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The visual system receives continuous, time-varying input, 
which must be dynamically prioritized according to behav-
ioural goals. However, most data and theory on visual percep-

tion and attention have been motivated by a static picture of visual 
processing, focusing on how we see a single image that is isolated in 
time. Here we generalized a successful static computational theory 
of visual and attentional processing into a dynamic model, which we 
constrained using our recently developed psychophysical protocol 
and new data on the dynamics of temporal attention.

Our theory is based on the principle of normalization. The nor-
malization model explains contextual modulation in neural popu-
lations with divisive suppression1,2. Normalization appears to be 
widespread in both basic sensory2–6 and higher-order perceptual 
and cognitive processing7–12. For this reason, it has been described 
as a “canonical cortical computation”1.

Several models of attention combine sensory normalization with 
attentional modulation6,12–19. In these models, attention changes 
the sensitivity of neural responses to sensory inputs by modulating 
the gain of the responses. One such model, developed by Reynolds 
and Heeger12, proposes that attention modulates neural activity 
before normalization. This formulation has reconciled ostensibly 
conflicting electrophysiological and psychophysical findings12 and 
predicted new results that have been empirically confirmed20–22. 
However, this leading theory of spatial and feature-based attention 
is static, with no temporal attention component.

Dynamic normalization models have been developed to account 
for the time courses of neuronal responses5,10,23–27 and dynamic sen-
sory processes such as adaptation2,28–32, but these models have not 
incorporated attention. It has been noted17 that differential shunting 
equations can be used to implement normalization, as in shunting 
equation models of spatial attention33,34.

A major challenge in developing a dynamic normalization  
model of attention is establishing what the attentional gain  
dynamics actually are. The behavioural time courses of spatial  
attention have been characterized, revealing that voluntary spatial 
attention takes 300 ms to be allocated while involuntary spatial 
attention peaks at 90–120 ms (refs. 35–38). However, visual atten-
tion is not only directed to locations in space; it is also directed to  
points in time.

Temporal attention is the prioritization of visual information at 
specific points in time, for example, the moment a behaviourally 
relevant stimulus will appear39. Even with spatial attention fixed 
at one location, visual temporal attention can be manipulated 
using temporal precues to specific time points. Such voluntary, 
or goal-directed, temporal attention affects perception40–44, neural 
responses44–48 and microsaccades49. Voluntary temporal attention 
can lead to both perceptual benefits at attended times and percep-
tual costs at unattended times, relative to when attention is distrib-
uted across time41, but the temporal dynamics of attention that lead 
to these benefits and costs are unknown. Moreover, there are no 
existing models of voluntary attention to specific time points.

We define involuntary temporal attention as stimulus-driven 
attentional dynamics that prioritizes specific points in time in an 
automatic fashion, for example, an increase in attention following a 
salient stimulus. Involuntary spatial attention transiently enhances 
visual processing at a stimulated location, and its underlying mecha-
nisms are at least partially distinct from those underlying voluntary 
spatial attention35,38. However, the dynamics of involuntary tempo-
ral attention (even when spatial attention is fixed) are unknown, 
and there are no general-purpose models of involuntary temporal 
attentional dynamics.

We developed a normalization model of dynamic attention that 
can capture not only spatial and feature-based attention but also 
temporal attention. We performed a psychophysical experiment to 
measure how voluntary and involuntary temporal attention affect 
perception across time, and we used these new data on temporal 
attentional dynamics to constrain the model. The model that best 
fits the data predicts a limitation in the availability of voluntary 
attentional gain across time intervals of ~1 s. We then used the 
model, with the same neuronal and attentional parameters, to fit 
two previous datasets41,42, thereby providing empirical evidence for 
the generalizability of our new model.

Results
Behaviour. To determine the dynamics of voluntary and involun-
tary temporal attention, we performed a behavioural experiment 
(Fig. 1a,b). Observers judged the orientation of gratings while vol-
untary temporal attention was directed to different points in time. 
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On each trial, two gratings appeared in sequence at the same loca-
tion, separated by a stimulus onset asynchrony (SOA) that ranged 
from 100 to 800 ms across testing sessions but was fixed within a 

session to ensure predictable stimulus timing. Voluntary tempo-
ral attention was manipulated by an auditory precue to attend to 
the first target (T1), the second target (T2) or both targets (neutral 
precue). When a single target was precued (80% of all trials), pre-
cue validity was 75%. On valid attention trials (60% of all trials), 
observers were asked at the end of the trial to report the orientation 
of the precued target; on invalid attention trials (20%), they were 
asked to report the target that was not precued. On neutral trials 
(20%), observers were equally likely to be asked to report T1 or T2. 
Therefore, only the time point(s) to which voluntary attention was 
directed varied from trial to trial.

Critically, this two-target temporal precueing protocol, which we 
developed in ref. 41, allowed us to measure how voluntary tempo-
ral attention affected the perception of both targets as a function of 
SOA, which was necessary to infer voluntary attentional dynamics. 
Such measurement could not have been accomplished using previ-
ous temporal precueing protocols, which presented only one target 
per trial, so observers could reorient attention to the second time 
point if no target appeared at the first. This protocol also allowed 
us to investigate involuntary attentional dynamics by assessing the 
impact of involuntary attention elicited by T1 on T2 behaviour, as a 
function of SOA. Behavioural performance depended on the tem-
poral attentional precue, the SOA and the reported target. We iden-
tified four main features of the behavioural data.

First, voluntary temporal attention affected behaviour, resulting 
in attentional tradeoffs between the two targets. Overall, perceptual 
sensitivity (d′) was highest for valid trials, lowest for invalid trials and 
intermediate for neutral trials (Fig. 1c,d). In a repeated-measures 
analysis of variance (ANOVA) with precue validity, SOA and tar-
get as factors, there was a main effect of validity (F(2, 8) = 8.85, 
P = 0.0094, ηG

2 = 0.048). Temporal precueing tended to produce 
attentional benefits for T1 (valid better than neutral, which was 
similar to invalid) but attentional costs for T2 (invalid worse than 
neutral, which was similar to valid). Planned repeated-measures 
ANOVAs assessing benefits (valid versus neutral) and costs (invalid 
versus neutral) separately for T1 and T2 yielded a marginally  
significant benefit for T1 (F(1, 4) = 5.00, P = 0.089, ηG

2 = 0.079)  
but no evidence for a significant cost for T1 (F(1, 4) = 0.43,  
P = 0.55, ηG

2 = 0.0017). Conversely, there was a significant cost for 
T2 (F(1, 4) = 15.10, P = 0.018, ηG

2 = 0.065) but no evidence for a 
significant benefit for T2 (F(1, 4) = 0.089, P = 0.78, ηG

2 = 0.0015). 
Reaction time (RT) showed a similar dependence on the attentional 
precue, with fastest responses for valid trials, slowest for invalid tri-
als and intermediate responses for neutral trials (Fig. 1e; main effect 
of validity, F(2, 8) = 21.92, P < 0.001, ηG

2 = 0.27), confirming that 
speed–accuracy tradeoffs did not drive the differences in d′. The 
presence and pattern of precueing effects indicates temporal atten-
tional tradeoffs across time, consistent with our previous findings 
with a 250 ms SOA (ref. 41).

Second, the temporal precue affected perceptual sensitivity dif-
ferently at different SOAs. The precue had its largest effects at inter-
mediate SOAs (200–350 ms for T1 and 200–450 ms for T2) but little 
or no effect at the shortest and longest SOAs. This SOA dependence 
can be seen in Fig. 1d, where we plot the difference between d′ val-
ues for trials with valid and invalid precues. Confirming this obser-
vation, a repeated-measures ANOVA of the precueing effect (valid 
− invalid) with target and SOA as factors showed a main effect of 
SOA (F(9, 36) = 3.13, P = 0.0069, ηG

2 = 0.20). There was neither 
a main effect of target (F(1, 4) = 0.11, P = 0.76, ηG

2 = 0.0059) nor 
an interaction between SOA and target (F(9, 36) = 1.00, P = 0.45, 
ηG

2 = 0.10). The pattern of precueing effects was consistent across 
observers (Extended Data Fig. 1).

Third, the overall performance of T1 increased substantially with 
SOA, from d′ of ~0.6 at the 100 ms SOA to ~2.1 at the 800 ms SOA 
(Fig. 1c), on average across precueing conditions (two-tailed paired 
t test, t(4) = 5.72, P = 0.0046, Cohen’s d = 2.56, mean difference 1.49 
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Fig. 1 | Behavioural protocol and data. a, Stimulus display and task 
schematic. Observers discriminated CW versus CCW tilts about either 
the vertical (left) or horizontal (right) axis. (Arrows were not shown to 
observers.) b, Trial sequence. Tilts and axes were independent for T1 and 
T2. SOA varied across testing sessions from 100 to 800 ms, but was fixed 
within each session. c, Perceptual sensitivity (d′) for each SOA, precue 
(valid, neutral or invalid) and target interval (T1 or T2). Main effect of 
precue validity (F(2, 8) = 8.85, P = 0.0094, ηG

2 = 0.048). d, Effect of 
precueing temporal attention on perceptual sensitivity (that is, difference 
in performance between valid and invalid precues). Size of precueing effect 
depended on SOA (F(9, 36) = 3.13, P = 0.0069, ηG

2 = 0.20). e, RT. Error 
bars in c and e are within-observers s.e.m. computed separately for each 
target to reflect differences among conditions for each target. Error bars in 
d are s.e.m., n = 5.

Nature Human Behaviour | VOL 5 | December 2021 | 1674–1685 | www.nature.com/nathumbehav 1675

http://www.nature.com/nathumbehav


Articles NaTurE Human BEhaViour

with 95% CI 0.77–2.21). We call this rising function of SOA for T1 
“masking-like behaviour”50,51. The high T1 performance levels for 
the longest SOA (800 ms) suggests that memory maintenance was 
not a limiting factor in the performance of this task.

Fourth, the overall performance of T2 exhibited a dip at inter-
mediate SOAs for all precueing conditions, which reached its lowest 
average point at 250 ms (Fig. 1c). The dip was larger for invalid trials 
(reaching d′ = 1.3 versus a maximum of 1.8) but was also present 
for valid and neutral trials (d′ = 1.6 versus a maximum of 1.9). This 
U-shaped function of SOA for T2, including its timing, resembles 
the attentional blink (AB). The AB refers to a difficulty in report-
ing the second of two targets in a rapid visual sequence when the 
targets are 200–500 ms apart52,53, which has been much investigated 
both experimentally and through modelling52,54,55. The similarity to 
the AB includes the so-called lag-1 sparing, which refers to the fact 
that T2 performance is not impaired in AB tasks at short SOAs of 
~100 ms (ref. 56).

Statistically, the variation of d′ across SOAs and targets was dem-
onstrated by an effect of SOA on d′ (F(9, 36) = 3.60, P = 0.0028, 
ηG

2 = 0.19), which differed for the two targets (SOA × target interac-
tion, F(9, 36) = 15.38, P < 0.001, ηG

2 = 0.27). For T2 specifically, the 
d′ difference between 100 and 250 ms, on average across precue-
ing conditions, was also significant (two-tailed paired t test, t(4) = 
2.95, P = 0.042, Cohen’s d = 1.32, mean difference 0.34 with 95% CI 
0.020–0.65).

For RT (Fig. 1e), in addition to the main effect of validity, there 
was a trend toward faster T2 responses than T1 responses (F(1, 4) 
= 5.52, P = 0.078, ηG

2 = 0.091), and the precue influenced RT less 
for T2 than for T1 (validity × target interaction, F(2, 8) = 6.83, 
P = 0.019, ηG

2 = 0.048). No other main effects or interactions were 
significant for d′ or RT (F < 1.3) (Extended Data Fig. 2).

In summary, the psychometric time courses for the two-target 
temporal precueing task were quite rich, with masking-like behav-
iour for T1, AB-like behaviour for T2 and the strongest impact of 
temporal attention on perceptual sensitivity at intermediate SOAs 
for both targets. These data provide constraints on possible volun-
tary and involuntary attentional gain dynamics.

Model. General framework. We developed a dynamic perception 
and attention model in which neural responses are dynamically 
adjusted through the recurrent processing of a multi-layer neural 
network. The model describes how perceptual and decision repre-
sentations evolve over time, through interactions of sensory inputs 
and attention. The model components are well established in static 
models of visual cortical function; here we introduced the new 
dimension of time. Specifically, the model is a generalization of the 
Reynolds and Heeger (R&H) normalization model of attention12 

into the time domain. We call the present model a ‘normalization 
model of dynamic attention.’

The model instantiated the hypothesis that the dynamic interac-
tions between attention and orientation perception can be charac-
terized as changes over time in the gain of visual cortical neurons. 
Gain control is an established mechanism mediating spatial atten-
tion12,15 and has also been implicated in the effects of rhythmic 
expectation on perceptual sensitivity57–59.

Each layer of the model consists of a population of neurons 
whose responses follow the R&H equation (Fig. 2). Each neuron’s 
response is determined by the same basic operations: bottom-up 
input to a neuron in a given layer is filtered through that neuron’s 
receptive field (RF), multiplied by top-down attentional modula-
tion, which we term ‘attentional gain’, and then divisively normal-
ized by the activity of its neighbours.

To generalize the model from the original static R&H model to 
a dynamic model, we expressed the model using differential equa-
tions that were updated at every time step according to the R&H 
equation:

τ
d
dt ri = −ri +

ei
si + σn . (1)

Here, ri is the response of neuron i (where i ∈ {1, …, N} for a pop-
ulation of N neurons), ei is the excitatory drive to the neuron, si is the 
suppressive drive, σ is a semi-saturation constant that prevents the 
denominator from going to zero and controls the neuron’s contrast 
gain, n is a fixed exponent that also contributes to the shape of the 
contrast response function and τ is a time constant that determines 
how long the response takes to rise to steady state when the input 
turns on and to return to zero when it turns off.

The excitatory drive ei was determined by the equation

ei = ai (wi · x)n , (2)

where x is the bottom-up input to the layer, wi is the RF of the neu-
ron and ai is the top-down attentional gain. Each linear RF com-
puted a weighted sum of its inputs. We describe the inputs x and RFs 
w for each layer in the Methods section.

The suppressive drive si was determined by the equation

si =
N∑

j=1
ej, (3)

a summation of the excitatory drives of a pool of neurons. Here, the 
pool was simply all the neurons in the layer (for example, all orien-
tation preferences at the one spatial location); in general, this could 
be a weighted sum.

At steady state, this differential equation becomes equivalent 
to the R&H equation; the model therefore retains full generality 
to predict the behavioural and neurophysiological effects of spa-
tial and feature-based attention20,21, which have been successfully 
described and predicted by the R&H model12. Like the R&H model, 
this model is intended to be computationally clear but not biophysi-
cally precise; as discussed previously12, there are many biophysical 
mechanisms that could implement normalization. For example, 
a recently developed circuit model uses recurrence to implement 
normalization, with steady-state behaviour equivalent to the R&H 
equation27. In the current model, the ‘neurons’ should be thought of 
as mapping to computational units at the neural population level.

Model specification. The model architecture was a hierarchical, 
recurrent neural network, with sensory, attention and decision 
layers (Fig. 3a and Supplementary Table 1). The layers generated 
continuous neural response (firing rate) time series given atten-
tional precues and continuous stimulus input (Fig. 3b). Each layer  

Response =
Excitatory

Suppressive

pool

Attention × Drive

(RF • Input)n

=

Σ Excitatory + σn

Fig. 2 | Static R&H normalization model of attention equation. We 
consider a population of orientation-tuned neurons (left, grey-shaded 
background). The computation of the response of one of the neurons 
(shaded yellow, with corresponding yellow RF) is shown. The excitatory 
drive to that neuron is determined by its input drive and attentional 
modulation (equation text with yellow background). The suppressive 
drive is determined by the excitatory drives of all the neurons in the local 
population (equation text with grey background) plus a constant.
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performed the same computation (equations 1–3); only the inputs 
and outputs were layer specific. Full details of the model and simu-
lations can be found in the Methods section.

Sensory layers. The sensory layers represent visual cortical areas. 
Sensory layer 1 (S1) neurons are orientation selective and receive 
stimulus input: the stimulus orientation (or zero for no stimulus) 
at every point in time. It also receives top-down attentional mod-
ulation from both the voluntary and involuntary attention layers. 
Voluntary and involuntary attention combine multiplicatively to 
determine the attentional gain a for S1. Sensory layer 2 (S2) receives 

input from S1, inheriting its orientation tuning. S2 has a slower rise 
and more sustained responses than S1 (because the input to S2 is the 
output from S1), which helps capture T1 behavioural performance 
as a function of SOA.

Voluntary attention layer. The voluntary attention layer (VA) 
increases attentional gain at task-relevant times. Responses in VA 
depend on the precue (T1, T2 or neutral) and the trial timing. The 
input to VA is a time-varying control signal (Fig. 4) that reflects 
the observer’s knowledge of the precue and SOA. The control sig-
nal consists of square wave pulses around the times of each target. 
Pulse latency and duration are free parameters. The amplitude of 
each pulse is determined by the allocation of voluntary attention 
to each target (that is, more voluntary attention at a certain time 
point generates a larger pulse at that time). These control pulses in 
turn determine the VA response and corresponding attentional gain 
modulation of S1.

Voluntary attention was a limited resource across time, gen-
eralizing the idea of limited spatial attention resources (see, for 
example, refs. 21,35,60–63) to the time domain (see Modelling the data 
section). Immediately after a maximum (=1) allocation of attention, 
none was available, but attention recovered over time (Fig. 4a). We 
modelled the recovery of attention as a linear function of time, with 
the recovery time given by the parameter tR. The precue determined 
the allocation of attention (Fig. 4b). When the precue was to T1 or 
T2, maximum attention was allocated to that target, and as much as 
possible (given the recovery dynamics) was allocated to the other 
target. When the precue was neutral, a weighting parameter gov-
erned the attentional allocation.

Involuntary attention layer. The involuntary attention layer (IA) 
is stimulus driven, receiving input from S1. It also feeds back to 
S1, providing a second source of attentional modulation. Because 
IA responses are driven by S1, they started slightly later than S1 
responses (Fig. 3b). Further, their magnitude depends on the volun-
tary attentional modulation of S1, because larger S1 responses drive 
larger IA responses (Fig. 3b).

Decision layer. The decision layer (D) represents a decision area 
(for example, in parietal cortex64) and receives input from S2. An 
optimal linear classifier is used to decode clockwise (CW) versus 
counterclockwise (CCW) evidence at each time step from the S2 
population. This decoded sensory evidence is the input drive to 
D. The time constant for D is fixed to be long, which allows D to 
accumulate sensory evidence over time, without leakage, similar 
to drift–diffusion models65. Decision neurons were target specific, 
accumulating evidence only during a corresponding target readout 
window (Fig. 3b). The model’s task performance was determined by 
the response of the decision neuron representing the target that was 
cued (by the response cue) at the end of the trial.

Modelling the data. Main model. The normalization model of 
dynamic attention fitted the data well (R2 = 0.90) and captured the 
four main features of the data: (1) voluntary attentional tradeoffs 
between T1 and T2, (2) largest precueing effects at intermediate 
SOAs, (3) masking-like behaviour for T1 and (4) AB-like behaviour 
for T2 (Fig. 5a). Fitted parameter values are listed in Table 1.

To capture the two behavioural features related to voluntary 
temporal attention—that is, tradeoffs and peak precueing effects 
at intermediate SOAs—we found it necessary to limit the avail-
ability of voluntary attentional gain over time. Specifically, we let  
voluntary attentional gain be a limited but recoverable resource  
(Fig. 4). This property generalizes an idea that is standard in the 
spatial domain to the temporal domain. In the spatial domain, 
attention to one spatial location leads to improved processing at 
that location but impaired processing at other locations, relative to a 
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and a downward arrow indicates attentional modulation. b, Time series 
simulated for one trial using a 300 ms SOA, precue to attend to T1, T1 
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best-fitting parameters. Plots show responses, r, of each neuron in each 
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reading out T1 and T2 responses. The decision plot shows decision 
windows as shaded horizontal lines.
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neutral condition60,61,63. Therefore voluntary spatial attention is con-
sidered a limited resource at a single point in time that must be dis-
tributed across locations. Analogously, in the temporal domain, if 
such a resource is completely used up at one time point, it will not be 
available at the next time point. However, over time, it will recover 
to its maximum level. Therefore, within the recovery window, the 
resource must be distributed across sequential items, leading to 
tradeoffs. Here, the ‘limited resource’ is, concretely, the allocation 
of voluntary attentional gain. The estimated recovery time of volun-
tary attention tR was 918 ms. Additional quantification of the atten-
tional gain dynamics exhibited by the fitted model can be found in 
Supplementary Tables 2 and 3.

The overall shapes of the performance functions for T1 and T2 
are produced by additional model components. The masking-like 
behaviour for T1 is produced by stopping the decision readout for 
T1 when T2 appears. The AB-like behaviour for T2 is produced 
by a combination of three factors: (1) Limited voluntary attention 
results in lower performance at shorter SOAs, especially for invalid 
trials. (2) At the shortest SOAs (~100 ms), voluntary attention to 
T1 is sustained long enough to enhance both T1 and T2 sensory 
responses, boosting T2 performance. (3) Involuntary attentional 
excitation combines with voluntary attention to further boost T2 
performance at the shortest SOAs, resulting in equal, high perfor-
mance levels across precueing conditions. A model variant without 
the involuntary attention layer fitted the data almost as well (R2 
= 0.89) and was better in model comparison due to having fewer 
parameters (difference in Akaike information criterion (ΔAIC) = 
−5.8), although it could not produce AB-like behaviour for T2 valid 
trials (Supplementary Results).

No limit variant. A model without limited voluntary attention  
(Fig. 5b) produced a poorer fit (R2 = 0.83, ΔAIC = 26 with respect 
to the main model). It also failed to capture the data qualitatively 
(Fig. 5b) in two ways: (1) The no limit variant did not produce trad-
eoffs in temporal precueing effects. It predicted that neutral perfor-
mance was equal to valid performance for both T1 and T2, unlike in 
the data, where T1 neutral performance was similar to invalid per-
formance. (2) The no limit variant did not produce peak precueing 
effects at intermediate SOAs. Rather, the longest SOAs had maximal 
precueing effects. These failures of the model are due to its struc-
ture and could not be altered by a different choice of parameters. A 
model recovery analysis confirmed the distinguishability of the no 
limit variant from the main model variant (Supplementary Fig. 1).

The performance of the no limit model variant reveals why 
a limit on voluntary attention is necessary. The fact that neutral 
performance is very similar to valid performance for both targets 
shows that, without the limit, the model has no incentives to trade 
off attention between T1 and T2. That is, maximum attention (y 
= 1) could be allocated to both targets on every trial with no per-
formance losses. If more attention to one target had led to worse 
performance for the other, neutral performance would have been 
worse than valid performance. Indeed, although we built a differ-
ence between valid and invalid performance into this model variant 
by assuming that the observer would follow the precue to attend to 
one or both targets, the model would have performed the task bet-
ter overall if it had ignored the precue and attended to both targets 
on every trial. In that case, the precue would have had no effect on 
performance at all, unlike what the data showed.

Other model variants. To further investigate the necessity of lim-
ited voluntary attentional gain in this theoretical framework, we 
developed two alternative model variants designed to produce 
attentional trade-off incentives without a limit on voluntary atten-
tion (Supplementary Fig. 2 and Supplementary Tables 1 and 2).  
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One model variant had involuntary attentional inhibition, which 
suppressed T2 more strongly when T1 was precued. The other 
variant allowed for mutual normalization of late-stage T1 and T2 
responses, such that a stronger T1 response would suppress T2 more. 
However, when these models were fitted to the data, neither of these 
implementations produced trade-off profiles. We found that lim-
ited voluntary attention was still required to let each of these model  

variants fit the data (Supplementary Fig. 3 and Supplementary Table 
4), with tR estimates of 809 and 924 ms, respectively.

Generalization to independent datasets and other tasks. To test the 
ability of the main model to generalize to independent datasets, we 
fitted the model to data from two previous experiments that used 
the same voluntary temporal attention task41,42. To do so, we fixed 
all parameters to the best-fit values from the current experiment 
and fit only two free parameters to each dataset to scale the overall 
performance of T1 and T2. Thus, the relative magnitudes of the T1 
and T2 attention effects and the tradeoffs between benefits to one 
target (valid versus neutral) and costs to the other (invalid versus 
neutral) were fixed to the values in Table 1. The model fitted the 
new data reasonably well, with R2 = 0.83 for the full datasets from 
each experiment (Fig. 6a,b). Fits to separate conditions in ref. 42, in 
which the stimulus was placed at different visual field locations, 
yielded R2 values of 0.73 to 0.95 (Fig. 6c). The model slightly under-
estimated the precueing effect size for T1 in ref. 41. However, it cor-
rectly predicted the smaller precueing effect for T2 compared with 
T1 in ref. 42, due to the biased attentional trade-off between targets 
on neutral precue trials, controlled by wN. Thus, with parameters 
for all neuronal and attentional dynamics fixed, the current model 
could capture independent datasets.

Finally, we asked whether our modelling framework could 
capture performance in an AB task. The AB task differs from the 
two-target temporal cueing task in multiple ways, including (1) tar-
gets are embedded in a rapid sequence of non-target stimuli and (2) 
target timing is unpredictable, so voluntary temporal attention can-
not be allocated in advance of the targets. A preliminary simulation 
showed that the current model can capture major features of the AB 
(Supplementary Fig. 4) and invites further work to test the normal-
ization model of dynamic attention on the AB and other tasks.

Discussion
A normalization model of dynamic attention. We developed a 
normalization model of dynamic attention, generalizing the R&H 
normalization model of attention12 to the time domain. The model 
is built using components that have support from studies of the 
visual system and of spatial and feature-based attention, such as lin-
ear filters, gain control, rectification and normalization. Critically, 
it adds attentional dynamics, that is, time-varying attentional 
gain. The model handles temporal attention, including voluntary 
and involuntary attentional dynamics (in addition to spatial and 
feature-based attention) in a unified computational framework.

To constrain the model and reveal the dynamics of voluntary 
temporal attention, we measured how voluntary temporal atten-
tion affects perception across time. We found temporal atten-
tional tradeoffs between two sequential targets, which were largest  
when the targets were separated by SOAs of 200–450 ms. Tradeoffs 
disappeared at the longest SOAs, revealing a time-limited con-
straint on processing sequential stimuli that can be accommodated  
by precisely timed voluntary control. We also found that the 
SOA affected the overall performance for the two targets, with 
masking-like behaviour for T1 and AB-like behaviour for T2.

The model could reproduce the behavioural data using a  
combination of voluntary and involuntary attentional gain  
dynamics, together with a simple implementation of mask-
ing. Involuntary attention was estimated to be fast and transient,  
peaking at 82 ms after stimulus onset, consistent with the dynam-
ics of involuntary spatial attention38,63,66–70. Although incorporating 
involuntary attentional gain dynamics into our modelling frame-
work was theoretically motivated, model comparison showed 
that it was not required to fit the current psychophysical data 
quantitatively. Future research will be needed to further examine  
whether and how involuntary attention interacts with voluntary 
temporal attention.

Table 1 | Model parameters

Parameter Description Value 95% CI

All layers

n Exponent 1.5 —

Sensory layer 1

τS1 Time constant 52 49–116

σS1 Semi-saturation constant 1.4 1.2–2.0

Sensory layer 2

τS2 Time constant 100 69–120

σS2 Semi-saturation constant 0.1 —

Decision layer

τD Time constant 1e5 —

σD Semi-saturation constant 0.7 —

Voluntary attention layer

τVA Time constant 50 —

σA (shared 
with IA)

Semi-saturation constant 20 —

bVA Amplitude of voluntary gain 
modulation

40 21–50

tVAOn Latency of voluntary control signal 
onset

−34 −223 to 
−6

tVADur Duration of voluntary control 
signal

124 99–374

tR Recovery time of voluntary gain 918 600–1,091

wN Weight to treat neutral precue 
more like precue T1 (1) or precue 
T2 (0)

0.28 0.01–0.53

Involuntary attention layer

τIA Time constant 2 —

σA (shared 
with VA)

Semi-saturation constant 20 —

bIA Amplitude of involuntary gain 
modulation

8.5 0.8–27.9

hIA:p Shape parameter for involuntary 
temporal prefilter

2.2 0.04–49.9

hIA:q Scaling parameter for involuntary 
temporal prefilter

0.023 0.01–0.09

Fitting

sT1 Scaling constant to relate model 
output to d′ for T1

1 —

sT2 Scaling constant to relate model 
output to d′ for T2

0.80 0.77–0.84

Number of parameters

Total 20

Fitted 12

Parameters listed without CIs were fixed to set values and not optimized during fitting. All times 
(that is, time constants and latencies) are given in milliseconds. Negative latencies for tVAOn mean 
that the voluntary control signal started before the target.
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Voluntary attention took the form of a limited resource that 
recovered over time, with full recovery estimated to take ~1 s, 
and consistent with a range of 0.6–1.1 s (95% CI). The attentional  
limitation in our model could be, for example, either a limita-
tion on the available voluntary attentional gain (rVA) or a limitati 
on on the activity in voluntary attention control structures (y).  
The model allowed us to separate the dynamics of voluntary atten-
tional gain from other dynamic processes, such as those related 
to involuntary attention and those leading to masking-like behav-
iour. It therefore makes specific predictions about different types 
of attentional gain dynamics (voluntary and involuntary attention 
time courses). Alternative model variants also required a limita-
tion on voluntary attention across time, but they predicted differ-
ent gain dynamics. These competing hypotheses could be tested 
in neurophysiological experiments. The notion of a limited neu-
ral resource that can be flexibly allocated is central to multiple 
domains in psychology and neuroscience, including voluntary spa-
tial attention35,60,61 and working memory71. Here, we propose a lim-
ited resource across time that underlies the selectivity of voluntary 
attention to points in time.

Relation to other attention models concerned with dynamics. 
Previous modelling frameworks that incorporate both attention 
and some dynamic element include: the attention gating model72–74, 
the theory of visual attention (TVA)75–77 and the competitive inter-
action theory17,33,34. Each framework includes different model vari-
ants, some of which incorporate normalization17,75. These models 
have had success in accounting for behavioural data from various 
perceptual tasks. Other frameworks focus on rhythmic attention78,79, 
which we do not consider here.

There are several important differences between these models 
and our dynamic attention model. First, we model voluntary tem-
poral attention. TVA has been adapted to model a constant level of 

expectation across time80,81, but not attention to specific time points. 
Second, our model distinguishes between voluntary and involun-
tary attention, a distinction that is supported by the spatial attention 
literature35,82,83 and has been reported for temporal attention78,84–86. 
Third, in previous models17,77, the role of attention is to control the 
encoding of sensory signals into working memory. This view of 
attention differs from our current model, in which attention mod-
ulates sensory signals but has no direct role in working-memory 
encoding. Fourth, our model is built to handle time-varying stim-
uli and time-varying attention, rather than single, brief displays33, 
and without being constrained by attentional episodes73. Fifth, our 
model is explicitly a neural model, built from standard components 
from visual neuroscience. As such, it makes predictions about the 
time courses of neural activity that can be tested physiologically.

Application to the AB? T2 performance in our two-target tempo-
ral precueing task resembled T2 performance in AB tasks52. The 
fact that we observed AB-like behaviour in a task with no temporal 
uncertainty, no distractors or masks, and no dual task conditions 
could help isolate the mechanisms that lead to AB-like behav-
iour87,88. The few AB studies in which voluntary temporal atten-
tion has been manipulated have reported inconsistent findings89–91. 
Here, we manipulated voluntary temporal attention and tested 
different model variants in which voluntary attentional dynamics 
either contributed to or were independent from AB-like behaviour. 
In our main model, the AB arises from limited voluntary attention. 
We found no need to invoke other processes previously proposed 
to contribute to the AB (for example, working memory limitations, 
loss of top-down control, and alpha oscillations)54,92,93 to explain the 
AB-like behaviour in our task. However, the contribution of such 
processes is not excluded by our model, and as yet we have no evi-
dence that our model should be preferred over others to explain the 
AB per se.

In an influential AB model55, attention is enhanced by the 
appearance of a target and suppressed during working memory 
encoding, which leads to the AB. The initial enhancement of atten-
tion is similar to involuntary attentional enhancement in our model, 
but the subsequent suppression differs. A neurophysiological AB 
model proposes that the AB results from a refractory period in the 
release of norepinephrine by the locus coeruleus (LC), which lim-
its norepinephrine-driven gain enhancement across time94. Future 
work should examine how voluntary temporal attention affects LC 
activity; so far there is no evidence that pupil responses, which are 
influenced by LC, depend on voluntary temporal attention95. As the 
goal of the current study is to investigate voluntary temporal atten-
tion and not the AB, future work will be required to compare alter-
native models on a variety of tasks in which dynamic attention has 
been implicated, including the AB task. As a first step, we simulated 
an AB task and found that our model captures the major features 
of the AB.

Future extensions of the model. The current model is a general 
description of the dynamic interactions between attention and 
sensory responses. We focus on how attention affects sensory 
processing of oriented gratings, a strategy that has proven pro-
ductive in studies of spatial attention12,15,21,35,61,63,68,82,83,96, facilitated 
by our knowledge of how orientation is represented in the visual 
system97. Future work could extend the model to include working 
memory layers, as sequential processing limitations may also arise 
in working memory54, as well as more complex feature representa-
tions (using additional sensory layers and different RFs) to handle 
more complex stimuli. It could also investigate how different types 
of noise at different stages of the model impact model behaviour. 
Here the limited resource of voluntary attention was implemented 
via constraints on the amplitude of the attention control signal over 
time, resulting in limits on attentional gain. Future work should 
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explore other implementations of a limited resource on voluntary 
attention over time.

Conclusion
We developed a model of voluntary and involuntary visual tem-
poral attention, which can serve as a general-purpose computa-
tional framework for modelling dynamic attention. Psychophysical 
measurements revealed perceptual tradeoffs for successive stimuli 
within sub-second time intervals, which can be controlled by volun-
tary temporal attention. Precisely timed visual attention may there-
fore help humans compensate for neural processing limitations over 
short, behaviourally relevant timescales. The model predicts that 
voluntary temporal attentional gain is a limited resource. Future 
experiments will be needed to test the current model’s predictions 
and specify the attentional gain dynamics related to spatial and 
feature-based attention. The time-varying nature of the proposed 
framework (not to mention of vision itself) calls for new data from 
psychophysical, neurophysiological and neuroimaging experiments 
with dynamic displays.

Methods
Behaviour. Observers. Five human observers (20–30 years old, three female 
and two male) participated in the experiment. All observers provided informed 
consent, and the University Committee on Activities involving Human Subjects at 
New York University (NYU) approved the experimental protocols. Observers were 
students and researchers at NYU who had experience doing visual psychophysics 
(though not necessarily temporal attention tasks). All observers had normal or 
corrected-to-normal vision, and all but author R.N.D. were naïve as to the purpose 
of the experiment. No statistical methods were used to pre-determine sample 
sizes, but our sample sizes are similar to those reported in previous psychophysics 
publications that took a similar approach of collecting a large amount of data per 
observer (for example, ref. 7).

Setting. The experiment was conducted in a quiet testing room. During 
experimental blocks, the only light source was the computer monitor. The 
experimenter was present to give instructions and throughout training and 
checked on the observer between testing blocks.

Stimuli. Stimuli were generated on an Apple iMac using MATLAB and 
Psychophysics Toolbox98–100 and were displayed on a gamma-corrected Sony 
Trinitron G520 CRT monitor with a refresh rate of 100 Hz at a viewing distance of 
56 cm. Observers’ heads were stabilized by a chin-and-head rest. A central white 
fixation ‘x’ subtended 0.5° visual angle. Visual target stimuli were four cycles 
per degree of visual angle sinusoidal gratings with a two-dimensional Gaussian 
spatial envelope (standard deviation 0.7°), presented in the lower-right quadrant 
of the display centred at 5.7° eccentricity (Fig. 1a). (The stimulus was placed in 
this quadrant in anticipation of future neuroimaging studies. We have previously 
shown the effects of voluntary temporal attention on orientation discrimination 
to be indistinguishable at different iso-eccentric peripheral locations and the 
fovea, so we expect stimulus location should not impact the results42.) Stimulus 
contrast was 64%. Placeholders, corners of a 4.25° x 4.25° white square outline (line 
width 0.08°) centred on the target location, were present throughout the display 
to minimize spatial uncertainty. The stimuli were presented on a medium-grey 
background (57 cd m−2). Auditory precues were high-frequency (784 Hz; G5) or 
low-frequency (523 Hz; C5) pure tones, or their combination, and were presented 
via the computer speakers.

Procedure. The task was designed to study the temporal dynamics of voluntary and 
involuntary temporal attention, including how these two types of attention interact 
dynamically to affect perception. We used the two-target temporal precueing task 
developed and previously described by Denison et al.41,49.

Task. Observers discriminated the orientation of grating patches (Fig. 1). On each 
trial, two targets (T1 and T2) were presented at the same spatial location, separated 
by a fixed SOA (the time interval between the target onsets) on a given day of 
testing. The target duration was 30 ms. Each target was tilted slightly CW or CCW 
from either the vertical or horizontal axis, with independent tilts and axes for T1 
and T2. Tilts ranged from 1.4° to 2.5° across observers. Both horizontal and  
vertical axes were used to discourage observers from adopting a strategy of 
comparing the two successive targets on a given trial to judge whether they  
were the same or different.

Overview of experimental manipulations. We manipulated voluntary temporal 
attention using temporal precues to T1, T2 or both targets. We assumed that 
the onset of T1 would elicit involuntary temporal attention, and we measured 

the perceptual effects of involuntary attention on T2 as a function of time by 
manipulating the SOA. Other time-varying processes that affected the perception 
of the two targets, such as masking, could also be studied as a function of SOA. 
Because we wanted observers to be able to attend to precise points in time, we 
eliminated temporal uncertainty by fixing the SOA in each testing session, and 
varied it across sessions. So, on a given testing day, the trial timing was constant, 
and the only thing that varied across trials was the precue to attend to T1, T2 or 
both targets.

Trial sequence. An auditory precue 1,000 ms before T1 instructed observers 
to attend to one of the targets (informative precue, high tone: attend to T1; 
low tone: attend to T2) or to attend to both targets (neutral precue, both tones 
simultaneously). Observers were asked to report the orientation of one of the 
targets, which was indicated by an auditory response cue 500 ms after T2 (high 
tone: report T1; low tone: report T2). The duration of the precue and response 
cue tones was 200 ms. For trials with informative precues (80% of all trials), the 
response cue matched the precued target with a probability of 75% (valid trials) 
and the other target with a probability of 25% (invalid trials). For neutral trials 
(20% of all trials), the two targets were indicated by the response cue with equal 
probability. To reduce the possibility of speed–accuracy tradeoffs, observers were 
instructed to withhold their response until the fixation cross dimmed (a ‘go cue’) 
600 ms after the response cue. Observers pressed one of two keys to indicate 
whether the tilt was CW or CCW relative to the main axis, with unlimited time to 
respond. Long reaction times (>2 s) were rare (0.1% of trials). Reaction times were 
measured relative to the go cue. Observers received feedback at fixation (correct: 
green ‘+’; incorrect: red ‘−’) after each trial, as well as feedback about performance 
accuracy (percent correct) following each block of trials.

Sessions. Three observers completed 20 testing sessions (ten SOAs × two sessions 
per SOA, 9,600 trials in total), and two observers completed ten sessions (ten SOAs 
× one session per SOA, 4,800 trials in total) on separate days. The SOA order was 
randomly determined for each observer. Observers who completed two sessions 
per SOA did two sets of ten, with a separate random shuffling for each set. Each 
session consisted of all combinations of precue type (60% valid, 20% invalid and 
20% neutral), probed target (T1 and T2), target tilt (CW and CCW, independent 
for T1 and T2) and target axis (horizontal and vertical, independent for T1 and 
T2) in a randomly shuffled order, for a total of 480 trials per session. Observers 
completed 64 practice trials at the start of each session to familiarize them with the 
SOA for that day.

Training. Observers completed one session of training prior to the experiment 
to familiarize them with the task and determine their tilt thresholds. Thresholds 
were found using a three-down one-up staircase with all neutral precues at a 
250 ms SOA, to achieve an accuracy of ~79% on average across T1 and T2. After 
determining the tilt threshold, observers completed 64 trials of training with all 
valid precues, followed by 320 trials identical to an experimental session. The 
threshold tilt values were used for the remainder of the experiment. (For one 
observer whose overall performance improved during the first ten sessions, the tilt 
was adjusted before the second set of ten sessions.)

Eye tracking. Eye position was recorded using an EyeLink 1000 eye tracker (SR 
Research) at a sampling rate of 1,000 Hz. Raw gaze positions were converted into 
degrees of visual angle using the five-point grid calibration, which was performed 
at the start of each experimental run. Online eye tracking was used to monitor 
central fixation throughout the experiment. Initiation of each trial was contingent 
on fixation, with a 750 ms minimum inter-trial interval. Observers were required 
to maintain fixation, without blinking, from the onset of the precue until the onset 
of the response cue. If an observer broke fixation during this period, the trial was 
stopped and repeated at the end of the run.

Statistics. To examine the effects of the experimental manipulations on  
behaviour, we conducted repeated-measures ANOVAs and calculated ηG

2  
as a measure of effect size using the ‘ezANOVA’ function from the ‘ez’ package  
in R. ANOVA assumes normality and sphericity. We tested the normality 
assumption by fitting a linear model to the data and examining the residuals  
using Q–Q plots and the Shapiro–Wilk normality test in R. The d′ measure  
met the normality assumption. The reaction time measure did not, but note  
that reaction time here was a secondary measure that was analysed to rule out  
speed–accuracy tradeoffs, ANOVA is typically robust to violations of normality 
and the RT results were consistent with the d′ results. We confirmed that all 
significant F tests remained significant after Huynh–Feldt sphericity corrections. 
All statistical tests were two-sided. Cohen’s d for paired t tests was calculated as  
the mean of the paired differences divided by the standard deviation of the  
paired differences.

Model. The variables e, s, r, a, g, x, y and z are all time varying, for example, e(t), 
but for simplicity of notation, we omit the time t. As these variables can be both 
neuron and layer specific, we use a subscript to index the neuron and a superscript 
to refer to the layer, for example, ei

S1 for the excitatory drive to the ith neuron of 
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layer S1. When no layer superscript is given, we are referring to the general case, 
applicable to all layers. For constants, which are neither time varying nor neuron 
specific, we use only subscripts.

Model specification. The model consists of a hierarchical, recurrent neural network, 
with different layers (Fig. 3a): sensory layers, analogous to visual cortical areas; 
attention layers, which modulate the sensory responses; and a decision layer, which 
reads out the sensory responses and reports a task decision (here, CW versus CCW 
grating tilt). All model parameters are listed in Table 1.

Sensory layer 1. Layer S1 (Fig. 3b) represents an early-stage visual area and receives 
stimulus input at every time step. The excitatory drive for each neuron i is

eS1i = aS1i
(

wS1
i · x

)n
. (4)

The stimulus x is represented in terms of its orientation: a vector of length 
M, with each element corresponding to a different orientation θ. When the target 
grating is on, the element corresponding to the stimulus orientation has a value c, 
the stimulus contrast: x = (0, 0, …, c, …, 0). When the grating is off, all elements 
are zero-valued. We showed the model the same two-target trial sequences (Fig. 3b, 
Stimulus) as we showed observers (Fig. 1b).

Layer S1 had 12 orientation-selective model neurons (each of which could 
represent a larger neural population), which tiled orientation at a single spatial 
location. Each RF wi

S1 = (wi,1, wi,2, …, wi,M) was designed to be an orientation 
tuning curve described by one cycle of a raised cosine:

wi,j =
∣

∣cos
(

θj − φi
)m∣

∣ , (5)

where θ is orientation, with sampled orientations indexed by j, and φi is the 
preferred orientation of the ith neuron. Preferred orientations were evenly spaced, 
φ = (0, π/N, …, π – π/N). The exponent m, which governs the width of the tuning 
curves, was set to m = 2N − 1. These tuning curves ensure even tiling of orientation 
space. Orientation selectivity was all that was needed to model our task, but in 
general the model neurons would be selective also for spatial location and spatial 
frequency.

S1 received top-down attentional gain modulation from both VA and IA, 
whose responses independently and multiplicatively modulated the sensory drive. 
The attentional gain aS1 is

aS1i =

⌊

1 + bVArVAi
⌋ ⌊

1 + bIArIAi
⌋

, (6)

where rVA and rIA are the responses of the voluntary and involuntary attention 
layers, respectively, bVA and bIA are free parameters determining the amplitude of 
voluntary and involuntary attentional modulation and brackets denote half-wave 
rectification, which ensures that attentional modulation is positive. The baseline 
attentional gain was assumed to be 1, which left sensory responses unchanged 
in the absence of top-down attentional modulation. When a was greater than 1, 
sensory responses increased above baseline; we call this ‘excitatory’ attentional 
modulation. When a was less than 1, sensory responses decreased below baseline; 
we call this ‘inhibitory’ attentional modulation.

Sensory layer 2. Layer S2 (Fig. 3b) represents a later-stage visual area and receives 
input from S1. Layer S2 also has 12 neurons, and each neuron receives input from 
a single S1 neuron, thereby inheriting the orientation tuning of the S1 neuron 
(x = rS1). S2 does not receive attentional modulation, so its attentional gain a is 
effectively fixed to 1. The excitatory drive for each neuron i is therefore simply

eS2i =

(

rS1i
)n

, (7)

where corresponding neurons i in S2 and S1 have the same orientation preference. 
S2 responses are also determined by equation (1), which includes a temporal 
low-pass filter with time constant τS2. Therefore, S2 had a slower rise and more 
sustained responses than S1, which helped capture T1 behavioural performance as 
a function of SOA. However, temporal RFs with more complex dynamics within a 
layer (for example, a cascade of exponentials) could have achieved the same result 
using only one sensory layer.

Decision layer. The decision layer (Fig. 3b) represents a decision area (for example, 
in parietal cortex64) and receives input from S2. To encode information about 
temporal order, there are two neurons in the decision layer, one for T1 and one for 
T2. A binary (0 or 1) decision window g gates the input to each neuron: a neuron 
receives input drive only when its decision window is on. The T1 neuron’s decision 
window starts at the onset of T1 and stops at the onset of T2. The T2 neuron’s 
decision window starts at the onset of T2 and stops at the end of the trial. Thus, the 
decision layer reads out from successive decision windows for the two targets (Fig. 
3b, Decision, shaded regions). The decision window cutoff for T1 implements a 
simplified version of masking, standing in for a mechanism that curtails T1-related 
signals when T2 appears50,101.

The input drive to the decision layer is the evidence for CW or CCW tilts, 
based on the responses of S2. The excitatory drive for each neuron i is

eDi = gi
(

wD
i · rS2

)n
. (8)

The inner product in this equation represents an optimal linear classifier that 
decodes CW versus CCW evidence at each time step from the S2 population 
response. The classifier projects rS2 onto the difference wD between two templates 
corresponding to ideal responses to the two possible stimuli (CW and CCW). 
These templates are ‘ideal’ in the sense that they are the population responses 
for CW or CCW stimuli at full contrast and with no noise. (We assume that 
the orientation axis—vertical or horizontal—is known to the observer, so 
the comparison is only between the CW and CCW templates on the relevant 
orientation axis.) The classifier projection gives a continuous value that indicates 
the similarity of the population response on that trial to the CW versus CCW 
templates. We arbitrarily assign CW evidence to positive values and CCW evidence 
to negative values; an alternative implementation could have used different 
neurons to represent evidence for each choice. The sign of the evidence indicates a 
CW versus CCW choice, and the magnitude indicates the strength of evidence for 
the choice. Because sensory evidence at each time step creates a new input drive to 
the decision layer, the decision layer accumulates evidence across time, similar to 
drift–diffusion models65. We fix the time constant of the decision layer to a large 
value to minimize integration leak and allow faithful evidence accumulation  
across the trial.

Depending on the response cue, the T1 or T2 decision neuron’s response at 
the end of the trial is used to determine the model’s performance. Specifically, the 
model’s CW versus CCW choice on each trial is determined by the sign of the 
response, and the magnitude of the decision neuron’s response is presumed to be 
proportional to the experimentally observed d′ using a fixed scaling factor. This 
corresponds to a maximum-likelihood decision assuming additive Gaussian noise. 
We also fitted a separate, relative scaling factor for T2, as the maximum d′ was 
lower for T2 than T1. We do not have an explanation for overall differences between 
T1 and T2, which we have found to vary across datasets and individuals41,42, but we 
let these differences be captured by the T2 scaling parameter.

Voluntary attention layer. Responses in VA (Fig. 3b) depend on the precue for 
a given trial (for example, precue T1) and knowledge of task timing, so that VA 
responses increase at the time of the relevant sensory responses. The input y to the 
layer is a time-varying control signal that reflects the observer’s knowledge of the 
SOA and the precue type (T1, T2 or neutral). The excitatory drive is determined by 
the input as

eVAi = yn. (9)

The control signal is a square wave at each target time (Fig. 4). The timing of 
each square wave is determined by the SOA and two free parameters, tVAOn and 
tVADur, which control the onset and duration of the square wave. The amplitude of 
each square wave is determined by the allocation of voluntary attentional gain to 
each target.

In the main model variant, voluntary attentional gain was a limited resource 
across time. The amplitudes of the square waves then depend on two additional 
free parameters: a time constant tR and an attentional weighting parameter wN. 
We implemented the limited resources idea by assuming that, immediately after 
a maximum allocation of gain, no gain would be available, but the available gain 
would recover to the maximum level over time (Fig. 4). We modelled the recovery 
of attention as a linear function of time, with the recovery time given by the 
parameter tR. We defined the maximum attention allocation (the amplitude of y) 
at a given time to be 1. Thus the total attention available to both targets for a given 
SOA was

total attentionSOA = 1 + min
( SOA

tR
, 1
)

. (10)

The total attention available across the SOA was distributed across the two 
targets according to the precue. When the precue was informative (directing 
attention to one target), the maximum attention for a single target (=1) was 
allocated to the precued target, and the remainder from the total available attention 
across both targets was allocated to the other target. (Similar results were obtained 
when a weighting parameter determined the proportion of attention allocated to 
the precued target.) For example, if the tR was 1,000 ms and the SOA was 400 ms, 
the total attention available across both targets was 1 (to the precued target) + 
400/1,000 (to the other target) = 1.4. When the precue was neutral, a weighting 
parameter wN governed the attentional allocation. Due to a perceived or actual 
asymmetry between the two targets, observers may have a tendency to treat a 
neutral precue more like a precue for T1 or for T2; wN captured this possible bias. 
Figure 4 shows examples of the attention control input to VA. We chose the linear 
recovery function for simplicity and interpretability, as it gives rise to attentional 
tradeoffs between targets that depend only on tR and wN. Other types of recovery 
functions, such as exponential recovery, could be explored in future work.
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Involuntary attention layer. Responses in IA are driven by input from S1 (that is, 
‘stimulus driven’), as shown in Fig. 3. The excitatory drive is

eIAi =

(

wIA
· z

)n
, (11)

where z is a temporally filtered version of rS1. The temporal filter, which we refer to 
as a ‘prefilter’, is a gamma function (hIA) with amplitude fixed to 1 and fitted shape 
and scaling parameters p and q. The gamma function is equivalent to a cascade 
of exponential (low-pass) filters. The RF wIA is the same for all the neurons in the 
layer and weights all S1 responses equally, that is, was not feature selective. Because 
IA responses are driven by S1, they start slightly later than S1 responses (Fig. 3b). 
Further, their magnitude depends on the voluntary attentional modulation of 
S1, with stronger involuntary responses to sensory responses that are voluntarily 
attended (Fig. 3b).

Model variants. In addition to the main model just described, several variants were 
developed and tested.

No limit model variant. To test whether the limit on voluntary attentional gain  
was needed to explain the behavioural data, we created a no limit alternative. 
The only difference between the original model variant and the no limit variant 
was that, in the no limit variant, voluntary attentional gain could be allocated at 
the maximum level (still defined as 1) at any time, regardless of its allocation at 
other times. Therefore, this model variant did not require the parameters that 
determined the allocation of limited voluntary attentional gain in the main model 
variant: tR, and wN.

To give the no limit model variant the best chance to capture the data, we 
assumed that the model was an ‘obedient’ observer that followed the instruction 
of the precue to attend to T1, to T2 or to both targets (neutral precue). So, for 
precue T1 trials, the model allocates voluntary gain maximally (y = 1) to T1 and 
minimally (y = 0) to T2, and vice versa for precue T2 trials. For neutral trials, 
the model allocates voluntary gain maximally (y = 1) to both targets. Note that, 
if we had allowed the model to adopt an optimal strategy (that is, to maximize 
performance accuracy), it would have attended maximally to all targets even for 
invalid trials, resulting in no difference between valid and invalid trials. This 
strategy was not available to the variant with limits on voluntary attention.

Other model variants. We tested additional variants of the model to assess whether 
other mechanisms could explain the behavioural data without a temporal limit 
on voluntary attention. These model variants are described in the Supplementary 
Results section.

Simulation procedures. The model simulations were run using MATLAB. Each 
simulated trial lasted 2.1 s with time steps Δt of 2 ms. The continuous differential 
equation representing the dynamical version of the R&H normalization  
equation (1) was discretized as

r (t) = r (t − Δt) + Δt
τ

(

−r (t − 1) + e(t)
s (t) + σn

)

. (12)

To generate the model performance for one condition (defined by a 
combination of precue and SOA), a single trial was simulated recursively for 1,050 
time points t. The only time series specified in advance were the stimulus time 
series, the voluntary attention control time series y and the decision window time 
series g specifying when evidence would be accumulated for each target. Voluntary 
attention control was specified based on the precue. The other time-varying 
quantities (the excitatory drives e, suppressive drives s and neuronal responses r  
for each layer) were calculated at each time step, based on the values of the  
other time-varying quantities at the current and, when prefiltering was applied, 
previous time steps.

To generate the full psychometric functions containing 60 data points  
(3 precues × 10 SOAs × 2 targets), each condition was simulated once with no 
noise to obtain the model performance for both targets in that condition. We 
performed all simulations with the T1 stimulus CCW from vertical and the T2 
stimulus CCW from horizontal, which produced the same behaviour as the  
average across all possible stimulus sequences.

Fitting procedures. We fit each model variant to the group average d′ data (60 data 
points). Model fitting was conducted in two phases. In the first phase, the cost 
function (the sum of the squared error between the model output and data) was 
evaluated at 2,000 parameter sets sampled from reasonable parameter ranges, 
which were the same for all models tested. To sample evenly across the full range, 
each range was divided into 400 bins, and five parameter values were sampled 
uniformly from each bin. In the second phase, the 40 parameter sets with the 
lowest cost from the first phase were used as starting points for optimization. The 
optimization algorithm was Bayesian adaptive direct search (BADS)102, which is 
well suited for the number of parameters and cost function evaluation time of our 
model. The optimization producing the lowest cost across all starting points was 
selected as the best fit.

Some parameters were fixed by hand (that is, not fit) for theoretical reasons or 
to minimize redundancies among the fitted parameters. Fixed parameters are those 
listed without confidence intervals (CIs) in Table 1. The values of all fixed and 
best-fit parameters are given in Table 1.

Resampling procedures. We obtained CIs on the parameter estimates and model 
predictions by bootstrapping the data and refitting the model 100 times. For each 
bootstrap, we aggregated all trials from all observers for each condition, resampled 
the trials with replacement and recalculated d′. Then, for each resampled dataset, 
we performed the fitting procedure as described above (2,000 initial cost function 
evaluations followed by optimization from 40 starting points). This procedure 
yielded 100 fits of resampled data. CIs on parameter estimates (Table 1) were 
calculated from the bootstrapped estimates. CIs on model fits (Fig. 5) were 
calculated for each condition combination using the bootstrapped model  
output (predicted d′).

Parameter interpretation. Several parameters contributed to the attentional 
dynamics exhibited by each model variant, including the attentional time 
constants, the onset and duration of the voluntary attention control signal, the 
temporal prefilter for the involuntary attention layer and the amplitudes of the 
voluntary and involuntary attentional modulation. We used these fitted parameters 
to calculate summary metrics describing the voluntary and involuntary attentional 
dynamics produced by the model. Specifically, we calculated the peak gain 
amplitudes, the latencies of those peak amplitudes and the maximum durations 
of the gain modulations. To calculate the duration of an attentional gain response, 
we defined a response as non-zero whenever its absolute value was greater than 
1% of the maximum response. Note that gain amplitudes are in arbitrary units that 
should only be compared with the other amplitudes from a given fit.

Model comparison. We compared models using the AIC, computed with the 
assumption of a normal error distribution103,

AIC = n ln
(RSS

n

)

+ 2k + C, (13)

where n is the number of observations, RSS is the residual sum of squares, k is the 
number of free parameters and C is a constant that is the same across models. To 
compare models, we computed ΔAIC. Models with smaller AIC values fit the data 
better.

Generalization to independent datasets. We fitted the main model to data from two 
previous experiments41,42. In ref. 41, discrimination performance for experiment 
1 was reported as percent correct, so we reanalysed the data to calculate d′ from 
trials aggregated for each precue type. In ref. 42, the data from each visual field 
location were fitted separately, and because there were no significant differences 
across locations in that study, we also fitted the average data across locations. For 
each fit, two parameters were allowed to vary: sT1 and sT2. These parameters are 
scaling constants that control the overall performance of each target. All other 
parameters were fixed to the best-fitting values from the main model fit to the 
current data (Table 1). The fitting procedures were otherwise the same as for the 
current data. Procedures for the AB simulation are described in the Supplementary 
Results section.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All behavioural data are publicly available on the Open Science Framework (OSF) 
(https://osf.io/dkx7n).

Code availability
All custom code for the model is publicly available on OSF (https://osf.io/dkx7n). 
Code for the behavioural experiments is available on GitHub (https://github.com/
racheldenison/temporal-attention).
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Extended Data Fig. 1 | Individual observer data. Behavioural data for individual observers (data points) at each SOA (separate plots). Valid vs. invalid 
performance for T1 (purple) and T2 (green). For visualization, individual data across SOAs and cuing conditions were normalized separately for each 
target by adding a constant to equate the individual target mean with the group mean. This adjusts for individual differences in overall performance for a 
given target without changing the differences among cueing and SOA conditions, facilitating visualization of the pattern of data across these factors. (a) 
Perceptual sensitivity (d’). Data points lying above the unity line have a temporal cueing effect: higher d’ for valid than invalid trials. The improvement of d’ 
with temporal attention specifically for intermediate SOAs was consistent across individual observers. (b) Reaction time (RT). Data points lying below the 
unity line have a temporal cueing effect: faster RT for valid than invalid trials. Reaction time improvements were consistent across observers.
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Extended Data Fig. 2 | Behavioural statistics. Repeated measures ANOVA table for behavioural data. SOA = stimulus onset asynchrony, dfn = degrees of 
freedom in the numerator, dfd = degrees of freedom in the denominator.

Nature Human Behaviour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


1

nature research  |  reporting sum
m

ary
April 2020

Corresponding author(s): Rachel Denison

Last updated by author(s): Feb 11, 2021

Reporting Summary
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data were collected using custom experiment code using MATLAB (version 7.10) with Psychophysics Toolbox (version 3.0). Our experiment 
code is available on GitHub, https://github.com/racheldenison/temporal-attention.

Data analysis Data were analyzed using custom code written in MATLAB (version 9.1). Our modeling code is available on the Open Science Framework 
(OSF), https://osf.io/dkx7n.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All behavioral data is publicly available on the Open Science Framework (OSF), https://osf.io/dkx7n.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The data are quantitative psychophysical data with a within-subjects, repeated measures experimental design.

Research sample Five human observers (20-30 years old, 3 female and 2 male) participated in the experiment. Observers were students and 
researchers at NYU who had experience doing visual psychophysics (though not necessarily temporal attention tasks). All observers 
had normal or corrected-to-normal vision, and all but author R.N.D. were naïve as to the purpose of the experiment.

Sampling strategy We took a psychophysical approach of testing a small number of experienced observers on a large number of repeated-measures 
conditions (here, 60 conditions). The goal was to model the full psychometric functions, rather than to perform a specific hypothesis 
test (the typical basis for power analyses). In the vision literature, studies taking this approach typically test 3-5 observers, so we 
decided to test 5 observers. We initially collected 4.8K trials per observer, based on the number of trials needed to obtain reliable 
estimates of d' for each condition and observer. For 3 of the observers, we doubled the dataset to investigate a scientific question 
not considered in the current manuscript, so these observers each had 9.6K trials.

Data collection The experiment was conducted in a quiet testing room. During experimental blocks, the only light source was the computer monitor. 
The experimenter was present to give instructions and throughout training and checked on the observer between testing blocks. 
Stimuli were generated on an Apple iMac using MATLAB and Psychophysics Toolbox and were displayed on a gamma-corrected Sony 
Trinitron G520 CRT monitor with a refresh rate of 100 Hz. Observers’ heads were stabilized by a chin-and-head rest. Eye position was 
recorded using an EyeLink 1000 eye tracker (SR Research) with a sampling rate of 1000 Hz. 

Timing We collected data sets from 5 observers with 10 sessions each and 10 additional sessions from 3 of the observers (see "Sampling 
strategy"). The first session was collected in June 2014 and the last in April 2017.

Data exclusions No data were excluded.

Non-participation No participants dropped out or declined to participate.

Randomization There were no between-subjects experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics 5 observers, 20-30 years old, 3 female and 2 male

Recruitment Participants were students or researchers recruited from vision labs at NYU. All were experienced psychophysical observers.
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