-
sci.org as supplemental material).
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Here, too, t tests and randomization tests were used to determine
whether correlation values were significantly higher than zero in each of
the ROIs. For the randomization tests, we performed a correlation anal-
ysis identical to the one described above except that the identities of the
observed/executed movements were shuffled. We ran this analysis 6000
times in each subject, reshuffling the identity of the movements each
time. This yielded a distribution of the correlation accuracies expected by
chance, with a mean of 0 and a 95th percentile of (0.045 (supplemental
Fig. 2, available at www.jneurosci.org as supplemental material).

Voxel bias maps. The weights calculated for the three binary discrimi-
nation functions, one for each pair of movements (rock–paper, rock–
scissors, and paper–scissors), are informative in showing which of the
voxels responded consistently more strongly during the execution or
observation of one of the movements compared with the other two. This
enabled us to create maps of the voxel “biases” for each of the subjects
and each of the ROIs. We assigned each voxel with a value of 0, 1, 2, or 3
corresponding to no consistent bias, rock-bias, paper-bias, or scissors-
bias. For example, we assigned a voxel with the rock-bias value only if it
had rock biased weights in both of the rock–paper and rock–scissors
discrimination functions.

Results
Subjects played 10 RPS games in two separate scanning sessions
performed on different days (five games in each session). The
subjects were visually prompted to execute their freely chosen

movements on movement execution trials, which were followed
by movement observation trials that contained the virtual oppo-
nent’s movements. The RPS game was used to keep subjects en-
gaged while executing and observing many trials of only three
movement types.

A whole brain SPM analysis showed that the typical visual and
motor cortical areas responded robustly during trials where
movements were executed or observed (Fig. 2, orange and blue,
respectively), regardless of movement identity. We focused our
analyses on commonly described candidate human “mirror sys-
tem” areas, which responded during both movement observation
and execution: left and right anterior intraparietal sulcus (aIPS)
as well as left ventral premotor cortex (vPM). We hypothesized
that because analogous areas of monkey cortex have been shown
to contain single neurons selective for particular executed and
observed movements (Gallese et al., 1996; Fogassi et al., 1998,
2005; Umiltà et al., 2001), they might enable accurate decoding of
both observed and executed movement identity. Three control
ROIs were also identified: left primary motor and somatosensory
cortex (Mot), bilateral cingulate motor area (CMA), and right
visual cortex (Vis). We expected the motor ROIs to exhibit accu-
rate decoding of executed, but not observed, movements and the
opposite from the visual ROI. These ROIs were identified in each
subject separately and consisted of (600 functional voxels that
were active during either movement execution, movement ob-
servation, or both (see Materials and Methods and Table 1 for
details).

A multivoxel pattern classifier was used to assess whether the
distributed patterns of activity in each ROI were unique and re-
producible for execution and/or observation of each particular
movement. The statistical significance of the results was assessed
in two ways. First, we performed a t test across subjects to deter-
mine whether the decoding accuracy was significantly greater
than chance (33%). Second, we performed a randomization test
in which movement identities were randomly shuffled to gener-
ate a distribution of decoding accuracies expected by chance,

Figure 4. Correlation of response patterns across games. Light orange, Correlations for same
executed movement type: rock–rock (R–R), paper-paper (P–P), and scissors-scissors (S–S).
Dark orange, Correlations for different executed movement types: rock–paper (R–P), rock–
scissors (R–S), and paper–scissors (P–S). Light blue, Correlations for same observed movement
type. Dark blue, Correlations for different observed movement types. Error bars, SEM across
subjects. Asterisks, Statistical significance assessed with one-tailed t tests across subjects (*p '
0.05; **p ' 0.005). Solid horizontal lines, Chance correlation level (0). Dashed horizontal lines,
Fifth and ninety-fifth percentiles for chance correlations, estimated with randomization tests
separately for each ROI (see Materials and Methods and supplemental Fig. 2, available at
www.jneurosci.org as supplemental material).

Figure 5. fMRI responses to the three RPS movements, averaged across voxels in each ROI
and across subjects. Each of the three movements evoked similar (statistically indistinguish-
able) mean fMRI response amplitudes. R, Rock; P, paper; S, scissors. Error bars, SEM.
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separately for each ROI (see Materials and
Methods for details). Decoding accuracies,
according to the null hypothesis (random-
ized movement identities), had a mean of
0.33 and a 95th percentile ranging between
0.45 and 0.47 (supplemental Fig. 2, avail-
able at www.jneurosci.org as supplemental
material), as indicated by the dashed hor-
izontal lines in Figure 3.

The spatial response patterns in each
ROI enabled above-chance decoding of
observed movement identity, executed
movement identity, or both (Fig. 3). De-
coding accuracy for executed movements
(collapsed across the three movement
types) was above chance in Mot (76%), left
vPM (57%), and CMA (49%), whereas ac-
curacy for observed movements in the
same areas was indistinguishable from
chance. Conversely, decoding accuracy
only for observed movements was above
chance in Vis (72%). Decoding accuracy in
left aIPS was significantly above chance for
all three executed and all three observed
movements. In right aIPS, accuracy was
above chance for all three executed movements and for one of the
three observed movements. The other two observed movements
were significantly above chance as assessed by the t test, but just
below the 95th percentile of the randomization analysis. Note
that decoding accuracy was computed across all 10 scans ac-
quired during two different sessions; movement-specific fMRI
response patterns were, therefore, stable enough across days to
support classification.

A complementary correlation analysis revealed similar results.
We computed a single spatial response pattern for each of the six
trial types per game/run, and correlated different and same
movement types across pairs of games (Fig. 4). Statistical signif-
icance of the correlations was again assessed using both a t test
(across subjects) and a randomization test. Chance correlations,
according to the null hypothesis (randomized movement identi-
ties), had a mean of 0 and a 95th percentile ranging between 0.035
and 0.056 (supplemental Fig. 2, available at www.jneurosci.org as
supplemental material), as indicated by the dashed horizontal
lines in Figure 4. Response patterns in Mot and in vPM, evoked by
the same executed movements, were significantly correlated
across games, whereas response patterns evoked by different ex-
ecuted movements and by observed movements were not. In
contrast with the classification results, bilateral CMA did not
exhibit any significant correlations. In visual cortex (Vis), same
executed movements were not correlated, but same observed
movements were. Left and right aIPS exhibited significant corre-
lations both for same executed movements and same observed
movements. The correlation values, based on responses com-
puted independently from the 10 separate games/runs, could be
dramatically increased by averaging across multiple games al-
though the signal-to-noise ratio remained similar (supplemental
Fig. 3, available at www.jneurosci.org as supplemental material).
The correlation analysis is affected equally by all participating
voxels, as opposed to the classification analysis which assigns a
weight to each voxel such that the contribution of “noisy” voxels
is minimized. The results of the correlation analysis, therefore,
may be weaker than those of the classification analysis depending
on the proportion of “noisy” voxels included in each ROI.

Accurate classification was attributable to information avail-
able in the spatially distributed pattern of responses, rather than
the overall response amplitudes throughout each ROI. Averaging
responses across all voxels in any of the ROIs showed no differ-
ence in the response amplitudes for the three movements,
whether executed or observed (Fig. 5). Furthermore, plots of
voxel classification weights (illustrating their bias for a particular
observed or executed movement) in each of the ROIs (Fig. 6)
showed that movement biased voxels were intermingled forming
a distributed response pattern in each ROI. Figure 6 shows an
example of the classification weights from a single subject; the
weights were similarly intermingled in all subjects although each
had a different idiosyncratic distribution of weights.

We compared the distributed response patterns of observed
and executed movements in left and right aIPS, which responded
with similar overall amplitude during execution and observation
trials (Fig. 5). The classifier was trained using trials from one
modality and decoding accuracy was tested using trials from the
other modality. Decoding accuracy was indistinguishable from
chance in both cases (Fig. 7, left column). A complimentary cor-
relation analysis showed that correlation coefficients of response
patterns to the same movement when observed and executed
were indistinguishable from zero (Fig. 7, right column). As noted
above, classification accuracy and correlation coefficients in aIPS
were significantly above chance within each modality. Area aIPS,
therefore, exhibited a clear dissociation of within- versus
between-modality classification and correlation; consistent and
unique spatial patterns of activity were exhibited by each move-
ment category, but these distributed response patterns were dif-
ferent for observation and execution.

To further compare the distributed representations of observed
and executed movements in aIPS, we also performed a six-way clas-
sification analysis (Fig. 8), in which each movement type was com-
pared with all other movement types regardless of modality (e.g.,
executed scissors was compared with executed rock and executed
paper as well as with observed rock, paper, and scissors). In this
analysis, a trial was assigned to a particular category only if it success-
fully passed all five relevant pairwise discrimination functions.

Figure 6. Classification weights from a single typical subject. Left, Executed movements. Right, Observed movements. Green,
Voxels with a bias for the rock movement. Yellow, Voxels with a bias for the paper movement. Purple, Voxels with a bias for the
scissors movement. Blue, Voxels with no consistent bias to any of the movements.

11236 • J. Neurosci., October 29, 2008 • 28(44):11231–11239 Dinstein et al. • Distributed Movement Representations in Human aIPS



Chance accuracy was 16.5% as computed with an equivalent ran-
domization analysis where movement identities were randomly
shuffled among the six categories. Despite the addition of three
“cross-modal” discrimination functions, decoding accuracies, for
both observed and executed movement identities, were almost iden-
tical to those obtained with the three-way classifier (Fig. 3). This
means that executed movements were rarely misclassified as ob-
served movements and vice versa. Rather, errors, when they oc-
curred, were attributable to misclassifying movement identity
within the visual or motor modality ($99.9% of errors) and not
across the modalities ('0.1%). This result confirms that distinctly
different fMRI response patterns were generated by executed and
observed movements in aIPS.

Discussion
Overlapping visual and motor movement selectivity in aIPS
In this study we used classification and correlation to compare
fMRI response patterns associated with different observed and/or

executed hand movements. Left and right aIPS exhibited repro-
ducible response patterns during both execution and observation
of the RPS movements (Figs. 3, 4). Although both areas re-
sponded with indistinguishable overall response amplitudes to all
three movements (Fig. 5), consistent differences in the voxel-by-
voxel spatial pattern of responses to each movement type enabled
us to decode the identities of executed movements (70 and 53%,
left and right aIPS, respectively), and observed movements (51
and 46%). These results do not prove that there are single neu-
rons selective for movement type in aIPS. Rather, we assume that
such neurons are present based on monkey electrophysiology
studies (Gallese et al., 1996; Fogassi et al., 1998, 2005; Umiltà et
al., 2001) and suggest that the movement-specific activity pat-
terns reported here were generated by large subpopulations of
such neurons.

There was a clear dissociation in aIPS of within-modality
(motor or visual) and between-modality (motor to visual or vi-
sual to motor) classification. Specifically, between-modality de-
coding accuracy of movement identity was indistinguishable
from chance (Fig. 7), unlike the within-modality decoding. This
combination of results suggests one of two possible interpreta-
tions, which are not mutually exclusive. The first is that the ac-
tivity patterns in aIPS were generated by distinct subpopulations
of movement-selective motor neurons (active during movement
execution) and movement-selective visual neurons (active dur-
ing movement observation), which were distributed differently
throughout left and right aIPS. A second possibility is that the
activity patterns were generated by a single population of visuo-
motor neurons, but that these neurons exhibited different selec-
tivities during observation and execution such that they consis-
tently responded with one activity pattern to the observation of a
particular movement and with a different activity pattern to the
execution of that same movement.

In a previously published study, we reported an analogous
dissociation in aIPS when using an fMRI adaptation (repeti-
tion suppression) protocol to identify cortical areas that
adapted during repeated observation and execution of move-
ments (Dinstein et al., 2007). fMRI adaptation studies rely on
the assumption that strongly stimulated neurons decrease
their firing rates (adapt/habituate) when stimulated repeat-
edly, resulting in smaller amplitude fMRI responses (Grill-
Spector and Malach, 2001; Huk and Heeger, 2002; Boynton
and Finney, 2003; Fang et al., 2005; Grill-Spector, 2006). In the
adaptation study, area aIPS exhibited both visual and motor
adaptation, but a lack of cross-modal (visual to motor or mo-
tor to visual) adaptation. Visual and motor movement-
selective responses were, therefore, evident in aIPS, but there
was no evidence for movement-selective responses across the
two modalities, which might have been expected from a neural
population with the same movement-selectivity across the vi-
sual and motor modalities (mirror neurons). fMRI classifica-
tion provides a complementary technique for studying re-
sponse selectivity, which relies on the assumption that neural
populations with different selectivities are distributed un-
evenly such that unique fMRI response patterns can be asso-
ciated with particular stimuli or tasks. Thus, converging evi-
dence from the adaptation and classification techniques
indicates that aIPS exhibits movement-selective responses
during both observation and execution of movement, but that
the representations of observed and executed movements are
fundamentally different from one another.

Figure 7. Cross-modal decoding accuracy and cross-modal correlation of response patterns.
Top row, Right aIPS. Bottom row, Left aIPS. Left column, Decoding accuracy. Orange, Average
decoding accuracy for executed movement identity when training classifier on observed move-
ments. Blue, Average decoding accuracy for observed movement identity when training classi-
fier on executed movements. Right column, Correlation of response patterns. Green, Correla-
tions in response patterns for observed and executed rock (R–R), paper (P–P), and scissors
(S–S). Red, Correlations for different observed and executed movement types: rock–paper
(R–P), rock–scissors (R–S), paper–scissors (P–S). Error bars, SEM across subjects. Dashed hor-
izontal lines, Fifth and ninety-fifth percentiles for chance decoding accuracy and chance corre-
lation coefficients, estimated with randomization tests separately for each ROI (see Materials
and Methods).

Figure 8. Six-way classifier decoding accuracy (same format as Fig. 3). Light gray, Decoding
accuracy for executed movements. Dark gray, Decoding accuracy for observed movements.
Error bars, SEM across subjects. Asterisks, Statistical significance assessed with one-tailed t tests
across subjects (**p ' 0.005). Solid lines, Chance classification accuracy level (0.165). Dashed
lines, Fifth and ninety-fifth percentiles for chance classification, estimated with randomization
tests separately for each ROI (see Materials and Methods).
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Lateralization of movement execution and perception
Although we did not design our experiments to study the lateral-
ization of movement perception and execution, a notable aspect
of our results is that movement-selective cortical responses were
evident bilaterally in aIPS when executing a movement with the
right-hand and when observing someone else performing a
movement with their right-hand. Previous studies have reported
lateralized response differences between left and right aIPS dur-
ing movement execution, observation, and imitation (Decety et
al., 2002; Aziz-Zadeh et al., 2006). Yet these studies based their
conclusions on small response amplitude differences between the
entire left and right aIPS. These differences in response ampli-
tudes might have different neural underpinnings that may or may
not be related to movement perception or execution (e.g., differ-
ences in effort/arousal related to imitating with the dominant
versus nondominant hand). Using the classification approach it
was possible to decode movement identity from activity patterns
of either hemisphere, revealing a clear bilateral representation of
executed and observed movements.

Distributed movement-selective visual responses
The visual cortex ROI enabled accurate decoding of observed
movement identity, but not of executed movement identity (Figs.
3, 4). We did not perform retinotopic mapping to identify visual
cortical areas in our subjects, yet we assume that this ROI con-
tained multiple visual areas surrounding the occipital pole in-
cluding V1, V2, V3, and V4. The three movement video clips used
in the game differed in many low-level visual features including
the amount of visual motion and the distribution of local lumi-
nance and contrast levels. We, therefore, suggest that the repro-
ducible response patterns evident in visual cortex were attribut-
able to the consistent responses of large neural populations
selective for these visual features, as previously reported when
using low-level visual stimuli (Haynes and Rees, 2005; Kamitani
and Tong, 2005, 2006) or static real-life images (Kay et al., 2008).
Note that these visual areas were active not only during move-
ment observation, but also during movement execution (Fig. 5)
because subjects were prompted to execute their chosen move-
ments by a visual cue (the word “Go”). However, as expected, this
robust fMRI response did not enable accurate decoding of exe-
cuted movement identities.

Spatially distributed motor control
Several motor system areas enabled accurate decoding of exe-
cuted movement identity (Figs. 3, 4). Although it is not surprising
that different populations of motor and somatosensory neurons
respond selectively during the execution of particular move-
ments, almost all of the evidence for such selectivity comes from
electrophysiology studies in nonhuman primates (e.g., selectivity
for movement direction, Georgopoulos et al., 1986). The reason
for this is that the neural populations active during the execution
of different movements are intermingled within these cortical
motor areas such that the overall fMRI response amplitudes to
different movements are indistinguishable (Fig. 5). Our ability to
accurately distinguish among responses to different hand move-
ments, whose execution required the recruitment of similar mus-
cle groups in different combinations, validates the use of classifi-
cation techniques for the study of response selectivity in the
motor and somatosensory domains.

Comparing distributed patterns of cortical responses, as was
done in the current study for observed versus executed move-
ments, may enable various dissociations between the cortical rep-
resentations of movement dynamics, kinematics, goals/inten-

tions, and symbolic value. For instance, if neural populations in
area aIPS indeed code for different movement goals as has been
proposed (Fogassi et al., 2005; Hamilton and Grafton, 2006), it
may be possible to accurately decode movement goal across
movements with the same goal and different kinematics using
cortical response patterns from aIPS, but not from primary mo-
tor cortex. The ability to perform such experiments with human
subjects, while simultaneously scanning the entire brain, offers
many advantages for the study of motor control.

Movement selectivity, mirror neurons, and
movement perception
Mirror neurons were discovered over 10 years ago in two cortical
areas of the macaque monkey, F5 and IPL (Gallese et al., 1996;
Fogassi et al., 1998, 2005; Umiltà et al., 2001), that are thought to
be analogous to human vPM and aIPS, respectively. Mirror neu-
rons were defined functionally as visuomotor neurons that re-
sponded selectively to a particular preferred movement (e.g.,
grasping, placing, or manipulating) whether the monkey exe-
cuted it or observed someone else performing it. Several theories
have proposed that mirror neurons act as a mapping mechanism
between the observation of an action and its execution so that
when someone observes a movement, they simulate performing
that movement (Rizzolatti and Craighero, 2004). This simulation
then allows them to assign their own associated intentions, goals,
emotions, and social values to the person whom they observed.
Note that for this mechanism to work, it is critical that the ob-
served movement be mapped onto the particular neural circuits
used to execute it; otherwise improper intentions will be inferred.

Area vPM is commonly considered a candidate human mirror
system area and indeed this area responded with equal strength
during both the observation and the execution of movements in
our study (Figs. 2, 5). We, therefore, expected this area to exhibit
accurate decoding for both the identities of executed and ob-
served movements. Yet our analyses revealed accurate decoding
only for the identities of executed movements and not for iden-
tities of observed movements (Figs. 3, 4). Because this is a nega-
tive result with several possible explanations (e.g., the distribu-
tion of visually selective responses in this area may be restricted to
small subregions of vPM beyond our voxel size resolution) we
will not discuss it further.

Had the responses in area aIPS during movement execution
and observation been dominated by the activity of mirror neu-
rons, one would have expected a similar distributed response
pattern during the observation and execution of the same move-
ment. This does not seem to be the case. Cortical activity in aIPS
exhibited visual and motor movement-selectivity, enabling accu-
rate decoding of both observed movement identity and executed
movement identity. This suggests that neural populations in aIPS
may indeed play a central role in the perception of movement as
proposed by the theories above. The distinct spatial response
patterns to the observation and execution of the same movement,
however, show that these responses were not generated by a single
population of movement-selective mirror neurons, but rather
from distinct subpopulations of visual and motor neurons, or
from “promiscuous” visuomotor neurons that responded selec-
tively to one observed movement and to a different executed
movement. Although there may very well be movement-selective
mirror neurons in human aIPS, our results suggest that they
make up only a minority of the neurons active during observation
or execution of movement and do not dominate the fMRI re-
sponses of this area.
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Decety J, Chaminade T, Grèzes J, Meltzoff AN (2002) A PET exploration of
the neural mechanisms involved in reciprocal imitation. Neuroimage
15:265–272.

Dinstein I, Hasson U, Rubin N, Heeger DJ (2007) Brain areas selective for
both observed and executed movements. J Neurophysiol 98:1415–1427.

Fang F, Murray SO, Kersten D, He S (2005) Orientation-tuned FMRI adap-
tation in human visual cortex. J Neurophysiol 94:4188 – 4195.

Fogassi L, Gallese V, Fadiga L, Rizzolatti G (1998) Neurons responding to
the sight of goal-directed hand/arm actions in the parietal area PF (7b) of
the macaque monkey. Soc Neurosci Abstr 24:257.5.

Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005)
Parietal lobe: from action organization to intention understanding. Sci-
ence 308:662– 667.

Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI time-
series. Hum Brain Mapp 1:153–171.
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